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Abstract 

In this paper we propose a new modelling framework for the analysis of macro series 

that includes both stochastic trends and stochastic cycles in addition to deterministic 

terms such as linear and non-linear trends. We examine four US macro series, namely 

annual and quarterly real GDP and GDP per capita. The results indicate that the 

behaviour of US GDP can be captured accurately by a model incorporating both 

stochastic trends and stochastic cycles that allows for some degree of persistence in 

the data. Both appear to be mean-reverting, although the stochastic trend is 

nonstationary whilst the cyclical component is stationary, with cycles repeating 

themselves every 6 – 10 years. 
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1. Introduction  

In this paper we put forward a new modelling framework for macro series that allows 

for two singularities (or poles) in the spectral density function, one corresponding to the 

long-run or zero frequency (i.e. to the long-run evolution of the series), the other to a 

non-zero frequency (and related to a cyclical pattern repeated approximately every 6 – 

10 years). The proposed model is very general: it extends the classical framework based 

on (non-cyclical and cyclical) unit roots by allowing for fractional integration, and 

considers both deterministic and stochastic patterns, at the zero and cyclical frequencies, 

including both long- and short- memory components. The cyclical patterns are modelled 

using Gegenbauer processes. 

The suggested methodology is then applied to analyse the stochastic behaviour 

of four US macro series, namely annual and quarterly GDP and GDP per capita. The 

results indicate that the behaviour of US GDP can be captured accurately by a model 

incorporating both stochastic trends and stochastic cycles that allows for some degree of 

persistence in the dynamics of the series. Both appear to be mean-reverting, although it 

is found that the stochastic trend is non-stationary whilst the cyclical component is 

stationary, with cycles repeating themselves every 6 – 10 years. Deterministic (linear 

and non-linear) terms were also incorporated into the model but were not found to be 

statistically significant in any case. 

The layout of the paper is as follows. Section 2 briefly reviews the main 

approaches to modelling GDP found in the literature. Section 3 presents the statistical 

model. Section 4 discusses the data and the empirical results. Section 5 offers some 

concluding remarks. 
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2. Literature Review 

GDP, whether nominal, real or per capita, is typically a non-stationary variable in most 

developed countries. For many years, the standard modelling approach was to use 

deterministic functions of time, usually of a linear form, as in the following 

specification: 

    ,...,2,1t,xty tt =+β+α=    (1) 

where {yt, t = 1, 2, …, T} is the observed (GDP) series, α and β are the coefficients on 

an intercept and a linear time trend respectively, and xt is assumed to be covariance 

stationary, usually of the ARMA form, to capture short-run and cyclical patterns in the 

data. Therefore, the process followed by xt can be represented as 

    ,....,2,1t,)L(x)L( tt =εθ=φ    (2) 

where )L(φ and )L(θ stand for the AR and MA components of the series respectively. 

This modelling framework was dominant in the literature until the publication of a very 

influential paper by Nelson and Plosser (1982), who examined fourteen US 

macroeconomic series and by applying the tests developed by Fuller (1976) and Dickey 

and Fuller (1979) found evidence of unit roots and came to the conclusions that the 

behaviour of these variables except one could be better described in terms of stochastic 

trends, that is, as in the following model including an intercept: 

      ,...,2,1t,xyy t1tt =++α= −    (3) 

where xt is I(0) and can be represented as in (2).1 This model has been widely employed 

in the macro literature and in the last twenty years many additional unit root tests have 

been developed (Phillips and Perron, 1988; Elliot et al., 1996; Ng and Perron, 2001; 

etc.). These two specifications, i.e. the deterministic trend model as in (1) and the 
                                                           

1 For our purposes we define an I(0) process as a covariance stationary process, i.e. one for which the 
infinite sum of the autocovariances is finite. Alternatively, in the frequency domain, it can be defined as a 
process with a spectral density function that is positive and finite at all frequencies in the spectrum.  



 3 

stochastic trend model as in (3), can coexist within the same framework if xt in (1) 

contains a unit root, the main difference between the two models being the treatment of 

shocks, which have transitory effects in the case of (1) but permanent ones in the case of 

(3). However, a process may display nonstationary, persistent behaviour but still be 

mean-reverting as in the I(d) models with a differencing parameter d lying in the 

interval [0.5, 1). In such models, xt is specified as 

        ,...,2,1t,ux)L1( tt
d ==−    (4) 

where d can be any real value and ut is I(0) (defined as in footnote 1). Variants of this 

model have been used to analyse the behaviour of GDP in various countries (see, e.g.,  

Michelacci and Zaffaroni, 2000, Mayoral, 2006, Gil-Alana, 2010, Caporale and Gil-

Alana, 2013, Caporale and Skare, 2014).  

