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1 Introduction

Many intertemporal economic applications have the mathematical form of optimal con-
trol problems, where an objective function (e.g., intertemporal welfare, profit, costs, etc.)
is sought to be maximized or minimized subject to a system of equations of motion,
which determine the interaction of the stock and the control variables. Many economic
systems do not react instantly but with a delay to changes in external influences (e.g.,
investment-lags, transportation-lags, etc.). Despite this ubiquitous experience, the anal-
ysis of such delayed dynamic systems in an optimal control framework has attracted
little interest in economics so far.

The few exception are exclusively devoted to the delayed accumulation of capital,
which means that investment needs time to turn into productive capital. El-Hodiri et al.
(1972) derived a generalized maximum principle for a growth model with heterogeneous
capital goods and exogenously given and constant delays of control and state variables.
Production lags have been discussed in the macroeconomic real business cycle theory.
Following an idea first given in Kalecki (1935), Kydland & Prescott (1982) empirically
analyzed how far time consuming investment, which they called time-to-build, could
explain business cycles observed in reality. Rustichini (1989) and Asea & Zak (1999)
showed in simple optimal control models with one capital good (but a different lag
structure) that the time-to-build feature is the driving force for the oscillatory system
dynamics. More recently, Boucekkine et al. (2005) and Feichtinger et al. (2006) applied
the time-to-build feature in the analysis of vintage capital models.

One reason for economists shunning delayed optimal control problems (especially in
continuous time) is that they exhibit severe analytical and numerical difficulties. Even
the linear approximation of the system dynamics around the stationary state is governed
by a system of differential-difference equations of neutral type, which is, in general, not
analytically solvable. Thus, the analytical discussion of delayed optimal control problems
is limited to a few qualitative properties of the optimal solution (see, e.g., Rustichini 1989,
Asea & Zak 1999 and Winkler 2004 for local stability analysis and qualitative systems
dynamics). As a consequence, numerical optimization methods play an important role
in analyzing and understanding the behavior of delayed optimal control problems.

In this paper we show how optimal control problems in continuous time with one
stock and one control variable with a constant time delay can be solved numerically. We
reformulate the original problem in two different ways into constrained control problems
in ordinary differential equations with higher dimensional control functions respectively
state variables. Thus, we avoid the solution of the delayed system at the cost of higher
dimensionality. Furthermore, we show how to solve the reformulated control problems
by Bock’s direct multiple shooting method. The power of the solution method is demon-
strated by treating two typical economic examples.

The remainder of the paper is structured as follows. Section 2 defines the class of
delayed optimal control problems we seek to solve numerically. Furthermore, we review
some qualitative properties of the optimal path and outline the difficulties for numerical
solution methods. In section 3 we reformulate the optimal control problem in a suit-
able way to allow an application of the direct multiple shooting method. Two examples



demonstrate the range of application for the solution method in section 4. Finally, section
5 concludes.

2 Problem formulation and analytical properties

We investigate a class of optimal control problems with one stock and one control vari-
able and a control-delayed equation of motion of the stock variable. In this section we
introduce a generic control problem and review some of its analytical properties.

2.1 A generic optimal control problem with delayed equation of motion

As usual in economic applications, we consider the maximization of an objective func-
tional W, which is the discounted infinite integral over an autonomous felicity function
F. With a stock variable x and a control variable u, the optimal control problem reads

max W = 000 F(x(t),u(t)) exp[—pt] dt (1a)
subject to

#(t) = u(t—o) —ya(t) (1b)

u(t) € [a, 8], a,B€R, (1c)

z(0) = ¢ , (1d)

u(t) =&(t), tel-0,0), (le)

where p denotes the constant and positive discount rate, o is a constant delay or time-
lag, and v is a constant decay rate. In addition, F' is assumed to be twice continuously
differentiable with respect to both arguments.

The crucial feature is that the control u(-) enters with a delay o as u(t — o) in con-
straint (1b), while it is evaluated at time ¢ as u(t) in the objective functional (1a). In
general, a differential equation with a delay in the state variables or control functions is
referred to as a delayed differential-difference equation (DDE). Other common terms are
retarded linear functional differential equation or differential-difference equation of re-
tarded type. For an introduction to DDEs see Asea & Zak (1999: section 2) and Gandolfo
(1996: chapter 27). A detailed exposition of (linear) functional differential equations is
given in Bellman & Cooke (1963), Driver (1977), Hale (1977) and Kolmanovskii & Nosov
(1986).

In contrast to models with instantaneous equations of motion, besides an initial value
xq for the stock z, also an initial path £ for the control u(-) in the time interval [—o, 0)
has to be specified (or also optimized). Note that the path of the stock x in the time
interval t € [0, 0] is completely determined by the initial stock zg, the initial path &(+),
and the retarded equation of motion in (1). Thus, optimal control problems which are
governed by a retarded equation of motion exhibit an additional moment of inertia, as
the variation of the stock reacts with a delay to the control.



