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Abstract

Agent-based simulations have become increasingly prominent in various disciplines. This trend is to be
appreciated, but it comes with challenges: while there are more and more standards for design, verification,
validation, and presentation of the models, the various meta-theoretical strategies of how themodels should
be related to reality o�en remain implicit. Di�erences in the epistemological foundations of models makes it,
however, di�icult to relate distinct models to each other. This paper suggests an epistemological framework
that helps to make explicit how one wishes to generate knowledge about reality by themeans of one’s model
and that helps to relate models to each other. Because the interpretation of a model is strongly connected to
the activities of model verification and validation, I embed these two activities into the framework and clarify
their respective epistemological roles. Finally, I show how this meta-theoretical framework aligns well with
recently proposed framework for model presentation and evaluation.

Keywords: Agent-basedmodelling, epistemology, models, validation, verification

Introduction

�.� Agent-based modelling becomes ever more prominent. As many others, I welcome this trend. But with the
growth of the field, and its growing interdisciplinary nature, the absence of standards in terms of model pre-
sentationand interpretationbecomesevermoreapparent (Leeetal.����;Macal����; Schulzeetal.����). While
too strict standards would certainly limit the thrive and creativity of our research community, some standard-
ization is required to ensure that models can be reasonably compared and related to each other (Müller et al.
����).

�.� Researchers have responded to the need for standards already in multiple practical ways:
�.� With regard to the presentation of agent-based models (ABM), in particular the description of their aim and

functioning, Grimm et al. (����) have suggested the ODD protocol, which has been updated in Grimm et al.
(����). The ODD protocol is meant to provide a common format for the description of ABMs and aims to fa-
cilitate the mutual relation and replicability of ABMs.� Müller et al. (����) extend the ODD protocol to facilitate
the description of agent decisionmaking. Similarly, theMoHuB framework tries to provide “a tool and common
language to describe, compare and communicate” formalmodels of human interaction, particularly in the con-
text of natural resource management (Schlüter et al. ����). Yet another attempt in this direction is the TRACE
framework, which has originally been suggested in Schmolke et al. (����) and updated by Grimm et al. (����):
it seeks to increase the transparency and comparability of simulation models but focuses on the way the func-
tioning of the model gets analysed and documented. Finally, the systemic design of experiments (DOE) o�ers
an excellent framework for the study of model behavior and the presentation of model results in a transparent
and comparable manner (Lorscheid et al. ����).

�.� In this paper I will make a di�erent, but complementary suggestion to increase the transparency and compa-
rability of computational models: I will not focus on the presentation of ABM and their functioning, but on the
ways models are related to reality and thus meant to create knowledge about the system under investigation
(SUI).Models always di�er from the system they aremeant to represent, and there are di�erent epistemological
ways of relating one’s model to reality. Making di�erences between distinct epistemological strategies explicit
would contribute a lot to a better comparability among computational models.
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�.� The process of relating one’s model two reality is connected to the interpretation of a model and entails two
important activities: model verification and model validation, henceforth VV. A great number of di�erent and
most useful verification and validation techniques exist and developing newVV tools is an active and successful
area of research (Rand & Rust ����; Lorscheid et al. ����; Alden et al. ����; Lee et al. ����; ten Broeke et al. ����;
Schulze et al. ����).

�.� However, there are no standards with regard to VV on two distinct and equally important levels. On the more
practical level, there is no consensus on the ‘best’ tool for either verification and validation. This is because the
complexity, the structure and the purpose of the model at least partly dictate the choice of VV techniques (Sun
& M ller ����; Schulze et al. ����). There is, however, a lively debate on the adequateness of di�erent tools and
innovative new methods are constantly developed in the ABM community (Lee et al. ����; Schulze et al. ����;
Schlüter et al. ����).

�.� On themore theoretical level, there is no consensus on questions such as (�) “Is it necessary to verify and/or val-
idate amodel?”, (�) “Towhat extent is the verification and validation of amodel even possible?”, or (�) “If VV are
needed,what kind of verification and validation is adequate for themodel at hand?” These are epistemological
questions and they relate to the deeper problem of how a formal model, an agent-based model in particular,
generates knowledge about the real system under investigation. While being more abstract, epistemological
questions are by no means less important than the more practical questions raised above. Nevertheless, they
usually receive much less attention, which is why they are the main concern of the present paper.

�.� Discussing the coherence ofmodels and their relation to reality is an important activity for every research com-
munity and it is essential that these discussions can be carried out e�ectively. This gets exacerbated, however,
by the fact that di�erent researchers o�en comewith di�erent views on how knowledge can and should be cre-
ated about the system they investigate. Furthermore, the accepted criteria for what leads to an understanding
of or knowledge about the system under investigation can be very di�erent between various scientific commu-
nities (Lehtinen & Kuorikoski ����; Baumgärtner et al. ����).�

�.� Because of this, scholars also understand and value model verification and validation di�erently. A common
framework of how to align these di�erent perceptions to each other would thus not only facilitate the compar-
ison and relation of ABMs and other formal models, it would also help to structure the discussion about the
adequate means for models verification and validation, and to facilitate the dialogue among modellers from
di�erent disciplines. This paper aims at supplying such a framework, which may complement applied frame-
works such as ODD+D or TRACE.

