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Abstract

Estimation of agent-based models is currently an intense area of research. Recent
contributions have to a large extent resorted to simulation-based methods mostly
using some form of simulated method of moments estimation (SMM). There is,
however, an entire branch of statistical methods that should appear promising, but
has to our knowledge never been applied so far to estimate agent-based models
in economics and finance: Markov chain Monte Carlo methods designed for state
space models or models with latent variables. This later class of models seems
particularly relevant as agent-based models typically consist of some latent and
some observable variables since not all the characteristics of agents would mostly
be observable. Indeed, one might often not only be interested in estimating the pa-
rameters of a model, but also to infer the time development of some latent variable.
However, agent-based models when interpreted as latent variable models would be
typically characterized by non-linear dynamics and non-Gaussian fluctuations and,
thus, would require a computational approach to statistical inference. Here we re-
sort to Sequential Monte Carlo (SMC) estimation based on a particle filter. This
approach is used here to numerically approximate the conditional densities that
enter into the likelihood function of the problem. With this approximation we
simultaneously obtain parameter estimates and filtered state probabilities for the
unobservable variable(s) that drive(s) the dynamics of the observable time series.
In our examples, the observable series will be asset returns (or prices) while the un-
observable variables will be some measure of agents’ aggregate sentiment. We apply
SMC to two selected agent-based models of speculative dynamics with somewhat
different flavor. The empirical application to a selection of financial data includes
an explicit comparison of the goodness-of-fit of both models.

Keywords: agent-based models, estimation, Markov chain Monte Carlo, particle filter.

JEL Classification: G12, C15, C58

∗Department of Economics, University of Kiel, Germany. Email: lux@economics.uni-kiel.de.

1



1 Introduction

Validation of agent-based models is currently an intense area of research. Various dis-

ciplines have developed distributed computational models of interacting agents that due

to their inherent complexity appear to pose non-trivial demands when it comes to esti-

mation of their parameters. Examples include the estimation of behavioral parameters in

transportation networks (Molina et al., 2005), ecological models (Golightly and Wilkinson,

2011), sociological models of network formation (Snijders, 1996) and behavioral models of

speculative behavior in financial markets. The later has become a particularly burgeon-

ing area of research. Recent contributions in this area have been surveyed by Lux and

Zwinkels (2017). Various approaches can be found in this emerging literature: A large

body of literature is concerned with models with a limited number of different strategies

(mostly only two) whose dynamic evolution can be formalized by a system of typically

highly nonlinear difference or differential equations in the limit of an infinite population

of agents. This literature has been initiated by Day and Huang (1990), Chiarella (1992),

and Brock and Hommes (1997, 1998), among others. Models of this class have been

estimated by a variety of algorithms: for instance, Boswijk et al. (2007) estimate the

regime-switching model of Brock and Hommes using a nonlinear least-squares approach,

while Amilon (2008) estimates the same model using the efficient method of moments

based on an auxiliary ARCH model.

More recently, Recchioni et al. (2015) and Lamperti et al. (2017) have resorted to

calibration methods rather than econometric estimation to fit the same model to data.

This alternative approach is motivated by the observation that even the relatively simple

agent-based models of this class come along with a large number of parameters. When em-

bedding a simulation model with many parameters into the loop of an iterative algorithm

for parameter optimization, computational demands tend to increase easily beyond fea-

sible boundaries. These computational limitations of ‘traditional’ statistical approaches

have led researchers to select ‘parameters of interest’ for estimation and fix a priori the

remaining ones. The calibration methods of Recchioni et al. (2015) and Lamperti et al.

(2017) try to cope with the computational burden by using more efficient approaches:
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Recchioni et al. (2015) select parameters based on a constraint optimization using the

squared residuals of the fit of the raw price data as the underlying loss function, while

Lamperti et al. (2017) apply a machine learning algorithm based on a surrogate model

that facilitates the exploration of new parameter values in successive rounds of the learn-

ing algorithm.

Other recent contributions have cut down on the number of parameters and have ap-

plied the simulated method of moments as a most generally applicable tool to estimate

parameters, cf. Franke and Westerhoff (2011, 2012, 2016). Barunik and Kukacka (2016)

have applied a simulated maximum likelihood approach, while Barde (2016) applies an

information-theoretic criterion to calibrate and compare three closely related agent-based

models that all can be expressed in a structural form as systems of difference equations.

Recent literature has also embarked on estimation of agent-based models not cast in

structural form. Grazzini and Richiardi (2015) and Jang (2015) were probably the first

who studied the estimation of a model in which a full set of agents is simulated. The

underlying models are very simple ones with only few parameters: Grazzini and Richiardi

illustrate minimum distance estimation of agent-based models by example of two simple

models: an order book model with adaptive adjustment of limit prices, and a model of

adaptation of a new product in a finite population of agents. Following Alfarano et al.

(2008), Jang embeds Kirman’s model of herding among speculators (Kirman, 1993) into

a simple asset pricing framework. While this model can, in principle, be approximated by

a stochastic difference equation (it is used by Barde, 2016, in this format), Jang (2015)

uses microscopic simulations of the evolution of the strategies of the market participants.

He shows that the objective function used in a simulated method of moments (SMM)

algorithm is generically non-smooth, and often exhibits multiple equilibria as well as rel-

atively flat areas over wide ranges of the parameter space. Exploring this issue further,

Chen and Lux (2017) and Ghonghadze and Lux (2016) show that execution of a single

SMM estimation from an arbitrary set of initial conditions could lead to virtually ar-

bitrary results. On the base of extensive Monte Carlo simulations, they recommend to

start the estimation with a comprehensive grid search followed by the application of a
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gradient-free optimization method for a sample of best fitting grid points. They also note

strong correlations between the estimates of the three parameters of this model, a long

preasymptotic range of the estimates before converging to T 1/2 consistency, and severe

size distortions of the goodness-of-fit test based on the over-restrictions of the SMM al-

gorithm. In conclusion, it appears that while SMM is a perfectly general approach to

estimate full-fletched agent-based models, it suffers from important limitations: Firstly,

finding the minimum of the SMM objective function can be computationally very chal-

lenging given the inconvenient properties mentioned above. Second, to obtain a decent

signal-to-noise ratio of the estimated parameters, very large data sets (of order 105 to 106

in the above papers) whould be needed. The later problem reflects the generally lower ef-

ficiency of estimators based upon few moments compared to estimation methods that use

more information. Chen and Lux (2017) argue that these problems might extend beyond

the particular model explored in their paper, and might have as their principal cause the

limited range of moments available for univariate financial data (basically measures of

their heavy tails and clustering of volatility).

In view of this unsatisfactory scenario, the present paper aims at expanding the tool

box available for the estimation of agent-based models into a new direction. While extant

research has used a number of diverse estimation methods, there is, still an entire branch

of statistical methods that should appear promising, but has to our knowledge never been

applied so far to estimate agent-based models in economics and finance. This branch of

statistical methods is Sequential Monte Carlo designed for state space models or more

general models with latent variables. This class of models seems particularly relevant as

agent-based models typically would consist of some latent and some observable variables

since not all the characteristics of agents would mostly be observable. Hence, such models

can be very naturally classified as hidden or latent variable models. Indeed, one might

often not only be interested in estimating the parameters of a model, but one would also

be interested to infer the time development of some latent variable from the observable

ones. Extracting information on unobservable variables is a classical filtering problem for

which state-space models are prototypical examples. The classical approach to inference
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in state-space models is the Kalman filter which is the optimal solution to the tasks of

state filtering and parameter estimation for linear systems with Gaussian noises in both

the dynamic laws governing the latent and observable variables (Grewal and Andrews,

2008).

However, agent-based models when interpreted as latent variable models would be

typically characterized by non-linear dynamics and non-Gaussian fluctuations and, thus,

would require a more general approach to statistical inference. Here we resort to an ap-

proach that is extremely versatile and has become very popular in a variety of applications:

Sequential Monte Carlo (SMC) estimation based on a particle filter. This approach is used

here to numerically approximate the conditional densities that enter into the likelihood

function of the problem. With this approximation we simultaneously obtain filtered state

probabilities for the unobservable variable(s) that drive(s) the dynamics of the observ-

able time series when estimating the parameters of a model. In our examples below, the

observable series will be asset returns (or prices) while the unobservable variables will be

some measure of agents’ aggregate sentiment. In contrast to many alternative approaches

to the estimation of such models, we are thus able to identify in each single period the

relative contribution of fundamental news and non-fundamental sentiment dynamics in

the observed price changes, while in the previous GMM/SMM estimation of such models

(e.g. Ghonghadze and Lux 2016; Chen and Lux 2017) the authors could only diagnose

the relative importance on average over the whole time series of these two factors on the

base of estimated parameters.

