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Abstract 
 
While the output of a team is evident, the productivity of each team member is typically not 
readily identifiable. In this paper we consider the problem of measuring the productivity of team 
members. We propose a new concept of coworker productivity, which we refer to as eigenvalue 
productivity (EVP). We demonstrate the existence and uniqueness of our concept and show that 
it possesses several desirable properties. Also, we suggest a procedure for specifying the 
required productivity matrix of a team, and illustrate the operational practicability of EVP by 
means of three examples representing different types of the available data. 
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1. Introduction

Teams jointly produce a product. By judging the quality of this product, the success of the

team as a whole can be easily assessed. However, the individual productivity of a worker is

typically not directly observable, and thus it is difficult to conceptualize, even if a fixed task

is assigned to each member of a team. This difficulty in assessing individual productivity is

particularly significant if the concept is to be operationalizable with observable data. We,

therefore, propose a new concept of coworker productivity to measure the individual contri-

bution of a team member. We then demonstrate the existence and uniqueness of that concept

and show that it has several desirable properties, may be applied in various situations, and

is suitable for various types of data.

As is well-known, a team is more than merely the sum of its members’ individual abilities.

Within a team, coworkers interact and their abilities as well as their capacities for and their

productivities in teamwork determine, along with other factors, the actual team output—and

thus the success of the team. In this way, the interplay of a worker with their teammates

depends on the ability and willingness of the other coworkers to cooperate: a worker can

only interact with the teammates efficaciously if they go along with this endeavor.1 As a

consequence, the effective contribution of a worker to the team depends on the contributions

of the others and thus on both the cooperative capacity and the efforts of the other coworkers.2

While this should be beyond controversy, it does not readily provide an operational con-

cept of an individual’s contribution to the productivity of the team. Similarly, the coworkers’

productivities cannot be directly observed and are thus not readily derivable from the team

data. While the productivity or success of a team as a whole is usually observable or rela-

tively easy to measure, e.g., by total sales, revenue, patterns, number of orders, or cases (or

in team sports, by the percentage of wins, points scored, etc.), it is more difficult to measure

the productivity of an individual worker within a team. This difficulty is inherently associ-

ated with the very nature of teamwork: while the team as a whole produces a joint output,

the individual contributions of the team members can only be measured in terms of input,

such as working time, effort, etc. Apparently, this is a consequence of the fact that “the

interaction between team members is multifaceted” (Depken II and Haglund, 2011, p. 4).

This multiplicity of interactions raises the question of how one can consistently define and

then calculate coworker productivities.

For example, in team sports, the literature has used numerous variables to appraise the

coworker productivity of a player: the number of goals scored, assists provided, duels won,

ball touches, etc. Yet, each of these numbers suffers from the fact that it imputes an output

(successful action) to an individual player, while this output is actually the joint product of

the player and the teammates: a player can only perform well when the other teammates

1If cooperation and coordination is not successful, problems like free-riding can arise in teams, analyzed for

example by Guillen et al. (2014), Backes-Gellner et al. (2015), and Fu et al. (2015).
2The relevance of the amount of effort workers choose, based on income maximizing considerations, to put

forth when on a team has been emphasized by Gould and Winter (2009).
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are able and willing to put that player into the scene and lay the proper groundwork for the

player’s actions to bear fruit. At the same time, professional team sports require, besides

individual aptitudes and skills, complex collective moves, which constitute both a prerequisite

for and a consequence of individual performance (see, for example, also Beck and Meyer,

2012). Through all of these channels, the team productivity of a player depends on the

productivities of all the teammates, and in particular on the productivity of that player’s

“neighbors” on the playing field3; similar arguments apply to any complex team production

process in economics.

For the case of NBA teams, Berri (1999) proposed an econometric model specifically

tailored to basketball along with a related concept to measure the productivity of individual

players. Furthermore, he criticized the use of seemingly straightforward shortcuts to measure

individual team productivity, such as the number of points scored, as they are “likely to be

incorrect and misleading” (p. 415) since they neglect the specific team sport aspect: the nec-

essary cooperation between team members. We act on the idea put forth by Berri and develop

a theoretical concept of coworker productivity which is quite general and flexible enough to be

used in many different economic contexts and with many different available databases—and

is thus applicable in various situations. In particular, it does not require a specific model or

economic situation, as does Berri’s basketball-specific approach: all it requires is some (lo-

cally) linear structure and the pairwise decomposability of total productivity. This structure

suffices to obtain a measure of coworker productivity enjoying convenient properties. In this

way, our work follows a suggestion of Kendall (2003), who called for more research “to derive

measures of players’ ‘true’ marginal products when productivity spillovers exist” (p. 401).

