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Reconsidering the Income-Illness Relationship using
Distributional Regression
An Application to Germany

Alexander Silbersdorff1, Julia Lynch2, Stephan Klasen1 and Thomas Kneib1

1Georg August University of Göttingen, Germany.
2University of Pennsylvania, USA.

Abstract

In this paper we reconsider the relationship between income on health, taking a distri-

butional perspective rather than one centered on conditional expectation. Using Structured

Additive Distributional Regression, we find that the association between income on health is

larger than generally estimated because aspects of the conditional health distribution that go

beyond the expectation imply worse outcomes for those with lower incomes. Looking at Ger-

man data from the Socio Economic Panel, we find that the risk of very bad health is roughly

halved when doubling the net equivalent income from 15,000 Euro to 30,000 Euro, which

is more than tenfold of the magnitude of change found when considering expected health

measures. This paper therefore argues that when studying health outcomes, a distributional

perspective that considers stochastic variation among observationally equivalent individuals

is warranted.

JEL-Classification: I14, C13, C21

1 Introduction

Scores of papers assess the relationship between income and health status in a multivariate frame-

work. Both in epidemiology and health economics, the vast majority of these employ standard

regression methods (linear and generalized linear models) to assess the effect of variations of in-

come and other covariates on the expectation of health status. However, in recent years a growing

number of papers in the health economics literature have noted the need to look beyond the ex-

pected outcome (Duclos and Échevin, 2011; Makdissi and Yazbeck, 2014; Carrieri and Jones, 2016;

Heckley et al., 2016; Schiele and Schmitz, 2016).
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Building on this young literature, we propose the use of distributional regression models which

allow for the estimation of a full distribution for a given set of covariates – both for continuous

and discrete health measures. Rather than focussing on health outcomes like the conditional ex-

pectation for some health score, or the conditional odds for some binary health measure, we thus

propose to consider the full conditional health distribution. Concretely we propose to apply the

recently developed technique of structured additive distributional regression (SADR)(Klein et al.,

2015) to estimate the relationship between self-reported health status and income, conditional on

other standard covariates. Using SADR, we are able to look at both categorical health measures

(like the standard ordered 5-response format) and continuous or quasi-continuous variables (like

the SF-12). Thus, SADR provides a generic regression framework allowing for a distributional

perspective of the relationship between health and other covariates. In contrast to some of the

recent literature, which uses standard regression of the recentered influence function of some ex-

planatory variable for the entire population’s health distribution (e.g. Carrieri and Jones, 2016;

Heckley et al., 2016), SADR allows us to focus on the conditional distribution of health for specific

sub-populations defined by income, age, education, or the like.

As we show in the paper, this distributional approach leads to a starkly different assessment of

the magnitude of the association between income and health, when controlling for a set of other

covariates. For example, we contrast the shift in the risk of being severely ill with the change

in the expected health for “average Joe” and “average Jane” that is associated with moving

from a net equivalent household income of 15,000e (the median income of the poorer half of the

population) to an income of 30,000e (the median income of the richer half of the population).

Using the distributional approach, we find that the relative change in the risk of severe illness is

between 39 percent and 42 percent, while the relative change of expected health is only 3 percent.

Distributional regression facilitates a shift in perspective that highlights the substantively large

association between income and health at the lower end of the conditional health distribution,

which might be missed if only effects on the expectation of the conditional health distribution

were examined.

The contribution of the paper to the literature is therefore twofold. On the one hand, we introduce

a generic regression framework to the health literature that allows for the distributional analysis

of both discrete and continuous health variables. On the other hand, the paper shows how a shift

in perspective beyond the classical mean leads to a quite different assessment of magnitude of the

association between income and health.

The remainder of this paper is structured as follows: In the next section, we briefly outline the

literature on the relationship between income and health, and motivate our analysis of outcomes

beyond the expectation. The following section explains how SADR can be used to analyze condi-

tional health distributions. In the subsequent section, we apply the approach to health data from
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the 2012 wave of the German Socio-Economic Panel (SOEP), modeling the relationship between

both a discrete health score (self-rated health) and a quasi-continuous health score (SF-12) on

the one hand, and net equivalent household income on the other. In both cases we control for

a set of other variables like age, education, etc. We next illustrate the importance of taking a

distributional perspective by highlighting several distributional measures that put the emphasis

on health impacts at the lower end of the spectrum. In the fifth and final section, we conclude.

2 Literature and Motivation

The association between income and health is one of the most robustly documented findings in

the literatures on population health and health economics (Marmot, 2002; Kawachi et al., 2010).

Income has been found to be strongly associated with measures of health across a variety of

populations, even above a threshold of material deprivation (Backlund et al., 1996; Ettner, 1996;

McDonough et al., 1997; Ecob and Davey Smith, 1999; Case, 2001), and recent studies exploiting

exogenous variation in income have discussed causal effects of income on health (Frijters et al.,

2005; Lindahl, 2005; Case, 2001; Kuehnle, 2014; Cesarini et al., 2016).

Given the intricate nature of the causal mechanisms linking income to health, the magnitude of

the association between health and income remains of critical concern for contemporary political

decision making, particularly in areas such as the minimum wage, social minimum, or tax treatment

of low earnings. In the literatures on health economics, epidemiology and public health, estimates

of the relationship between income and health have tended to take one of three forms: bivariate

concentration indices summarizing the relationship between income and health in a population

(Wagstaff and van Doorslaer, 1994; Lynch and Kaplan, 1997; Gravelle, 1998; Ecob and Davey

Smith, 1999; Humphries and van Doorslaer, 2000; Gravelle, 2003; Lindahl, 2005; Wagstaff, 2005,

2011); estimates of the effect of income and other covariates on mean health status (Rogot et al.,

1992; Ettner, 1996; Case, 2001; Contoyannis et al., 2004), and likelihood ratios that express the

conditional probability of being in a particular health state given a particular level of income and

other covariates (Benzeval et al., 2000; Frijters et al., 2005). The first two rely on health measures

that are plausibly interpreted as continuous, while the latter technique is often used when the

health outcome in question is measured using discrete (often binary) categories. Each of these

approaches to measuring the relationship between income and health is useful, but, particularly

when applied to the most widely used survey measures of health status, also has limitations.

Concentration indices are the “workhorse [method] in most health economic studies” (Fleurbaey

and Schokkaert, 2009, p.73) for quantifying the distribution of health in a population. Their

succinct form and resemblance to the Gini coefficient provide an intuitive scalar measure that is well
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suited for portraying the magnitude of health inequalities related to socio-economic characteristics

(Wagstaff and van Doorslaer, 1994; Kakwani et al., 1997). Yet the concentration index by its

construction only allows for the relation of two variables or scales. Estimating the relationship

between health and income while jointly conditioning on a set of other covariates thought also

to be relevant for health is thus not possible using conventional concentration indices. While we

reconsider concentration indices later on, we leave this methodology aside for the moment and

concentrate on those analyses of the health-income nexus which employ regression methodology

to estimate the income-health relation while controlling for the effects of other covariates.

A second workhorse method, particularly prominent in the epidemiological literature, is the ana-

lysis of expected health outcomes expressed as odds ratios. In its most prevalent form, a logit

model is used to predict outcomes on a binary health measure conditioning on a set of variables.

One of the advantages of this method is that risk of having a particular outcome is easily related to

the conditional expectation derived from the model. Due to the simplicity and popularity of this

method, it is common practice to reduce health variables of higher complexity to a binary form

in order to facilitate the construction of odds ratios (Chamberlain, 1980; Benzeval et al., 2000;

Frijters et al., 2005). This reduction is problematic if the health outcome of interest does not ad-

here to the implicit assumptions required by such a reduction, including indifference among health

outcomes grouped together in either of the dichotomous response categories. For some health

measures, including general health status, a dichotomous representation of healthy/unhealthy is

clearly insufficient as important variations would be disregarded.

Possibly for this reason, the construction of more fine-grained scales has become widespread for

the analysis of health for various contexts. The most popular approach is to construct (quasi-

)continuous health measures. These can subsequently be analyzed using simple mean regression

models, like OLS. While these classical regression techniques have the capacity to generate inform-

ation about the relationship between quasi-continuous health outcomes and other covariates, in

practice the reported results generally attend solely to the conditional expectation derived from

these models. As is the case with logit modeling described above, this reduction is problematic as

potentially important variations beyond the mean are disregarded. For example, looking only at

the mean health outcome conditional on covariates ignores research on the utility associated with

varying health statuses, some of which suggests that an equal-sized change in health status above

or below the mean may in practice generate asymmetric changes in well-being (Finkelstein et al.,

2009).

One problem shared by both regression approaches is thus that they use only limited information

from the full distribution of health in the sample, either by dichotomizing the outcome from

the outset or by considering only the conditional expectation of the outcome. Through such

information reduction, these approaches focus attention on one particular aspect of the relationship
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Figure 1: A contrast of coarsely conditioned health distributions. Top: Lowest 20% of net incomes.
Bottom: Highest 20% of net incomes. Left: self-rated health (SRH). Right: Physical component
score (PCS) of the SF-12. Grey lines indicate reference lines of middle group.

between health and income (and/or other covariates) at the cost of ignoring other potentially

important changes in the health distribution that may occur in connection with changes in income

(and/or other covariates). While this narrowed perspective is adequate and indeed necessary in

many scenarios, properly estimating the effect of income on health requires a broader approach.

Using data from Germany in 2012, a simple trisection of the health distribution between those with

high, medium and low incomes reveals that the difference in the health outcomes by income goes

beyond differences in the mean. Figure 1 shows the distribution of two measures of generalized

health – self-rated health (SRH) and a physical health score (PCS) – among those with high (top

20% w.r.t. net equivalent income) and low (bottom 20% w.r.t. net equivalent income) incomes.

The variation in health outcomes is substantially more pronounced in the lower part of the income

distribution, while those who are economically well off are able to practically eliminate the risk

of bad health. While an assessment based on the distributions’ means captures the general trend

of the health-income relationship, the reduction in information incurred by focussing on the mean
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leads us to neglect potentially important aspects of the relationship between income and health.

There are also theoretical reasons for studying the distribution, rather than just the mean, of

health outcomes. At a societal level, the health-utility relationship is concave rather than linear,

a characteristic that can be deduced from the fact that far more health care resources (spending)

are dedicated to improvements at the lower end of the health spectrum than to improvements

at the higher end (Berk and Monheit, 2001). If the health-utility relationship is concave, mean-

based assessment premised on a linear relationship would not be warranted. Equally importantly,

if the health-utility relationship is concave, analyses of the association between income (or other

covariates) and health ought to give more weight to the lower end of the health distribution.