The main advantages of SMC methods are (i) a more efficient use of available data

since SMC is used to numerically approximate the likelihood, and, therefore, uses more

information than an SMM approach based on selected moments. In comparison with the

results of Chen and Lux (2017), we will indeeed find a dramatic increase in the preci-

sion of the parameter estimates for the same underlying model, (ii) the identification of

unobservable variables which are often in the center of interest of agent-based models,

e.g. how many agents adopt what type of strategy. Estimated trajectories of such hid-

den variables are obtained as a natural by-product of the filtering step involved in any
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SMC algorithm. Filtered estimates of the hidden variables could be based on different

information sets, e.g. based only on past observations or based upon the complete avail-

able time series of the observed variable, (iii) sequential Monte Carlo could be embedded

into different estimation methodologies , i.e. both frequentist maximum likelihood and

Bayesian estimation are possible. Of particular interest given the computational demands

of agent-based models is also the possibility of on-line estimation, i.e. identification of

parameters after only one sweep over the data rather than in-the-loop estimation. All

these possibilities will be illustrated on the base of two simple models. We note that

by introducing Bayesian methods in the estimation of agent-based models, part of the

present research program overlaps with that of Grazzini et al. (2017). However, the later

paper does not use sequential Monte Carlo methods.

In the following, we will proceed by providing a short introduction to latent vari-

able models and their estimation via sequential Monte Carlo methods. Sec. 2 provides

a classification of important classes of models with latent variables, and details on the

application of Monte Carlo methods to state filtering and estimation. It also explains

in detail the working of sequential Monte Carlo estimation via a particle filter, together

with its use in both frequentist and Bayesian estimation and reviews theoretical results

available in the statistical literature for this approach. Sec. 3 will shortly introduce two

agent-based models of speculative dynamics with somewhat different flavor that will sub-

sequently serve as our work horses for illustration of the statistical methodology. Sec. 4

offers details on some Monte Carlo experiments designed to shed light on the performance

of sequential Monte Carlo methods for the two competing models, and sec. 5 moves on

to their empirical application to a selection of financial data including a model contest.

Sec. 6 provides conclusions and avenues for future research.
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2 Statistical Models and Methods of Inference

2.1 Types of Latent Variable Methods

The classical version of a latent variable model is the general state-space model. A

state-space model is defined by the stochastic evolution in time (or along some other

dimension) of the state vector, xt, and the vector of observable measurements, yt. In the

most general case, this can be written as:

xt = f(xt−1, ǫt)

yt = y(xt, ηt)

(1)

where ǫt and ηt are noise factors that could be correlated, and f(·) and g(·) are stochas-

tic processes. One could alternatively describe the state-space-model by the conditional

desities of xt and yt but such conditional densities need not to be known. The minimum

requirement of a general state-space model is that the recursions f(·) and g(·) are uniquely

determined by some algorithm, i.e. they can be simulated.

The dynamics of the state-space model, thus, corresponds to the sequence of events

illustrated on the left-hand side of Fig. 1. The measurements yt are, then, just noisy

signals for the underlying states and have no effect on the state recursion itself. Hence,

the baseline state-space model can be applied whenever one considers the empirical data

as noisy measurements of some ‘true’ latent (i.e. unobservable) variable of interest. This

is, for example, how macroeconomic models of the DSGE (dynamic stochastic general

equilibrium models) type are framed as state-space models: macroeconomic variables are

assumed to be measured with error only and, thus, take the role of the observables yt (cf.

Fernández-Villaverde and Rubio-Ramı́rez (2007)).

It turns out that agent-based models will sometimes obey this format; an example will

be provided in the next section. Fitting a model in this format is extremely convenient

for the plethora of statistical methods that have been developed for this setting over the

last decades (only some of which we will illustrate below).

However, not all agent-based models fit into this format. A more general class of
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models will allow for feedback from the observation to the state, cf. the right-hand side il-

lustration of Fig. 1. We will see that broad classes of financial agent-based models rather

fall into this category. This more general framework is denoted an observation-driven

system if there is no noise component in the state equation or more generally a dynamic

system with latent variables if the state and observation equations are both stochastic

(Liu and Chen, 1998). Recently, both variants have attracted some attention: The statis-

tical properties of observation-driven models with deterministic state dynamics have been

investigated by Douc et al. (2013). A leading example of an economic application of this

class of models is the family of GARCH models. Their stochastic counterpart, denoted

stochastic volatility models, in contrast, falls into the traditional framework of state-space

models (as they usually lack the autoregressive dependency of volatility on past squared

returns besides the autoregressive dynamics of the latent past volatility of the GARCH

framework).

Stochastic volatility gives, however, rise to dynamics beyond the state-space formal-

ism if it allows for a leverage effect between the first and second moment of returns.

Dependency of volatility on past price changes then leads to a state dynamics that is not

autonomous anymore so that a more general system of two stochastic differential equations

is obtained with one observable (returns) and one latent variable (volatility) and feedback

from the first to the second. 1 More recently, general models with latent variables have

been studied in a microeconomic context by Blevins (2016) and Gallant et al. (2016).

Both papers apply a so-called particle filter, the standard approach for sequential Monte

Carlo estimation of complex non-linear models, which is also known as bootstrap filter a

sampling-importance resampling (SIR) approach and has been introduced by Gordon et

al. (1993) and Kitagawa (1996). Both Blevins (2016) and Gallant et al. (2016) elaborate

on the theoretical properties of their estimation approach which is not covered by the

rich body of results available for standard state-space models. Gallant et al. show that

maximum likelihood estimation based upon a particle filter approximation is unbiased

1 Surprisingly, available papers on stochastic volatility models with leverage effect use sequential Monte
Carlo methods for parameter estimation referring to the pertinent formalism for state-space models
and neglect the fact that their models go beyond the standard state-space formalism (Christoffersen
et al., 2010; Pitt et al., 2014; Yu, 2005).
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while Blevins (2016) demonstrates its asymptotic consistency.
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Fig. 1. a. Relationship between the hidden (latent) variable xt and the measurement
yt in a standard state-space model, b. Relationship between the latent variable and
the observable variable in a more general observation-driven model, or dynamic model
with latent states.

2.2 Sequential Monte Carlo Estimation of Models with Latent

Variables

Sequential Monte Carlo methods attempt to approximate unknown, evolving probabil-

ity distributions via simulations. The distributions one wishes to approximate in dynamic

models with latent variables are different forms of posterior distributions. Denoting by

{yt}, t = 1, ..., T the observed variable, by {xt}, t = 1, ..., T the hidden variable, and

by θ the vector of possibly unkown parameters, the entities of interest might be the

predictive density p(xt|Yt−1, θ), the filtering density p(xt|Yt, θ) or the smoothing density

p(xt|YT , θ) where Yt is the set of all observations from y1, ... to yt. In a Bayesian frame-

work, additional objects of interest might be defined by conditioning on the posterior

for the parameters. Sequential Monte Carlo (SMC) methods provide approximations of

these densities. These consist of discrete, weighted samples that provide a point-wise

approximation of the density of interest that is not available in closed form. With these

approximations, also functions involving these densities can be approximated. Because

of the point-wise nature of the approximation, SMC methods are also known as particle

filters (i.e. the relevant density is approximated by a set of discrete points or particles).

In the following, we illustrate the evolution of such a particle filter for the task of approx-

imating the likelihood function of a state space model or a dynamic system with latent

variables.
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The present implementation of the particle algorithm very much follows the principles

laid out in the seminal contributions by Gordon et al. (1993) and Kitagawa (1996). A

particle filter allows us to approximate via simulations the likelihood function which is:

L(θ) = P (y1, . . . , yT |θ) = P (y1|θ)
T∏
t=2

P (yt|yt−1, θ). (2)

Considering the dependency of the observable variable on the latent state variable, the

conditional probabilities in eq. (2) can also be written as:

P (yt|yt−1, θ) =

∫
P (yt|xt)P (xt|yt−1)dxt (3)

The state variable xt and its conditional density in eq. (3) will be approximated by a set

of ‘particles’ B. Hence, denoting the B particles by x
(j)
t we aproximate eq. (3) by

P (yt|yt−1, θ) ≃
1

B

B∑
j=1

P (yt|x(j)
t ) (4)

The filtering algorithm for the evolution of the particles works as follow:

1. A random collection of j = 1, ..., B particles is sampled from the stationary dis-

tribution of the hidden variable xt at time t = 1 and the densities P (y1|x(j)
1 ) are

computed.

2. Particles are resampled using weights
P (y1|x

(j)
1 )

∑B
l=1 P (y1|x

(l)
1 )

.

3. The so obtained new set of particles is iterated to form a new sample using the

stochastic process defined by the first part of eqs. (1). This process can typically

only be simulated in an agent-based model. A simulation is thus conducted for each

particle and the resulting value of this particle after a unit time step is recorded,

which we denote as x
(j)
2 .