Cyclicality is another important feature of GDP series. There exists a large 

literature using different methods such as time-varying transition probabilities (TVTP) 

Markov-switching regime models (see, e.g., Simpson et al., 2001), band pass filters 

(Christiano and Fitzgerald, 1999), etc. A similar approach to equation (4) can also be 

used to allow stochastic cyclical processes to be fractional as in the following model, 

,...,2,1,)cos21( 2 ==+− tuxLL tt
dµ   (5)  

with 

,)()21(
0

,
2 j

j
dj

d LCLL µµ ∑=+−
∞

=

−    

where L stands for the lag operator (i.e., Lxt = xt-1), )(, µdjC  are orthogonal Gegenbauer 

polynomial coefficients defined recursively as:  

,1)(,0 =µdC   ,2)(,1 dC d µµ =  

....,3,2,)(112)(112)( ,2,1, =







+

−
−








+

−
= −− jC

j
dC

j
dC djdjdj µµµµ , 
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Gray et al. (1989, 1994) showed that xt in (5) is (covariance) stationary if d < 0.5 for │μ 

= coswr│< 1 and if d <0.25 for│μ│= 1. This process implies the existence of a pole or 

singularity at a non-zero frequency which corresponds to the cyclical pattern. Special 

cases of this model were analysed by Athola and Tiao (1987) and Bierens (2001) setting 

d = 1, and by Gil-Alana (2001), DePenya and Gil-Alana (2006) and others allowing d to 

take fractional values. In this paper we combine the two models given by equations (4) 

and (5) in a single framework that is presented in the following section. 

 

3. A New Statistical Model for Trends and Cycles 

We propose a very general specification that incorporates both deterministic and 

stochastic trends, not only at the zero frequency but also at the non-zero (cyclical) 

frequencies, allowing for both long- and short memory components. The model is the 

following: 

,...,2,1,),( =+= txtfy tt ϕ  

,...,2,1t,ux)LLwcos21()L1( tt
d2

r
d 21 ==+−−  (6) 

,....,2,1t,)L(u)L( tt =εθ=φ  

where f is a function that can also be non-linear, depending on time and the unknown 

parameter vector φ; L is the lag operator; d1 and d2 are the integration orders of the 

long-run and the cyclical frequency respectively, where wr = 2πr/T with r = T/j, j 

indicates the number of periods per cycle and r the frequency with a singularity or pole 

in the spectrum; ut is I(0) and displays weak dependence (as in equation (2) but 

replacing xt with ut), and εt is i.i.d. N(0, σ2). Therefore, the vector of parameters to be 

estimated is ψ = [φT, d1, d2, r, ,1φ …, ,pφ  θ1, …θp]T. 
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Robinson (1994) had previously proposed a general testing framework that 

includes as a special case a very similar specification to ours. He considered the 

following model with a linear deterministic component: 

,...,2,1t,xzy tt
T

t =+β=  

,...,2,1t,ux)LLwcos21()L1( t
s

2j
t

d2j
r

d j1 ==∏ +−−
=

 (7) 

,....,2,1t,)L(u)L( tt =εθ=φ  

where zt is a (kx1) vector of deterministic terms and/or weakly exogenous variables and 

s represents the number of cyclical and/or seasonal patterns observed in the data. Within 

this set-up, he tested the null hypothesis: 

,dd:H oo =     (8) 

where d = [d1, d2, …, ds]T and do = [d1o, d2o, …, dso]T is a (s x 1) vector of given real 

numbers.  

