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The CO2 emissions in Finland, Norway and Sweden: a dynamic relationship.

Abstract

In this paper a dynamic relationship between the CO2 emissions in Finland, Norway
and Sweden is presented. With the help of a VAR(2) model, and using the Granger
terminology, it is shown that the emissions in Finland are affecting those in Norway
and Sweden. Other aspects of this dynamic relationship are presented as well.
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Introduction

In this paper we consider the CO2 emissions in Norway, Sweden and Finland, three
countries in the Nord of Europe.

The CO2 emissions is a subject of concern for goverments in Europe and the rest of the
World due to its influence in the climate change. The Conference of Paris 2015 has
established clear goals to slow the deterioration of the World Climate.

The selection of the three Nordic states for our analysis is due to the fact that they are
three developed economies, that have also signed the Paris 2015 Agreement, and due to
their location in the North of Europe, the three countries are facing similar problems in
order to fulfill the Paris Agreement.

To get a first view of the situation, we represent in figure 1, the 55 years evolution of
the CO2 emissions of the three countries:
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Figure 1. CO2 emissions in Finland, Norway and Sweden: 1960-2014

The picture reflects the efforts of Finland, Norway and Sweden for reducing the CO2
emissions in their economies.



The data

The anual data are taken from the World Bank data base. The observations go from
1960 to 2014, and are measured in kilotonnes, kt, of CO2.

The basic statistics for these series are in table 1

Series Obs Mean Std Error Minimum Maximum

FINCO2 55 47859.0837636 13232.4507952 14939.3580000 69130.2840000
NORCO2 55 35406.6851636 11584.5387432 13102.1910000 60105.7970000
SWEDCO2 55 61351.4435636 13891.4215466 43065.2480000 92379.0640000

Table 1. Basic statistics of the sample

The figures for the CO2 emissions for the years 2009 to 2014, the last year reported in
the World Bank data base, are in table 2:

ENTRY FINCOZ2 NORCO2 SWEDCO2
2009:01 53149.498 55346.031 43065.248
2010:01 62082.310 60105.797 52023.729
2011:01 56816.498 45195.775 51734.036
2012:01 49134.133 49889.535 47047.610
2013:01 47219.959 58162.287 44847.410
2014:01 47300.633 47626.996 43420.947

Table 2. The data for years 2009 to 2014
It is surprising the similarities of these series in the year 2014.
VAR(p) models.

In our study we use the Vector Autoregressive Model of order p:VAR(p). In words of
Ruey S. Tsay, The most used multivariate time series model is the vector autoregressive
(VAR) model, cfr. Tsay, Multivariate Time Series Analysis, p. 27, and the author
enumerates the computing advantages, as well as the objectives of the multivariate
analysis: to study dynamic relationships between varibles, as well as to improve the
accuracy of predictions, cf., op.cit., p. 1.

In order to introduce the VAR models, let us present its formulation. In our case, we

finCO2 Zu
have the vector of series z, =| norCO2 | for simplicity, let us use: z, =| z,, |.
swedCO?2 Zs,

(The reason for this ordering is alphabetical.)

After some exploratory analysis, the VAR appropriate for our case is a VAR(2) model.
In symbols,

z, =9 +éz,  +hz,+aq,



With a, as a sequence of independent and identically distributed (iid) random vectors,

with mean zero and covariance matrix X, which is positive-definite.

In a more explicit form, we have,

Zy, P ¢1,11 ¢1,12 ¢1,13 Zy ¢2,11 ¢2,12 ¢2,13 Zi 12 a,
Zy |=| o |+ ¢1,21 ¢1,22 ¢1,23 Zya |t ¢2,21 ¢2,22 ¢2,23 Zy,n || Gy

Z3 Py ¢1,31 ¢1,32 ¢1,33 Z34 ¢2,31 ¢2,32 ¢2,33 2342 a3,

The coefficients of matrices ¢ and ¢, allow us to related our model with the Granger causality
point of view.