In order to capture the prevalence of spillover effects and the interdependencies between

the team productivities of the coworkers, a more sophisticated concept for measuring the

contribution (or the relevance) of a coworker to the productivity of the team seems to be

necessary. In this paper we, therefore, delineate a concept of coworker productivity which

makes use of the endogenous and self-referential structure of cooperation within a team: in

teams, coworkers are required to cooperate in order for the team to perform successfully, while

each coworker also benefits from the cooperative abilities of the other teammates. Specifically,

the more a teammate of coworker i contributes to the team, the better the conditions will

be for coworker i to perform well—and thus to contribute to the success of the team. In

this way, the team productivity of coworker i depends (positively) on the productivities of

all other teammates and, in particular, on the productivity of those who are “adjacent to”

or “central for” that player. Since this is true for any team member, coworker productivity

is self-referential; as a consequence, the productivities of all coworkers on a team must be

determined simultaneously.

3Accordingly, there is empirical evidence that some combinations of positions or some pairs of players are

more strongly complementary than others (see, for example, Idson and Kahane, 2000).
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We duly acknowledge the feature of mutual complementarity in production4 within teams

and present a concept of coworker productivity that consistently and simultaneously defines

the contributions of each coworker to the productivities of all other teammates. In this

way, the concept serves to measure the cooperative productivity, and thus the significance

or centrality, of a coworker within a team. Formally, our concept of coworker productivity is

defined as a vector that when we apply a linear function, given by a nonnegative matrix of

pairwise productivity coefficients, to it does not have its direction changed. By construction,

this concept is closely related to the concept of eigenvector centrality, which is known in

network analysis and has been suggested by Bonacich (1972).5 In order to acknowledge that

origin, we refer to our concept as eigenvalue productivity (EVP).

In our approach, we calculate the coworker productivities for a given team assigned to

a given task. We thus do not model the decision (process) of the manager on the optimal

composition of the team, or, more broadly, how or why a manager selected a specific worker

for a given project. This decision is not an issue here, but is considered to be exogenously

determined. Yet, in a more general framework, pairwise productivities may be chosen di-

rectly by the players, thereby establishing a pairwise cooperation game or, in this sense, a

network game. These possibly action-dependent pairwise productivities of the coworkers are

considered as given data here, because the central purpose of the EVP is to derive a scalar

productivity measure for each player when the actions have already been determined. There

is, though, a significant literature that explores the activities chosen by the players for a

given (possibly uncertain) network structure; we briefly discuss this in the literature review

in Section 2.

While the concept of EVP is thus related to network analysis, the spirit of EVP also

reflects the basic idea incorporated in the Shapley value, well known from cooperative game

theory (Shapley, 1952): the distribution of the surplus between players according to each

player’s marginal contribution to all possible coalitions. However, since the Shapley value

requires that one already knows a player’s marginal contribution to all possible coalitions, it

is not helpful or applicable when measuring individual productivity within a team: while we

can observe both the output of the team (with a fixed composition) and individual inputs, we

cannot deduce the marginal contributions unless we know the production function for each

possible coalition.

After providing the formal definition of EVP, we prove the existence and uniqueness of

this concept and demonstrate that it has several economically desirable properties: symme-

try , permutation covariance, null player property , aggregate balance, differentiability , relative

4Formally, complementarity (in production) is captured by the supermodularity of a (production) function.

For more details, see, for example, Milgrom and Roberts (1990) or the excellent monograph by Topkis (1998).