 Assuming now that s = 2, the second equation in (7) becomes the same as the 

second one in (6), with the two coefficients d1 and d2 referring respectively to the long 

run and cyclical components of the series. In this context, a LM test of (8) in (6) can be 

defined as 

,ˆˆ'ˆ
ˆ

ˆ 1
4 aAaTR −=

σ
    (9) 

where T is the sample size, and 
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[ ])(),()'( 21 jjj λψλψλψ = ;       )ˆ;(glog)(ˆ juj τλ
τ∂
∂

=λε ;       ;
2

sin2log)(1
j

j

λ
λψ =  

( ) ,coscos2log)(2 rjj w−= λλψ where λj = 2πj/T, and the summation in * in the 

above equations is over all frequencies which are bounded in the spectrum. I(λj) is the 

periodogram of tû  defined as: 

,),ˆ()cos21()1()cos21()1(ˆ 2121 22 tfLLwLyLLwLu oooo d
r

d
t

d
r

d
t ϕ+−−−+−−=

  

where the last term of the above equation, for some special non-linear cases such as 

those presented in the following section, can  be expressed in a linear way as ,))(ˆ tfϕ  

with 

∑ +−−
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=
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=

T
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d
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t
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1

2
1

1
;)cos21()1()()'()(ˆ 21ϕ  

evaluated at λj = 2πj/T. Also, =τ̂ ,)(minarg 2
* τσ

τ T∈ with T* as a suitable subset of 

the Rq Euclidean space. Finally, gu is a known function coming from the spectral 

density of ut: 

.),;(
2

)(
2

πλπτλ
π

σλ ≤<−= uu gf  

Note that these tests are parametric and, therefore, they require specific modelling 

assumptions about the short-memory specification of ut. In particular, if ut is a white 

noise, gu ≡ 1, whilst if it is an AR process of the form φ(L)ut = εt, gu = |φ(eiλ)|-2, with σ2 

= V(εt), with the AR coefficients being a function of τ. 

 The point estimates were obtained by choosing over a grid the values of d1, d2 

and r that minimise Robinson’s (1994) test statistic. They were found to be almost the 

same as those obtained by maximising the Whittle function in the frequency domain 

(Dahlhaus, 1989). The confidence intervals were calculated by choosing the values of 
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the differencing parameters for which the null hypothesis could not be rejected at the 

5% level. 

Under very general regularity conditions, Robinson (1994) showed that for this 

particular version of his tests: 

,Tas,R̂ d ∞→→ 2
2χ    (10) 

where “→d” stands for convergence in distribution. Therefore, unlike in the case of 

other procedures, this is a classical large-sample testing situation. If this test is carried 

out in the context of (6) the null Ho will be rejected against the alternative Ha: d ≠ do if 

R̂ > 2
,2 αχ , with Prob ( 2

2χ > 2
,2 αχ ) = α. As mentioned before, despite the potentially non-

linear structure of the first equation in (6), its interaction with the second equation will 

make it linear for some specific nonlinear structures, such as the Chebyshev 

polynomials in time presented in the following section.2 

 

4. Empirical Analysis 

We examine the following four series: 

1) US annual real Gross Domestic Product,  

2) US annual real Gross Domestic Product per capita,  

3) US quarterly real Gross Domestic Product,  

4) US quarterly real Gross Domestic Product per capita,  

for the time period from 1929 – 2015 in the case of annual data, and from 1947Q1 till 

2015Q3 in case of the quarterly data. 

[Insert Figures 1 - 3 about here] 

                                                           

2 A linear specification of this model combining stochastic trends and cycles for financial data can be 
found in Caporale and Gil-Alana (2017). 
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Figure 1 displays the four series, all of which exhibit an upward trend suggesting 

non-stationary behaviour. This is confirmed by their correlograms (Figure 2) and the 

periodograms (Figure 3), the former decaying slowly and the latter exhibiting their 

highest values at the smallest frequencies. Figure 4 displays the same four series in first 

differences, with the corresponding correlograms and periodograms (displayed in 

Figures 5 and 6 respectively) providing evidence of cyclical patterns. 

[Insert Figures 4 - 6 about here] 

We start by considering a linear model with a time trend allowing for unit roots 

and fractional degrees of integration, specifically:  

,...,2,1t,ux)B1(,xty tt
d

tt ==−+β+α=   (11) 

where the errors are assumed to follow in turn a white noise and an autocorrelated 

process. However, instead of imposing a parametric ARMA structure on ut, we employ 

a non-parametric method due to Bloomfield (1973) such that the error term is specified 

exclusively in terms of its spectral density function, which is given by 









∑=
=

m

r
ru rf

1

2
)(cos2exp

2
);( λτ

π
στλ ,   (12) 

where σ2 is the variance of the error term and m indicates the number of short-run 

dynamic terms, usually low (e.g., 1 or 2), which approximates highly parameterised 

ARMA models with very few parameters, and producing autocorrelations decaying 

exponentially as in the AR case. Moreover, it is stationary for all range of parameters 

unlike in the AR case. 