Using the package MTS in R, we get the estimated model:

m2= VAR (zt,2)
Constant term:
Estimates: 6343.253 3294.181 16508.21
Std.Error: 5084.118 4542.016 4401.756
AR coefficient matrix
AR( 1 )-matrix
[,1] [,2] [,3]
(1,1 0.7822 0.0407 0.07467
[2,] -0.1437 0.4993 0.00432
[3,] 0.0974 -0.0450 0.68347
standard error
(.11 [,2] [,3]
[1,] 0.160 0.153 0.174
[2,] 0.143 0.137 0.156
[3,] 0.138 0.133 0.151
AR( 2 )-matrix
[,1] [,2] [,3]
1,1 0.0665 -0.0163 -0.0623
2,1 0.3202 0.2136 -0.0142
3,1 -0.2427 -0.0318 0.2031
tandard error
(11 [,21 [,3]
[1,] 0.166 0.164 0.166
[2,] 0.149 0.147 0.149
[3,] 0.144 0.142 0.144

(
(
(
s

Residuals cov-mtx:

[,1] [,2] [,3]
[1,] 20351832 1927911 7295705
[2,] 1927911 16243125 1865395
[3,] 7295705 1865395 15255420

det (SSE) = 4.103473e+21
AIC = 50.42067
BIC = 51.07761

HO = 50.67471



The residuals of this model validate the model, however some of the coefficients are non-
significant at the usual a = 0.05. Supressing together these insignificant coefficients, we get
the simplified model:

m3 = VARchi (zt,p=2,thres=1.96)
Number of targeted parameters: 16
Chi-square test and p-value: 27.01784 0.04128532
> md4 = refVAR(m2,thres=1.96)
Constant term:
Estimates: 7579.741 0 14517.27
Std.Error: 2528.822 0 3907.614
AR coefficient matrix
AR( 1 )-matrix

(11 [,21 [,3]
[1,] 0.856 0.000 0.000
[2,] 0.000 0.661 0.000
[3,] 0.000 0.000 0.901
standard error

[,1] [,2] [,3]

[1,] 0.0505 0.0000 0.0000
[2,] 0.0000 0.0856 0.0000
[3,] 0.0000 0.0000 0.0433
AR( 2 )-matrix

(11 [,2] [,3]
[1,] 0.000 0 0
[2,] 0.263 0 0
[3,] -0.177 0 0
standard error

(11 [,2] [,3]
[1,] 0.0000 0 0
[2,] 0.0643 0 0
[3,] 0.0444 0 0

Residuals cov-mtx:

[,1] [,2] [,3]
[1,] 20508305 1929612 7010868
[2,] 1929612 17750860 1742123
[3,] 7010868 1742123 16107847

det (SSE) = 4.916324e+21

AIC = 50.12867

BIC = 50.31115

HQO = 50.19923

>

That is:

z, 7579.7 0.856 0.000 0.000 || z,,, 0.0 0.0 0.0z, a,

2, |=|0.000 |+]0.000 0.661 0.000 || z,, , [+|0.263 0.0 0.0 | z,,, |+|a,
z, | [14517.3] |0.000 0.000 0.901]| 2, ~0.18 0.0 0.0z,

3t t—1 =2 a3t



Therefore the models of CO2 emissions in each of the three countries can be written as:
For Finland,

z, =7579.7+0.856z, , +aq,,

For Norway,

2, =0.661z,, , +0.263z,, , +d,,

For Sweden,

z, =14517.3+0.901z;, , - 018z, , +a,,

In front of these results, and using Granger causality terminology, it seems that CO2
emissions in Finland are causing, are affecting, the CO2 emissions in Norway and
Sweden. In other words, it is seen that the Finnish series of CO2 emissions has
information helping to characterize future values of the other two series. Cfr. Granger

and Newbold, Forecasting Economic Time Series, p. 221.

Impulse response functions

The VAR formulation of models allow us to establish dynamic relationships between
the variables of the system, but at the same time, it is possible to consider this
relationship from other points of view. That is: the impulse response and the forecast
error variance decomposition.