Although the equation of motion is very specific, the maximization problem (1) rep-
resents numerous economic models. For example, it can be identified with capital accu-
mulation models, where the capital stock accumulates delayed to investment, because
investment needs some time to become productive capital. Other examples include pol-
lution control problems, where the harmful pollution stock accumulates with a delay to
the emissions of the respective pollutant, because the pollution does not accumulate at
the same place where it is emitted and the transportation processes involved need time.

2.2 Necessary and sufficient conditions of the optimal solution

To derive necessary and sufficient conditions for the optimal solution of the optimization
problem (1), we apply the generalized maximum principle derived in El-Hodiri et al.
(1972) for delayed optimal control problems. This is possible, as the equation of motion
(1b) is additively separable! in the time-lagged control variable u(t—o) and the stock
variable x(t). One obtains the Hamiltonian H as

H(x(t),u(t)) = F(x(t), u(t)) exp[—pt] + pz(t+o)u(t) — yp.(t)z(t)
+pa(®)u(t) — o] + ps()[6 — u(t)]

where p, denotes the costate variable or shadow price of the stock z, and p, and ps are
the Kuhn-Tucker variables for the restrictions (1c) on the control variable u. Although
it might look odd at first sight to have p, evaluated at a future time, while we have a
retarded equation of motion (1b), the explanation is quite intuitive: p, measures the net
present value of all future welfare gains/losses of one additional unit of the stock. As the
reaction of the stock to the control takes the time period o, a marginal increase in the
control u at time t gives rise to a marginal unit of the stock x at time t+o, of which the
net present value is given by p,(t+0).

Assuming that the Hamiltonian H is pointwise continuously differentiable with respect
to the control u, the following necessary conditions hold for an optimal solution (partial
derivatives are indicated by subscripts and only the time argument is stated explicitly):

(2)

Hy = Fut)exp[—pt] + p.(t+0) +pa(t) —ps(t) = 0, (3)
H, = F(t)exp[—pt] —yp.(t) = —p.(?) , (4)
Pa > 0, pa(Du(t)—a] =0, (5)
ps = 0, pst)[B—u(t) = 0. (6)

These necessary conditions are also sufficient for a unique solution if the Hamiltonian H
is strictly concave in both the stock z and the control u and, in addition, the following
transversality condition is satisfied:

tlim [p(t)z(t)] =0 . (7)
A sufficient condition for the strict concavity of the Hamiltonian H is that

Fi(t) <0 and det[F;;(t)] >0, ij==xu, (8)

! Recall that F is additively separable is equivalent to F'(z,u) = G(z) + H(u).



which we assume to hold in the following. The necessary condition (4) is an inhomo-
geneous linear first-order differential equation, which can be uniquely solved, together
with the transversality condition (7), to yield:

pawzlmawmemmmeW—wwﬂ. (9)

Hence, at the optimum the shadow price of the stock, p,, equals the aggregated dis-
counted future contributions to the objective function W of one additional marginal
unit of the stock z. Condition (3) says that at the optimum, and as long as the restric-
tions on the control u are not binding (i.e., p, = ps = 0), the marginal cost/benefit of
one additional marginal unit of the control u equals the aggregated future benefit/cost
of one additional marginal unit of the stock x. As one unit of u accumulates to the stock
x delayed by the time-lag o, the shadow price p, has to be evaluated at time t+o.

2.3 Optimal dynamic path and local stability analysis

Given that the restrictions (1c¢) on the control u are not binding (i.e., p, = ps = 0), one
obtains the following system of differential equations for an optimal solution from the
necessary conditions (3) and (4), and the equation of motion for the stock x (1b):?

)

qu(t)

Fu(t $(a(t) ~ u(t=).

u(t) = Funll) (v +p)+

z(t) = u(t—o)—yz(t) .

Note that % and & also depend on advanced (i.e., at a later time) and on retarded (i.e., at
an earlier time) variables. Hence, (10) forms a system of functional differential equations
of neutral type. Obviously, a possible approach to numerically solve the optimization
problem (1) is to numerically solve the system of functional differential equations (10).
However, recall that the system (10) is only the solution of the original optimization
problem (1) in the case of an interior solution. Moreover, to determine a unique solution
for (10) additional information about the first derivatives © and @ at some point ¢
is needed a priori. Therefore, we shall introduce a direct approach in this paper to
numerically solve the original control problem (1) directly and, thus, does not depend
on the exploitation of El-Hodiri et al.’s (1972) maximum principle.