�.�� To achieve this we will take the following steps: In the next section I introduce a very general epistemological
framework of how models are used by researchers to create knowledge about the real world. This helps clar-
ifying the di�erent strategies that can be taken to give models epistemic meaningfulness. Then we will relate
model verification and validation to this framework, describe the meta-theoretical relation between verifica-
tion and validation and discuss whether and when models should be verified and/or validated. In a next step,
we identify some immediate practical implications from the epistemological discussion above. Finally, we con-
clude the paper and summarize the implications for future research.

Howmodels generate knowledge about reality

�.� This section introduces a general epistemological framework that shows howmodels can generate knowledge
about reality. But before the framework gets introduced in the second subsection, we first discuss why the
reference to such frameworks is useful.

Why an epistemological perspective onmodelling is useful

�.� Epistemology is “the study of knowledge and justified belief” (Steup ����). In this field of philosophy one asks
questions such as “What are the necessary and su�icient conditions of knowledge?”, “What are the sources of
knowledge?” or “How can be generate knowledge about the real world?”. Although these questions are ob-
viously very important for applied modelling in both the social and natural sciences, explicit epistemological
considerations play a comparatively minor role in applied modelling. This is understandable because epis-
temology is o�en very abstract. But sometimes it is important, also for those that are usually concerned with
very appliedmodellingproblems, topause to think about and to clarify the epistemological foundation for their
work. As Albert Einstein once put it: “The reciprocal relationship of epistemology and science is of noteworthy
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kind. They are dependent upon each other. Epistemology without contact with science becomes an empty
scheme. Science without epistemology is - insofar as it is thinkable at all - primitive and muddled”(Einstein
����, p. ���-���). Here I will present a couple of reasons for why epistemological reasoning is important and
comment on them one by one:

�. Epistemological arguments are important when choosing and justifying one’s modeling framework.

�. Epistemological reasoning is indispensable for relating results from di�erent models to each other.

�. It helps identifying advantages and disadvantages of di�erent modeling frameworks and suggests prac-
tical ways for combining them.

�. An epistemological framework clarifies what model validation and verification is about, why it is impor-
tant, and what we can expect from it.

�.� If asked why one is approaching a given research question with an agent-based model, the usual answers are
of the kind “I want to study the role of the particular interaction structure, and in other modelling framework
it is di�icult to include this structure explicitly.” or “The heterogeneity of the actors can be represented very
directly in an ABM, and this is important for my research question!”. These answers refer to particular episte-
mological statementsbecause they formulate somepreconditions thatare required foramodel tobesuitable to
answer the research question of the modeller. Here, the implicit epistemological claim is that there are certain
properties of the system under investigation that must be represented in the model for the model to be use-
ful. Some disciplines, economics in particular, stress other properties of models. (Lehtinen & Kuorikoski ����;
Cartwright ����; Reiss ����). Whendescribing the research practice of his felloweconomists, Rodrik et al. (����,
p. ���) writes: “Historians andmany social scientists prefer nuanced, layered explanations where these factors
interact with human choices and many other not-so-simple twists and turns of fate. But economists like parsi-
mony.” Here, the realistic-ness of particular assumptions receives less attention, but the clarity and simplicity
of amodel gets highlighted. A similar point ismade by Lehtinen&Kuorikoski (����) who argue that economists
(to a large extent) still adhere to a particular (outdated) kind of explanation similar to thework of Kitcher (����)
who himself build on the covering-law model of Hempel & Oppenheim (����). According to Kitcher, scientific
understanding “consists of the ability to logically derive conclusions with a small set of common argumenta-
tion patterns” (Lehtinen & Kuorikoski ����, p. ���). The “common argumentation patterns” depend on what is
accepted in the corresponding research community, and in economics the two main ingredients to this argu-
mentation pattern are individual rationality and optimization, and systemic equilibrium. Simulationmodels do
not have their comparative advantage in this kind of explanation (see below), which is whymost economists do
not use them.� To elucidate such epistemological di�erences (and to critically assess them fromall viewpoints)
is essential when we want to engage in interdisciplinary collaboration. This directly links to the second point.

�.� Consider the following example inwhich the same systemwas studiedwith twodi�erentmethodologies. There
is currently a hot debate among policymakers and economists on the potential welfare and job e�ects of a free
trade and investment agreement between the European Union and the United States. Francois et al. (����)
(and many others) have tackled this question with a Computable General Equilibrium (CGE) model, the current
standard in economic research practice. The authors conclude that the agreement would lead to generally
favourable results. Capaldo (����) use a conventional macroeconomic model to study the same question but
expect job and welfare losses for Europe. Which model is ’ better‘, or, which conclusion should form the basis
for the decision making of policy makers? Somemight argue that the assumptions of Capaldo (����) are more
adequate than those of Francois et al. (����). Othersmight trustmore in the CGEmodel because it relies on eco-
nomic equilibrium, it is easier and thus more transparent and parsimonious. To trace the di�erent sources for
the distinctive policy implications, and to prioritise themodels in terms of the knowledge they create, we again
need to refer to the epistemological questions posed before and using explicit frameworks greatly facilitate this
task.