This supermodularity may vanish in the limiting case if members work on their own, as, for example, in the

case of team competition with pairwise matches, a case recently analyzed by Fu et al. (2015).
5The idea can even be traced back to Katz (1953), who proposed a similar index to measure the status

of individuals within a group. (For a textbook presentation of centrality indexes, see, for example, Jackson,

2008, sec. 2.2.4.)
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monotonicity , absolute monotonicity , and duplication monotonicity . Then we show how the

EVP can be calculated. The calculation of the EVP is based on the availability of a pairwise

productivity matrix. If such a matrix of the directional productivity effect between each pair

of members of a team is available, the EVP can be directly employed. Frequently, though,

this will not be the case, and for those cases we suggest a procedure to calculate such a matrix

from the data of a team and illustrate the operational practicability of the EVP by means of

three examples. (The third example is relegated to the appendix.) All examples use data for

the success of a team over a specific period and the composition of the team as it varies over

time. Since the data for team results (success) and team composition is often available, this

procedure is arguably broadly applicable to many situations, including team sports, where

the data on results and line ups during a season is readily at hand.

The first example represents a hypothetical situation that is very clear and manageable,

and helps demonstrate that EVP works smoothly and brings about quite intuitive results.

The second example uses real data from the movie industry. Here, the team is a group of well-

known actors, directors, and writers, where subgroups join to produce a movie. The success

is measured by the worldwide volume of sales of the movie. We apply this data to delineate

(estimations of) pairwise productivity coefficients and use the resulting productivity matrix

to calculate the EVP. In the third example, we use a team of researchers that recombine to

publish papers in peer-reviewed journals. We infer the data of pairwise productivity effects

from the publication record of different subgroups of the team, and with the help of the

generated matrix of pairwise effects, we then calculate the EVP of all the researchers on the

team.

2. Related Literature

There is ample research on various aspects of teamwork in economics, management, psychol-

ogy, and sociology. In the following, we focus on those aspects of teams and teamwork that

are especially relevant for the measurement of individual contributions within a team and

thus for our new measure, eigenvalue productivity (EVP).6

Investigating the decision-making process, the literature in experimental economics con-

cludes that groups generally arrive at more rational decisions than do individuals (see the

reviews of Charness and Sutter, 2012; Kugler et al., 2012), suggesting that teamwork out-

performs individual actions. For example, Cooper and Kagel (2005) and Kocher and Sutter

(2005) who explore the differences between the learning and adjustment process of teams

and that of individuals, identify positive synergies between teammates and demonstrate the

superiority of team play; Rockenbach et al. (2007) find that teams arrive at better invest-

ment decisions; Charness et al. (2007), Sutter (2009), and Maciejovsky et al. (2013) show

6For a broader review of the research on teams in the management literature, the reader is referred to

Mathieu et al. (2008) and the reviews mentioned on pp. 410 and 411 therein; for a review of the psychological

literature, to Levine and Moreland (1990), and especially on the effectiveness of teams to Kozlowski and Ilgen

(2006).
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that group membership has a strong effect on individual decisions; and Feri et al. (2010)

demonstrate that teams coordinate more successfully than individuals.

Similarly, the significance of productivity spillovers between coworkers within teams has

been demonstrated in various economic domains: examples are, among others, Idson and

Kahane (2000, 2004), Kendall (2003), Franck and Nüesch (2010), and Alvarez et al. (2011).

Also, several field studies demonstrate the effects of peers on the productivity of workers,

see for example Mas and Moretti (2009), Bandiera et al. (2010), Chan et al. (2014), and

most recently Friebel et al. (2017), who confirm the presence of significant complementarities

between team members, here for the case of a retail chain.7 Moreover, Herbst and Mas

(2015) compare results from laboratory experiments with field studies and conclude that

both yield similar estimates of peer effects. Thus, even though the productivity of coworkers

may significantly differ across different teams, the relevance of coworker and teammate effects

on individual productivity is apparently an omnipresent phenomenon; and, as emphasized by

Beck and Meyer (2012), a similar observation holds for the significance of team composition.

Within a team, the interactions between its members depend on behavioral aspects,

group membership effects, employment practices, and other factors, all of which are well

documented in the management literature: Ichniowski et al. (1997), Reagans and Zuckerman

(2001), Apesteguia et al. (2012), and Hoogendoorn et al. (2013) evidence the (positive) sig-

nificance of innovative employment practices and diversity on team production. Investigating

hierarchical differentiation in pay and participation in professional sports, Halevy et al. (2012)

find those differentiations may facilitate intragroup coordination and cooperation.