Before we show how to reformulate the optimization problem (1) in order to derive
a numerical solution, we state some of its analytical properties, which are derived in
detail in Winkler (2004). First, the stationary state (z*,u*) of a system of functional
differential equations (10) is given by & = @ = 0. This leads to the following (implicit)
equations:

F,(t+o0)

exp[—po] +

Fra(t (10)

Fo(z*,u*)
_Fu(x*,u*) - (’Y+p) GXp[pO'] ) (11)
u = vyx*

2 Differentiate (3) with respect to ¢, insert in (4) and solve for 1.



The stationary state (z*,u*) exists and is unique if the felicity function F satisfies the
Inada conditions (see Winkler 2004: Prop. 1).

Second, in order to determine the stability properties of the stationary state (z*, u*),
we examine the system dynamics in a neighborhood of the stationary state. Therefore, we
linearize the system of functional differential equations (10) around the stationary state
(x*,u*) and analyze the characteristic equation of the resulting system of differential-
difference equations. Denoting the characteristic roots by z and introducing the following
abbreviations

Fru(a*, u¥)
Fuu(z*,ur)

Fop(x*,u®)

Fo(z*, u*
( ) ¢ = WGXP[—PU]+7(7+P) ;

A= S A
Fuo(z* u*)’ E,.(z

expl—po], B=

one obtains for the characteristic equation Q(z) = 0:
0=2*—pz— Aexploz|(z +7) + Bexp|—cz](z —p—7) - C . (12)

The characteristic equation (12) is a quasi-polynomial, which has in general an infinite
number of (complex) roots. However, the characteristic equation reduces to a simple
quadratic equation with one positive and one negative real characteristic root for the
special case that the partial derivative F,, (z*,u*) = 0, and thus, A = B = 0.3 A sufficient
condition for F,,(z*,u*) = 0 to hold is that the felicity function F' is additively separable
in the stock x and the control .

In the general case, the characteristic roots are not analytically solvable. Nevertheless,
the characteristic equation (12) can be shown to exhibit an infinite number of complex
solutions with positive real parts and an infinite number of complex solutions with nega-
tive real parts (see Winkler 2004: Prop. 2). As a consequence, in either case the stationary
state (z*,u*) is a saddle point and, thus, for all initial stocks z, and all initial control
paths &, there exists a unique optimal path which converges asymptotically towards the
stationary state, unless the characteristic equation (12) exhibits purely imaginary roots
(i.e., complex roots with vanishing real parts). In this case, the system dynamics may
exhibit so called limit-cycles. That is, the optimal paths oscillate around the stationary
state without converging towards or diverging from it. Limit-cycles in the case of de-
layed optimal control problems have been discussed by Rustichini (1989) and Asea &
Zak (1999). If the roots are not purely imaginary, the optimal path shows exponentially
damped convergence towards the stationary state. If the felicity function F' is additively
separable, we have monotonic convergence, otherwise oscillations may occur.

3 Numerical solution of the optimal control problem

Despite the analytical derivation of the qualitative properties of the optimal path, even
the linearized approximation around the stationary state of the system of functional
differential equations (10) is not analytically solvable. As a consequence, numerical op-
timization methods play an important role to analyze and understand the behavior of

3 The characteristic equation also reduces to a quadratic equation in the trivial case o = 0.



delayed optimal control problems. In the following section we show two ways how to
reformulate the original problem in order to make it tractable for Bock’s direct multiple
shooting method, a highly efficient algorithm for the numerical solution of constrained op-
timal control problems in ordinary differential equations (ODE) and differential-algebraic
equations (DAE).

3.1 Reformulation of the delayed optimal control problem

First, we have to restrict the time horizon for the numerical optimization to a finite
value ty, a caveat every numerical algorithm has to deal with. This poses no major
problems as, according to the stability properties of the optimal solution outlined in
the previous section, the results will be arbitrarily close to the problem with an infinite
time horizon if ¢ is sufficiently large. As we shall see, it is most convenient to set ¢
to be a (large) multiple of the time-lag o. In the delayed control problem (1) the delay
o solely appears in the control variable in the equation of motion (1b). Hence, it is
possible to reformulate this delayed optimal control problem with one state variable into
an instantaneous optimal control problem with several state variables. Thus, we can
avoid to explicitly numerically treat the time-lag at the cost of higher dimensionality.