For both multicategorical and continuous health measures, we thus propose the use of a set of

risk measures which focus explicitly on the lower end of the conditional health distribution to

complement conventional measures focused at the center of the conditional health distribution.

3 Taking a Distributional Perspective

The conventional regression approaches discussed above fall into the category of generalized linear

models, where the conditional expectation of a health outcome variable Y given a set of explanatory

variables x1, . . . , xK is related to a regression predictor η via the response function h, i.e.

µ = E(Y | x1, . . . , xK) = h(η).

The predictor in turn is usually modeled as a linear combination of the covariates1 entailed in

covariate vector (x1, . . . , xK)T , i.e.

η = β0 +
K∑
k=1

βkxk.

For example, in case of binary outcomes differentiating only between healthy and non-healthy

individuals, a logit or probit model is specified, in which the probability of an outcome π = P (Y =

1 | x1, . . . , xK) = E(Y | x1, . . . , xK) is related to the predictors via the cumulative distribution

function of the logistic and the standard normal distribution, respectively.

The most important feature of generalized linear models for our purposes is that they focus exclus-

ively on modeling the expectation of the response variable. Unlike in the case of binary responses,

where the distribution of the health outcome is completely determined by the expectation (i.e.

the success probability), when outcomes are more complex the expectation alone generally does

1More flexible alternatives have been developed in the context of generalized additive models (see Hastie and
Tibshirani, 1990) or structured additive regression models (see Fahrmeir et al., 2004), but we will restrict ourselves
to linear predictors in the following.
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not represent the complete distribution of the health outcomes well. We will analyze both mul-

ticategorical and continuous measures for health outcomes and in these cases the deviations from

the expectation are typically at least as important as determinants of expected health. More im-

portantly, these deviations may also be driven by covariates such that more general features of

the health outcome distribution such as variance and skewness should also be modeled in terms of

regression predictors.

A distributional perspective is needed to allow us to not just consider the conditional expectation

of the health variable of interest, E(Y | x1, . . . , xK), but also to relate the complete underlying

conditional distribution, D(Y | x1, . . . , xK) to the covariates. The evolution of computation ca-

pacity in the past decades has made the estimation of distributional regression models feasible

and several approaches have been put forward in the statistical literature. For example, one could

use quantile regression, as proposed by Koenker and Bassett (1978), to construct the distribution

from the conditional quantiles, or use recentred influence functions (Firpo et al., 2009) that allow

for the estimation of unconditional quantiles. Alternatively, conditional transformation models

as proposed by Hothorn et al. (2014) or the related distributional regression models proposed by

Chernozhukov et al. (2013) could be used.

Here, we will rely on structured additive distributional regression (SADR) models as introduced

in Klein et al. (2015), in which a parametric distribution type is assumed for the conditional dis-

tribution D(Y | x1, . . . , xK), but all parameters (not only the mean) are then related to regression

predictors based on a suitably chosen response function. More specifically, we assume that the

conditional distribution D(θ1(x1, . . . , xK), θ2(x1, . . . , xK), . . . , θL(x1, . . . , xK)) is characterised by a

vector of L parameters θl(x1, . . . , xK), l = 1, . . . , L, and specify

gl(θl) = ηθl (1)

ηθl = βθl0 +
K∑
k=1

βθlk xk. (2)

Consequently, the vector of all regression coefficients β entails parameters not only for one predictor

but for all L predictors required to specify the response distribution. The main advantage of SADR

is that it lends great estimation stability which is critical for the usually available sample sizes.2

The main disadvantage is of course the need for an adequate parametric response distribution. For

further discussion of the advantages and disadvantages of SADR over the alternative methods, we

refer the interested reader to section A.2 in the appendix.

2Given that distributional assessments are generally much more demanding than simple mean assessments,
standard database sizes in the order of ten thousand observations or less suffer from estimation instability already
once a set of ten or more covariates is introduced.

7



4 A Distributional Health Assessment for Germany

To illustrate the difference between a distributional perspective and conventional estimation meth-

odologies, we consider a very simple application using health data from the German Socio-Economic

Panel (SOEP, 2014).

4.1 The German Socio-Economic Panel

The German Socio-Economic Panel (SOEP) is a longitudinal household survey repeated annually

since 1984 (Wagner et al., 2007). For this study we use only the cross-sectional data from the

2012 survey, which contains information on over 10,000 households (see SOEP, 2014; Rahmann

and Schupp, 2013). The SOEP contains a rich array of sociodemographic information about

individuals in these households, as well as several measures of health status. In this paper we

consider both the standard five-response self-rated health item and the SF-12 physical health

scale, as representative ordinal and (quasi-)continuous health measures, respectively. Thus we

show that our proposed perspective is feasible for both discrete and continuous variables, both

of which are frequently used in the literature. Indeed, as we will show, our proposed perspective

which focusses on the poor yields similar outcomes irrespective of whether we use self-rated health

or the SF-12 physical health scale. In the following, both health measures are related to a set

of sociodemographic variables that are standard in the literature (see below). Using only those

adult individuals for whom we have full information on these variables (see below), the 2012 SOEP

yields 16,723 observations: 7,820 males and 8,903 females.

4.1.1 Self-rated health

In social epidemiological research, the most commonly used indicator of health status is generalized

self-rated health (SRH), captured in a single item with a Likert response scale: “How would you

describe your current health¿‘: “Very good”, “good”, “satisfactory”, “poor” or “bad”. Single-item

SRH measures have been found in multiple populations to be reliable and responsive to changes in

health status, and to predict health expenditure and outcomes (Idler and Benyamini, 1997; DeSalvo

et al., 2006). Because well-being is intimately tied to one’s sense of identity, single-item measures

can tap respondents’ ability to identify whether or not they are healthy quickly and holistically,

and drawing on information that may not (yet) be available to their physicians or to researchers as

diagnoses of specific conditions (Benyamini, 2011). DeSalvo et al. (2005, 2009) compare a standard

single-item SRH measure to more comprehensive batteries and find that despite its brevity and

simplicity, the single-item SRH is equally useful for predicting mortality, health care utilization,
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and health expenditures.

4.1.2 The SF12

Every two years since 2002, the SOEP has included a battery of health-related questions, the “SF-

12v2TM Health Survey” (SF-12 Wagner et al., 2007). The SF-12 is a 12-item subset of Quality

Metric’s SF-36v2TM, which is used widely in the recent literature (e.g. Marcus, 2013; LaMontagne

et al., 2014; Eibich and Ziebarth, 2014) and provides measures of self-rated health in eight domains.

The SF-12 comprises 12 items that aim to capture ”practical, reliable and valid information about

functional health and well-being from the patient’s point of view” (OPTUM, 2015). Principal

component analysis is used to compute two superordinate scales on physical health (PCS) and

mental health (MCS), designed to have a mean of 50 and a standard deviation of 10. See Andersen

et al. (2007) for details on the computation.

The SF-12 is an alternative to the longer SF-36 and to single-item measures of general self-rated

health (SRH). The SF-12 has been found to be reliable, internally consistent, and to have good

convergent and discriminant validity (Gandek et al., 1998; Franks et al., 2003; Bohannon et al.,

2004; Cunillera et al., 2010). Across a variety of health outcomes and countries and with different

patient populations, the SF-12 predicts physical and mental health outcomes, health related quality

of life, and medical expenditure (see Ware Jr. et al., 1996; Fleishman et al., 2006). In cross-sectional

and longitudinal tests of validity, the SF-12 generally yielded larger standard errors than the SF-

36 (Ware Jr. et al., 1996). Nevertheless, the SF-12 is a practical and widely accepted tool for

measuring population health and for predicting health outcomes and expenditure. It has also

been found to map reliably onto the EQ-5D scale, a five-dimension health status indicator that

is commonly used in generating the preference weightings needed to construct QALYs and other

similar measures (Brazier and Roberts, 2004; Lawrence and Fleishman, 2004; Gray et al., 2006).

The SF-12 has been found in previous studies to be correlated with income in a general population,

even after adjusting for relevant covariates (Burdine et al., 2000; Schnittker, 2004; König et al.,

2010). In our analysis we use only the PCS subscale of the SF-12. Differential item functioning by

education, age and sex has been observed for the MCS (Fleishman and Lawrence, 2003; Bourion-

Bédès et al., 2015), and since the SOEP does not include the institutionalized population, the

sample is likely to be non-representative of the population with very low MCS scores.

4.1.3 The Explanatory Variables

We base our choice of explanatory variables on the applied literature on individuals’ health pro-

duction functions (e.g. Fayissa and Gutema, 2005; Lorgelly and Lindley, 2008; Thornton, 2010;
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Ravesteijn et al., 2013). In this literature health is modeled as a function of economic, social

and environmental factors. Here, we focus on a simple set-up that considers six easily observable

covariates.

The main explanatory variable of interest in our model is disposable income, measured as the

annual net equivalized household income of an individual, adjusted for household size and com-

position using the OECD equivalence scale. Following Jones and Wildman (2005), we use the log

transformation of income (LOGINC).

In addition to income, we consider the respondent’s age as a quadratic polynomial (AGE and

AGESQ), to control for differences in health induced by the inevitable biologically-induced deteri-

oration of health over the life course (see Kiuila and Mieszkowsko, 2007).

To adjust for the well known relationship between education (or cultural capital in a broader sense)

and health, we control for respondent’s educational attainment measured using the ISCED97 edu-

cation categories provided by the SOEP. Here, we use four education levels. The first level (EDU1)

includes all individuals who have only general elementary education or less (i.e. those whose ISCED

is between 0 and 2). The second level (EDU2) entails all persons with completed secondary edu-

cation (i.e. ISCED level 3) while the third level (EDU3) entails all with ISCED levels 4 and 5, i.e.

vocational training with Abitur or higher vocational training. The highest level (EDU4) entails all

those with completed higher education (i.e. ISCED level 6).

The variable education is complemented by a variable measuring whether the respondent is a Ger-

man national (GER). This variable is sought to control for some additional cultural differences as

well as statistical artefacts like the healthy migrant effect (see Bjornstrom and Kuhl, 2014).

We also account for the marital status of the respondent: Living in a partnership (married or

living together) (MAR1), separated or divorced (MAR2), single (MAR3), or widowed (MAR4).

Lastly, we control for the region of the country in which respondents live. This allows us to control

for some environmental factors like the general prosperity of the area of residence and associ-

ated aspects like health care infrastructure. We use a hierarchical regional effect which accounts

for differences between former West and East Germany and subsequently differentiates between

individual federal states of residence, as in Eibich and Ziebarth (2014).

For further information on the variables see Section A.1 in the appendix.

4.2 Model specification

4.2.1 Choice of the Response Distribution

As discussed in Section 3, a distributive regression approach requires that we specify a suitable

parametric distribution that is able to approximate the empirically observed conditional health
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distributions.