�.� The previous argument can be made more general: many instances of models of the same modelling frame-
work, i.e. most agent-based models or most general equilibrium models, share properties such as tractability
or flexibility.� This point is also highlighted by Raza et al. (����), who criticizes the reliance of the European
Comission on several CGE studies in the spirit of Francois et al. (����), because all share the same fundamen-
tal model structure and are biased in the same direction. Put di�erently, di�erent modelling framework as
such have particular advantages and disadvantages. For example, agent-based economic models are - gener-
ally speaking - flexible in their assumptions. General equilibriummodels, are - again, generally speaking - very
parsimonious and o�en allow for analytical solutions. If we want to relate the results of the models and relate
them to each other, we need to keep this general distinction in mind.
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�.� Researchers in thesimulationcommunityareo�enconcernedwith thequestionofadequatemethods formodel
verification and validation. But the question of when andwhy verification and validation is important, and how
this relates to the purpose ofmodelling, receives less attention. However, to arguewhy a particularmethod for
model validation is important and means to make a statement on how the link between the model and reality
should be assessed. This, as any other argument made in this context, is an epistemological argument.

�.� In all, there are a number of arguments of why epistemology is important. In contrast to the discussion of the
adequatemeans formodel verification, themost important point of epistemological arguments is that they are
actually made explicit: using an explicit framework helps comparing models because the way they are meant
to explain becomes more explicit, transparent, and, thus, more comparable.

Howmodels create knowledge: an epistemological frameworks

�.� Building upon the work of Uskali Mäki, I developed an epistemological framework that illustrates the way we
learn from models and that helps to structure the discussion on the epistemological foundations of di�erent
models. It is built upon Mäkis concept of “models as isolations and surrogate systems” (MISS, Mäki (����a,b))
and it highlights the essential part of modelling: to isolate the important from the unimportant.

�.� In the MISS approach models are considered to have two fundamental aspects. First, they represent the real
world. This is necessary because the real world, or any systemwewant to investigate as such, is too complex to
be understood directly. This is not alone a practical argument: there are fundamental physical and computa-
tional arguments that show that adirect pictureof reality is not feasible. Besides these fundamental arguments,
such a direct picture would not even be desirable. As put by Robinson (����), “[a] model which took account
of all the variegation of reality would be of no more use than a map at the scale of one to one” (p. ��). To un-
derstand reality, we need to reduce its complexity by abstracting from details, thus building a coarse-grained
picture of reality which is called a surrogate (Mäki ����a).�

�.�� It is this coarse-grained picture that helps us to understand reality. If we observe the real system under in-
vestigation at two successive points of time, its state has changed. The mechanisms driving this change are,
however, o�en unobservable and not directly understandable. Therefore, one studies the model one has built
as a representation of reality. If the state of the model is recorded at two points of time, it has changed due to
themechanisms built into themodel. But in contrast to the real systemunder investigation, we built themodel
ourselves and we (should) know about its structure and its mechanisms. Studying the behaviour of the model
(e.g. by altering certain parameters or by implementing di�erent functions) is called model exploration. Model
exploration is not always straightforward, in particular if the model is more complex. But the ABM community
has developed some excellent tools that facilitate model exploration, e.g. the systematic design of experiments
(Lorscheid et al. ����). If we can understand something about the real world by the exploration of our model,
the model is said to resemble the real world. We will return to the question of how the act of ‘understanding
reality’ can be interpreted below.

�.�� Before, we illustrate the the fundamental idea of theMISS approach in figure �. First, at time t = 0, themodeller
builds a surrogate S0 of reality R0. This process can be thought of as a mapping g from reality to the model.
Because the complexity of the model St is necessarily lower than that of reality Rt, we might call the g the
complexity reduction function.

�.�� The real system is undergoing regular changes, which is why Rt usually di�ers from Rt+1. The mechanisms
underlying this change can be thought of as the composite transition function r : R ! R. This function is not
directly identifiable by the researcher. Therefore the reference to themodel is needed. Themodel also changes
over time, according to the transition function s : S ! S. This transition function is, however, known, or at
least it can be identified via the process of model exploration.

�.�� Looking at the figure suggests two immediate channels throughwhichwe can learn something about reality by
using our model. One could first compare the model at t = 1, i.e. S1, with reality (R1). This means to compare
the states of themodel with that of reality. If we speak about future states of the real word, exploring themodel
into this direction means to predict the future states of reality. Another option to use the model to conjecture
the mechanisms operating in the real world. Note that capturing some of the mechanisms operating in reality
may or may not lead to a similarity betweenR1 and S1.

�.�� One may first consider identifying mechanisms or making good predictions is similar, or complementary, but
this is not necessarily the case: Onemay either infer states of the real world correctly without having used ade-
quate mechanisms in the model, or make incorrect predictions even if one has implemented the right mecha-
nisms. Consider, for example, chaotic systems. Here one knows that an exact prediction is impossible precisely
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Figure �: A functional illustration of how the MISS framework clarifies the relationship between models and
reality.

because one knows the mechanisms governing the dynamics of the system. A practical example is the evo-
lution of technology. In Arthur (����), a model of technology choice, it is impossible to predict ex ante which
technology will be the dominant one (or even if a single technology becomes dominant), but the behaviour of
the model is nevertheless very well understood.