4. Steps 1 to 3 are repeated for t = 2, 3, . . . , T

Note that the requirement of sampling from the stationary distribution of the hidden

variable(s) in step 1 is not restrictive. In most cases this distribution might not be known
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in closed form, but in an agent-based or other causal model these draws can easily be

obtained by conducting a sufficiently long simulation. The initialization can, then, be

based on a sample of hidden variables taken from a simulation that has converged to

a stationary distribution. As the next step, the densities of the first observation y1 are

evaluated conditional on each particle drawn from the stationary distribution. If yt is

linked to xt in eq. (1) via a simple probabilistic law, the conditional densities P (yt|x(j)
t )

may be evaluated directly. If not, this part of the algorithm would also have to be

implemented by simulations. In our examples below P (yt|x(j)
t ) will be Gaussian and,

therefore, their evaluation is trivial.

It is worthwhile to note that the evaluation of P (y1|x(j)
1 ) provides us already with the

approximation of the first entry of the right-hand side of the likelihood function, eq. (2)

which is obtained as:

P (y1|θ) ≃
1

B

B∑
j=1

P (y1|x(j)
1 ), (5)

a discrete approximation of the sought-after continuous density.

In step 1, the particles have been randomly drawn from the stationary distribution so

that they all enter in eq. (5) with unitary weights. However, the evaluation of their con-

tribution to the likelihood shows that the likelihood of observing y1 can be very different

for different particles. Those that have a higher likelihood, are, of course, more likely to

be in the vicinity of the unknown first realization of the unobserved variable, x1. In order

to take into account this variation, the particles are reweighted in step 2 by their contri-

butions to the likelihood. To obtain proper weights summing up to unity, the weights are

normalized by the sum of all likelihoods. A new set of particles is then sampled from the

old ones using multinomial draws on the base of these weights. Hence, the better fitting

particles have a higher chance to be selected than those with small contributions.

In step 3 the new set of particles is iterated from time t = 1 to t = 2 using the law of

motion of the unobserved variable, xt = f(xt−1, ǫt). In extant applications of this SMC

algorithm, this approach has been applied to many types of non-Gaussian, non-linear pro-

cesses for which no closed from solution is known. In our case, the law of motion of the

hidden variable(s) will be a complete agent-based model of which the hidden variable(s)
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are summary statistics. Note that we have to apply the law of motion, i.e. the agent-based

model, to the iteration of each particle x
(j)
t , hence have to simulate the agent-based model

B times using each resampled particle as the starting value of one of these simulations.

While in many stochastic processes, the iteration of the particles just requires one random

draw from some law of motion to move from t to t+1, the simulation part is very likely to

be more complex in an agent-based setting. First, the unit time interval over which the

observable variable yt is recorded might not be identical to the time scale of the agents’

activities of the model. Rather, agents might be active a number of times between unitary

observation intervals, and many of them might take some decision at the same time. In

our applications, the agent-based models are formulated in continuous time, and will be

simulated using a discrete event algorithm for the determination of agents’ decisions. In

this case, the number of events happening within the agent-based model between unit

time intervals is variable and depends on the random draws of event times. Note that all

these complications are easily accomodated in the particle filter as step 3 only assumes

that the law of motion for the hidden variable(s) can be simulated.

Once we have obtained the new particles at time t = 2, these can again be evaluated

on the base of the observed variable y2 and the entire loop starts again. Running the

filter for the complete time series yt, t = 1, . . . , T provides us with approximations of all

the terms entering the overall likelihood function, eq. (2), all being of the form of eq. (5).

It also provides us with approximations of predictive densities p(xt|Yt−1, θ) and filtering

densities p(xt|Yt, θ) for the unobserved variable(s) which are simply obtained by the dis-

crete distribution of the particles before or after the evaluation at time step t. Slightly

more complex algorithms are required to obtain an approximation to a smoothing density

p(xt|YT , θ) but these can also be derived on the base of the output of the particle filter.

In an estimation framework, the particle filter would be embedded in the loop for

the optimization of the relevant criterion (e.g. the likelihood function). Hence, each new

trial set of parameters within this loop would require a new run of the complete particle

filter for t = 1 through T . Since we simulate the agent-based model for each particle for

each time increment, the overall number of activations of the agent-based model would be
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B× T× (rounds of optimization). The computational demands can, therefore, be sizable

although one should note that each one of these simulations only runs for a unit time

interval. As we will see, it is possible to even conduct Monte Carlo simulations of this

algorithm (adding another loop) for agent-based models that are not too complex. In

the next section, we will use the particle filter within both a frequentist and a Bayesian

approach. In addition to these traditional avenues to indentification of parameters, the

statistical literature has also developed so-called online filtering algorithms that attempt

to identify parameters after only one sweep of the particle filter through the data. Since

this would restrict the number of evaluations of the agent-based model to only B · T , it

might be worthwhile to explore the efficiency of such methods vis-à-vis frequentist and

Bayesian estimation. We provide, therefore, also a simple illustration of an online esti-

mation algorithm.

2.3 Theoretical Results in Sequential Monte Carlo Methods

Before proceeding to our examples, it seems worthwhile to review some of the basic

findings from the rich statistical literature on the properties of the particle approximation.

When applying the particle filter to frequentist or Bayesian estimation based on numerical

applications of the likelihood function, three questions need to be adressed:

1. The consistency and the statistical properties of the maximum likelihood estimator

for the model under scrutiny,

2. The consistency and statistical properties of the particle filter approximation to the

‘true’, intractable likelihood,

3. The convergence and statistical properties of the optimization algorithm applied to

find the maximum of the approximate likelihood function.

Consistency of maximum likelihood estimators for state space models with finite num-

ber of states has been proven by Leroux (1992) and asymptotic normality has been proven

by Bickel et al. (1998). Both papers require ergodicity of the Markov process plus a few
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‘mild’ regularity conditions. While ergodicity is easy to demonstrate for our first example

below, some of the relatively innocent regularity conditions would already be harder to

prove for a complex agent-based model. As it has been mentioned, the second model

will belong to the more general class of dynamic models with latent variables. This class

has only become a subject of research relatively recently. For this class, consistency of

the maximum likelihood estimator has been shown by Douc et al. (2013) and Douc et al.

(2015), again under ergodicity and additional regularity conditions. It is worthwhile men-

tioning that within the more general setting of a dynamic model with latent variables, new

sources of non-ergodicity exist. In practical terms, the feedback of the observed variable

on the hidden one (for example, of price changes on some behavioral regularities) could

give rise to unstable, and, hence, non-ergodic processes. Ergodicity might, therefore, often

only apply for a restricted set of parameter values of such systems.

Moving on to the secound issue, we note that the particle filter is a point-wise ap-

proximation to the density of interest. Hence, the obvious question here is whether this

approximation converges to the true underlying density with increasing number of parti-

cles. Because of the dependency structure inherent to the particle evolution, the evolving

particles are not identically and independently distributed. Hence, standard asymptotic

results for the Monte Carlo simulations are not applicable. Research on this issue is sum-

marized by Crisan and Doucet (2002) and Kantas et al. (2015). Basically, they show that

under certain mixing conditions, the particle approximation converges uniformly to the

true density with rate of convergence of the order 1/B, independent of the dimension of

the state space. Mixing here means that the particle filter forgets its initial conditions

sufficiently fast, so that the approximation errors will not increase over time. Note that

exponential forgetting leads to geometric ergodicity, so that this assumption is stronger

than the conditions for consistency and asymptotic normality of the maximum likelihood

estimator.

The next question is about the asymptotic properties of estimators based upon the parti-

cle filter. Again, there is a sizable literature on the asymptotics of the maximum likelihood

estimator based upon particle approximations (cf. Cappé et al. 2005; Kantas et al. 2015).
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First, under relatively weak regularity conditions, the maximum likelihood estimator can

be shown to be consistent for a given sample size and a central limit law applies as the

number of particles goes to infinity. However, the error of the approximation is increasing

with sample size T . If the filtering density for the hidden variables obeys exponential

forgetting of initial conditions 2, the relative variance of the likelihood estimate can be

shown to be bounded above by a factor Dθ
T
B

where Dθ is exponential in the number of

parameters in the set θ (cf. Kantas et al. 2015). Tadić and Doucet (2005) show that ex-

ponential forgetting of the filter density applies to a large class of Markov processes of the

unobserved variable(s) under mild regularity conditions. They show that these conditions

are typically met if the Markov process is constraint to values in a compact space. Since

in our first model the latent variable is indeed constraint to a compact set, the exponen-

tial forgetting property should typically be satisfied (although it might again be difficult

to provide a formal proof of the specific set of regularity conditions established in Tadić

and Doucet (2005). Experimentally, we can easily shed light on the mixing property by

choosing different initial conditions. In all such experiments, the influence of the initial

draws have been found to be washed out within a few time steps. To our knowledge, the

only result available so far for the more general class of models with latent variables are

those derived in two recent microeconomic applications: Gallant et al. (2016) show that

maximumal likelihood estimation based on the particle filter is unbiased while Blevins

(2016) demonstrates its asymptotic consistency.