To see this, we split the time horizon t; into n parts each the length of the delay o
and formulate the equation of motion separately in each of the resulting intervals. Thus,
we obtain for the first interval ¢ € [0, o)

#(t) =&(t—0) —qz(t) ,  tel0,0), (13)

where ¢ is the initial control path in the time interval ¢ € [—0,0). In the second interval
t € [0,20) the equation of motion yields

z(t) =u(t—o) — yx(t) , t €lo,20), (14)

and so on.
The clue is to interpret each of the resulting DDEs as an independent differential
equation. By introducing n new stock variables x; and n—1 new control variables u; with

r(t) =z(t+(-1)o), w(t)=ult+(-1)o), tel0,0), (15)
we achieve the following system of ordinary differential equations:
i1(t) = E(t—o)—ym@), te0,0),
() = w(t)—ma(t),  te(0.0),
: (16)
Tp-1(t) = Up—2(l) —y2na(t),  tE€0,0),
Tn(t) = up_1(t) —yza(t) , te|0,0),

Thus, we can reformulate the original optimization problem (1) as:

U,y

max /00 > F(ai(t), w(t)) exp[—p(t + o(1—1))] dt (17a)



subject to

n(t) = &t=o) =yn(l),

: (17Db)
Eal) = unr(t) = yaald)
and the restrictions for the control variables w;:
w(t) € e, 8, a,BER. (17¢)

Furthermore we have to introduce additional constraints for the stock variables z; at
time t = 0 and t = o to ensure the continuity of the stock variable z of the original
problem:

r(o)=x11(0), I=1,....n—1. (17d)
Finally, the condition (1d) for the initial stock xy translates into
z1(0) = o . (17e)

Note that we need only to determine n — 1 control paths in the interval [0, 0] as the
optimal path for the stock in the interval t € [(n—1)o,no) is completely determined by
the stock at ¢t = (n—1)o, z,_1(0), the control u,_1(t) and the equation of motion.

Remark 1. In addition to transforming the retarded optimization problem in a suit-
able form for numerical solution methods, the reformulation (17) also gives an intuitive
explanation why the optimal control problem (1)

(i) exhibits an infinite number of characteristic roots in general, and

(ii) exhibits only two characteristic roots in the case that the felicity function F' is
additively separable.

To see (i), recall that the characteristic equation for an optimal control problem with n
stock variables is a polynomial of order 2n, which has in general 2n characteristic roots
(although it may be less than 2n distinct roots as there may be multiple roots). Indepen-
dent of the time-lag o, n tends to infinity if we extend the time horizon ¢; — oo. Thus,
for an infinite time horizon ty, the retarded optimization problem (1) with one stock
variable is equivalent to an ordinary optimal control with an infinite number of stock
variables, resulting in a characteristic equation with an infinite number of characteristic
roots.

To see (ii), recall that F' is additively separable is equivalent to F'(z, u) = G(z)+ H (u).
Thus, the objective functional (17a) yields for an infinite time horizon

U,y

max / CSU(G () + H () expl—p(t + o(1-1))] dt . (18)



G(z1(t)) is independent of variations in the control variables u;, [ > 1, as it is completely
determined by the initial path &, the initial stock xy and the equation of motion. There-
fore, it is sufficient to maximize the objective functional without the term exhibiting
G(z1(t)). Hence, we can rearrange the remaining terms to yield:

max [ 3 (6lan(0) + H(urs() explpal) expl=p(t + o1-1)] d (19)

U,y

Transforming the objective function back to one stock and one control variable yields:

max /OOO [G(z(t+0)) exp[—po] + H(u(t))] exp[—pt] dt (20)

uU,x

Introducing a new stock variable #(¢) = x(t+o) we achieve the following ordinary optimal
control problem:

max /0 ) [G(2(t)) exp[—po] + H (u(t))] exp[—pt] dt (21a)
subject to

B(t) = u(t) =&t (21b)

u(t) € o8, a,BER, (21c)

(0) = x5, (21d)

where z, is the value of the original stock variable z at time o (which is completely
determined by g, £ and the original equation of motion). Thus, the retarded optimal
control problem (1) is formally equivalent to the ordinary optimal control problem (21)
with one stock and one control variable. As a consequence, its characteristic equation is
a polynomial of second order, which is known to exhibit two characteristic roots.

Remark 2. Despite the intuitive explanation for the qualitative system dynamics in
the general case and in the case of an additively separable felicity function F', the refor-
mulation (17) does not promote the analytical derivation of the optimal solution in the
general case. This holds as the additional coupled boundary constraints (17d), which
guarantee the continuity of the original stock variable x, pose severe obstacles for an
analytical solution.

Problem (17) is useful for analytical considerations as outline d in Remark 1 and
can be solved by the direct multiple shooting method as will be shown in section 3.2.
However, for a given time horizon t;, the number n of differential state and control
functions becomes quite large for small values of the time-lag o. Therefore, we also
consider another reformulation of the problem (1) with fixed dimension of state and
controls.

To this end we introduce an additional control function. While uy(t) is the same as u(t)
before and denotes the control at time ¢, u;(t) represents the retarded control u(t—o).