Aligningmodelverificationandvalidationwithin theepistemological frame-
work

�.� The epistemological framework developed in the previous section allows us to be precise about the role of
verification and validation in the modelling process. While some authors suggested to dismiss the terms be-
cause of their ambiguous and careless use in the literature (e.g. Augusiak et al. (����), or Schulze et al. (����)),
I believe that, precisely defined, they can highlight two important aspects of model evaluation, which are both
important, but conceptually distinct. For the sake of transparency of the argument I relate my terminology to
that of Augusiak et al. (����) in the appendix of this paper. There, I also highlight the value-added of the terms
‘verification’ and ‘validation’, which I will now clarify.�

�.� With verification I mean the testing of whether the model does what it is supposed to be doing, i.e. that it is
is free of bugs and other implications not intended by the modeller . This usually involves two steps: (�) study
what the model is doing; (�) compare this to what the model should be doing. The first step was referred to as
model exploration in the previous section. Given this definition, sensitivity analysis would also be considered
some formofmodel verification since it exclusively aimsatunderstanding thebehaviourof themodel. Formore
details see e.g. Beck (����), or Rand & Rust (����) for a nice summary and ten Broeke et al. (����) for a review
of di�erent tools for sensitivity analysis. The best method for model verification is, of course, a mathematical
proof that certain inputs produce a particular output.

�.� Model validationmeans to test whether the model is actually a reasonable representation of the system under
investigation (Rand & Rust ����, p. ���). Because ‘reasonable’ can have di�erent meanings, there are di�erent
forms of model validation to be discussed below.

�.� I will now align model verification and validation within the framework developed above. As indicated in fig-
ure �a, model verification is concerned with the internal consistency of the model. Examples of methods that
are used to verify models are unit testing (i.e. explicit tests for important aspects of the code, e.g. via asser-
tions), code walkthroughs (i.e. an explicit description of what every line of code does), or degeneracy testing
(i.e. testing whether the code produces the desired output for extreme values of input).

�.� Considering these methods and keeping in mind that “confirming that the model was correctly programmed
was substantially more work than programming the model in the first place” (Axelrod ����) we might want to
keep the e�ort needed for verification at a minimum and thus ask the question: “What can we do to make
model verification easy?” Firstly, we should build simplemodels. The simpler themodel, the easier verification
(ten Broeke et al. ����). This is because the simpler themodel, the fewer variables andmechanisms one has to
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Figure �: The place ofmodel verification and the di�erent forms of validationwithin our epistemological frame-
work.

check. In the best case, the model is in a form that makes it even amendable for analytical proofs. Secondly,
we should build transparent models. Tools such as the systematic DOE (Lorscheid et al. ����) or the various
protocols reviewed in the introduction can help to increasemodel transparency. And themore transparent the
model, the easier verification: amodel that is written in simplified equations, well-documented computer code
or a clear language is - ceteris paribus - easier to be verified than other models.

�.� There is - epistemologically speaking - only one form of model verification (but there are several verification
methods). But there are several forms of validation and they partly echo the di�erent perceptions researchers
have in mind when they talk about ‘understanding reality’ (see above). There are (at least) the following four
forms of model validation (Tesfatsion ����):

�. Input validation

�. Process validation

�. Descriptive output validation

�. Predictive output validation

�.� In contrast to verification, these four activities assess the relation of the model to reality. I will discuss the four
forms one by one and relate them in the next subsection. In the appendix I relate this terminology to that of
(Augusiak et al. ����).

�.� Input validation - as illustrated in figure �b - assesses the ability of the model at t = 0 to represent certain as-
pects of the systemunder investigation. In an ABMof a financialmarket, for example, input validation concerns
the question of whether the number of traders is similar in the real market and the ABM, whether their initial
wealth distribution is the same, or whether their decision making procedures match. Some inputs to a model
are easier to validate than others. Generally, it is always easier to validate aspects of a model that are a direct
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representation of real-world objects (Schulze et al. ����). For example, human beings are boundedly rational
anduseheuristics, and theydonotdirectlymaximize something suchasutility (Gigerenzer����). So, represent-
ing a human beings not as locally constructive and boundedly rational agents, but as utility-maximizers might
be a valid and useful modelling approach, but it makes it muchmore di�icult to validate the model in terms of
input-validation (Schlüter et al. ����). Also, input validation gets facilitated if aspects of reality are represented
explicitly: If in our model of the financial market, traders explicitly trade directly with each other, the interac-
tion network specifying their interaction structure can be validated against real-world data. This requires the
model to be su�iciently complex. If we use indirect representations to keep themodel simple, e.g. anWalrasian
auctioneer�, input validation becomes more di�icult (Balbi & Giupponi ����).

�.� Summarizing, input validation gets facilitated by su�iciently complex models that avoid as-if representations,
and good data.

�.�� Process validation assesses the credibility of the mechanisms in the model with the mechanisms operating in
reality (see figure �c). Process validation gets exacerbated by the fact that in reality, “most mechanisms are
concealed, so that they have got to be conjectured” (Bunge ����, p. ���). Because mechanism are not directly
observable, no model will ever be fully process-validated. But there are many reasonable ways to assess the
question of whether the implemented mechanismA is more likely or less likely a mechanism in the real world
than mechanism B. These include expert and stakeholder validation (or ‘participatory validation’) (Voinov &
Bousquet ����; Smajgl & Bohensky ����), process tracing (Steel ����, ch. �), or face validation (Klügl ����).�

�.�� It is indeed one of the main epistemological merits of ABM that they are generative, i.e. necessarily suggest
mechanisms that can - in principle - be tested concerning their plausibility with regard to the system under
investigation (Epstein ����). This gets greatly facilitated by the rise of object-oriented programming, since the
distinctionbetweenobjectsandmethods in themodel facilitates the interpretative relation to realworldobjects
andmechanisms.