With the impulse response function it is posible to evaluate the effects of inducing a
shock or unitary impulse in one of the variables on its own evolution and on the
evolution of the other variables of the system.

The effect is better understood in the MA version of the VAR model.

z=pu+a +0a,  +6,a _,+--

truncated at some lag ¢, with 6, =1. In compact form, we have:

If we induce a shock or unitary impulse, then, by sucessive substitutions, we get:

Zt_/u:Hi



This series of 6, are the coefficients of the impulse response in z, of the unitary shock

induced in a, .

If X is not diagonal, it is unrealistic to consider that a unitary shock induced in the

error term of one of the variables in the VAR system can be isolated from the other term
errors. That is, it would be imposible to establish the impact of a unitary shock in the
model of Finland in the model of Norway and in the model of Sweden. The solution to
this problem can be found using the Cholesky decomposition of matrix X, given the fact

that our matrix is positive definite. In this case, there is a matrix P, such that X, = PP’
and P'S P'"' =1 . With this matrix P~' it is posible to convert a, on a vector of

uncorrelated errors e, , that is:

q
Z[=!*+§:@PP4“F5=A*+§:Q%4
i=0 i=0
After substituting B, =P and e = P'a, ,. The elements of B, are the impulse

response function of z, with ortogonal innovations.

There is a problem involved with Cholesky decomposition of X, worth of
mentionning. That is, the order of variables in the vector z, has consequences, however

this is not the place for more details, and we could consider this artificiality as the cost
for clarifying the impulse response of the system to the new uncorrelated e, .

Coming to our case, and using the software RATS, the impulse responses, ten steps
ahead, for Finland, Norway and Sweden are, in tables 3, 4, and 5.

Responses to Shock in FINCOZ2
Entry FINCO2 NORCO2 SWEDCO2

1 4528.60958 426.09377 1548.1281
2 3877.71039 281.55940 1395.0090
3 3320.36525 1378.64916 453.5253
4 2843.12759 1932.18491 -279.3513
5 2434.48353 2151.18165 -840.8525
6 2084.57406 2170.21375 -1262.1419
7 1784.95725 2075.17471 -1569.2577
8 1528.40451 1920.22596 -1783.9137
9 1308.72621 1738.93379 -1924.1781
10 1120.62237 1551.57488 -2005.0494

Table 3. Responses to shock in Finland emissions model

Responses to Shock in NORCOZ2

Entry FINCOZ2 NORCO2 SWEDCO2
1 0.00000 4191.57536 258.2502
2 0.00000 2769.75997 232.7078

3 0.00000 1830.23557 209.6916



4 0.00000 1209.40524 188.9518
5 0.00000 799.16545 170.2634
6 0.00000 528.08224 153.4233
7 0.00000 348.95258 138.2488
8 0.00000 230.58512 124.5752
9 0.00000 152.36883 112.2539
10 0.00000 100.68412 101.1514

Table 4. Responses to shock in Norway emissions model

Responses to Shock in SWEDCOZ2

Entry FINCOZ2 NORCO2 SWEDCO2
1 0.00000 0.00000 3693.8399
2 0.00000 0.00000 3328.4971
3 0.00000 0.00000 2999.2888
4 0.00000 0.00000 2702.6412
5 0.00000 0.00000 2435.3338
6 0.00000 0.00000 2194.4648
7 0.00000 0.00000 1977.4191
8 0.00000 0.00000 1781.8405
9 0.00000 0.00000 1605.6058
10 0.00000 0.00000 1446.8018

Table 5. Responses to shock in Sweden emissions model

The graphic representation of these responses are represented in figures 3, 4 and 5
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Figure 3. Representation of responses of shock in Finland emissions model
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Figure 4. Representation of responses of shock in Norway emissions model
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Figure 5. Representation of responses of shock in Sweden emissions model
These figures are in agreement with the three estimated models.
The forecast error variance decomposition
The point estimate of the impulse response function cannot reveal the whole
consequences of the unitary schock induced. As a help to evaluate more exactly this
effect, we have the forecast error vartiance decomposition. Now it is posible to assign

the fraction of variance error due to each of the variables: tables 6, 7, and 8.