Self-rated health outcomes are measured on an ordinal five point scale, which means that their

distribution can be characterized by four probability parameters. We use a sequence of logit models

to differentiate between the five levels of the self-rated health score rather than to differentiate

only between two amalgamations of the levels as is standard in the literature. We first regress the

lowest response versus all higher health scores to differentiate low values of the score from all higher

scores. In the second step, we consider only individuals that reached at least the second response

level of the discrete health measure and contrast the second level it to all higher levels. Continuing

this sequence for higher levels provides us with a set of sequential logit models that characterize

the multinomial nature of the categorical health outcome while simultaneously acknowledging the

ordinal structure in a simple and interpretable fashion.3

Scores on continuous health measures, such as the SF-12, generally deviate significantly from a

symmetric distribution, such that regression specifications based on the normal distribution often

do not provide sufficient flexibility. For the PCS, we find that the conditional health distributions

generally feature a negative skewness and are thus in contras to the more common symmetric or

positively skewed distributions for which which most parametric formulations are tailored. To be

able to employ well-established estimation routines for the standard parametric distributions, we

follow Erreygers and van Ourti (2011) and use a linear transformation gPCS of the health score

gPCS(H) = H∗ =
(H0 −H)

Hscale

, (3)

where H and H∗ denote the untransformed and the transformed PCS health score respectively,

while H0 is a constant ensuring that H∗ has a positive support if required. Lastly, Hscale is another

constant rescaling the transformed health score. In the following, we will use H0 = 100 and

Hscale = 10 ensuring that our transformed health score is not only positive but also restricted to

the interval (0, 10) which enhances numerical stability. Subsequently, we estimate the conditional

distributions of the transformed PCS using the well-known two parameter gamma distribution.4

Once this conditional distribution is estimated, one can easily obtain the conditional distribution of

the original PCS measure by simply applying the inverse transform, g−1
PCS. Note that the gamma

3Standard cumulative regression models for ordinal responses would be much more limited in their flexibility
since they would restrict covariate effects to be the same for the transition between all different stages of the
response.

4Using a representation of the gamma distribution where µ is the expectation parameter and s the shape
parameter, we can write its density as:

p(y | µ, s) =
( s
µ

)s ys−1

G(s)
exp

(
− s

µ
y
)
, (4)

where y denotes the transformed PCS outcome, which is H∗ in our case, and where G denotes the Gamma function.
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distribution is invariant under scaling such that we effectively model a shifted, reversed, scaled

gamma distribution for the health scores.

For both the categorical self-rated health scores and the (quasi) continuous SF-12, we thus specify

parametric conditional health distributions which require, respectively, four and two parameters

to be estimated with respect to the covariates. With the two distribution types chosen, let us now

turn to the specification of the predictors of the distributions’ parameters.

4.2.2 Predictor specification

Let us now turn to the specification of predictors For the sake of simplicity, we will specify one

generic predictor set-up which is applied to all parameters, i.e.

ηl = βθl0 + βθl1 AGE + βθl2 AGESQ+ βθl3 LOGINC + βθl4 GER + βθl5 EDU2 + βθl6 EDU3 + βθl7 EDU4

+ βθl8 MAR2 + βθl9 MAR3 + βθl10MAR4 + βθl11EAST + γθlDISTRICT (5)

where ηl is the predictor for for the lth parameter of the response distribution. The explanatory

variables (defined as outlined in Section 4.1.3) are all included in a linear fashion, supplemented

by two effects representing spatial variation in health outcomes. EAST is an effect-coded binary

variable scored one if the federal state is in the east of Germany, thus capturing the structural

differences between the former German Democratic Republic (GDR) and the Federal German

Republic (FDR). The differences within the former GDR and FDR are captured by random effects,

denoted by γDISTRICT. This regularizing approach is chosen over a plain use of fixed effects for all

federal states in order to enhance estimation stability (see Klein et al., 2015).

In order to relate the predictors to their corresponding parameters, we specify appropriate response

functions. For the categorical responses, these are simply given by logit response functions while

the exponential response function is used to ensure positivity of the two parameters for the gamma

distribution.

4.3 Parameter Estimates

The estimation is done in the software BayesX (Belitz et al., 2015) which employs Markov Chain

Monte Carlo (MCMC) simulation techniques to estimate posterior distributions in a Bayesian

framework. See Klein et al. (2015) for details on the estimation procedure. In the following set-up,

we use non-informative flat priors for the linear effect. For the spatial effect, we use Gaussian

random effects priors centered on zero with inverse gamma distributions (with hyperparameters

a = b = 0.001) used as hyperpriors for their variance. To obtain the posterior distribution, we draw
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on one million MCMC realizations which are thinned out at a rate of 800 after a burn-in of 200,000

MCMC realizations. For the posterior distributions we thus obtain 1,000 MCMC realizations for

each parameter.

Before we go on to discuss our main findings concerning the impact of income on the two health

variables considered, we first portray the effects of all covariates on the predictors of the parameters

required to yield the distribution. While some of the parameters are interpretable in their own

right (for example µ for the gamma distribution), we focus on evaluating the resultant distribution

rather than the single parameters’ estimates.

males
ηπ̃1 ηπ̃2 ηπ̃3 ηπ̃4

const. 1.499[ 1.415; 1.592] 2.842[ 2.786; 2.902] 2.896[ 2.832; 2.969] -0.899[-1.036;-0.742]
AGE 0.084[ 0.083; 0.085] 0.038[ 0.037; 0.038] 0.025[ 0.025; 0.026] 0.068[ 0.066; 0.070]

AGE2 -0.001[-0.001;-0.001] 0.000[ 0.000; 0.000] 0.000[ 0.000; 0.000] -0.001[-0.001; 0.000]
LOGINC -0.182[-0.187;-0.178] -0.458[-0.461;-0.455] -0.453[-0.458;-0.450] -0.298[-0.307;-0.290]

GER -0.207[-0.211;-0.203] -0.003[-0.006;-0.001] 0.266[ 0.262; 0.269] -0.124[-0.132;-0.117]
EDU2 0.024[ 0.020; 0.028] 0.069[ 0.067; 0.071] -0.011[-0.014;-0.008] 0.148[ 0.142; 0.154]
EDU3 0.064[ 0.059; 0.070] -0.133[-0.136;-0.129] -0.063[-0.068;-0.058] -0.172[-0.184;-0.161]
EDU4 -0.439[-0.443;-0.434] -0.246[-0.248;-0.242] -0.153[-0.157;-0.148] -0.117[-0.127;-0.107]
MAR2 -0.103[-0.110;-0.097] 0.215[ 0.211; 0.218] -0.030[-0.035;-0.026] 0.153[ 0.145; 0.161]
MAR3 -0.140[-0.146;-0.134] 0.084[ 0.081; 0.088] 0.326[ 0.321; 0.331] 0.056[ 0.046; 0.066]
MAR4 0.158[ 0.149; 0.167] -0.201[-0.205;-0.196] -0.093[-0.097;-0.088] -0.152[-0.161;-0.143]
EAST 0.247[ 0.072; 0.423] -0.002[-0.099; 0.095] -0.031[-0.100; 0.036] 0.037[-0.139; 0.207]

females
ηπ̃1 ηπ̃2 ηπ̃3 ηπ̃4

const. -1.787[-1.863;-1.692] 1.266[ 1.209; 1.330] 4.003[ 3.918; 4.089] -1.052[-1.216;-0.890]
AGE 0.142[ 0.141; 0.143] 0.092[ 0.091; 0.093] 0.021[ 0.020; 0.022] 0.034[ 0.032; 0.035]

AGE2 -0.001[-0.001;-0.001] 0.000[ 0.000; 0.000] 0.000[ 0.000; 0.000] 0.000[ 0.000; 0.000]
LOGINC 0.004[ 0.000; 0.008] -0.461[-0.464;-0.458] -0.593[-0.598;-0.589] -0.160[-0.169;-0.152]

GER -0.106[-0.110;-0.101] -0.267[-0.270;-0.264] 0.009[ 0.004; 0.013] -0.071[-0.080;-0.063]
EDU2 0.082[ 0.079; 0.086] 0.040[ 0.038; 0.043] 0.091[ 0.088; 0.095] 0.312[ 0.305; 0.319]
EDU3 -0.064[-0.070;-0.059] 0.027[ 0.024; 0.031] -0.071[-0.076;-0.066] -0.343[-0.354;-0.332]
EDU4 -0.424[-0.428;-0.419] -0.334[-0.337;-0.331] -0.007[-0.012;-0.003] -0.159[-0.169;-0.149]
MAR2 -0.084[-0.093;-0.074] 0.167[ 0.163; 0.172] 0.006[ 0.001; 0.011] 0.248[ 0.238; 0.258]
MAR3 -0.394[-0.403;-0.386] 0.209[ 0.205; 0.213] 0.051[ 0.046; 0.057] -0.071[-0.082;-0.060]
MAR4 0.442[ 0.424; 0.462] -0.230[-0.236;-0.223] 0.016[ 0.009; 0.024] -0.057[-0.071;-0.044]
EAST 0.092[-0.077; 0.264] -0.024[-0.122; 0.072] -0.009[-0.120; 0.100] -0.089[-0.333; 0.148]

Table 1: Linear effects on ηπ̃1 ,ηπ̃2 ,ηπ̃3 and ηπ̃4 for PCS.

Table 1 displays the estimates for the covariate effects on the predictors of the sequential logits for

the self-rated health outcomes. Here, we display the medians of the posterior distributions with

the 95% (symmetric) credible intervals denoted in the brackets. In order to conserve space, we do

not display the estimates for the the random effect estimates for the individual federal states but

show them separately in Table 5 in the appendix.