�.�� What kind of models are easier accessible for process validation? First, the more direct the representation of
the objects and the mechanisms of the real world, the easier the assessment of the mechanism (Macal ����).
Object-oriented models are usually easier to process-validate because objects in the model o�en correspond
to objects in reality, andmethods correspond (at least partly) tomechanisms. Second, themodel benefits from
amodular design.

�.�� Next we turn our attention to descriptive output validation. Here we ask to what extent the output of themodel
can replicate existing data (see figure �d). Or, to speak with figure �, we compare the states Si with Ri for all
i > 0. For example, if we have built amodel for the UK economy, wemay compare the time series for GDP from
themodel with real-world data on the GDP of the UK.

�.�� Although descriptive output validation is maybe the most commonly used form of validation (at least in eco-
nomics), there are some problems with this kind of validation that we have to keep in mind:

�. Empirical riskminimization: inmost cases, one is interested tominimize theprediction riskofmodels. Be-
cause the empirical risk of amodel is unobservable, oneo�enuses the empirical risk as anapproximation
or estimator for prediction risk. This is a mistake because the empirical risk gets minimized by choosing
a model with many free parameters, while prediction risk increases with toomany free parameters.

�. Overfitting: this is a direct corollary from the first point. If a model has so many free parameters that it
can very well be calibrated to existing data, it is very likely that it performs poorly for new data.

�. Equifinality: usually,wecan thinkofmanymechanisms that canbringabout thesameresult: themechanism-
to-function mapping is many-to-one (Gräbner & Kapeller ����, p. ���). Therefore, the calibration of a
model to existing time series alone tells us relatively little aboutwhatmechanismswere actually at work.

�.�� A good illustration of the limits of descriptive output validation is given by Janssen (����) who discusses the
famous Anasazimodel and shows howmany important questions still remains open, despite themodel having
a very nice fit to the historical data. Without additional validation forms being applied (in this case particularly
further process validation), the model can ‘explain’ the dynamics of the Anasazi only in a limited way.

�.�� What makes a model easy to validate in terms of descriptive output validation? Ceteris paribus, the more com-
plex themodel and themore free parameter it has, themore successful it will be in terms of descriptive output
validation. Grimm(����) describe thepracticeof ‘patternorientedmodelling’ as a lessnaive formofdescriptive
output validation: here, one tests how severalmodel specifications can replicate anobservedpatter, eliminates
the unsuccessful one and proceeds with more detailed patterns until all but a very few candidate models re-
main.
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Figure �: The relationship between verification and the di�erent kinds of validation.

�.�� Finally, predictive output validation basically asks how well the model can be trained to predict future states
of the system. Its idea is also illustrated in figure �d, but in contrast to descriptive output validation, the real
world data gets separated into a training set and a test set. This way, one e�ectively addresses the problem of
over-fitting and empirical risk minimization. This form of model validation is extremely illuminating, but not
always applicable because of data requirements. Furthermore, it should be aligned with process validation,
since being able predict without knowing why one is able to predict is o�en not su�icient to understand the
system under investigation.

The trade o�

�.�� What is the relationbetween verification and the various types of validation? Is there amodel design that scores
optimal in all four activities? Unfortunately, for the single model this is not the case. As illustrated in figure
�, there are trade-o�s in terms of model design: making a model easily amendable to one kind of verifica-
tion/validation makes it more cumbersome to validate/verify for another kind.

�.�� We first consider the relationship between input validation and verification. Here, researchers o�en face a
trade-o� because a successful input validation gets facilitated by a direct and detailed representation of the
system under investigation, but verification gets easier if the model is more parsimonious. Also, the ease of
verification due tomodel simplicity o�en comes at the expense of generality, since it is not clear to what extent
the model applies to situations for which the (strict) assumptions are not applicable (Cartwright ����).

�.�� When turning to the relationship between verification and descriptive output validation, we again observe a
tension in terms ofmodel design: descriptive output validation produces the best results formodelswithmany
degrees of freedom, while verification is easiest for simple and parsimonious models. As in the case of verifi-
cation and input validation, there is a trade-o� between a more complex and better validated, and a simpler,
better verified model.

�.�� The next relationship to be considered is that between descriptive and predictive output validation. It is very
clear that there is a trade-o� involved because the relationship between the two kinds of validationmimics the
well-known trade-o� between risk-minimization and empirical risk-minimization in inferential statistics: the
more degrees of freedomwe give to ourmodel, the easier it is to calibrate it to the datawe have, but the greater
the risk for over-fitting.