In our case, with software RATS, we get:

Decomposition of Variance for Series FINCOZ2
Step Std Error FINCO2 NORCO2 SWEDCO2

1 4528.60958 100.000 0.000 0.000
2 5961.95795 100.000 0.000 0.000
3 6824.20457 100.000 0.000 0.000
4 7392.77638 100.000 0.000 0.000
5 7783.30602 100.000 0.000 0.000
6 8057.62382 100.000 0.000 0.000
7 8252.96153 100.000 0.000 0.000
8 8393.29461 100.000 0.000 0.000
9 8494.71357 100.000 0.000 0.000
10 8568.31098 100.000 0.000 0.000

Table 6. Error variance decomposition for Finland emissions

Decomposition of Variance for Series NORCO2
Step Std Error FINCO2 NORCO2 SWEDCO2

1 4213.17694 1.023 98.977 0.000
2 5049.92138 1.023 98.977 0.000
3 5545.46136 7.029 92.971 0.000
4 5995.67688 16.398 83.602 0.000
5 6419.84339 25.531 74.469 0.000
6 6797.28532 32.968 67.032 0.000
7 7115.56081 38.590 61.410 0.000
8 7373.71297 42717 57.283 0.000
9 7577.51608 45.716 54.284 0.000
10 7735.39086 47.893 52.107 0.000

Table 7. Error variance decomposition for Norway emissions



Decomposition of Variance for Series SWEDCOZ2
Step Std Error FINCOZ2 NORCO2 SWEDCOZ2

1 4013.45826 14.879 0.414 84.707
2 5402.49414 14.879 0.414 84.707
3 6199.38159 11.835 0.429 87.736
4 6771.28803 10.090 0.437 89.472
5 7246.87623 10.156 0.437 89.407
6 7677.85332 11.750 0.429 87.821
7 8083.39659 14.369 0.417 85.214
8 8468.41917 17.530 0.401 82.069
9 8832.16596 20.862 0.385 78.753
10 9172.28683 24.122 0.369 75.509

Table 8. Error variance decomposition for Sweden emissions

In the first column of these tables are printed the estimated standard errors of the
predictions, here 10 steps ahead. Each column shows the percentage of error due to each
of the variables; as a consequence the total of each row is 100. Once again, these tables
are in agreement with the three estimated models.

Forseeing the future
Once we get a validated model, we could attemp to forseen the future. From our

simplified model, and using RATS package, we forecast the future from 2015 to 2020.
The results are in table 8.

ENTRY FORECASTS (1) FORECASTS (2) FORECASTS (3) STDERRS (1) STDERRS (2) STDERRS (3)
2015:01 48081.8313 43906.7905 45265.4167 4528.6095 4213.1769 4013.4582
2016:01 48750.7476 41469.7532 46913.1434 5961.9579 5049.9213 5402.4941
2017:01 49323.5202 40065.1047 48259.2924 6824.2045 5545.4613 6199.3815
2018:01 49813.9680 39313.0813 49353.6138 7392.7763 5995.6768 6771.2880
2019:01 50233.9235 38966.9882 50238.0735 7783.3060 6419.8433 7246.8762
2020:01 50593.5185 38867.4508 50948.0349 8057.6238 6797.2853 7677.8533

Table 8. Forecasts of emissions for 2015 to 2020, with standard errors

Results represented in figure 2
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Figure 2. CO2 emissions 1960-2014 and forecasts 2015-2020, with confidence bands



The picture shows that the Norvegian series is falling down, while the oher two series
show a light rising path.

Conclusions

Our VAR(2) model has established a classification among our series of CO2 emissions,
with the Finnish case been independent of the other two as well as affecting the CO2
emissions in Norway and Sweden. Apart from the data series alone, the strong economy
of Norway shows a decreasing evolution in the inmediate near future.
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