While the parameter π̃l can be interpreted individually, we will not analyze these effects in detail.
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Here, we restrict ourselves to noting that the effects of various variables differ significantly across

the range of parameters estimated, both for males and females. Regarding LOGINC in particular,

the effects are significantly different at the 5% level for different parameters.

males females
ηµ ηs ηµ ηs

const. 1.637[ 1.562; 1.713] 3.382[ 2.709; 4.029] 1.777[ 1.700; 1.852] 3.186[ 2.554; 3.760]
AGE 0.007[ 0.006; 0.008] -0.045[-0.057;-0.034] 0.005[ 0.004; 0.007] -0.031[-0.043;-0.021]

AGE2 0.000[ 0.000; 0.000] 0.000[ 0.000; 0.000] 0.000[ 0.000; 0.000] 0.000[ 0.000; 0.000]
LOGINC -0.034[-0.041;-0.027] 0.152[ 0.091; 0.211] -0.041[-0.048;-0.034] 0.123[ 0.066; 0.183]

GER -0.010[-0.016;-0.004] 0.045[-0.017; 0.103] 0.007[ 0.001; 0.012] 0.042[-0.011; 0.099]
EDU2 0.014[ 0.009; 0.019] -0.077[-0.125;-0.032] 0.008[ 0.002; 0.013] -0.079[-0.123;-0.036]
EDU3 -0.006[-0.013; 0.001] 0.084[ 0.016; 0.147] -0.013[-0.021;-0.005] 0.038[-0.029; 0.101]
EDU4 -0.038[-0.044;-0.031] 0.062[ 0.000; 0.126] -0.026[-0.033;-0.019] 0.017[-0.045; 0.080]
MAR2 0.008[-0.002; 0.019] 0.023[-0.063; 0.105] 0.002[-0.006; 0.011] 0.000[-0.071; 0.063]
MAR3 0.006[-0.004; 0.015] -0.028[-0.107; 0.056] -0.002[-0.011; 0.006] -0.059[-0.128; 0.014]
MAR4 -0.019[-0.036;-0.003] -0.115[-0.246; 0.007] -0.003[-0.013; 0.007] -0.001[-0.081; 0.075]
EAST 0.010[-0.001; 0.021] 0.008[-0.074; 0.094] 0.009[-0.002; 0.019] 0.004[-0.044; 0.049]

Table 2: Linear effects on ηµ and ηs for PCS.

Table 2 shows the estimates for the predictors ηµ and ηs analogously to the table above. Again it

may be noted that the effects are significantly different for males and females and that both for µ

and for s, various covariates are significantly different from zero. For µ, which yields the conditional

expectation, it should be noted that due to the linear transformation the effects are reversed, so

that for example LOGINC has a negative impact on the predictor but thus a positive impact on

the expected health, as one would expect. Concerning s, note that although a direct interpretation

of the parameter is not feasible, one can observe that LOGINC as well as other variables have a

significant impact which indicates complex changes across the covariate space that go beyond the

changes in the conditional mean on which standard regression techniques focus.

4.4 Considering the Distributional Changes

Since we employ non-linear link functions for our predictors, the impact of the variables varies

across the covariate space. This is well known from the literature on generalized linear models

(Nelder and Wedderburn, 1972). We thus employ effect displays as proposed by Fox (1987).

This means that we consider the effect of varying income while the other covariates are fixed at

a given value. Here we consider the effects for both males and females who can be considered

the “average Joe/average Jane”, i.e. who are 52 years of age, are married, live in North-Rhine

Westphalia (the most populous state in Germany), have standard secondary education and have

German nationality.5

5See Section A.1 in the appendix for the covariates’ distributions underlying this choice. For the continuous
variable age we consider the arithmetic mean in our sample, while for the other categorical variables we consider
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In assessing the health differentials associated with different income levels, we focus on relative

rather than absolute differences.6 This choice is based on the recommendation to use relative

inequality measures when only concerned mainly about assessing health inequality rather than

the absolute level of a health risk (see Harper et al., 2010). While the absolute levels of any

health measure are clearly of importance in any inter-temporal or international comparison, the

comparison we pursue here is between different metrics. A cross-metric comparison can only be

based on a relative assessment, as their absolute measures cannot be compared for an assessment

of inequality.

Figure 2 makes visible how the distribution of self-rated health changes with income, displaying

the change in the probability of falling into one of five self-rated health states as one moves from

the bottom to the top of the income distribution. These estimates are derived from the median

results displayed in Table 1. We consider the income range from 5,000e to 100,000e. The former

constitutes the lower bound as only 1% of our estimates fall below this sample due to social se-

curity levels in Germany; the latter is chosen as the upper bound because it constitutes roughly

the threshold to the most well-off 1% of the population. This income range thus encompasses the

whole population bar the bottom and the top percent of the income distribution.

From the visualization alone, one can observe that the nature of the change in the health distribu-

tion across the income distribution is far from equiproportional. For example, while the share of

respondents in “very good” health is nearly constant across the income range, the probability of

being in “good” health increases 147% (from 0.20 to 0.49) from the bottom to the top of the income

range. About 42% of respondents at both ends of the income range report being in “fair” health,

but far fewer wealthier respondents are located at the bottom end of the health distribution: the

share of people in “poor” health declines 81% (from 0.26 to 0.04) as one moves from the bottom

to the top of the income distribution. For “very poor” health, the decrease is even larger at 88%

(from 0.09 to 0.01). This shows that dichotomizing the outcome, e.g. by subsuming the levels

1-2 (not healthy) and 3-5 (healthy), may hide important relative variation within the aggregated

categories.

In Figure 3, we focus on the difference in the conditional distributions of health status for men

and women with a net equivalent income of 15,000e (roughly corresponds to the 25th percentile,

i.e. the median for the poorer half of the population) versus 30,000e (roughly corresponds to the

the mode. See Section A.5 in the appendix for other covariate combinations. Note also that it would be possible to
consider average marginal effects rather than the marginal effects at the representative values. For the purposes of
our paper, the marginal effects at the representative values were deemed more intuitive and are thus considered in
the the following.

6The distinction between relative and absolute inequality has been discussed extensively in the health inequal-
ities literature (see Mechanic, 2002; Oliver et al., 2002; Harper et al., 2010) and it has been noted that choosing
relative over absolute measures of health inequality constitutes “an inherently value-laden enterprise, and judgments
about justness, fairness, and social acceptability are inextricably bound to the selection of measures and statistical
strategies” (Harper et al., 2010, p.6).
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Figure 2: Conditional income effects for self-rated health for average Joe (left) and average Jane
(right). From red (bad health) to dark green (very good health).

75th percentile, i.e. the median for the richer half of the population), with the other covariates

fixed at the values to yield “average Joe” and “average Jane”. The largest absolute differences

occur near the center of the health distribution, i.e. for poor, fair, and good health. Despite the

lower absolute levels, there are also noticeable changes at the bottom end of the health scale when

moving from the lower to higher income level. Meanwhile, there is little change at the higher end

of the distribution. This indicates that (more) money cannot buy (more) good health; but income

does seem to contribute significantly to safeguarding against bad health outcomes – especially very

bad ones, as we will see.

Let us contemplate the risk of falling in one of the lowest response categories for health across the

two distributions (for income of 15,000eversus 30,000e). We can define the following three health
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Figure 3: Conditional Health Distributions (SRH) for 15,000e (top) and 30,000e (bottom) for
average Joe (left) and average Jane (right). With added focus on RM1 by magnification.

measures, which dichotomise the distribution in three different ways:

RM1 = P (HM ≤ bad health) with HM ∼ DM
x ,

RM2 = P (HM ≤ poor health) with HM ∼ DM
x ,

RM3 = P (HM ≤ ok health) with HM ∼ DM
x ,

where the health measures RM1,RM2,RM3 simply denote the risk of falling in one of the lowest

response categories as given by the multinomial health distribution DM
x which is dependent on the

covariate combination under consideration, x.

RM3 subsumes all health statuses below good into one category, thus representing the risk of

“not feeling good about one’s health”. The probability of falling into one of these three lowest

categories changes from 0.67 to 0.61 among men when moving from the conditional distribution

for 15,000e to that for 30,000e – a change of 10%. For women, the probability falls from 0.58
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to 0.50, a change of 13%. Although these differences are statistically significant, the magnitude is

not substantively grave.

Secondly, we consider RM2, which by construction directs the attention towards those who are

in poor or bad health (the bottom two health categories). This measure can therefore be seen

as the risk of not only “not feeling good” but as “not even feeling ok”. The change is of similar

magnitude in absolute numbers, but much greater in relative terms. When income is doubled for

men, the risk of low health status decreases by 34%, from 0.20 to 0.14, for men, while for women

it falls 30%, from 0.22 to 0.15. The relative income-related change in risk of low health status is

thus roughly 2-3 times as great when we aggregate the bottom two health categories as when we

consider the bottom three categories together.

The third measure, RM1, is the most extreme measure which focusses on those who self-report a

truly bad health. Thus it expresses the risk of positively “feeling bad about one’s health”. For this

measure, the relative numbers are even more striking, with the probability of low health status

decreasing by 39% and 40% for men and women respectively (from .04 to .03) as income doubles.

The comparison of the three measures thus shows that the impact of household income on health

seems to be much more drastic at the lower end of the self-rated health variable. Not surprisingly,

this is also true when we consider the quasi-continuous PCS health score.

To characterize the relationship between income and the risk of low health using the SF12, we

display six distributional measures in Figure 4. The blue line denotes males and the red line

females, with the dashed lines denoting the 95% pointwise credible intervals.

The left-hand panels in 4 show the expectation (µ), the standard deviation (σ) and the skewness

(γ1) of the conditional distribution of the SF-12 across the full range of income. Note that we

display these measures for the untransformed, original PCS variable, so that the effects are directly

interpretable. The right-hand panels depict three measures of the risk of low health analogous to

the ones used above. We portray the conditional probability that a person will fall below threshold

values on the PCS scale representing the lower half (i.e. in the lowest 50%, denoted T0.50), the

lowest quintile (i.e. the lowest 20%, denoted T0.20) and the lowest vingtile (i.e. the lowest 5%,

denoted T0.05) of the aggregate health distribution, depending on their income.7 These measures

can thus be seen as analogous variants of the risk measures RM1, RM2 and RM3 from above,

indicating the risk of bad health. The measure RC0.50 thus yields the level of risk of belonging to

the lower half of the health distribution, which can be seen as roughly equivalent to “not feeling

good about one’s health”. Accordingly, RC0.20 yields the level of risk of belonging to the “sickest”

20% of the population, which can be seen as roughly equivalent to people associating the health

status as slightly sick, that is no longer “o.k.”. Lastly, RC0.05 denotes the risk of falling into the

7These values are obviously not the only viable options but chosen on the grounds as to provide roughly analogous
risk measures to the risk measures based on the self-rated health responses. More research is needed concerning
the use of adequate scalar measures to assess this and other aspects of conditional health distributions.
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Figure 4: Left: Effect of income on mean, standard deviation and skewness of PCS. Right: Effect
of income on risk of falling below lowest quintile, decile and vingtile of PCS.

lowest 5% of the health distribution, which would be associated with severe sickness and thus can

roughly be seen as the equivalent to a person positively “feeling bad about one’s health”. More

formally, the second set of risk measures can be defined as

RC0.05 = P (HC ≤ T0.05) with HC ∼ DC
x ,

RC0.20 = P (HC ≤ T0.20) with HC ∼ DC
x ,

RC0.50 = P (HC ≤ T0.50) with HC ∼ DC
x ,

where the health variable HC is now considered as continuous. The risk is thus given by the condi-

tional distribution, DC
x , which the variable is thought to follow for an individual with characteristics

x, and the threshold value Tα, which we take to be a quintile from the aggregate distribution of

HC.