�.�� Finally, we turn to the relationship between predictive output validation and process validation, which seems
to be complementary. There are a couple of reasons for why I consider this relationship to be complementary:
Firstly, one argument in favour of representing real-world mechanisms explicitly in formal models is that such
models are easier to generalize, both in terms of time and space. Since training a model could be considered
to generalize theory from small data sets, models that explain in terms of mechanism should also be useful
for prediction. Secondly, training a model works through letting the algorithms explore patterns in the data,
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Aim Verification Input valid. Process valid. Descript. valid. Predict. valid

Provide predictions F F FFF
Explain what happened FFF FF FF FFF
Scenario analysis FFF F FF FF

Table �: A possible prioritization of verification and the di�erent types of validation, depending on the model
purpose.

and these patterns are likely to be caused by real-world mechanisms.� Therefore, a model that performs well
in resembling mechanisms of the SUI should at least not perform worse in predicting the system’s future be-
haviour as a model that does not capture these mechanism well. Finally, real-world mechanisms are usually
unobservable. And while the techniques of process validation mentioned above are certainly e�ective, pro-
cess validation should always be complemented by other validation techniques. Predictive output validation,
if feasible, certainly seems to be an excellent choice from a practical perspective.

Validation and the purpose of amodel

�.�� Considering these intricate relationships and trade-o�’s between various forms of validation and verification
wemust ask whether some there can be a reasonable prioritization among them. If this were true, one should
design amodel such that it maximizes its performance in terms of this form of verification/validation and then
turn to the other one by one, depending on their respective importance. Unfortunately, such a general ranking
is not feasible. Rather, what kind of VV is needed depends on the purpose of amodel (Suarez et al. ����, p. ���).

�.�� Table � suggests an assessment for the various forms of VV for three typical model purposes. There are many
more purposes for modeling one could think of (see e.g. Epstein (����)), and the ranking suggested here can
surely be debated. The key message of the ranking is, however, that, depending on the purpose of the model,
decisions among competing designs must be made and the decision in favour of one design might entail a
better performance in one kind of VV at the cost of a comparatively worse performance in another kind of VV.

�.�� There is no general rule for a concrete prioritization and the respective kind of VV but the comparison among
di�erentmodels and their interpretation cannevertheless be facilitated if the design choices aremade as trans-
parent as possible and are explicitly justified and related to the purpose of themodel. Here, my proposal aligns
well with existing frameworks for model presentation according to which the model purpose should be made
very explicit (e.g. Grimm et al. (����)).

�.�� While the claim that validation should follow the purpose of the model is widely accepted, there are impor-
tant exceptions: As argued by Lehtinen & Kuorikoski (����), di�erent disciplines have di�erent conceptions of
what counts as ‘understanding’. Based on these conceptions, they may not follow this claim. Economists, for
example, prefer parsimoniousmodels that can be solved analytically within themaximization-cum-equilibrium
approach. This constraints the set of admissiblemodellingmethodologies and validation techniques, and thus
there is a bias towards particular forms of VV in economics (in particular towards descriptive output valida-
tion).�� Using explicit epistemological frameworks such as the one suggested here, may facilitate to identify
and to overcome such biases via interdisciplinary discussion and reflection.

Some immediate practical implications

�.� Two immediate practical implications for applied modelling design follow from what has been claimed in the
previous sections: Firstly, there are somedesign principles that are at least never harmful, but frequently useful
when assessing the relation between a model and reality. These are principles such as a modular modelling
design and the strive for transparency and clarity in the exposition of the model. Secondly, while it may not be
possible to design a model that performs very well in terms of all kinds of VV, one can sometimes combine the
respective strengths and weaknesses of severalmodels via the practice of sequential modelling.

�.� Sequential modelling refers to the practice of starting with a very simple and stylized model and then building
more and more complex models that are all verified by aligning them (in the sense of Axtell et al. (����)) with
the previous, simpler model. In the best case, the first, and thus simplest, model is amendable to analytical
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proofs. Usually, such simple models are purely equation-based. One can then proceed by building an agent-
basedmodel that canbealignedwith this simplestmodel. Thisway, one can “transfer” someof the rigour of the
simpler model to themore complexmodel. If successful, this practice allows one to appreciate the advantages
of simplemodels in termsof verification also for themore complexmodels, which have their strengths inmodel
validation.

�.� Take the investigation of Henderson & Isaac (����), two economists studying agrarian production, as a simple
example: The authors start with a general-equilibriummodel of agrarian production that allows for an analyti-
cal solution. The model, however, represents poorly the structure of modern agrarian production. To preserve
the rigour of the original mode, Henderson and Isaac develop an agent-based model that replicates the func-
tioning of the original model. Thanks to its modular structure, the agent-basedmodel can then be extended to
include someessential features ofmodern agrarianproduction that arebeyond the scopeof theoriginalmodel.
In the end, the authors have a model that is a good representation of the reality the authors are interested in,
but that is also well verified because of its sequential construction.

�.� Unfortunately, the practice of sequential modelling is not always applicable: the system under investigation
must be such that a very stylized model can at least remotely related to this system. This may not always be
the case. Also, when relating the increasingly complex models to each other, one faces the problem of when
onemodel simulates another. This has been discussedmore extensively in Axtell et al. (����) under the topic of
‘Aligning SimulationModels‘ and subsequentwork. Despite its potential di�iculties, however, there are already
a couple of examples where the practice of sequential modelling has been very successful, see e.g. Axtell et al.
(����), Bednar & Page (����), Gintis (����), or Henderson & Isaac (����).

Conclusion and outlook

�.� In this paper I have introduced an epistemological framework that illustrates the various waysmodels can help
us to understand reality. We have argued that using such frameworks is useful because they help to exemplify
the di�erent epistemological foundations of various models. This way, we can more transparently justify the
modeling framework we have chosen, compare the results of di�erent models and choose more rationally be-
tweenmodeling frameworks.