A practical obstacle to ML estimation based on a particle filter is that the resulting

likelihood function is non-smooth in the underlying parameters. This is so because the

multinominal draws in the resampling step would lead to discrete changes under conti-

nous variations of parameters even if the same random numbers were used during the

optimization process. Malik and Pitt (2011) have proposed a simple transformation of

the filtering density to obtain a smooth approximation to the likelihood. Unfortunately,

this approach is restricted to univariate state spaces. In typical agent-based models like

2 Exponential forgetting is defined by the condition ||pθ(dxt|Yt, x0)− pθ(dxt|Yt, x
′

0
)|| ≤ Bθλ

t for some
Bθ < ∞ and λ ∈ [0, 1) where pθ(dxt|Yt, x0) is the filtering density for the unobservable variable
given the observations y1, . . . yt and initial conditions x0 and x

′

0
, respectively and the notation || · ||

denotes the total variation distance.
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the ones presented in sec. 3, it would also not be sufficient. The reason is that the discrete

variation brought about by multinominal draws is not only restricted to the particle fil-

ter, but a similar step already ocurrs when simulating the discrete choice of agents in the

state dynamics. Hence, it seems practically unavoidable to try and estimate parameters

on the base of a non-smooth approximation of the likelihood that does not allow easy

determination of its optimum with gradient-based optimization routines.

This leads us to the question 3 above on the convergence of some optimization algo-

rithm using the particle filter approximation of the likelihood. In the statistical literature,

Olsson and Rydén (2008) have addressed this problem. They use a grid-based approach

and ask the question how the number of grid points and particles should increase with T

to guarantee consistency and asymptotic normality of the estimated parameters. When

extending this point-wise approximation to the complete parameter space via piecewise

constant functions or smoothing via interpolation by splines they obtain the following

requirements: In the first case consistency is obtained if the grid size goes to zero at an

arbitrary rate and B increases faster than M2/r for some integer r ≥ 1 (M the number

of grid points). For asymptotic normality the grid size has to decrease faster than 1/T

and the number of particles has to increase faster than M2/rT 2. In the case of a spline

approximation, the requirements for consistency are the same while asymptotic normal-

ity is obtained if the grid size decreases faster than 1/
√
T with the same increase of the

number particles exceeding M2/rT 2 as in the previous case. Besides certain regularity

conditions, the proofs assume multinominal resampling as described in the particle filter

scheme above. Another theoretical result can be found in Ionides et al. (2011). These

authors show that a particular iterative filtering algorithm (meaning that one repeats a

number of times an online estimation approach) provides parameter estimates that con-

verge to the maximum likelihood estimates.

Empirical applications of particle filters in economics have not used these particu-

lar approaches, but have resorted to simulated annealing (e.g.Fernández-Villaverde and

Rubio-Ramı́rez 2007) or related optimization techniques for a non-smooth objective func-
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tion. In the present application, the time honored Nelder-Mead simplex method is used3.

The numerical approximation of the likelihood function cannot only be used for fre-

quentist estimation of the parameters, but can also be used within a Bayesian approach.

Indeed, Bayesian estimation is often used in extant literature in combination with a par-

ticle filter. A number of applications have adopted the approach by Andrieu et al. (2010)

who propose to use the particle filter within a Metropolis-Hastings sampler of the pos-

terior density of the parameters. In this approach, one attempts to simulate a Markov

chain that converges to a stationary distribution that is the posterior distribution of the

parameters. For such a Bayesian approach, one needs a prior, say p(θ), and a proposal

density, say g(θδ|θδ−1) where δ is the sequential order of the chain. New draws θ∗ from

g(·) are then accepted with probability:

α(θ∗|θδ−1) =
Pθ∗(y)p(θ

∗)g(θδ−1|θ∗)
Pθδ−1

(y)p(θδ−1)g(θ∗|θδ−1)
(6)

with Pθ(y) the marginal likelihood of the observed data given θ, and 0 < α < 1 is imposed

as additional constraint. Andrieu et al. (2010) have shown that this chain converges to

the posterior density under very general conditions on the likelihood and the proposal

density. We will illustrate the implementation of this approach alongside with frequentist

ML in the next section.

Still another way to estimate parameters within a particle filter approach is what is

called on-line estimation, i.e. one attempts to estimate the parameters together with

the state filtering in a single sweep through the available observable time series. The

simplest such approach consists in expanding the state space by the parameters (Kita-

gawa, 1998). One then initiates a particle swarm consisting of {x(j)
t , θ

(j)
t } and iterates it

via multinominal resampling in exactly the same way as in the general scheme outlined

above. The drawback of the proposal of Kitagawa (1998) is that the particles are station-

ary (θ
(j)
t+1 = θ

(j)
t ) and so over time the second part of the particle swarm will eventually

3 We have also experimented with the stochastic Nelder-Mead algorithm proposed by Chang (2012).
The latter algorithm replaces the shrinkage step of the original Nelder-Mead approach by an adaptive
random search that either draws a new coordinate for the parameter values from a neighborhood of
the current simplex or globally from the admissible range of parameter values. Results turned out
to be very similar.
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become degenerate because more and more of the original particles will get lost. De-

spite this problem, this approach might sometimes yield very competitive estimates given

the very limited computational demands of this approach (see below). Various improved

versions of on-line estimators can be found in Carvalho et al. (2010) and Ionides et al.

(2011), among others.

In economics, particle filters have been applied for estimation of DSGEmodels (Fernández-

Villaverde and Rubio-Ramı́rez, 2007; Amisano and Tristani, 2010), stochastic volatility

models (Pitt et al., 2014; Yu, 2005; Bao et al., 2017) and regime-switching models (Billio

and Casarin, 2010). Very recently, particle filters have also been adopted to estimate dy-

namic microeconomic models (Blevins, 2016; Gallant et al., 2016). However, their models

are of a more general format than the baseline state-space formalism underlying most

of the available asymptotic results in the statistical literature. Like our second example,

their models allow for feedback from the observed variable on the hidden states. While

these papers show consistency of the likelihood approximation based on a particle filter, it

is not known in how far the larger body of theoretical results reviewed above still applies

for this more general format of a dynamic system with latent variables.

3 Two Simple Agent-Based Models

In the following we will present the prototype models. The first model is the agent-

based approach to sentiment dynamics proposed by Alfarano et al. (2008) that had already

been estimated via GMM by Ghonghadze and Lux (2016) and via SMM by Chen and

Lux (2017). In this model, the asset price dynamics is determined by fundamental news

and sentiment. In continuous time, log price changes are defined as:

dp

dt
= β(Tf (pf,t − pt) +NTcxt) (7)

with: pf,t the log fundamental value at time t, pt the current log market price, and xt

a measure of sentiment. The parameters Tf and Tc denote the overall trading volume
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of fundamentalist and sentiment-prone agents. The latter is a per-head measure and is,

therefore, multiplied by the number of non-fundamental traders, N . The parameter β,

finally, is the price adjustment speed. If one assumes instantaneous price adjustment to

clear the market, β drops out as a free parameter and the current equilibrium price would

be attained as:

pt = pf,t +
NTc

Tf

xt. (8)

It follows that returns, rt, can be decomposed into fundamental news and sentiment

innovations:

rt = pt+1 − pt = pf,t+1 − pf,t +
NTc

Tf

(xt+1 − xt). (9)

The log fundamental news is assumed to follow standard Brownian motion:

pf,t+1 − pf,t = σfεf,t, εf,t = N(0, 1). (10)

In (10) and (11), we have defined returns over a unit time interval as we will estimate our

continuous-time model on the base of discretely observed data whose sampling frequency

we define as a unit time interval. The above framework is in line with a large literature

in financial economics that investigates the influence of sentiment as an important asset

pricing factor. This literature would typically attempt to identify good proxies for over-

all market sentiment xt and assess its explanatory power for asset price movements, e.g.

Brown and Cliff (2004), while here we treat sentiment as a latent factor we attempt to

retrieve from filtered state probabilities.

The model of Alfarano et al. (2008) adds a theoretical module explaining the time evo-

lution of sentiment itself. This component follows essentially the seminal herding model

of Kirman (1993). Inspired by a variety of related phenomena in the social and natural

sciences (most notably recruitment processes in ant colonies), it supposes that sentiment-

prone agents are either in an optimistic or pessimistic mode and switch between both

types of sentiment both due to idiosyncratic random factors and systematic conversion

after meetings with agents of different disposition. In continuous time, this amounts to

a formalization by Poisson transition rates that are dependent on the current state of
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the population of sentiment traders (whose number is N). Denoting by π+,t and π−,t the

transition rates from the pessimistic into the optimistic camp and vice versa, and by nt

the current number of optimistic agents, the ‘ant process’ formalizes the transition rates

as

π+,t = a+ ntb, π−,t = a+ (N − nt)b. (11)

In eq. (12), a is an idiosyncratic rate of change of opinion and b is the susceptibility to

conversion when meeting an agent of the opposite attitude. The chances to meet agents

from the other camp are proportional to their current numbers in the population, i.e. nt

and (N − nt). As transition rates, both a and b are restricted to non-negative values.