The estimated full conditional distributions for the SF-12 for ”average Joes” and ”average Janes”
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Figure 5: Conditional health distributions (PCS) for average Joe (left) and average Jane (right)
for 15,000e (top) and 30,000e (bottom). With added focus on RC0.05 by magnification.

are displayed in Figure 5. Again we focus on the contrast between 15,000e, representing the median

income level of the poorer half of the sample population, and 30,000e, representing the median

income level of the richer half of the sample population. While the displayed distributions appear

rather similar at the first glance, a closer look at the different distributions’ attributes reveals some

substantial differences. For an annual net equivalent income of 15,000e the average physical health

value is 45.3 and 45.1 for men and women respectively. In contrast, for an income of 30,000e ,

we obtain 46.7 and 46.6. Thus the average male described above with a net equivalent income of

30,000e roughly has a 3% higher expected physical health score as an otherwise equivalent male

with a net equivalent income of 15,000e. For a female the difference is also roughly 3%. This

effect is well known and discussed extensively in the literature.

Next to the mean, the standard deviation also decreases from 9.5 to 8.8 and 9.3 to 8.7 for men

and women respectively. This 7% decrease means that men and women with higher income face a

lower risk to experience very low health outcomes for a given mean. Additionally, the distribution
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becomes slightly more right skewed, with the skewness increasing from -0.4 to -0.3 for both men and

women. This constitutes a 4% and 5% increase respectively. This change in skewness also increases

the probability of an individual finding himself on the lower outskirts of the health distribution.

These results thus indicate that the nature of the association of income with health beyond the

mean, with the risk of very low health scores - indicating severe sickness - driven not only by a

deteriorating mean but also by a higher standard deviation and a less left-skewed distribution.

As indicated by the higher order moments, the increase in the health risks are higher when directing

the focus further towards the lower end of the health spectrum. Considering RC0.50 for males, we

still find a moderate change in the risk from 0.70 to 0.65, constituting a decrease of 6%. For

women, we see a decrease from 0.70 to 0.65, i.e. by 7%. This change can be seen as of a similar

magnitude as RM3 and also similar to the relative change observed for the expected outcome (see

above). The relative difference increases to 20% (0.27 to 0.22) and 23% (0.27 to 0.21) for men

and women respectively, when considering RC0.20. The greatest relative effect is seen for RC0.05,

which sees the risk of falling into the lowest health quintile of the population at 0.06 for “average

Joe” and 0.05 for “average Jane” at 15,000e, whereas having an income twice as high reduces that

risk down to 0.03 for both, a decrease of 39% and 42% respectively. In other words, the risk of

extremely bad health can be roughly halved by doubling the net equivalent income from 15,000eto

30,000e. Obviously, the magnitude of this effects is structurally different from the observed 3%

increase observed for expected health.

4.5 Implications for Health Assessment

Considering the whole conditional health distribution and changes thereto over the covariate space

thus yields potentially starkly different magnitudes for the assessment of the association between

income and health. The relative differences are summarized in Table 5. The relative difference is

the absolute difference divided by the measure for 15,000e.

The association between income and health becomes significantly greater if we focus on the lower

end of the health spectrum. The mean relative difference is around 3%, while at the lower end of

the health spectrum RM1 and RC0.05 relative differences in health by income are on the order of

39%-42% – i.e. more than tenfold greater.

The conventional perspective generates significant results that allow us to infer the existence of a

relationship between income and health. How does our more complicated statistical artillery help

us go beyond the results more easily generated using well-established mean-based analyses? The

answer lies in the fact that while average population health is an important construct for many

purposes, we cannot properly calculate the utility of alternative distributions of health using only
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males
15,000e 30,000e Relative Difference

RM3 0.67[ 0.67; 0.68] 0.61[ 0.60; 0.61] 10.11%[10.01%;10.20%]
RM2 0.20[ 0.20; 0.21] 0.14[ 0.13; 0.14] 33.64%[33.41%;33.87%]
RM1 0.04[ 0.04; 0.05] 0.03[ 0.03; 0.03] 39.21%[38.77%;39.71%]

µ 45.33[43.84;46.69] 46.65[45.11;47.97] 2.90%[ 2.27%; 3.40%]
RC0.50 0.68[ 0.63; 0.74] 0.65[ 0.59; 0.71] 5.53%[ 3.75%; 7.83%]
RC0.20 0.27[ 0.22; 0.33] 0.22[ 0.17; 0.28] 19.92%[15.14%;25.91%]
RC0.05 0.06[ 0.03; 0.08] 0.03[ 0.02; 0.06] 38.98%[30.05%;48.95%]

females
15,000e 30,000e Relative Difference

RM3 0.58[ 0.58; 0.58] 0.50[ 0.50; 0.50] 13.27%[13.15%;13.39%]
RM2 0.22[ 0.21; 0.22] 0.15[ 0.15; 0.15] 29.54%[29.32%;29.80%]
RM1 0.04[ 0.04; 0.05] 0.03[ 0.03; 0.03] 40.38%[39.96%;40.89%]

µ 45.09[43.69;46.36] 46.63[45.19;47.87] 3.43%[ 2.82%: 4.01%]
RC0.50 0.70[ 0.65; 0.75] 0.65[ 0.60; 0.71] 7.24%[ 5.14%; 9.48%]
RC0.20 0.27[ 0.23; 0.33] 0.21[ 0.17; 0.27] 22.83%[17.88%;28.13%]
RC0.05 0.05[ 0.04; 0.08] 0.03[ 0.02; 0.05] 42.36%[33.98%;50.58%]

Table 3: Seven measures on the health-income association.

this summary statistic because the utility function for health is generally thought to be concave. If

the utility gain from increases in health status at the low end of the health spectrum is greater than

at the high end, changes to the distribution of income that do not affect the mean health of the

population but lessen the number of people in very poor health would nevertheless be preferable

at a societal level. At a policy level, too, there are good reasons to care at least as much about the

risk of people being in poor health as about average health achievement in the population, since

the primary purpose of public or private health insurance is to cover the cost of caring for those

who are ill, rather than focussing on improving the health of the already healthy even further.

When we think about the relationship between health and income, then, we want to be able to

pay attention not only to the average effect of income on health, but also to the where in the

health distribution people of various incomes are more likely to fall. That is what SADR allows

us to do. The results we have shown here demonstrate that while the income-health relation may

not be of great magnitude if we focus only on average health, the income-illness relationship (i.e.,

concentrating on the ill) is considerable larger.

5 Conclusion

In this paper, we follow other recent publications that have pointed to the shortcomings of re-

gression based assessments focussing solely on the expected outcome. In order to look beyond the

mean, we propose the use of structured additive distributional regression (SADR). These models

allow for the estimation of full conditional health distributions for both multicategorical and con-
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tinuous measures of health outcomes.

Using health data from the German Socio-Economic Panel, we apply SADR and find that the

standard expectation-based perspective may neglect potentially important aspects of the relation-

ship between health and income. In particular, we show that the risk of being in very poor health is

much more strongly related to income than the average health status. We find that the risk for the

“average Joe” and “average Jane” of belonging to the severely sick population increases between

39% and 42% when the net equivalent household income is changed from the median income of

the poorer half of the population (15,000e) to the median income of the richer half (30,000e) in

Germany. This exceeds the income-related change in average health status that is estimated using

standard estimation techniques by more than tenfold. This suggests that mean-based perspectives

may underestimate the effect of changes in the income distribution on well-being (given a concave

health-utility relationship) and/or on health care expenditures (given that health care is more cost

intensive at the lower end of the health distribution).

Based on the findings of this paper, we propose that future estimates of the health-income rela-

tionship take into account not only the mean reported health (or the probability of a dichotomized

health measure in an income group), but also employ risk measures focusing on very poor health

outcomes like the the ones used in this paper. Not only would this put more emphasis on the the

lower end of the spectrum, where we argue it is merited. In addition, it would address problems

associated with non-linearities with respect to well-being and/or health care and mean regression

(see above). A distributional approach and risk-based measures such as the ones we propose may

also unify the interpretation of the otherwise starkly different results that can arise depending on

whether discrete data (and odds-ratios) or continuous data (and arithmetic means) are used for the

assessment. We find that using SADR, the estimated magnitude of the income-health relationship

is very similar for the single-item self-rated health measure and the SF-12. The distributional

approach thus may contribute to the convergence of findings from the epidemiological literature

(which mainly employs discrete measures like self-rated health and odds ratios) and the health

economics literature (which tends to employ continuous measures like the SF-12 and arithmetic

means).

Several extensions to the present approach might be considered. One particularly interesting

modification would be to model the full joint distribution of health and income with respect to

other covariates such as age and education. This would be feasible applying bivariate structured

additive distributional regression, which uses copula structures to model the interrelations of the

dependent variables (see Klein and Kneib, 2016) and would allow for the construction of conditional

concentration curves across the covariate space. While technically challenging, this approach

would not only incorporate the workhorse method in the health economics literature into the

proposed framework, but would also allow researchers to consider distributional aspects beyond
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the mean without the need to define threshold values. Such advancements are needed because,

to paraphrase Thomas Piketty (2014), failing to deal with the distributional nature of the health-

income relationship rarely serves the interests of the least well-off.
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A Appendix

A.1 Data

As primary source for our data, we use the SOEP database (Wagner et al., 2007). We use all

available samples in 2012, i.e. samples A-L. Concerning the wave, we only consider the wave from

2012, i.e. wave BC, for all questions on current status. For questions asked with respect to the

whole last year, we consider questions from 2013, referring back to 2012, i.e. questions from wave

BD. Only taking those values for which we have the full set of variables, as described below, this

yields 16,732 observations (7,820 males and 8,903 females).

As for the dependent variable we simply take the single item self-rate health response (bcp91) on

the one hand. On the other hand, we consider the physical condition score from the SF-12 (PCS)

which is directly available via the HEALTH file in the SOEP.

As a variable for income we use the household’s net income as the base (i1110213 from the

BCPEQUIV file) and divide it by the equivalised household size, based on the OECD equivalence

scale (using the variables bchhgr and bckzahl from the BCKIND file). Thereby the first adult is

given a weight of 1, whereas to every additional person aged 14 and over is given the weight of 0.5.

Each child aged 13 and under is given a weight of 0.3. Each individual living in the household is

then given the household’s net equivalent income.

For the explanatory variable age, we simply use the year of birth (gebjahr) and subtract it from

2012, while the sex is determined by the variable bcsex.