Thus, uy and ug are coupled by u;(t) = ug(t—o) for t > o and uy(t) = £(t) for 0 <t < 0.
Then, problem (1) is equivalent to

max [ Fa(0),u(0) expl-p(0)] (220)
subject to

#(t) = wn (1) — ya(t) (220)

ur(t), us(t) € o, 5], «,B €R (22¢)

z(0) = zo , (22d)

u(t)=¢&(t—0), 0<t<o, (22e¢)

ui(t) =us(t — o), t>o. (22f)

)
)
Problem (22) still contains a retarded term, but it has moved from the differential
equation (22b) to a constraint on the controls (22f), that can be dealt with efficiently
by the direct multiple shooting method. In contrast to the reformulation (17), only one

additional control variable has been introduced independently of the time horizon t; and
the time-lag o.

3.2 Bock’s direct multiple shooting method

In order to solve the reformulated optimal control problems (17) and (22) numerically, we
apply the direct multiple shooting method originally developed by Bock and his coworker
Plitt (1981), Bock & Plitt (1984). Let us consider an optimal control problem of the form

max / " L), u(t)) dt (23a)

wz oy

subject to

(t)

I
=
8
=
g
=

t € [to, ty], (23b

)
0 < c(z(t),ul(t), te lto,ty, (23c)
0 = qu(x(m), (1), ..., 2(Tm)), (23d)
0 < rYx(m),z(1),. .., x(Tm)), (23e)

with all occurring functions twice differentiable.
We approximate the n,-dimensional control function wu(-) by functions with local sup-
port and finitely many parameters. To this end we introduce a time grid

t027'0<7'1<"'<7'm:tf (24)

and split the time horizon [to, t¢] into m so called multiple shooting intervals [1;_1, 7],
where 7 = 1,...,m. On each multiple shooting interval we define a linear approximation
@’ (t) of the controls u(t) by

Pt)=q +gt, telr,Tl, (25)



with vector valued parameters ¢’.

We introduce m variables s/ € R™ as initial values for the differential states on each
multiple shooting interval [7;_;,7;]. The ODE (23b) is solved independently on every
interval with initial values

o(r))=s, j=0,....m—1. (26)

To ensure continuous state trajectories z(-), the values at the end of interval 7, obtained
by integration with fixed initial value s7, have to coincide with the initial state vector of
the next interval j + 1:

z(rj;87) =8, j=0,....om—1. (27)
The so called matching conditions (27) allow to eliminate the additional degrees of
freedom introduced by the supplementary optimization parameters s? by condensing (for
details see Bock & Plitt (1984)). Note that the conditions (27) are required to be satisfied
only at the final solution of the problem and not during intermediate iterations of the
optimization algorithm. Therefore, the direct multiple shooting method is also referred
to as an all-at-once-approach, solving the simulation and optimization task at the same
time. This allows to incorporate expert knowledge about the trajectory behavior into the
initial values of the state trajectory and typically leads to good convergence properties
of the method. The path and control constraints (23c) have to hold on the whole time
interval [to, t¢]. To deal with this numerically, the direct multiple shooting method relaxes
it to a constraint that is only evaluated on a finite time grid.

Following these lines, problem (23) is now an optimization problem in the variables
¢’ and s’. It contains equality constraints that stem from the interior point equality
constraints (23d) and the matching conditions (27), and inequality constraints that stem
from the interior point equality constraints (23e) and the discretized path constraints
(23c).

Subsuming all variables s/ and ¢’ into w € R™ and rewriting the objective function
as well as the constraints in adequate functions F,G and H, we obtain a non-linear
program (NLP)

0

0 (28)

AV

mui)nF(w) subject to { ggz;
that can be solved by tailored methods. For example, by sequential quadratic program-
ming (SQP) in combination with an efficient evaluation of all occurring functions, and
the generation of derivatives, for example, by internal numerical differentiation. See
Leineweber et al. (2003) for details and further references.

Now, let us consider an application of the direct multiple shooting method to the
reformulations (17) and (22) of the original problem (1). Obviously, (17) is of the form
(23) and can, thus, be solved with the direct multiple shooting method as described
above. However, reformulation (22) contains an additional constraint (22f), which is not
contained in the standard problem formulation (23).

10



Here, the approximation of the control functions allows to guarantee (22f) — if the
corresponding entries of u(¢) in ¢ and the ones of uy(t) in ¢/~* match at all times 7,
then the equation holds on the whole time horizon (as each piecewise linear control is
uniquely determined by two points). If we extend the interior point equality constraint
(23d) to allow also for arguments u(7;) (which is typically omitted, as only measurable
influence of a control function shall be considered), then the direct multiple shooting
method can be applied to solve both problems (17) and (22).