On the base of the current distribution of the optimistic/pessimistic disposition, overall

sentiment is defined as:

xt =
nt − (N − nt)

N
=

2nt −N

N
, (12)

so that positive (negative) values indicate a dominance of optimistic (pessimistic) traders,

and sentiment is normalised to be measured over the interval [-1,1]. Various properties

of the sentiment dynamics itself and the asset price process including such sentiment

formation are known (Kirman 1993; Alfarano et al. 2008). For instance, the stationary

distribution of xt is either unimodal or bimodal depeding on the strength of the herding

component vis-à-vis the idiosyncratic change of the opinion. The precise condition for

unimodality (bimodality) is a > (<) b. Returns obtained by eq. (10) share the universally

observed fat tails and clustered volatility of empirical asset returns.

The second model takes its inspiration from Franke and Westerhoff (2012). It adds

what is a standard feature of many agent-based models of asset price formation, but is

missing in the Alfarano et al. framework: influence of price trends on chartists’ demand.

Note that the absence of this factor is what guarantees independence of the state dynamics

from the observations and, therefore, makes the former model fit into the standard state-

space format. However, most agent-based behavioral asset pricing models would allow

for some feedback from past price histories on current equilibrium prices via chartists’
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demand function (cf. Chiarella, 1992, for one of the first formalisations and the many

variations of chartist-fundamentalist models surveyed in the contributions to Hens and

Schenk-Hoppé, 2009). We again assume that there are two components of excess demand,

but in contrast to the previous model we now allow agents to switch between the chartist

and fundamentalist types.

The number of the former is denoted by Nc,t, the number of the latter by Nf,t. We

assume the simplest forms of their trading strategies leading to excess demand EDf,t and

EDc,t as follows:

EDf,t = Nf,t a (pf,t − pt), EDc,t = Nc,t b (pt−1 − pt−2) (13)

with reaction coefficients a and b.

Assuming again instantaneous equilibration of the market, the log asset price in equilib-

rium develops analogously to eq. (9):

pt = pf,t +
Nc,t b

Nf,t a
(pt−1 − pt−2) =

= pf,t +
zt

1− zt
c (pt−1 − pt−2)

(14)

with c = b
a
and zt =

Nc,t

N
(N being the overall number of agents).

Similarly as in the model of Alfarano et al. (2008), we allow for time-variation of the

two fractions of agents. However, in the present framework, the herding formalization

of eq. (12) would lead to unrealistic and degenerate results: In the bimodal case, when

zt fluctuates at high values close to one, we would enter into an explosive price trend

that would soon reach the limits of computability. There are various ways to modify

or embellish the herding dynamics to avoid such an outcome. Here, we just modify the

herding process by using a different, also popular formalization. Namely, we adopt the

seminal herding formalism introduced by Weidlich and Haag (1983) and adopted by, for

example, Lux (1995) and Franke and Westerhoff (2012). Denoting the transition rates

from the fundamentalist to chartist strategy and vice versa by πc,t and πf,t, these are
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defined as:

πc,t = ν expα1xt , πf,t = ν exp−α1xt (15)

with xt =
Nc,t−Nf,t

N
= 2Nc,t

N
− 1 = 2zt − 1.

This formalization also leads to unimodal or bimodal behavior of the population, now

depending on whether the herding intensity α1 is ≤ 1 or > 1. However, in the bimodal

case, the two modes are not located at the extremes but at some finite values x∗
+ and

x∗
− = −x∗

+ with a dominance of one of both groups. Furthermore, even if α1 < 1, the

resulting series of returns are characterized by fat tails and clustering of volatility due to

the repeated fluctuations of agents between both camps. In terms of the latent variable

framework, we can interpret xt and zt as the hidden variables. Via eq. (14), these variables

enter excess demand so that using the later as the unobserved state variable, we have a

structure as it has been depicted on the right-hand side of Fig.1.

We note that we simulate both models as ‘true’ agent-based models. For both of

them, we assume that the market consists of a pool of N = 100 speculators switching

between strategies according to eqs. (11) or (15), respectively. The simulations are exact

simulations of the continuous-time Poisson processes characterizing the agents’ movements

between groups. Such an exact simulation is obtained by drawing random numbers for

the discrete events of agents switching from one group into another. After each such

change, the transition rates are updated according to the changing influences on agents’

decisions that come along with the resulting change of the overall composition of the

ensemble of agents. Using the new transition rates, the next discrete event is determined.

In each discrete event, the agent undergoing a change of strategy and the pertinent change

are determined. While both models could be approximated by structural equations and

simulated with less computational effort (cf. Alfarano et al. 2008; Franke and Westerhoff,

2012; Barde, 2016), we have chosen the discrete event approach here for two different

reasons: First, since this is an exact simulation of the model, the resulting Monte Carlo

runs do not suffer from an approximation bias. If we would use an approximation via

stochastic difference or differential equations, a certain bias would be caused by this

approximation which we could not disentangle from the estimation bias and variability
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of our estimators. In an exact simulation, no distortion of parameters is to be expected,

and, hence, all potential biases can be attributed to the performance of the estimation

methods. Second, using a system of ‘autonomous’ agents in the simulations, we obtain a

more realistic perception of the computational demands of SMC methods when applied

to typical agent-based models.

4 Monte Carlo Experiments

In the following, we provide results for estimation of the parameters of the two agent-

based models of sec. 3 using both frequentist and Bayesian approaches as well as the

elementary on-line estimation procedure proposed by Kitagawa (1998). We start with the

model of Alfarano et al. (2008). Previous studies (Ghonghadze and Lux, 2016; Jang, 2015)

have found it difficult to estimate Tc/Tf and N , the former because of near colinearity

with other variables, the latter because of its discrete nature. We, therefore, follow these

studies by fixing these parameters at Tc/Tf = 1 and N = 100 so that the set of parameters

to be estimated is θ = {a, b, σf}. One detail worth mentioning is the initialization of the

particle filter. The initial set of particles should best be generated using the stationary

distribution of the hidden variable. Unfortunately, this distribution is not known for

zt = xt − xt−1 in the model of Alfarano et al. (2008). However, at least an approximate

solution is known for the stationary distribution of xt (cf. Alfarano et al. 2008):

Pe(x) =
Γ(2ε)

22ε−1Γ(ε)2
(1− x2)ε−1 (16)

where Γ(·) denotes the Gamma function and ε = a
b
. Hence, we might proceed in this

case by first generating draws of xt at time t = 0 from its stationary distribution (16),

and apply the stochastic process of eq. (11) to generate a stationary ensemble of particles

z
(j)
1 = x

(j)
1 − x

(j)
0 that can be plugged into eq. (9) for the observable variable returns.

For the model of Franke and Westerhoff, no results on the stationary distribution

of any of the state variables are available. We, therefore, initiate the particle filter via

uniform random draws of its sentiment index xt. We have actually also conducted exper-
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iments with the same random initialization for the Alfarano et. al. model and found no

perceptible differences in the Monte Carlo results. When performing comparisons of the

goodness-of-fit of candidate models, one might take into account this slight asymmetry

by discarding a certain number of observations at the beginning of a time series to allow

the particle filter to wash out the influence of the initializations.

We now turn to the results of the Monte Carlo simulations. We start with the model

of Alfarano et al. Table 1 exhibits the results of 400 Monte Carlo simulations of each of a

variety of settings. First, we have selected two different sets of parameter values following

Chen and Lux (2017) and Ghonghadze and Lux (2016): The first has a high interactive

component in agents’ opinion formation (b/a > 1) and, hence, leads to pronounced fat

tails and volatility clustering, while in the second parameter set, agents are rather au-

tonomous in their opinions (b/a < 1) and so the time series behavior of the model is

closer to Brownian motion. Second, we consider sample sizes of both T = 1, 000 and

2, 000 observations as well as a number of particles ranging from B = 250 to B = 2, 000.

Given the theoretical results reviewed in sec. 2, we would not expect square-root con-

sistency with respect to sample size under the same number of particles. Nevertheless,

we find a clear improvement in the quality of our estimates for at least one of the param-

eters (σf ) when moving from T = 1, 000 to T = 2, 000 in the first set of parameters. In

contrast, there is little improvement in the quality of our estimates when increasing the

number of particles for a given length of the sample. This holds even more for the second

set of parameters where the differences between all six scenarios with different numbers

of T and B are minor. The table also shows average computation times across the 100

replications of each scenario. As it would have been expected, computational demands

increase almost perfectly linearly with sample size T , but when changing the number of

particles the computation time increases more than proportionally.