The education level is taken on grounds of the variable ISCED12 (from the person-related status

and generated variables PGEN). All observations equal or lower than 5 (higher vocational training)

are put in the category no higher education with only those persons with a value of 6 (higher

education) considered for the category higher education.

The nationality is obtained directly from the SOEP based on the person’s contemporary status

(BCP139).

The marrital status is taken from the 6 item response to the family status available in the SOEP

(BCP129), which is reduced to four categories as described in the text.

For the spatial effect we use the variable bcbula with the variable east set to unity for all federal

states formerly belonging to the German Democratic Republic, including the whole of Berlin. West

Berlin (as defined prior to 1990) is not accounted for in our sample and treated like a state from

the former East.
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A.2 Alternatives to SADR

As pointed out in the text, regression approaches beyond the mean are receiving increasing at-

tention in the health-related literature. In this section, we compare SADR to three prominent

alternative estimation approaches that allow for the consideration of the outcome in a distribu-

tional perspective rather than focussing solely on the expectation of the response variable.

A.2.1 Distribution regression

Chernozhukov et al. (2013) recently proposed the estimation of conditional distributions by rep-

resenting the distribution’s cdf through a finite set of ordered response outcomes whose transition

probabilities are modelled by regression coefficients that are allowed to vary across the discretized

space of the response. Thus a flexible non-parametric estimate of the conditional distribution can

be obtained. This form of model is termed ‘distribution regression’ in the econometric literature

and is closely related to the so-called ‘conditional transformation models’ (Hothorn et al., 2014)

in the statistical literature.

Similarly to quantile regression, the advantage of this approach over SADR is the avoidance of

a parametric assumption for the conditional distribution. However, the approach suffers from

the drawback that it is generally less stable than SADR, especially if the sample size is limited

and/or the model becomes highly complex due to very fine discretization of the response variable’s

support. Under the (without a doubt strong) assumption that a suitable parametric representation

of the conditional distribution can be found, SADR provides a much more parsimonious and stable

model, especially for continuous distributions that require a fine discretisation.

A.2.2 Quantile regression

Since their proposition by Koenker and Bassett (1978), quantiles have enjoyed a growing popularity

and numerous extensions have been proposed (see among others Bondell et al., 2010; Galvao

et al., 2013; Waldmann et al., 2013). Quantile regression allows for the estimation of conditional

quantiles, i.e. qτ (Y |x1, . . . , xK), which can be estimated in the usual regression set-up by using an

asymmetrically weighted `1-norm as a loss function rather than the `2-norm used for the least-

squares estimation. Using these conditional quantile estimates qτ for a sufficiently rich grid across

τ ∈ (0, 1), it is in principle straight forward to retrieve the whole conditional distribution.

Like distribution regression, the quantile-based approach has the advantage that it doesn’t require

a parametric assumption for the response distribution. However, it also has the drawback that it is

generally to be seen as less stable, especially in the tails of the distribution and without additional
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precautions it may suffer from quantile-crossing. Furthermore, the quantile-based based approach

is ill-suited for ordered categorical responses which are of great importance in the health literature.

Under the assumption that a sufficiently good parametric approximation to the conditional distri-

bution of the response can be found, SADR thus generally provides more stable estimates for the

conditional distributions than an approach based on quantile regression, especially for distributions

of non-continuous outcomes, such as SRH.

In summary, SADR arguably provides a somewhat assumptive but very stable model framework

for the estimation of conditional health distributions that works for both ordered categorical and

continuous outcome distributions.

A.2.3 Recentred influence functions

Another distributional perspective which has gained a lot of traction in recent years is the use

recentred influence functions (RIF), put forward by Firpo et al. (2009). Also aiming at an ana-

lysis beyond the mean, RIF-based analysis focusses on the marginal rather than the conditional

distribution of response. In the linear model one can easily show that both interpretations relate

to the same regression effects due to the linearity of the relation between the expectation of the

response and the regression coefficients. However, when moving towards distributional regression,

all regression specifications are inherently depending on a nonlinear relation between the response

and the regression coefficients, even if a purely parametric specification is chosen for the predictor.

As a consequence, a model fitted for the conditional, independent perspective does not easily allow

to transfer results to the marginal perspective. To overcome this difficulty, (Firpo et al., 2009) in-

troduced ‘recentered influence functions’ that rely on the notion of influence functions from robust

statistics where one aims at identifying the impact of a change in the covariate distribution on mar-

ginal features of the response distribution. This is accomplished by a linearisation of the influence

function such that simple regression steps can be applied to a transformed response variable.

The main difference between SADR and RIF from a conceptual perspective then relates to the

interpretation of changes in the covariates and their induced changes in the response distribution.

In the conditional setting, we are interested in changes in the covariates of the individual (or,

equivalently, the group of individuals that shares the same covariate information) and the associ-

ated changes in the response distribution given this set of covariates. In the marginal setting, one

rather evaluates the change in the population distribution of the response when the population

distribution of the covariate changes.

Carrieri and Jones (2016) utilise recentered influence functions to study the effect of changes in

income on the population distribution of certain biomarkers associated with different types of
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diseases. While approaching a conceptually related question as we do, our focus is different in

the sense that we are exactly interested in who is benefitting from larger income or, vice versa,

who suffers from poverty in terms of health-related outcomes. This is a question that requires a

conditional perspective which can not be taken based on recentered influence functions.

A.3 Model Selection

For model selection, we use the DIC which has been shown to work well for distributional regression

models (Klein et al., 2015). As an exemplary application, we consider the comparison of three

regression models for the PCS with differing distributional assumptions. The issue of variable

selection could be addressed analogously but is left aside here for reasons of brevity. For the model

selection, we thus confine ourselves to a comparison of the following three models:

M1 As benchmark model for the PCS, we consider a homoskedastic, gaussian model. In this

model the focus is solely directed towards the expectation (µ), with the other parameter (σ2)

considered a nuisance parameter and set as a constant. This is the standard assumption used

for most generalised linear models employed in the literature on the health-income relation.

M2 As a second model, we consider a heteroskedastic, gaussian model. In this model the variance

is now no longer considered a constant as we explicitly allow the standard deviation of the

normal distribution to vary across the covariate space. While this already considerably

enhances flexibility, the normal distribution is by definition symmetric such that it does not

allow for the modelling of changing skewness over the covariate space.

M3 As a third model, we consider a two parameter gamma distribution with both parameters

allowed to vary across the covariate space. In contrast to the normal distribution, the gamma

distribution is not confined to a symmetric form and varies its skewness in relation to its

scale parameter.

Modelassumption male female
M1 N (µ varying, σ2 constant) 19871.1 23154.2
M2 N (µ varying, σ2 varying) 19484.2 22881.6
M3 Γ (µ varying, σ varying) 18977.6 22492.3

Table 4: DIC results on distributional assumptions for PCS.

The resultant DICs for these three models are displayed in Table 4. The DICs displayed in Table

4 indicate that out of the three distributions the gamma distribution (M3) is the best suited

distribution, as it has the lowest DIC both for males and females.
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A.4 Random Effects

Table 5 displays the random effects for the individual federal states for the multinomial. The

federal states are are abbreviated according to the abbreviations for regions at the EU level8.

As one can observe there are significant changes associated with the different states, which is in

line with the literature on regional health differences (Eibich and Ziebarth, 2014).

males
ηπ̃1 ηπ̃2 ηπ̃3 ηπ̃4

SH -0.229[-0.413;-0.036] 0.113[ 0.008; 0.225] 0.001[-0.120; 0.135] -0.057[-0.323; 0.228]
HH -0.212[-0.390;-0.020] -0.247[-0.352;-0.135] -0.058[-0.177; 0.074] 0.082[-0.178; 0.359]
NI -0.111[-0.296; 0.080] -0.106[-0.207; 0.002] 0.347[ 0.230; 0.480] -0.437[-0.689;-0.151]

HB 0.846[ 0.664; 1.036] 0.122[ 0.018; 0.233] -0.498[-0.618;-0.363] 0.558[ 0.303; 0.850]
NW 0.091[-0.092; 0.283] -0.005[-0.105; 0.103] 0.097[-0.019; 0.226] -0.180[-0.430; 0.100]
HE -0.170[-0.353; 0.021] -0.043[-0.145; 0.065] 0.076[-0.041; 0.206] -0.043[-0.294; 0.233]
RP 0.180[-0.001; 0.374] 0.076[-0.024; 0.185] -0.059[-0.181; 0.073] -0.226[-0.486; 0.056]

BW -0.225[-0.407;-0.033] 0.003[-0.098; 0.112] 0.014[-0.102; 0.144] -0.546[-0.798;-0.271]
BY -0.169[-0.350; 0.021] -0.124[-0.225;-0.015] 0.179[ 0.059; 0.309] 0.351[ 0.101; 0.631]
SL 0.558[ 0.381; 0.751] 0.478[ 0.380; 0.590] 0.143[ 0.026; 0.269] 1.114[ 0.858; 1.390]
BE 0.085[-0.107; 0.272] 0.135[ 0.017; 0.245] 0.063[-0.078; 0.199] 0.082[-0.211; 0.364]
BB 0.185[-0.016; 0.375] -0.131[-0.250;-0.020] 0.245[ 0.101; 0.381] 0.085[-0.211; 0.373]
MV 0.223[ 0.019; 0.416] 0.103[-0.016; 0.216] -0.206[-0.346;-0.068] 0.060[-0.231; 0.348]
SN 0.209[ 0.010; 0.398] 0.038[-0.079; 0.152] 0.051[-0.092; 0.186] -0.402[-0.691;-0.119]
ST -0.210[-0.413;-0.013] 0.237[ 0.118; 0.349] 0.173[ 0.032; 0.308] 0.541[ 0.249; 0.825]
TH 0.124[-0.079; 0.321] -0.076[-0.194; 0.037] -0.048[-0.186; 0.090] 0.329[ 0.042; 0.618]

females
ηπ̃1 ηπ̃2 ηπ̃3 ηπ̃4

SH -0.285[-0.473;-0.091] -0.168[-0.271;-0.056] 0.001[-0.078; 0.082] 0.078[-0.113; 0.276]
HH -0.005[-0.190; 0.195] -0.309[-0.413;-0.197] -0.041[-0.118; 0.043] -0.014[-0.202; 0.190]
NI 0.216[ 0.026; 0.412] 0.170[ 0.069; 0.277] -0.086[-0.163;-0.005] 0.215[ 0.031; 0.416]