�.� The framework was also used to distinguish and illustrate various forms of model validation and verification.
This distinction is meaningful, because not all models are directly related to reality, but they can nevertheless
be useful and should be verified. We have seen that there are di�erent ways to relate a model to reality (i.e. to
validate it) and that there are trade-o�s with respect to model design: some designs facilitate VV in one sense,
but make it more di�icult in another. Which kind of VV should receive priority depends on the model purpose,
but there are some design principles that are always useful and never harmful (e.g. a modular design).

�.� Based on these considerations I have argued that di�erent modelling approaches have di�erent comparative
advantages and disadvantages with respect to VV: agent-basedmodels, for example, seem to have a compara-
tive advantage in terms of input validation and process validation. A comparative disadvantage of agent-based
models is model verification: while a great number of excellent verificationmethods exist, ABMs usually do not
allow for the most successful verification technique: a mathematical proof.

�.� Based on this observation I suggested the practice of sequential modelling. Similar to the idea of sequential
modelling is that of using a pluralism of models.

�.� Finally, I want to build on our epistemological elaborations to answer two questions mentioned in the begin-
ning: (�) “Is verification and validation necessary?” and (�) “Is verification and validation possible?”. With regard
to the first question: Theremight be instances of where we are only interested in predicting future states of the
system under investigation and where model verification plays a minor role. But aside from this I cannot think
of any instance where model verification is not important. There are many reasons for why we should know
how our models work, which is why every model in this world should be properly verified.

�.� Validation becomes important as soon as we want to use our model to make informed statements about the
real world (e.g. Schulze et al. (����)). This is not always the case: Gerard Debreu, a mathematician by training
and one of the most influential economists of the previous century claimed that “theory has a mathematical
form that is completely separated from its economic content.” (Debreu ����, p. ����) and that with every new
interpretation the model gets another meaning. The consequence for the model builder is that she does not
need to care for any relation of hermodel to the real world. This can then be done by people that “apply” these
models. I believe that this strategy is not very successful in the social sciences, engineering and the natural
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sciences, but more useful in mathematics (see Augusiak et al. (����, p. ���-���) for a similar claim). But there
are some cases in which models do not need to be validated at all, especially in the case of ’proof-of-concept‘
models that illustrate an idea and thatmay later serve as building blocks formore complexmodels. But as soon
aswewant to use ourmodel tomake informed statements about the realworld, validation becomes important,
and the kind of validationwe should seek depends on the particular kind of statement about theworldwewant
to make.

�.� So, verification is always and validation o�en important. What about the feasibility of VV? If we consider our
framework as illustrated in figure �, verification is concernedonlywith the internal structure of amodel. At least
for simplemathematicalmodels anearly complete verification is o�en feasible. Verbalmodels canneverbe ver-
ified with certainty, and computational models reside somehow in the middle. So, while complete verification
is possible only for a small subset of models, su�icient verification is a feasible and attractive desideratum.

�.� Considering validation, the situation becomes more complex. Firstly, some forms of validation are easier (e.g.
descriptive output validation) while others (e.g. process validation) are more di�icult. Secondly, a complete
validation will always remain impossible, even if one focuses on one particular form of validation (e.g. input
validation). We simply cannot perceive reality in its entirety such that we could compare the model to this
completedescriptionof the realworld. Even in the century of big data (inwhich stillmanydataproblemsprevail
(Schulze et al. ����)), there will never be the perfectly validated model.

�.� But the fact that complete verification and validation might be impossible does not release us from the duty
to strive for the best verification and validation that is possible and adequate for our modelling purpose, and
to be transparent regarding how we want our models to relate to reality and on how we have assessed this.
Frameworks such as the one presented here hopefully complement existing frameworks ofmodel presentation
and evaluation to facilitate this task.

Appendix A: Relating the frameworkwith the ‘evaludation’ framework of
Augusiak et al.

Augusiak et al. (����) argue that the terms ‘validation’ and ‘verification’ should be eradicated because they
are ambiguously and barely mean anything any more. Instead they propose the general term ‘evaludation’. I
believe that - properly defined - the terms ‘verification’ and ‘validation’ are useful and highlight the di�erence
of studying a model itself or the relation of a model with reality. The term ‘evaludation’ blurs this distinction
for the sake of generality. Nevertheless, I think the framework and the terminology of Augusiak et al. (����) is
extremely useful for model analysis, particularly because it is well adjusted to the natural modelling cycle. But
I believe it would be useful to complement it by an explicit, epistemological framework as presented in this
paper.
To facilitate this task, table � relates the terminologies frommy framework to that of Augusiak et al. (����).
There are three aspects of the relationship worth mentioning: Firstly, Augusiak et al. (����) do not mention
all forms of validation that are possible. I believe that what they term “Model output corroboration” might be
interpreted more broadly to capture also descriptive output validation and process validations.
Secondly, Augusiak et al. (����) advocate a model building process that contains some aspects of the sequen-
tial modelling approach: they assume one first builds a conceptual, non-computational model, that is then
computerized. The aligning of the final and conceptual model is therefore rightfully considered an important
step in the modelling cycle. In my framework, this is not necessary the case. I agree that it is good practice to
have a conceptual model that gets then computerized, but since both the conceptual and the final model can
be both verified and validated (the former at least conceptually), I think that even here the distinction between
verification and validation (together with the idea of sequential modelling) makes sense.
Thirdly, the framework is by no means incompatible with my epistemological framework. This is not surpris-
ing, because both frameworks have di�erent, but complementary aims. From a pragmatic viewpoint, it seems
to me that if both frameworks are used jointly, every step in evaluadation procedure should explicitly distin-
guish between activities concerned with the model, and activities assessing the link of the model with reality,
and be explicit about how the latter could be established. In figure � I suggest a way to accommodate explicit
epistemological considerations into the evaluadation framework (thereby slightly altering the terminology of
Augusiak et al. (����)), but other ways to relate the framework are certainly possible.