Beyond organizational differences and complementarities between team members, many

psychological factors also affect team performance. In particular, individual performance

is positively related to team performance (Chen et al., 2007); factors like motivation, em-

powerment, (beliefs in) collective capability, cooperative goals, team cognition, and certain

personality traits (or a specific combination of these factors), all have a positive impact on

team performance (see Van Kleef et al., 2010; Chen et al., 2007; Aubé et al., 2015; Alper

et al., 1998; DeChurch and Mesmer-Magnus, 2010; Peeters et al., 2006). Also, things such

as moods and emotions have an influence on team productivity and often play a role in

the productivity of teams and organizations (see for example Kelly and Barsade, 2001; Beal

et al., 2005; Barsade and Gibson, 2007). Moreover, Jordet et al. (2012), taking a look at prior

team performance in sports settings and subsequent individual performances in high-pressure

tasks, such as penalty shootouts, find that the history of the team has an influence on the

performance of the individual.

There is also much interest in the relationship between salaries, namely the wage dis-

parities within a team, and team performance, which has been explored by, for example,

Depken II (2000), Simmons and Berri (2011). Also, intergroup competition and the payment

scheme influence the performance of a team and its individuals (Erev et al., 1993). Gener-

ally, the distinction and resemblance of individual versus team financial incentives has been

7Kandel and Lazear (1992) provide a theoretical analysis of the influence of peers on other workers.
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frequently explored, see for example Che and Yoo (2001), Barnes et al. (2011), Conroy and

Gupta (2016), or the review of Garbers and Konradt (2014).

Investigating team composition and the organizational structure of a team, Humphrey

et al. (2009) conclude that certain team roles are more important for team performance than

others.8 The recognition of a single member of a team will, via social influence processes,

produce positive spillover effects on the performance of the other team members, as well

as on overall team performance, and this is particularly the case when the distinguished

individual has a central position in the team (Li et al., 2016). More broadly, teams with more

centralized structures are generally more successful: centrality is beneficial for individual and

team performance (see Lin et al., 2005; Tröster et al., 2014; Sparrowe et al., 2001).

The degree and type of centralization of an organizational unit, such as a team, is fre-

quently analyzed by means of tools well known from network analysis. For example, the

centrality of a team member may be measured by degree centrality, closeness centrality, be-

tweenness centrality, or eigenvector centrality (see Jackson, 2008).9 Beyond this, the network

structure may also be endogenized, where team members choose their links to and inten-

sities of cooperation with the other team members. Notable examples for network games

are Ballester et al. (2006), Galeotti et al. (2010), Belhaj et al. (2014), de Marti and Zenou

(2015), Allouch (2015), Calvo-Armengol et al. (2015), for theoretical; and Berninghaus et al.

(2006), Berninghaus et al. (2007), Corbae and Duffy (2008), Goeree et al. (2009) and Char-

ness et al. (2014) for experimental work on network games. Moreover, Bala and Goyal (2000),

Galeotti et al. (2006), Kim and Wong (2007), Harrison and Munoz (2008), De Sinopoli and

Pimienta (2010), and Baetz (2015), among others, endogenize the network structure, present-

ing a model of network formation where players decide upon the costly creation of pairwise

links. For a comprehensive survey of the theoretical work and the recent literature on games

involving economic and social networks, we refer the reader to Jackson (2008, 2014), Jackson

and Zenou (2014) and the very recent survey by Jackson et al. (2017).

3. The Approach

In this section, we develop a new concept of coworker productivity, eigenvalue productiv-

ity (EVP), and show how individual productivities may be consistently determined for all

members of a team. We then show the existence and uniqueness of a vector of eigenvalue

8The importance of certain individual members of a group was also pointed out by Gruenfeld et al. (2000),

using data of itinerant workers, by showing that after the return of a former group member the production of

the team as a whole was of higher quality.
9Subsequently, versions of eigenvector centrality have been adopted in, among others, regional economics to

characterize spatial structures (e.g. Neal, 2013; Wanzenböck et al., 2015), financial economics to measure risk

exposure resulting from interconnectedness (e.g. Markose et al., 2012; Alter et al., 2015), the social sciences

to measure social segregation (e.g. Echenique and Fryer, 2007; Holfve-Sabel, 2015), and network analysis to

measure the effects of coauthorship on the performance of scholars (e.g. Yan and Ding, 2009; Li et al., 2013).

However, the most well-known application of eigenvector centrality is the PageRank algorithm used by the

search engine of Google to rank search results in the Web (see Page et al., 1999; Bryan and Leise, 2006).
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productivities (EVP-vector), and demonstrate that this vector has convenient economic prop-

erties.