HB 0.275[ 0.087; 0.471] 0.051[-0.051; 0.165] 0.182[ 0.104; 0.267] 0.306[ 0.114; 0.518]
NW 0.175[-0.013; 0.375] 0.171[ 0.070; 0.277] -0.050[-0.128; 0.033] -0.036[-0.225; 0.162]
HE 0.126[-0.061; 0.324] 0.095[-0.007; 0.202] -0.044[-0.120; 0.038] -0.246[-0.432;-0.050]
RP -0.040[-0.226; 0.160] 0.094[-0.007; 0.204] 0.169[ 0.093; 0.253] -0.376[-0.567;-0.168]

BW 0.317[ 0.131; 0.514] -0.095[-0.195; 0.015] -0.075[-0.152; 0.006] -0.046[-0.234; 0.157]
BY -0.130[-0.316; 0.066] 0.072[-0.029; 0.181] 0.000[-0.079; 0.082] 0.135[-0.055; 0.335]
SL -0.125[-0.306; 0.074] 0.154[ 0.055; 0.265] 0.066[-0.013; 0.146] 0.358[ 0.169; 0.554]
BE -0.320[-0.517;-0.126] 0.313[ 0.195; 0.424] -0.093[-0.189;-0.003] 0.755[ 0.528; 0.968]
BB 0.230[ 0.024; 0.421] -0.177[-0.295;-0.068] 0.037[-0.066; 0.128] 0.151[-0.081; 0.365]
MV -0.182[-0.389; 0.017] 0.230[ 0.114; 0.341] 0.267[ 0.164; 0.359] -0.520[-0.751;-0.300]
SN -0.131[-0.332; 0.068] 0.128[ 0.011; 0.238] 0.118[ 0.017; 0.209] -0.005[-0.232; 0.210]
ST 0.997[ 0.792; 1.200] -0.130[-0.247;-0.019] -0.004[-0.104; 0.086] -0.141[-0.372; 0.070]
TH -0.024[-0.230; 0.174] -0.092[-0.209; 0.018] -0.178[-0.278;-0.087] 0.188[-0.038; 0.400]

Table 5: Random effects for federal states on ηπ̃1 ,ηπ̃2 ,ηπ̃3 and ηπ̃4 for SRH.

Table 6 displays the random effects for the parameters of the gamma distribution.

As for the multinomial case, we can observe significant health variations for both parameters

8See http://www.bmelv-statistik.de/de/daten-tabellen-suche/abkuerzungen-der-bundeslaender/.
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for some federal states, although in case of σ significance is restricted to Hesse and Baden-

Wuerttemberg for males alone.

males females
ηµ ησ ηµ ησ

SH 0.011[-0.010; 0.031] -0.009[-0.161; 0.160] 0.008[-0.012; 0.028] -0.008[-0.092; 0.070]
HH -0.025[-0.049;-0.003] -0.045[-0.221; 0.116] -0.017[-0.039; 0.003] 0.019[-0.055; 0.128]
NI 0.000[-0.019; 0.017] -0.046[-0.162; 0.080] 0.005[-0.013; 0.021] -0.025[-0.110; 0.036]

HB -0.003[-0.025; 0.022] -0.119[-0.335; 0.046] -0.003[-0.026; 0.020] -0.009[-0.102; 0.071]
NW 0.007[-0.011; 0.020] -0.022[-0.123; 0.095] 0.012[-0.004; 0.026] -0.007[-0.070; 0.056]
HE 0.000[-0.019; 0.016] 0.135[ 0.013; 0.294] 0.000[-0.017; 0.016] 0.029[-0.033; 0.124]
RP 0.009[-0.010; 0.028] 0.024[-0.111; 0.164] 0.003[-0.015; 0.021] -0.017[-0.099; 0.046]

BW -0.010[-0.026; 0.004] 0.219[ 0.104; 0.352] -0.007[-0.023; 0.006] 0.025[-0.036; 0.109]
BY -0.006[-0.023; 0.009] 0.017[-0.095; 0.134] -0.002[-0.017; 0.013] 0.013[-0.047; 0.081]
SL 0.019[-0.006; 0.047] -0.147[-0.369; 0.027] 0.002[-0.021; 0.026] -0.017[-0.125; 0.062]
BE -0.002[-0.024; 0.020] -0.127[-0.297; 0.043] 0.001[-0.021; 0.020] -0.001[-0.078; 0.082]
BB 0.002[-0.019; 0.023] 0.095[-0.057; 0.263] 0.002[-0.017; 0.022] 0.016[-0.061; 0.115]
MV 0.003[-0.021; 0.025] 0.068[-0.095; 0.272] 0.011[-0.012; 0.033] -0.001[-0.082; 0.082]
SN -0.001[-0.022; 0.019] -0.058[-0.203; 0.074] -0.001[-0.022; 0.019] -0.006[-0.088; 0.064]
ST 0.007[-0.014; 0.031] -0.013[-0.182; 0.149] 0.003[-0.018; 0.026] -0.017[-0.121; 0.061]
TH -0.008[-0.030; 0.015] 0.034[-0.134; 0.210] -0.015[-0.036; 0.007] 0.010[-0.068; 0.107]

Table 6: Random effects for federal states on ηµ and ησ for PCS.

A.5 Other Covariate Combinations

In this section we show the seven health measures displayed in Section 4.5 for “average Joe” and

“average Jane” for a different set of characteristics. For the sake of brevity and simplicity, we

constrain the sets considered to 7 different sets, always varying only one covariate while keeping

all the other covariates at the values used for “average Joe” and “average Jane”.

Tables 7 and 8 display the seven health measures for two other ages, namely the first and the third

quartile of the ages in the sample: 40 years and 66 years, respectively.

As can be seen from the tables, the general structure persists, whereby the differences between the

health measures for the two different income levels becomes more pronounced as the focus is shifted

towards the lower end of the health spectrum. Moreover, one may note that the health situation

is generally better for younger individuals than for older individuals, which is to be expected given

the physical deterioration of the body as part of the ageing process.

Table 9 displays the seven health measures for non-German nationals. Again the basic pattern

remains such that income related differences are more more pronounced (in relative terms) in the

lower end of the health spectrum. One other thing which can be observed from the table is the

lower health risks and slightly better average health enjoyed by non-German nationals, which is in

line with the healthy-migrant effect found in the literature (see Bjornstrom and Kuhl, 2014).
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Table 10 displays the seven health measures for individuals in the fourth education level, i.e. those

individuals with higher education. Again, the basic pattern remains in the sense that income

related differences are significantly higher when focussing on the lower end of the health spectrum.

As one would expect, higher education levels additionally mean a higher average health outcome

and lower risk measures for both men and women, c.p.

Table 11 displays the seven health measures for individuals in the third marrital status, i.e. those

individuals who are sinlge, which is the second most frequent observed marrital status in our

sample. As above, the basic pattern is such that income related differences are significantly higher

when looking at the lower end of the health spectrum. In terms of the absolute levels, we observe

a slightly lower average health and slightly elevated risks, which is reasonable given the positive

health effects that stable relationships are thought to have.

Tables 12 and 13 display the seven health measures for two other federal states in Germany, namely

BadenWurttemberg and Mecklenburg-Western Pomerania. BadenWurttemberg is a very wealth

state in the South-West of Germany while Mecklenburg-Western Pomerania is an economically

rather depressed state in the North-East of Germany. As can be seen from the tables, the general

structure persists again, i.e. the differences between the health measures for the two different

income levels becomes more pronounced as the focus is shifted towards the lower end of the health

spectrum. As one would expect the wealthier federal state BadenWurttemberg also features better

health measures than the poorer Mecklenburg-Western Pomerania, which is to be expected given

the positive effects of gdp on state finances and thus available funds for the health infrastructure

in these regions.

males
15,000e 30,000e Difference

RM3 0.53[ 0.53; 0.53] 0.46[ 0.45; 0.46] 13.94%[13.81%;14.07%]
RM2 0.14[ 0.14; 0.14] 0.09[ 0.09; 0.09] 37.39%[37.14%;37.63%]
RM1 0.03[ 0.03; 0.03] 0.02[ 0.01; 0.02] 42.79%[42.34%;43.30%]

µ 48.95[47.54;50.15] 50.18[48.72;51.36] 2.51%[ 2.94%; 1.96%]
RC0.50 0.55[ 0.49; 0.61] 0.49[ 0.43; 0.56] 10.30%[ 7.13%;13.42%]
RC0.20 0.14[ 0.10; 0.19] 0.10[ 0.07; 0.14] 30.14%[22.74%;37.99%]
RC0.05 0.02[ 0.01; 0.03] 0.01[ 0.00; 0.02] 52.95%[40.94%;63.24%]

females
15,000e 30,000e Difference

RM3 0.46[ 0.46; 0.46] 0.38[ 0.38; 0.39] 16.65%[16.51%;16.79%]
RM2 0.15[ 0.15; 0.15] 0.10[ 0.10; 0.10] 33.38%[33.13%;33.64%]
RM1 0.02[ 0.02; 0.03] 0.01[ 0.01; 0.01] 44.05%[43.60%;44.56%]

µ 48.50[47.12;49.65] 49.95[48.57;51.09] 2.99%[ 3.50%; 2.45%]
RC0.50 0.57[ 0.51; 0.63] 0.50[ 0.44; 0.57] 11.61%[ 8.65%;14.64%]
RC0.20 0.15[ 0.12; 0.20] 0.11[ 0.08; 0.15] 31.01%[24.75%;37.99%]
RC0.05 0.02[ 0.01; 0.03] 0.01[ 0.00; 0.02] 52.86%[42.70%;61.48%]

Table 7: Seven measures on the health-income association for 40yrs of age (all other covariates the
same).