 Tables 1 and 2 display the estimates of d, along with their corresponding 95% 

confidence bands, for the three cases of i) no deterministic terms, ii) a constant, and iii) 

a constant and a linear time trend, assuming in turn that ut is a white noise (Table 1) and 

autocorrelated as in the model of Bloomfield (Table 2). 
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[Insert Tables 1 and 2 about here] 

 In the white noise case the time trend is significant in all cases except annual 

GDP per capita, and the estimates of d are significantly above 1, ranging from 1.31 

(quarterly GDP) to 1.45 (annual GDP per capita). When allowing for (weak) 

autocorrelation as specified by Bloomfield (1973), the time trend is significant in all 

four cases, and the estimated values of d are still significantly above 1 but smaller. 

 Given the significance of the time trend in most cases, next we investigate 

whether it might be non-linear by using an approach based on Chebyshev polynomials 

in time that has been shown to perform well in the context of the tests of Robinson 

(1994) for fractional integration (Cuestas and Gil-Alana, 2016). Thus, we replace the 

first (linear) equation in (11) with: 

                ,...,2,1,)(
0

=+∑=
=

txtPy t
m

i
iTit θ       (13) 

with m indicating the order of the Chebyshev polynomial Pi,T(t) defined as: 

,1)(,0 =tP T  

     ( ) ...,2,1;,...,2,1,/)5.0(cos2)(, ==−= iTtTtitP Ti π        (14) 

(see Hamming (1973) and Smyth (1998) for a detailed description of these 

polynomials). Bierens (1997) and Tomasevic et al. (2009) argue that it is possible to 

approximate highly non-linear trends with polynomials of a rather low degree. This 

model includes the previous one noting that if m = 0 it contains an intercept, if m = 1 it 

includes a linear trend, and if m > 1 it becomes non-linear - the higher m is the less 

linear the approximated deterministic component becomes. Combining (13) with the 

second equation in (11) yields a linear model that can be estimated using least squares 

(see Cuestas and Gil-Alana, 2016). 

[Insert Table 3 about here] 
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Table 3 displays the estimated coefficients of the Chebyshev polynomials in 

time along with the estimates of d for the case of uncorrelated errors (almost identical 

results were obtained with autocorrelated (Bloomfield) disturbances). To allow for some 

degree of nonlinearity, we set m equal to 3, therefore θ2 and θ3 are the coefficients 

corresponding to the nonlinear trends. Nonlinear behaviour is only found in the case of 

the quarterly real GDP series with the two nonlinear coefficients (θ2 and θ3) being 

statistically significant at the 5% level; θ2 is also found to be significant in the case of 

the two real GDP per capita series (annual and quarterly) but not for annual real GDP. 

Further, the estimated values of d are all significantly higher than 1, ranging from 1.25 

(quarterly real GDP) to 1.37 (annual real GDP per capita).3 

 Next we examine the possibility of a cyclical pattern in the data and for this 

purpose we consider a model specified as in (6): the coefficients of the first equation on 

the deterministic terms were not found to be statistically significant in any case, both 

with a linear time trend and when allowing for nonlinearities by using Chebyshev 

polynomials in time. Therefore, we estimate models for both the original and the 

demeaned series but without time trends, assuming in turn that ut in (6) is a white noise 

process, an AR(1) process, and finally follows the exponential spectral specification of 

Bloomfield (1973). The results are presented in Tables 4, 5 and 6 respectively. 

[Insert Tables 4, 5 and 6 about here] 

 In the case of white noise errors (Table 4), the estimated value of d for the 

original series is 10 years at the annual frequency, and 7 and 13 quarters respectively for 

real GDP and real GDP per capita at the quarterly frequency. The estimated value of r 

for the demeaned series is 12 at the annual frequency, and 7 and 8 respectively for real 

GDP and real GDP per capita at the quarterly frequency. It is also noteworthy that d1 is 

                                                           

3 Other nonlinear deterministic transformations produce insignificant coefficients in all cases. 



 11 

systematically higher than d2, which indicates that the long-run frequency is relatively 

more important than the cyclical one. Specifically, d1 ranges between 0.55 (annual real 

GDP, original data) to 1.24 (quarterly real GDP per capita, demeaned data), while d2 

oscillates around 0, being significantly positive for the original series at the annual 

frequency as well as for both annual and quarterly real GDP per capita in the case of the 

demeaned series.  