��



Term from
Augusiak et al.

Reference to VV
terms

Comment on the relationship

Data evaluation NA This step is rightfully highlighted by Augusiak et al. (����)
as an essential step within the modeling cycle, but it does
not need to be part of an epistemological framework.

Conceptual model
evaluation

Verification /
Input validation

Augusiak et al. (����, p. ���) consider this as the
“assessment of the simplifying assumptions underlying a
model’s design [...] including an assessment of whether
the structure, [...] form a logically consistent model.” This
step has elements of model verification (e.g. the test of all
assumptions are logically consistent), and validation (e.g.
the assessment of the assumptions capture the essence of
the real system).

Implementation
verification

Verification Augusiak et al. (����, p. ���) use this step to ensure that
the modelling formalism is accurate and that the
computational model does what it is supposed to do. This
corresponds to verification in the sense I use the term.

Model output
verification

Input validation Augusiak et al. (����, p. ���) define the aim of this step as
“to ensure that the individuals and populations
represented in the model respond to habitat features and
environmental conditions in a su�iciently similar way as
their real counterparts.” This step involves some aspects
of verification, but mostly corresponds to input validation.

Model analysis Verification Here, Augusiak et al. (����) are concerned with testing the
sensitivity of the model to changes in the model
parameters, and the understanding of how the model
results have emerged. This step is clearly about verifying
the model since no link to reality is investigated.

Model output
corroboration

Predictive
output
validation

In their final evaludation step, Augusiak et al. (����, p. ���)
seek to compare “model predictions with independent
data and patterns that were not used, and preferably not
even known, while the model was developed,
parameterised, and verified.” This is basically the
definition of predictive output validation.

Table �: A clarification of the relationship between the terms used byAugusiak et al. (����) and my epistemo-
logical framework.

Notes

�It’s usehasbeenencouragedbyprominentoutlays, includingJASSS.However, it ismoreprominent in some
disciplines (e.g. ecology), and less frequently used in others (e.g. economics). This illustrates the di�iculty of
introducing commonly accepted standards into a lively research community.

�For an excellent illustration of the consequences of di�erent conceptions of understanding see Lehtinen &
Kuorikoski (����) who study the reluctance of economists to use agent-based simulation models.

�As for Lehtinen & Kuorikoski (����), it is important forme to stress that these descriptions of the economic
way of theorizing are descriptive, and do notmean that I endorse this kind of theorizing. I believe taking it seri-
ously remindsus to value rigour andparsimony, and toquestionwhether thecomplexityof amodel is adequate,
but in general Kitcher’s epistemology is not desirable in a normative sense.

�General equilibriummodels are a standardmodelling approach in economics. One specifies few represen-
tative agents that maximize their utility and imposes and equilibrium restriction on the complete system. The
classical introduction is given in Mas-Colell et al. (����).

�This iswhybothphilosophersandcognitive scientistso�en refer to thenotionof ‘cognitive representations’
and ‘mental models’. As famously put by Forrester (����, p. ):“Every person in his private life and in his business
life instinctively uses models for decision making. The mental image of the world around you which you carry
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Figure �: One possiblity to include epistemological considerations into the evaluadation framework. Where
necessary one should explicitly refer to the framework outlined in figure �.

in your head is amodel. One does not have a city or a government or a country in his head. He has only selected
concepts, and relationships between them, and uses those to represent the real system.”

�See Reiss (����, p. ���) for a similar distinction made from amore philosophical perspective. He compares
the epistemology of simulations to that of experiments and argues - rightfully, I believe - that they are the same.
For an experiment you also have to check first whether the data created tells you enough about the functioning
of yourmodel/experiment, and thenwhether themodel relates well to the real system youwant to investigate.

�The Walrasian auctioneer is a fictitious entity that is used to tell a story about how simple general equi-
librium models reach the equilibrium: every buyer and seller communicates a price to the auctioneer and no
trade takes place before this fictitious entity announces the set of prices for which there would be an equilib-
rium between supply and demand. As one might have expected, the decision problem for this fictitious entity
is very hard (Axtell ����).

�While process validation is an obviously tedious task, themerits of models that explain via the provision of
mechanism getsmore andmore acknowledged and the validation ofmodels in terms ofmechanisms becomes
more andmore a desideratum (Steel ����; Deaton ����; Reiss ����).

�Under a mechanism, we understand a sequence of states, or a pathway within a concrete system (Bunge
����; Gräbner ����).

��This claim gets nicely illustrated by the unwillingness of some economists to test their rational expecta-
tion models via rigorous statistical test but rather prefer to calibrate them, simple because “these tests were
rejecting toomany goodmodels” (Thomas Sargent in Evans & Honkapohja (����)).
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