4 Examples

In the following we illustrate the potential of the numerical solution method described in
the previous section by two examples, which stem from our research on delayed optimal
control problems. The first example shows how numerical optimization can be used to
analyze the transition from instantaneous to delayed stock accumulation. The second
example focuses on the influence of the initial path ¢ on the optimal paths of a delayed
optimal control problem.

4.1 The transition from instantaneous to delayed capital accumulation

The first example is an optimal control capital accumulation model with an exogenously
given delay between investment and capital accumulation, which is discussed in detail
in Winkler et al. (2005).

Consider an economy with one non-producible input factor, for example, labor, which
is given in constant amount [ and distributed to three linear-limitational production
processes. The first process produces one unit of the consumption good with one unit
of labor. The second process combines A units of labor together with s units of capital
to produce one unit of the consumption good. The third process creates one unit of
investment from one unit of labor. Thus, we derive

alt) = L), (29)
6(f) = min [W) ’f—ﬂ | (30)

i(t) = 1), (31)

where [; denote the amount of labor employed in process i (i = 1,2, 3). Assuming efficient
production (i.e., [y(t)/A = k(t)/k), and that the labor restriction holds with equality (i.e.,
> li(t) =1 Vt), total consumption c(t) = ¢;(t) + co(t) yields:

1—-A

K

k(t) —i(t) . (32)

Further, we assume that investment at time ¢ increases the capital stock k delayed at
time t+4 o, and that the capital stock deteriorates at the positive and constant rate ~

k(t) = i(t—o) — k() . (33)

11



In addition, we assume that the capital stock k cannot be consumed (i.e., i(t) > 0). As-
suming that the objective is to maximize intertemporal welfare, which is the discounted
infinite integral of instantaneous welfare V' (¢(t)), the optimal control problem reads:

SIS .
rﬁ%x/o 1% (l + - k(t) — z(t)) exp|[—pt] dt (34a)
subject to
k() =i(t—o) —vk(t) | (34D)
it) >0, (34c)
[ % (£) — i(t) = e(t) — %k(t) >0, (34d)
i) =£(t) =0, te[—00), (34e)
k(0) =0 . (34f)

The restriction (34d) ensures that ¢; > 0. When it is binding, all labor is used to employ
and maintain the capital stock. This implies that the consumption good is exclusively
produced by the capital intensive process (30). For the following calculations we choose
V() =1Inc(t), | = 26%, A=08, k=03 v=0.15 p=0.1,t; =60, kg = 0 and the
initial path £(+) = 0.

The resulting optimization problem (34) is almost equivalent to the problem (1) dis-
cussed in section 2. As the additional inequality constraint (34d) fits directly into the
definition of path and control constraints (23c), both reformulations (17) and (22) of
(34) can be solved by the direct multiple shooting method.

Whereas the optimal solutions of the two different reformulations are, of course, iden-
tical, they exhibit different computational performance. Table 1 shows a comparison
between the two approaches. All computations have been performed with the state-
of-the-art optimal control software package MUSCOD-II, see Leineweber (1999), on a
Pentium notebook with 1.5 GHz. Note that for the calculations the underlying control
discretization grid has been chosen identical to the equidistant grid with distance o. The
computation times are given in seconds and describe how long it took before an accuracy
of 1079 of the Karush-Kuhn-Tucker (KKT) conditions was achieved. Obviously, problem
reformulation (22) is much more suited for small time lags o. The number of variables
n,, of the non-linear program (NLP) is not the crucial indicator, though, as can be seen
in table 1. Let us investigate in more detail what happens. Table 2 shows the distribu-
tion of the computing times for specific tasks. The times spent on condensing, online
graphics, constraint reductions and other calculations are more or less the same. Also
the time spent on state integration is compared to the rest.

The main difference is in the required time for calculating derivative information by
internal numerical differentiation and the solution of the condensed quadratic programs
(QPs). The size of the Jacobian matrix needed to calculate the sensitivities depends on
the number of variables and is, thus, much higher for (17) than for (22). This effect can
be reduced by a factor of about four by exploiting sparsity? (compare middle column in

4 A matrix is called sparse if it contains only few nonzero entries, otherwise it is called dense.
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Delay o (17) dense (17) sparse (22)
Nw ‘ iters ‘ time Nw ‘ iters ‘ time Nw ‘ iters ‘ time
0.5 605 47 1 208 | 605 471 110 | 724 20 10
0.4 755 50 | 419 | 755 50 | 224 | 904 23 24
0.3 1005 50 | 1094 | 1005 50 | 521 | 1204 23 53
0.2 1505 — — | 1505 — — | 1804 23 | 287
0.1 3005 — — 1 3005 — — | 3604 14 | 1331

Table 1: Comparison of the number of variables n,, of the resulting NLP, number of
SQP iterations and computing time in seconds needed to reach a KKT tolerance of 107°.