 Table 5 displays the results under the assumption of AR(1) errors. In this case 

the estimated value of r is 10 for the four annual series, whilst it is 7 and 10 respectively 

for quarterly real GDP and real GDP per capita. Moreover, the estimated value of d1 is 

much lower than in the previous case, and is not statistically different from zero for 

some of the original series. This might be a consequence of the competition with the 

AR(1) parameter in describing the degree of persistence in the long run structure of the 

data. For the demeaned series the values of d1 are significant but smaller than those 

reported in Table 4. Besides, d2 is now statistically significant in all cases, which 

implies the presence of a cyclical pattern. 

 Finally, Table 6 displays the results under the assumption that the error term 

follows the non-parametric specification of Bloomfield (1973). We consider these the 

most reliable evidence since this model allows for a certain degree of weak 

autocorrelation without affecting the estimation of the remaining parameters. The 

estimated value of r is now 10 for the two annual series, regardless of whether raw or 

demeaned data are used. The two differencing parameters are significantly different 

from zero in one of the four cases examined, with the value of the long-run parameter d1 

being around 0.60 and that of d2 about 0.2 for the original data and slightly higher 

(about 0.3) for the demeaned series; for quarterly real GDP, r = 7, d1 is around 0.7 and 

d2 is close to zero for the original data but equal to 0.14 (and statistically significant) for 
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the demeaned data; for quarterly real GDP per capita, r = 13, d1 is equal to 0.66 for the 

original data and 0.91 for the demeaned data, and d2 is statistically insignificant in both 

cases. 

 To summarise the main findings: first, there is evidence that when modelling 

GDP one should allow for long memory and fractional integration instead of restricting 

the differencing parameters to be either zero or one; second, both the zero (or long-run) 

frequency and the other non-zero (cyclical) frequencies play a role, at least in some 

cases.  Awareness of the latter point is important for the purpose of evaluating the 

effects of shocks, which can affect not only the long run but also the cyclical structure. 

However, our modelling approach has the limitation of not being able to discriminate 

between the effects on the two components, since the error term is of a multiplicative 

nature and is based on both.  Future work will aim to address this issue.  

  

5. Conclusions 

This paper proposes a new statistical model for macro series that captures both their 

long-run behaviour and their cyclical properties by including two poles in their 

spectrum, in addition to both linear and non-linear deterministic trends. The adopted 

framework is very general since it also allows for fractional degrees of integration and 

both long- and short-run memory components, and is suitable for modelling any macro 

series of interest.  As an illustration, in this study it is applied to analyse four US real 

GDP series (annual and quarterly, per capita as well) and it is found to capture very well 

the stochastic properties of this series. In particular, both stochastic trends and 

stochastic cycles are found to be significant, both being mean-reverting, but the former 

being nonstationary and the latter stationary with cycles repeating themselves every 6 – 

10 years. There is also evidence of persistence. Future work will extend this modelling 
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framework with the aim of distinguishing between different types of shocks affecting 

trends and cycles separately while still allowing for a flexible degree of persistence. 
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Figure 1: Original time series 
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Figure 2: Correlograms of the original time series 

Annual Real GDP Quarterly Real GDP 

  
Annual Real GDP per capita Quarterly Real GDP per capita 

  
The thick lines refer to the 95% confidence bands for the null hypothesis of no autocorrelation. 
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Figure 3: Periodograms of the original time series 

Annual Real GDP Quarterly Real GDP 

  
Annual Real GDP per capita Quarterly Real GDP per capita 

  
The horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1, 2, …T/2. 
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Figure 4: First differenced time series 
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Figure 5: Correlograms of the first differenced time series 

Annual Real GDP Quarterly Real GDP 

  
Annual Real GDP per capita Quarterly Real GDP per capita 

  
The thick lines refer to the 95% confidence bands for the null hypothesis of no autocorrelation. 
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Figure 6: Periodograms of the first differecend time series 

Annual Real GDP Quarterly Real GDP 

  

Annual Real GDP per capita Quarterly Real GDP per capita 

  
The horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1, 2, …T/2. 
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Table 1: Estimated values of d with white noise errors 