37



males
15,000e 30,000e Difference

RM3 0.77[ 0.77; 0.77] 0.72[ 0.71; 0.72] 7.21%[ 7.13%; 7.28%]
RM2 0.27[ 0.27; 0.27] 0.19[ 0.18; 0.19] 30.32%[30.12%;30.56%]
RM1 0.06[ 0.06; 0.06] 0.04[ 0.04; 0.04] 36.05%[35.63%;36.56%]

µ 41.10[39.48;42.51] 42.49[40.91;43.93] 3.38%[ 4.04%; 2.70%]
RC0.50 0.81[ 0.76; 0.85] 0.78[ 0.73; 0.84] 2.71%[ 1.47%; 4.24%]
RC0.20 0.43[ 0.37; 0.49] 0.37[ 0.32; 0.44] 12.99%[ 9.53%;17.13%]
RC0.05 0.13[ 0.09; 0.18] 0.09[ 0.06; 0.13] 29.29%[22.27%;37.06%]

females
15,000e 30,000e Difference

RM3 0.70[ 0.70; 0.70] 0.63[ 0.63; 0.63] 9.66%[ 9.56%; 9.76%]
RM2 0.31[ 0.30; 0.31] 0.23[ 0.23; 0.23] 25.22%[25.02%;25.46%]
RM1 0.07[ 0.07; 0.07] 0.04[ 0.04; 0.05] 36.48%[36.05%;36.99%]

µ 40.83[39.25;42.18] 42.49[40.95;43.83] 4.07%[ 4.77%; 3.36%]
RC0.50 0.83[ 0.79; 0.87] 0.80[ 0.75; 0.84] 3.73%[ 2.43%; 5.35%]
RC0.20 0.44[ 0.38; 0.50] 0.37[ 0.31; 0.43] 15.70%[12.28%;19.74%]
RC0.05 0.12[ 0.09; 0.16] 0.08[ 0.06; 0.12] 33.37%[26.40%;40.95%]

Table 8: Seven measures on the health-income association for 66yrs of age (all other covariates the
same).

males
15,000e 30,000e Difference

RM3 0.55[ 0.55; 0.55] 0.48[ 0.47; 0.48] 13.67%[13.54%;13.80%]
RM2 0.17[ 0.17; 0.17] 0.11[ 0.11; 0.11] 36.18%[35.92%;36.45%]
RM1 0.03[ 0.03; 0.03] 0.02[ 0.02; 0.02] 41.70%[41.21%;42.19%]

µ 46.39[44.77;47.91] 47.67[45.96;49.12] 2.75%[ 3.24%; 2.17%]
RC0.50 0.65[ 0.59; 0.72] 0.61[ 0.54; 0.69] 6.63%[ 4.53%; 9.52%]
RC0.20 0.23[ 0.17; 0.29] 0.17[ 0.12; 0.23] 23.44%[17.16%;30.42%]
RC0.05 0.04[ 0.02; 0.06] 0.02[ 0.01; 0.04] 43.76%[33.40%;55.07%]

females
15,000e 30,000e Difference

RM3 0.56[ 0.56; 0.56] 0.48[ 0.48; 0.49] 13.62%[13.49%;13.76%]
RM2 0.28[ 0.28; 0.29] 0.21[ 0.20; 0.21] 26.99%[26.74%;27.24%]
RM1 0.05[ 0.05; 0.05] 0.03[ 0.03; 0.03] 38.68%[38.21%;39.21%]

µ 44.34[42.71;45.83] 45.92[44.27;47.32] 3.55%[ 4.11%; 2.90%]
RC0.50 0.74[ 0.68; 0.79] 0.69[ 0.62; 0.75] 6.52%[ 4.50%; 8.94%]
RC0.20 0.30[ 0.24; 0.36] 0.23[ 0.17; 0.30] 22.57%[17.10%;28.81%]
RC0.05 0.06[ 0.03; 0.09] 0.03[ 0.02; 0.06] 43.04%[33.41%;52.54%]

Table 9: Seven measures on the health-income association for non-German nationals (all other
covariates the same).
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males
15,000e 30,000e Difference

RM3 0.62[ 0.62; 0.62] 0.55[ 0.54; 0.55] 11.60%[11.48%;11.69%]
RM2 0.20[ 0.20; 0.20] 0.13[ 0.13; 0.13] 34.19%[33.94%;34.41%]
RM1 0.05[ 0.05; 0.05] 0.03[ 0.03; 0.03] 39.59%[39.14%;40.04%]

µ 46.16[44.83;47.44] 47.41[46.12;48.71] 2.71%[ 3.29%; 2.19%]
RC0.50 0.65[ 0.60; 0.70] 0.61[ 0.55; 0.67] 6.47%[ 4.36%; 8.67%]
RC0.20 0.24[ 0.20; 0.29] 0.19[ 0.15; 0.24] 21.43%[16.60%;27.13%]
RC0.05 0.05[ 0.03; 0.07] 0.03[ 0.02; 0.04] 41.04%[32.26%;50.20%]

females
15,000e 30,000e Difference

RM3 0.51[ 0.51; 0.52] 0.44[ 0.43; 0.44] 15.13%[15.00%;15.24%]
RM2 0.16[ 0.16; 0.17] 0.11[ 0.11; 0.11] 32.17%[31.93%;32.40%]
RM1 0.03[ 0.03; 0.04] 0.02[ 0.02; 0.02] 42.60%[42.15%;43.06%]

µ 46.34[45.08;47.53] 47.83[46.60;49.05] 3.22%[ 3.81%; 2.66%]
RC0.50 0.64[ 0.60; 0.69] 0.59[ 0.54; 0.64] 8.21%[ 6.20%;10.52%]
RC0.20 0.24[ 0.20; 0.28] 0.18[ 0.15; 0.22] 23.80%[19.28%;28.84%]
RC0.05 0.05[ 0.03; 0.06] 0.03[ 0.02; 0.04] 42.52%[34.90%;50.27%]

Table 10: Seven measures on the health-income association for the fourth education level (all other
covariates the same).

males
15,000e 30,000e Difference

RM3 0.73[ 0.73; 0.73] 0.67[ 0.67; 0.67] 8.20%[ 8.11%; 8.29%]
RM2 0.23[ 0.23; 0.24] 0.16[ 0.16; 0.16] 31.79%[31.57%;32.03%]
RM1 0.07[ 0.06; 0.07] 0.04[ 0.04; 0.04] 37.03%[36.59%;37.53%]

µ 45.14[43.59;46.61] 46.42[44.85;47.91] 2.85%[ 3.45%; 2.27%]
RC0.50 0.68[ 0.62; 0.73] 0.65[ 0.58; 0.70] 5.32%[ 3.47%; 7.46%]
RC0.20 0.29[ 0.23; 0.34] 0.23[ 0.18; 0.29] 18.82%[13.69%;24.39%]
RC0.05 0.07[ 0.04; 0.10] 0.04[ 0.02; 0.07] 36.79%[27.47%;46.40%]

females
15,000e 30,000e Difference

RM3 0.64[ 0.64; 0.64] 0.57[ 0.56; 0.57] 11.34%[11.23%;11.46%]
RM2 0.27[ 0.26; 0.27] 0.19[ 0.19; 0.20] 27.08%[26.86%;27.34%]
RM1 0.06[ 0.06; 0.07] 0.04[ 0.04; 0.04] 37.87%[37.41%;38.37%]

µ 45.07[43.65;46.43] 46.60[45.13;48.03] 3.39%[ 3.97%; 2.83%]
RC0.50 0.69[ 0.64; 0.74] 0.65[ 0.58; 0.70] 6.94%[ 5.02%; 9.37%]
RC0.20 0.28[ 0.23; 0.33] 0.22[ 0.17; 0.28] 21.91%[16.96%;27.61%]
RC0.05 0.06[ 0.04; 0.08] 0.03[ 0.02; 0.06] 41.03%[32.39%;49.66%]

Table 11: Seven measures on the health-income association for the third marrital status (all other
covariates the same).
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males
15,000e 30,000e Difference

RM3 0.60[ 0.59; 0.60] 0.52[ 0.52; 0.53] 12.50%[12.37%;12.62%]
RM2 0.17[ 0.17; 0.18] 0.11[ 0.11; 0.11] 35.70%[35.44%;35.98%]
RM1 0.04[ 0.04; 0.04] 0.02[ 0.02; 0.03] 40.93%[40.47%;41.44%]

µ 47.24[45.82;48.69] 48.48[47.06;49.95] 2.64%[ 3.19%; 2.06%]
RC0.50 0.61[ 0.55; 0.67] 0.56[ 0.50; 0.63] 7.33%[ 5.11%;10.10%]
RC0.20 0.21[ 0.16; 0.26] 0.16[ 0.11; 0.21] 23.18%[17.35%;29.86%]
RC0.05 0.04[ 0.02; 0.06] 0.02[ 0.01; 0.04] 42.91%[33.07%;53.63%]

females
15,000e 30,000e Difference

RM3 0.55[ 0.55; 0.56] 0.48[ 0.47; 0.48] 14.07%[13.95%;14.22%]
RM2 0.20[ 0.20; 0.21] 0.14[ 0.14; 0.14] 30.39%[30.17%;30.69%]
RM1 0.04[ 0.04; 0.04] 0.02[ 0.02; 0.02] 41.24%[40.84%;41.82%]

µ 46.46[45.10;47.83] 47.95[46.61;49.34] 3.22%[ 3.83%; 2.66%]
RC0.50 0.65[ 0.59; 0.71] 0.59[ 0.53; 0.66] 8.68%[ 6.41%;11.35%]
RC0.20 0.22[ 0.18; 0.27] 0.17[ 0.12; 0.21] 25.73%[20.76%;31.82%]
RC0.05 0.04[ 0.02; 0.05] 0.02[ 0.01; 0.03] 45.89%[37.79%;54.90%]

Table 12: Seven measures on the health-income association for BadenWurttemberg (all other
covariates the same).

males
15,000e 30,000e Difference

RM3 0.63[ 0.63; 0.63] 0.56[ 0.56; 0.56] 11.53%[11.45%;11.64%]
RM2 0.24[ 0.24; 0.24] 0.16[ 0.16; 0.16] 32.72%[32.52%;32.95%]
RM1 0.04[ 0.04; 0.04] 0.02[ 0.02; 0.02] 38.73%[38.32%;39.26%]

µ 45.89[44.67;47.15] 47.17[45.91;48.38] 2.78%[ 3.33%; 2.23%]
RC0.50 0.66[ 0.61; 0.71] 0.62[ 0.57; 0.67] 6.05%[ 4.19%; 8.06%]
RC0.20 0.25[ 0.21; 0.30] 0.20[ 0.16; 0.25] 20.59%[15.86%;25.92%]
RC0.05 0.05[ 0.03; 0.08] 0.03[ 0.02; 0.05] 39.65%[31.28%;48.80%]

females
15,000e 30,000e Difference

RM3 0.67[ 0.66; 0.67] 0.59[ 0.59; 0.60] 10.80%[10.71%;10.89%]
RM2 0.24[ 0.23; 0.24] 0.17[ 0.17; 0.17] 27.97%[27.77%;28.22%]
RM1 0.05[ 0.05; 0.06] 0.03[ 0.03; 0.03] 38.76%[38.35%;39.27%]

µ 45.24[44.03;46.44] 46.78[45.54;47.95] 3.40%[ 4.01%; 2.79%]
RC0.50 0.69[ 0.65; 0.74] 0.64[ 0.59; 0.69] 7.27%[ 5.35%; 9.29%]
RC0.20 0.27[ 0.23; 0.32] 0.21[ 0.17; 0.25] 22.87%[18.54%;27.65%]
RC0.05 0.05[ 0.04; 0.07] 0.03[ 0.02; 0.05] 41.92%[34.65%;50.19%]

Table 13: Seven measures on the health-income association for Mecklenburg-Western Pomerania
(all other covariates the same).
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