The precision of our estimates seems overall better than with moment-based esti-

mates. Indeed, in Chen and Lux (2017) and Ghonghadze and Lux (2016) no results for

time series of length smaller than T = 5, 000 are shown and results for their smallest

sample size seem to be inferior to those of Table 1. We also note, however, that Monte
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Carlo simulations with T = 5, 000 or higher would be very expensive for the present

approach which illustrates the higher need in computing time vis-à-vis moment based es-

timates. To illustrate the much higher computational demands of sequential Monte Carlo

estimation compared to SMM, we conducted Monte Carlo exercises similar to the ones

reported in Chen and Lux (2017). Using 15 moment conditions we considered sample

sizes N1 = 10, 000, N2 = 20, 000 and N3 = 100, 000, together with S = 4N as the size

of the simulated samples. Average computation time (standard deviation in brackets)

of 100 replications of these scenarios were: 74.310 (9.070) seconds for sample size N1,

134.900 (12.815) seconds for N2 and 594.320 (31.769) seconds for N3. Scaling these down

to sample sizes T = 1000 and 2000, we would get estimation done much faster with SMM

than SMC but with large sacrificies in terms of precision.

Table 2 presents results using the on-line approach of Kitagawa (1998). Since here

the particle filter always only is applied over one single sweep through the data, we could

afford to use up to B = 200, 000 particles. In the maximum likelihood approach of Table

1, we have set the maximum number of iterations of the Nelder-Mead algorithm to 100.

Since in every iteration, a three-digit number of evalutions of the likelihood function is

conducted, the time needed for one estimation with the standard frequentist approach is

about three orders of magnitude more compared to the one pseudo-evolutionary sweep in

the ‘self organizing state space’ approach. We see that for the largest size of B = 200, 000,

the results are of about the same quality for the parameters b and σf as with frequentist

maximum likelihood albeit with different performance for different parameters. This is

also the only case in which we observe a more pronounced difference in the Monte Carlo

results for sample sizes T = 1, 000 and 2, 000.

With smaller numbers of B, the set of auxiliary particles for the parameters, θ
(j)
t , just

becomes degenerate long before the end of the time series, and, hence, more observations

cannot change the outcome of this on-line estimation. In the right-hand part of Table

2, we also show results using what is called stratified sampling rather than multinomial

draws from a distribution of weights. Stratified sampling is one among a number of meth-

ods that that could be used to reduce sampling variability in the resample step of the
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particle filter. It consists in partitioning the interval (0, 1] into disjoint sets and sampling

independently from each of these sets. In this way, closer proximity of the overall sample

to its target distribution can be inforced. This should guarantee a more representative

distribution of the particles, and, thus, should help to eliminate sampling noise. Because

of the construction of the subsets, this approach, however, includes higher computational

costs than multinomial sampling. As it turns out, this modification does not have a

clearly positive effect on the outcome of the Monte Carlo experiments. Because of its

higher computational demands, we have also executed the above experiments only for up

to B = 20, 000 particles.

Finally, Table 3 and Fig. 2 turn to the Bayesian approach, denoted as Particle Markov

Chain Monte Carlo (PMCMC) by Andrieu et al. (2010). Fig. 2 illustrates the evolution

of the likelihood and the parameters in the Markov Chain generated according to eq. (6)

over a length of N = 60, 000 iterations. Since in empirical applications, we would have

hardly any good a priori clue on the range of the expected parameter estimates, wide

uniform priors have been chosen: For parameters a and b we have assumed a uniform

prior over the interval [0, 5], while for σf the prior was taken to be uniform over [0, σemp]

where σemp was the empirical standard deviation of returns in the underlying sample. The

reason for this choice is that this is the highest value that σf can attain if the sentiment

process were absent and all of the variation of returns were explained by changes of funda-

mentals. The ‘pseudo-empirical’ sample used in Fig. 2 had 2, 000 observations. What is

immediately obvious from Fig. 2 is the long transient part of the evolution: It takes more

than 30, 000 iterations until eventually the stationary posterior distribution is attained.

While this illustration exhibits an extreme example, the potentially very long transient

apparently could lead to a huge waste of computational ressources, or, if ressources are

limited, they might not allow to arrive at the stationary distribution of the posterior.

Because of the strong increase of computation time, we only conducted this experiment

with particle numbers up to B = 2, 000. In Table 3 we report the statistics of a less

extreme case for which we have based the estimation on the last 30, 000 out of 60, 000

iterations (with sample sizes T = 1, 000 and T = 2, 000). Depending on the randomly
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chosen starting value, convergence can also indeed occur much earlier.

Table 3 shows the mean of the posterior distribution in the so chosen asymptotic

regime. While the means appear close the their ‘true’ values, the computed standard er-

rors appear relatively large. One should note, however, that these errors are the standard

errors of one single estimation, while the FSSE and RMSE are reported for the whole set

of Monte Carlo runs in Tables 1 and 2. One notes that the standard errors taking into

account the persistence of the chain are much higher than the naive ones that one would

compute under independence of the draws. While one finds smaller standard errors for

the larger sample throughout, these are results extracted from only two samples so that

it is not obvious in how far this would hold more generally.

The main drawback of the Bayesian approach is its need of computational resources:

A little reflection reveals that producing the one example of Fig. 2 and Table 3 takes

about as long as a complete set of 100 Monte Carlo replications of the frequentist ap-

proach before. What is more: to design a Markov chain with reasonable properties, a

preliminary series of computations is necessary to fine-tune the number of particles B

and the parameters of the proposal distribution g(θ∗|θδ−1) in eq. (6). The usual target

is an acceptance rate of about 0.4. As Table 3 shows, we get relatively close to this

target in our present setting. This, however, has only been possible by another prelimi-

nary computation intensive set of experiments with varying number of particles B, and

varying standard deviations of the proposal distribution g(·). For the later we followed

the popular choice of Gaussian proposals. Note that the target acceptance rate of ≈ 0.4

should provide for good mixing properties of the Markov chain. This should, on the one

hand, prevent that the evolution gets stuck for long time at parameters far away from

those that maximise the likelihood, and should, on the other hand, also keep the number

of ‘wasted’, i.e. non-accepted trials in bounds. Nevertheless, despite our fine-tuning, we

sometimes need a very long simulation run to observe convergence to a seemingly sta-

tionary distribution of the posterior as illustrated in Fig. 2. With sub-optimal choices,

this problem would be exacerbated and we would often not find convergence even after

100, 000 simulation steps although theoretically the Markov chain’s eventual convergence
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to the posterior might still be guaranteed.

Tables 4 and 5 report similar results on the base of the model by Franke and West-

erhoff which because of the dependency of the agents’ strategies on past price records is

an example of a dynamic model with latent states (right-hand side of Fig. 1). While

the particle filter has been developed for state space models, the sequence of operations

remains exactly the same for more general systems of stochastic processes with latent

variables. When estimating our second model, we, thus, simply take into account in step

3 the dependency of the state variable (which we might define as EDt = EDf,t + EDc,t

as introduced in eq. 13) on the observable variable pt. Note that the resulting system

can be brought into standard Markov form by defining two observables: pt and p̃t = pt−1.

Due to the increase of the number of parameters, computations become even more time

consuming, and so we provide details on a limited set of examples only. In all the sub-

sequent simulations, we have again fixed the number of agents at N = 100, and have set

the parameter b = 1 as it is colinear with a and, hence, cannot be estimated indepen-

dently. The remaining parameters have been chosen so as to obtain realistic time series,

i.e. returns exhibiting clustered volatility and fat tails.

Table 4 exhibits results of the frequentist estimation using again only 100 replications

and considering only the case B = 1, 000 together with T = 1, 000 and T = 2, 000. Again,

parameter estimates appear reasonably close to their ‘true’ values. We also observe that

estimating a model with four rather than three parameters leads to an increase of com-

putation time of roughly one order of magnitude.

Table 5 provides results on the performance of the on-line approach, again showing

averages over 100 Monte Carlo runs, and using up to B = 200, 000 particles as in the case

of the Alfarano et al. model. Here we observe a monotonic improvement with increasing

number of particles, and for B = 20, 000 and B = 200, 000 a longer time series also leads

to better identification of some of the parameters on average. With B = 200, 000 all pa-

rameters are estimated practically without bias and (except for v) signal-to-noise ratios

are relatively small across Monte Carlo runs. Again, computation times increase by at

least one order of magnitude when compared to those for three-parameter model docu-
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mented in Table 2. It appears remarkable that for the Franke and Westerhoff model, the

self-organizing state space approach almost completely dominates the Nelder-Mead esti-

mation. For instance, using 200, 000 particles, the naive filtering approach provides both

more precise estimates of almost all parameters, being at the same time much cheaper in

computation time than the Nelder-Mead optimization with 1, 000 particles.

We do not show results of the Bayesian approach as a preliminary series of experiments

with varying B and varying parameters of the proposal distribution did not produce any

combination that would have resulted in an acceptance ratio anywhere near the targeted

40 percent. Indeed, we could hardly infer any clear tendency for the parameters involved

which did not provide an avenue for further experimentation.