Series No terms An intercept  A linear trend 

Annual real GDP  1.22  (1.11,  1.42) 1.31 (1.18,  1.58) 1.36  (1.23,  1.58) 

Annual real GDP per cap 1.45  (1.34,  1.65)  1.45 (1.35,  1.68) 1.49  (1.39,  1.68) 

Quarterly real GDP 1.09  (1.02,  1.18) 1.30 (1.22,  1.41) 1.31  (1.24,  1.42) 

Quarterly real GDP per 
cap 

 1.33 (1.26,  1.42) 1.38 (1.31,  1.48) 1.40  (1.34,  1.49) 

In bold, the selected models according to the deterministic terms. 
 
 

Table 2: Estimated values of d with autocorrelated (Bloomfield) errors 
Series No terms An intercept  A linear trend 

Annual real GDP 1.08  (0.98,  1.25) 1.10  (1.00,  1.26) 1.14  (1.00,  1.32) 

Annual real GDP per cap 1.29  (1.19,  1.43) 1.28  (1.18,  1.42) 1.33  (1.22,  1.47) 

Quarterly real GDP 1.05  (0.97,  1.19) 1.22  (1.11,  1.43) 1.26  (1.14,  1.44) 

Quarterly real GDP per 
cap 

  1.31 (1.22,  1.46) 1.35  (1.25,  1.14) 1.39  (1.30,  1.55) 

In bold, the selected models according to the deterministic terms. 
 
 
 
Table 3: Estimated values of d with white noise errors and nonlinear trends 

Series d θ0 θ1 θ2 θ3 

Annual real 
GDP 

1.31 
(1.12,  1.52) 

6727.29 
(2.92) 

-3727.39 
(-2.51) 

665.09 
(1.25) 

-328.19 
(-1.05) 

Annual real 
GDP per cap 

1.37 
(1.23,  1.49) 

13192.94 
(1.47) 

-11626.58 
(-1.99) 

3762.34 
(1.91) 

-271.74 
(-0.24) 

Quarterly real 
GDP 

1.25 
(1.01,  1.57) 

6202.24 
(3.19) 

-4108.28 
(-3.33) 

1013.71 
(2.19) 

-524.42 
(-1.89) 

Quarterly real 
GDP per cap 

1.39 
(1.20,  1.68) 

10072.98 
(2.20) 

-10468.05 
(-1.93) 

5500.76 
(3.00) 

-1523.63 
(-1.44) 
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Table 4: Estimated coefficients with white noise errors  

 
Series 

Original data De-meaned data 

r d1 d2 r d1 d2 

Annual real 
GDP 

10 0.55* 0.20* 12 0.75* 0.01 

Annual real 
GDP per cap 

10 0.64* 0.15* 12 0.63* 0.36* 

Quarterly real 
GDP 

7 0.69* -0.01 7 0.73* 0.14* 

Quarterly real 
GDP per cap 

13 0.66* 0.04 8 1.24* -0.13 

*: Statistical significance at the 5% level. 
 
 
Table 5: Estimated coefficients with AR(1) errors  

 
Series 

Original data                De-meaned data 

    d1 d2 r d1 d2 

Annual real 
GDP 

10 0.01 0.32* 10 0.26* 0.12* 

Annual real 
GDP per cap 

10 0.01 0.37* 10 0.29* 0.14* 

Quarterly real 
GDP 

7 0.65* 0.40* 7 0.25* 0.11* 

Quarterly real 
GDP per cap 

13 0.00 0.29* 13 0.58* 0.46* 

*: Statistical significance at the 5% level. 
 
 
 
Table 6: Estimated coefficients with Bloomfield-type errors  

 
Series 

Original data De-meaned data 

r d1 d2 r d1 d2 

Annual real 
GDP 

10 0.55* 0.20* 10 0.60* 0.32* 

Annual real 
GDP per cap 

10 0.63* 0.17* 10 0.63* 0.26* 

Quarterly real 
GDP 

7 0.69* -0.01 7 0.73* 0.14* 

Quarterly real 
GDP per cap 

13 0.66* 0.04 13 0.91* -0.03 

*: Statistical significance at the 5% level. 
 
 


	with m indicating the order of the Chebyshev polynomial Pi,T(t) defined as:
	Phillips P.C.B. and P. Perron (1988) Testing for a unit root in time series regression, Biometrika 75 (2), 335-346.