Action (17) dense (17) sparse (22)
time ‘ percent | time ‘ percent | time ‘ percent
Sensitivity generation || 122 | 60.4% | 30.0 | 26.7% | 2.2 9.9%
State integration 0.7 0.3% | 0.5 04% | 0.8 4.1%
Condensing 3.2 1.6% | 3.3 3.0% | 88| 39.8%
Solution of QPs 744 | 36.8% | 74.5 | 68.5% 76 | 35.5%
Rest 1.76 0.9% 1.6 1.4% 2.3 10.5%

Table 2: A typical distribution of computing times. The absolute times given in seconds
have been scaled to be independent of the number of iterations.

tables 1 and 2) with an advanced solver such as DAESOL (see Bauer 1999), but there is
still a considerable difference to the formulation (22) with only one state and two control
variables.

The solution of the QPs in the SQP scheme is also much more expensive for problem
(17), as condensing does not reduce the number of variables actually given to the QP.
If we do not perform condensing for problem (22), the computing time for “Solution of
QPs” goes up to 68 seconds and almost reaches the level of problem (17).

To sum up, reformulation (22) is better suited for numerical calculations than (17),
as it has a structure that can be better exploited by standard direct multiple shooting
methods. Hence, in the following we will only use this formulation for our calculations.

We now solve the model to investigate the system dynamics dependent on the time-lag
o. In particular, we analyze the transition between instantaneous and delayed capital
accumulation by solving (34) respectively (22) for different time-lags o. Figure 1 shows
optimized paths for time-lags o ranging from 0 to 0.5. Consistent with the findings in
section 2.2 the optimal paths converge monotonically towards the stationary state for
o = 0 and oscillatory and exponentially damped for o > 0.

The continuous transition from monotonic to increasingly oscillatory optimal paths
for increasing time-lags o can be seen in figure 2. The exogenous parameters are identical
to the calculations for figure 1. The interval for the time-lag o € [0.1,0.5] has been split
into a grid of 400 equidistant points. For each of these os the optimal control problem
has been solved and the resulting graphs have been composed to the 3-dimensional plots
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in figure 2. They show how the optimal paths evolve from monotonic to oscillatory paths
for increasing time-lag o.

4.2 The influence of the initial path on the optimal control of delayed pollution
stock accumulation

The second model, first introduced in Winkler (2004), discusses the case of delayed pol-
lution accumulation. The idea is that a joint output of production, which is released
into the environment, accumulates there to a pollutant stock, which exhibits a negative
effect on the economy. Although the following model has been inspired by the environ-
mental problem of the emission of chlorofluorocarbons (CFCs), it is applicable to various
stock pollutants. CFCs are a prime example of delayed accumulating stock pollutants.
They have been widely used as cooling agents in refrigeration and air conditioning, as
propellants in aerosols sprays and foamed plastics, and as solvents for organic matters
and compounds. The CFCs have been valued because of their favorable chemical and
biological characteristics. They are chemically inert, not inflammable and non-toxic. Un-
fortunately, in the stratosphere the CFCs cause the depletion of the ozone layer, which
shields the earth’s surface from ultraviolet radiation. Once released, the CFCs need 5-10
years to reach a height of about 30 km, where the depletion of the ozone layer starts.
Hence, the stock of stratospheric CFCs reacts to the emissions of CFCs with a delay of
5—10 years.

Consider an economy with one non-producible input of production, for example, labor,
which is given in a constant maximal amount [ and distributed among two production
processes in the economy. The first production process produces a consumption good ¢
with constant returns to labor

c(t) = hL(t), (35)

where [; denotes the amount of labor employed to the consumption good production. In
addition, the production of each unit of consumption good gives rise to one unit of gross
emissions e9"%%¢:

eI (t) = c(t) = 11 (1) . (36)
The second production process is an abatement process, which reduces net emissions e
e(t) = e9"%(t) — a(t) , (37)

where a denotes the amount of emissions abated. Denoting the amount of labor employed
to the abatement process by Iy, the amount of abated emissions is given by:

at) = Vala(t), a>0. (38)

The net emissions e are considered to accumulate the pollution stock s with a time-lag
o. In addition, the pollution stock s decays at a constant rate ~y

5(t) =e(t—o) —ys(t) . (39)
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The stock of pollutant s exhibits a negative external effect on the economy, as it reduces
the effective labor force I:

I(t)=1-p8s(t)*, B>0. (40)