5 Empirical Application

We finally proceed to an empirical application: We used frequentist maximum likeli-

hood to estimate the parameters of both models for a number of selected empirical data

sets including stock market indices, exchange rates and the price of gold. The stock mar-

ket indices are: the S&P500, the German DAX and the Japanese NIKKEI, all represented

by daily returns, all sampled from 01/01/1980 to 12/31/2005. The exchange rates are:

U.S. Dollar against Euro (with data ranging from 01/01/1999 to 12/31/2010), Japanese

Yen against U.S. Dollar (from 01/02/1986 to 12/31/2005) and the Swiss Franc against

the Euro (07/15/2003 to 12/31/2010). Finally, the price of gold is also used in the form

of daily returns over the same time horizon like the stock indices. Exactly the same time

series have been used by Ghonghadze and Lux (2016) and Chen and Lux (2017) who have

estimated the model of Alfarano et al. using GMM and SMM.

Table 6 shows the estimated parameter values and their standard errors and the max-

imized likelihoods. We note that these are positive as for both models the average con-

ditional density exceeds unity. We note that the likelihood values of both models are

very close with the Alfarano et al. (2008) model coming out with a slightly higher value

throughout despite having one parameter less than its competitor.

The last column of Table 6 shows the result of a Vuong Test (Vuong, 1989). This test

29



allows to compare the likelihood of non-nested models. Its test statistic is a standardized

likelihood difference which is exhibited in the table together with the probability of rejec-

tion of the null that the first model (ALW) dominates the second one (FW). As we can

see, there is only one instance in which this statistics is not significant at all traditional

levels of confidence. However, if we would use the adjusted Vuong test that adds a correc-

tion factor for different numbers of parameters, the result would be as strong as for the

other cases. We note that because of the slight disadvantage of the Franke/ Westerhoff

model mentioned above (our inability to initialize it with the stationary distribution of

the latent variable) we have discarded the first 500 observations of each series as a burn-in

phase of the particle filter in our specification test.

What insights can we infer from the results displayed in Table 6? First, in all cases,

we find the parameters of both models in their respective bimodal regimes. For the Al-

farano et al. approach this means that the herding part of the opinion formation process

is stronger than its autonomous component, i.e. b > a. For the model of Franke and

Westerhoff, we also always find strong herding which in this case is obtained by α1 > 1.

However, by construction of the pertinent models, the bimodal case in Alfarano et al.

leads to ‘realistic’ dynamics with clustered volatility and fat tails, while this is not neces-

sarily so with α1 > 1 in the second model. Indeed, close inspection shows that for most of

the time series, the filtering of the opinion process on the base of the second model yields

relatively trivial results: Because of the strong herding, the opinion dynamics converges

to a strong dominance of one strategy within the population. In all cases except for the

German DAX (which has the smallest α1) the filtered fraction of fundamentalists is prac-

tically equal to 1 for the entire time series. Hence, prices should follow the fundamental

innovations closely which is reflected in a higher estimate of σf than for the model of

Alfarano et al.. The estimates for the standard deviation of the fundamental innovations

are indeed very close to the standard deviation of the underlying returns series to that the

dynamics of asset prices would be entirely explained by fundamental factors. In contrast,

the estimate of σf is always smaller for the first model indicating that this one leaves a

role for speculative price movements caused by its sentiment process.
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Fig. 3 shows details of the only ‘interesting’ case, the German DAX. This is the only

time we see some fluctuations of the fraction of fundamentalists and chartists in the model

of Franke and Westerhoff: While most of the time, the index xt of the herding process

fluctuates around the positive mode of the bi-modal distribution (x∗
t ≈ 0.6), there are

frequent excursions downward that coincide with phases of strong volatility of the index

(right-hand side panel). We also see that the opinion index of both models (indicating

the relative fraction of optimists compared to pessimists in Alfarano et al.) move very

much in tandem with each other. Hence, both models seem to pick up some element of

sentiment-based causation of high volatility, while in calm phases they diagnose a strong

dominance of either the fundamentalists or the optimistic noise traders. In this respect, it

is worthwhile to remember that the Alfarano et al. model would only predict an influence

of changes of sentiment, cf. eq. (9). With a prevailing majority of either optimists or

pessimists, price changes would also be dominated by fundamental innovations.

The upper right-hand panel shows, however, that mostly the Franke/Westerhoff model

performs less successfully during volatile phases, i.e. its likelihood often decreases more

sharply during an outburst of volatility which explains its inferior overall performance.

This is much more pronounced in the other time series where the fraction of fundamental-

ists is stuck at about 1 and the model, thus, does not react in phases of excess volatility.

Overall, we see from our estimation exercise how behavioral models can contribute

to an understanding of different market phases. In the Alfarano et al. model, excess

volatility is caused by changes in sentiment, and we clearly see how our filter based on

this model tracks such hypothetical sentiment changes. The same can be observed for

the model of Franke and Westerhoff for the case of the DAX. The less satisfactory overall

performance of this model might simply be an indication of a too rigid formalization of

trend-following behavior. Fluctuations caused by the excess demand function assumed

for chartists might simply become so violent, that the filter is urged to ‘avoid’ a significant

fraction of chartists at all times and, hence, we arrive at the not-so-interesting result of

permanent fundamentalist dominance (which leaves deviations of the time series from ho-

moskedastic, Normally distributed returns unexplained). Alternative specifications might
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lead to different results and could be explored with the methods introduced in this paper.

6 Conclusion

Agent-based models can be interpreted as special cases of state space models or more

general models with hidden (latent) variables. Taking stock of the immense literature on

statistical methods for such models, many extant approaches appear suitable and could

be appropriately adapted for the estimation of agent-based models. On the positive side,

using advanced filtering methods could provide parameter estimates of much higher pre-

cision compared to hitherto popular moment estimators, and this approach has the added

advantage of providing the possibility of identification of the trajectories of the hidden

variables that are of crucial conceptual importance in most agent-based models. On the

downside, many of the methods reviewed here are very computation intense. Particle-

based maximum likelihood and Bayesian estimation both come with the computational

burden of a simulation approach that uses in each of its iterations the simulation of an

agent-based model. Given that this raises the computation time to a multiple of what

is needed in other applications, it seems worthwhile to particularly explore the various

methods proposed for on-line estimation in subsequent research.
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Table 1: Sequential Monte Carlo Estimation of ALW Model: Estimation via Maximum
Likelihood

param. a b σf tsec a b σf tsec a b σf tsec
param.
set I: a=0.3, b=1.4, σf=30

T=1,000 T=2,000 T=2,000
B=1,000 B=250 B=1,000

Mean 0.330 1.708 30.981 250.760 0.368 1.693 31.478 71.320 0.370 1.600 30.411 508.430
FFSE 0.116 0.532 3.564 29.603 0.091 0.400 2.262 11.935 0.080 0.347 1.919 54.664
RMSE 0.119 0.612 3.679 0.113 0.494 2.693 0.106 0.399 1.953

T=1,000 T=2,000 T=2,000
B=2,000 B=500 B=2,000

Mean 0.350 1.674 30.552 804.030 0.362 1.624 31.030 178.850 0.358 1.564 30.192 1601.200
FSSE 0.117 0.529 2.903 67.068 0.076 0.331 1.970 23.009 0.095 0.361 1.604 107.014
RMSE 0.126 0.593 2.940 0.098 0.398 2.215 0.111 0.395 1.608

param. a b σf tsec a b σf tsec a b σf tsec
param.
set II: a=1.4, b=0.3, σf=30

T=1,000 T=2,000 T=2,000
B=1,000 B=250 B=1,000

Mean 1.876 0.329 29.655 245.540 1.931 0.288 31.196 65.390 1.878 0.316 30.277 486.620
FSSE 0.363 0.067 2.352 10.570 0.481 0.080 1.846 3.944 0.419 0.082 2.302 22.065
RMSE 0.598 0.073 2.366 0.715 0.080 2.191 0.634 0.084 2.302

T=1,000 T=2,000 T=2,000
B=2,000 B=500 B=2,000

Mean 1.864 0.323 29.577 787.780 1.971 0.312 30.409 168.680 1.918 0.306 30.238 1562.850
FSSE 0.343 0.066 2.303 28.244 0.367 0.063 2.137 8.721 0.362 0.066 2.175 53.723
RMSE 0.576 0.070 2.330 0.678 0.064 2.165 0.631 0.066 2.177

Notes: The table shows the means, finite sample standard errors (FFSE) and root-mean squared
errors (RMSE) of 100 replications of each scenario. The underlying parameters of the simulated
models are multiplied by 103 for better readability. tsec denotes the time needed for the execution
of one of the estimations in seconds.
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Table 2: Estimation of ALW Model via Self-Organizing State Space

param. a b σf tsec a b σf tsec a b σf tsec
param.
set I: a=0.3, b=1.4, σf=30

T=1,000 T=2,000 T=2,000, stratified
B=200

Mean 0.923 0.727 28.202 0.380 1.024 0.817 27.830 0.620 0.921 0.805 30.166 0.650
FSSE 0.542 0.535 9.509 0.488 0.574 0.552 8.934 0.488 0.537 0.528 7.875 0.479
RMSE 0.824 0.858 9.631 0.922 0.801 9.268 0.820 0.794 7.838

T=1,000 T=2,000 T=2,000, stratified
B=2,000

Mean 0.509 0.937 30.097 0.940 0.482 1.005 30.235 1.970 0.528 1.037 29.036 9.760
FSSE 0.235 0.537 6.450 0.312 0.257 0.547 5.936 0.559 0.263 0.494 8.415 1.478
RMSE 0.314 0.706 6.419 0.314 0.672 5.910 0.347 0.611 8.428

T=1,000 T=2,000 T=2,000, stratified
B=20,000

Mean 0.489 1.118 29.037 6.980 0.482 1.324 29.493 13.740 0.512 1.275 28.933 751.220
FSSE 0.227 0.462 4.412 1.504 0.262 0.394 3.429 2.841 0.276 0.486 8.296 105.575
RMSE 0.294 0.540 4.495 0.318 0.400 3.450 0.347 0.500 8.323

T=1,000 T=2,000
B=200,000

Mean 0.479 1.255 28.900 67.840 0.429 1.369 29.583 133.000
FSSE 0.132 0.404 3.163 13.973 0.176 0.266 1.680 27.636
RMSE 0.222 0.427 3.334 0.218 0.266 1.723

Notes: The table shows the means, finite sample standard errors (FSSE) and root-mean squared
errors (RMSE) of 100 replications of each scenario. The underlying parameters of the model are
multiplied by 103 for better readabilty. The first two panels use binomial sampling, the third
uses stratified sampling. For the later, the case B = 200, 000 has not been implemented as it
turned out to be too costly in terms of computation time. tsec denotes the time needed for the
execution of one of the estimations in seconds.
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Fig. 2: Bayesian estimation using the Particle Markov Chain Monte Carlo (PMCMC) algorithm

applied to the model of Alfarano et al. (2008). The four pannels show the evolution of the three

parameters a, b and σf (clockwise from the upper left panel) and the filtered likelihood (lower

left panel) over 60,000 iterations of the Markov Chain. The present example shows a more

extreme realisation of the length of the transient period prior to convergence to the stationary

distribution than the one used for the statistics of Table 3.
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Table 3: Estimation of ALW Model via Bayesian PMCMC Algorithm

Parameter set I: a = 0.3, b = 1.4, σf = 30,
T = 1,000, N = 30,000
mean s.e s.e.naive ineff. cov. matrix

a 0.309 1.510 0.190 63.16 1.000 0.029 -0.460
b 1.431 1.416 0.222 40.68 0.029 1.000 -0.008
sig 31.359 8.302 1.318 39.68 -0.460 -0.008 1.000
logl 1786.785 8.435 1.582
tsec 128,976

T = 2,000, N = 30,000
a 0.204 0.767 0.110 48.31 1.000 0.081 -0.535
b 1.419 1.433 0.202 50.09 0.081 1.000 -0.022
sig 30.187 4.749 0.847 31.47 -0.535 -0.022 1.000
logl 3849.316 8.852 1.679
tsec 241,809

Notes: The table shows the means and standard errors of two Monte Carlo simulations of the
posterior distribution using the PMCMC algorithm. The ‘inefficiency’ is the ratio between the
autocorrelation consistent estimate of the standard error in the second column and a naive esti-
mate assuming independent draws. The sample statistics are based on a Monte Carlo simulation
of 30,000 draws after discarding an initial transient of 30,000 iterations. The pseudo empirical
sample had T = 1,000 (2,000) observations, and B = 2,000 particles have been used. The ac-
ceptance rate of new draws was 0.448 and 0.380. tsec denotes the time needed for the execution
of one of the estimations in seconds.

Table 4: Sequential Monte Carlo Estimation of FW Model: Estimation via Maximum
Likelihood

Parameter set: v = 1, α1 = 0.85, b = 2.0, σf = 30
param. v α1 b σf tsec v α1 b σf tsec

T = 1,000, B = 1,000 T = 2,000, B = 1,000
Mean 1.490 0.692 1.881 30.187 5827.710 1.518 0.688 1.880 30.086 11718.650
FSSE 0.539 0.619 0.205 1.628 1703.660 0.512 0.761 0.140 1.325 3290.842
RMSE 0.726 0.636 0.236 1.631 0.727 0.774 0.184 1.321

Notes: The table shows the means, finite sample standard errors (FSSE) and root-mean squared
errors (RMSE) of 100 replications. The underlying parameter σf has been multiplied by 104 for
better readability. tsec denotes the time needed for the execution of one of the estimations in
seconds.
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Table 5: Estimation via Self-Organizing State Space of FW Model

Parameter set: v = 1, α1 = 0.85, b = 2.0, σf = 30
param. v α1 b σf tsec v α1 b σf tsec
T = 1,000 T = 2,000
B = 200
Mean 2.403 0.597 2.269 32.660 5.310 2.579 0.622 2.541 32.336 11.050
FSSE 1.435 0.315 0.843 5.840 2.960 1.518 0.360 0.975 5.733 6.333
RMSE 2.002 0.403 0.881 6.390 2.185 0.425 1.098 6.163
B = 2,000
Mean 2.231 0.720 2.218 30.379 48.180 1.888 0.749 2.185 30.942 82.900
FSSE 1.455 0.312 0.753 2.465 25.916 1.342 0.280 0.767 3.191 52.813
RMSE 1.900 0.336 0.781 2.482 1.604 0.296 0.786 3.312
B = 20,000
Man 1.599 0.835 2.191 30.054 403.640 1.668 0.828 2.046 30.257 781.160
FSSE 0.982 0.135 0.618 1.678 149.373 1.024 0.140 0.399 1.867 352.432
RMSE 1.100 0.136 0.644 1.671 1.219 0.141 0.399 1.875
B = 200,000
Mean 1.256 0.836 2.033 29.930 3637.100 1.252 0.847 1.990 29.978 6331.790
FSSE 0.511 0.106 0.281 1.232 1047.180 0.503 0.081 0.233 0.988 1743.945
RMSE 0.569 0.106 0.281 1.228 0.560 0.081 0.232 0.983

Notes: The table shows the means, finite sample standard errors (FSSE) and root-mean squared
errors (RMSE) of 100 replications of each scenario. The underlying parameter σf has been
multiplied by 104 for better readability. tsec denotes the time needed for the execution of one
of the estimations in seconds.
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Fig. 3: Results of estimation of the Alfarano et al. and Franke/Westerhoff models using returns

of the German stock index DAX. The upper left-hand panel shows the conditional densities of

both models while the lower left-hand panel exhibits the filtered trajectories of their sentiment

variables. The right-hand side shows DAX returns over the time horizon 1980 to 2005.
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Table 6: Empirical Parameter Estimates

ALW FW
param. a a σf logl v α1 a σf logl Vuong
S&P500 0.223 0.982 0.839 20134.087 1.281 2.571 0.030 1.216 19115.619 12.494

(0.001) (0.001) (0.002) (0.008) (0.016) (0.000) (0.008) (0.000)
DAX 0.283 1.080 0.737 21386.671 0.829 1.234 5.246 1.008 20740.043 5.976

(0.000) (0.005) (0.003) (0.001) (0.002) (0.003) (0.001) (0.000)
NIKKEI 0.282 0.760 0.700 20411.168 0.551 3.289 0.013 1.138 19510.904 13.480

(0.001) (0.001) (0.001) (0.003) (0.006) (0.000) (0.009) (0.000)
USD/EUR 0.057 1.391 5.955 10552.723 0.678 1.713 1.988 0.633 10439.419 3.024

(0.000) (0.004) (0.004) (0.278) (0.199) (0.392) (0.010) (0.001)
YEN/USD 0.113 0.304 0.600 17784.405 0.201 2.596 5.676 0.719 17422.916 4.754

(0.001) (0.001) (0.001) (0.306) (1.784) (4.429) (0.005) (0.000)
CHF/EUR 0.149 1.729 0.265 7443.652 1.643 2.982 0.015 0.270 7412.537 0.283

(0.003) (0.109) (0.007) (0.026) (0.047) (0.000) (0.002) (0.389)
Gold 0.386 0.855 0.666 21533.262 2.456 2.617 0.044 1.147 19960.242 18.033

(0.001) (0.002) (0.001) (0.003) (0.005) (0.000) (0.006) (0.000)

Notes: The table shows the estimates of the parameters of the models of Alfarano et al. and
Franke and Westerhoff, obtained by frequentist maximum likelihood together with the maxi-
mized log likelihood of both models. Standard errors of the parameters are shown in paren-
theses. Parameters a and b in ALW have been multiplied by 1000 and parameter σf has been
multiplied by 100 for both models for better readability. The test statistics of the Vuong test
is the normalized average log likelihood difference between both models. In parentheses the
probabilities of rejection of the null hypothesis are shown that the first model (ALW) is at least
as good as the second model (FW).
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