In the case of CFCs, one might think of an increase in the rate of skin cancer with
increasing stock of the pollutant, which prevents increasingly more people from working.
Note that the pollution stock s exhibits increasing marginal damage. Given efficient
production (i.e., the labor constraint holds with equality [(¢) = [;(¢)+12(t)), consumption
is given by

c(t) = cle(t), s(t)) = % [ze@) —a+aa(h— Bs(t)? —e(t)) + oﬂ} . (41)

Again, we assume that the objective is to maximize intertemporal welfare, which is the
discounted infinite integral of instantaneous welfare V' (¢(t)). Thus, the optimal control
problem reads:

max /OOO 1% (1 [Ze(t) —a+/4a (X —Bs(t)2 —e(t)) + QQ]) exp|—pt] dt (42a)

i(t) 2

subject to
$(t) =e(t—o) —ys(t) (42b)
e(t) = g(t) , te [_070) ) (420)
S(O) = Sp - (42d)

Again, the optimization problem (42) is of the form (1) and will be solved by the
direct multiple shooting method. Here, the focus is on the dependence of the optimal
paths on the initial path &. In particular, this is relevant in the context of pollution
control, as the pollutant has in general already been emitted before pollution control
becomes affective. Due to the additional moment of inertia of delayed control problems,
the past emission path has to be taken into account. In the following we show the optimal
emission paths for a numerical example of the optimization problem (42) for a constant,
a linear, and a cyclical initial path. We choose V = Inc(t), I = 1, a = 1, 8 = 0.005,
v =0.1, p = 0.03, ty =200, sp = 10, Eeonst = 1.47459, &, = 1 + 0.0815485(¢ + 10) and
Eeye = 1.39815 + sin[0.97(¢ + 10)]. To be able to compare the results for these different
initial paths, they have been chosen in such a way that the stock of pollution at time
t = 0 = 10 is identical for all three of them (s(10) = s, = 13).

Figure 3 shows the optimal paths of the pollution stock and the emissions in the case
of delayed stock accumulation (o = 10) for the three different initial paths £. The initial
paths £ are shown as the emission paths in the time interval ¢t € [—10, 0] in figure 3. As
already mentioned earlier, the path for the pollution stock in the time interval ¢ € [0, 10]
is completely determined by the initial value sp, the initial path £ and the equation
of motion (42b). Hence, pollution control from time ¢ = 0 on only affects the pollution
stock after time ¢ = 0 = 10. This shows a fundamental feature of delayed optimal control
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problems: the system dynamics exhibits an additional moment of inertia as the stock
reacts with a delay to the control.

In all three scenarios the pollution stock rises from their initial value sq = 10 to
Sy = 13 in the time interval ¢t € [0,10]. Nevertheless, because of the different initial
paths &, the path of the pollution stock is concave (£ constant), convex (§ linear) or
oscillatory (¢ cyclical). Variations in the initial path £ cause variations in the optimal
system dynamics, although the pollution stock s, = 13 and the long-run stationary state
remains unaltered. This is best seen in the case of a cyclical initial path, which induces
corresponding oscillations in the optimal emission path (figure 3 bottom).

5 Conclusions

As known from the time-to-build literature, delayed optimal control problems with one
stock and one control variable exhibit in general a qualitatively different system dynamics
compared to instantaneous optimal control problems. While the optimal paths of the
latter converge strictly monotonically towards the stationary state, the former exhibit
oscillatory and exponentially damped optimal paths.

In this paper we have drawn attention to the numerical solution of delayed optimal
control problems. Therefore, we have shown how delayed optimal control problems can be
reformulated such that direct state-of-the-art methods can be applied. In particular, we
presented two different problem reformulations and compared the performance of Bock’s
direct multiple shooting algorithm, implemented in the software package MUSCOD-II.
While the first reformulation increases the dimensionality of the resulting optimization
problem drastically by introducing as many new stock and control variables as the time
horizon t;, over which is optimized, is a multiple of the time-lag o, the second reformu-
lation only introduces one additional control variable, irrespective of the time horizon
ts and the time-lag 0. While the latter reformulation exhibits better computational per-
formance, the former allows for intuitive explanations of some standard analytic results
of the control-delayed optimal control problem.

Numerical optimization plays a crucial part in the analysis and understanding of de-
layed optimal control problems, as even the linear approximation of the system dynamics
around the stationary state is not analytically tractable. As we understand the lack of
application of delayed optimal control in economics to be (at least partly) a consequence
of the analytical and numerical difficulties, we hope that this paper encourages broader
research in this area. In fact, there a numerous applications in the field of economics
alone. With two examples we have shown how to apply the method for the rigorous
analysis of the transition from instantaneous to delayed capital accumulation and for
the analysis of the influence of the initial path on the optimal time-lagged accumulation
of a pollution stock. However, we also expect our numeric approach to be valuable for
other fields of scientific endeavor.
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