As argued above, a worker benefits from the abilities of all teammates: the more a

teammate of worker i contributes to the team, the better the conditions are for worker i to

perform well and thus to contribute to the success of the team. In this way, the coworker

productivity of worker i depends (positively) on the productivities of their teammates. We

shall now formalize this idea and show how coworker productivities may be derived.

Consider a team consisting of a fixed set of n workers N = {1, 2, . . . , n}. We assume that

the individual productivity of each worker i ∈ N is nonnegative. According to the argument

provided above, we presume that the productivity depends linearly on the productivity of i’s

teammates. The coworker productivity of worker i in team N , pi(N ), is then defined as

pi(N ) =
1

λ

∑

j∈N
gij(N )pj(N ) ∀i ∈ N ,

where gij(N ) ≧ 0 denotes the extent to which worker i benefits from the coworker productivity

of worker j (when both belong to team N ), and λ > 0 is a (strictly positive) normalization

factor. In this way, the coworker productivity of i depends on the coworker productivities of

all the teammates, and since this relation holds for any worker i ∈ N , we arrive at (in matrix

notation)10

p(N ) ≡ 1

λ
G(N )p(N ), (1)

where the vector composed of the individual pi(N )s, the individual coworker’s productivities,

is denoted by p(N ), and where G(N ) ≡ [gij(N )]i,j∈N ≧ 0 is the matrix of the coefficients

measuring the extent to which the individual productivities influence each other. In order

to avoid the meaningless case G = 0, we shall assume that there is at least one worker

whose productivity is positive when paired with another worker, so that gij > 0 for some pair

(i, j) ∈ N 2, and thus G ≥ 0.

For notational convenience, we subsequently suppress the team argument N , but it

should be kept in mind that both G and p depend on the team under consideration. Then,

Eq. (1) may be re-written as

λp = Gp ⇔ (G− λI)p = 0, (2)

where I denotes the identity matrix (of the proper rank, i.e., of rank n in this case). For

p 6= 0, the homogeneous system (2) has a solution (in p) if, and only if,

det (G− λI) = 0. (3)

10We use the following notation. For any x,y ∈ R
n we write x ≧ y :⇔ xi ≧ yi ∀i = 1, . . . , n;

x ≥ y :⇔ xi ≧ yi ∀i = 1, . . . , n and xi > yi for some i (that is x 6= y); x > y :⇔ xi > yi ∀i = 1, . . . , n.

Also, if x ≧ 0, we call x a nonnegative vector; if x ≥ 0, a semipositive vector; and if x > 0, a positive vector.

The corresponding notation and wording is used for matrices. Finally, we write R
n
+ := {x ∈ R

n : x ≧ 0} for

the nonnegative orthant of Rn.
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But this is equivalent to λ being an eigenvalue of G, and p being the corresponding eigenvec-

tor.11 Since p is the vector of individual productivities that we want to determine, we refer

to our concept of coworker productivities as eigenvalue productivity (EVP). Hence, assuming

that all information relevant for the productivity measure is contained in the matrix G, we

define:

Definition 1 (Eigenvalue productivity (EVP)). Let the set of team members be N =

{1, . . . , n} with n ∈ N . Let G ≡ G(N ) ≡ [gij(N )]
i,j∈N denote a nonnegative, nonzero

(i.e., semipositive) matrix, the matrix of pairwise, directional production coefficients, and

denote by ρ(G) the spectral radius of G. Let λ = ρ(G), we call an eigenvector associated

with λ, i.e., p(λ), a vector of eigenvalue productivities (EVP-vector).

Because individual productivities are, by assumption, nonnegative, and we assume that

there is at least one worker whose coworker productivity is positive, i.e., G ≥ 0, we are only

interested in eigenvectors p ≥ 0. Since the matrix G is thus nonnegative, we may apply

(a suitable version of) the Perron–Frobenius theorem; in particular, the Perron–Frobenius

theorem for nonnegative matrices (Theorem 1 in Appendix C) immediately applies without

any (further) qualification. Roughly, this theorem says the following: that there is a non-

negative eigenvalue λ̂ of G, referred to as the Perron root of G; that all other eigenvalues

are absolutely smaller than or equal to λ̂; and, most importantly, that all components of the

eigenvector, p̂, associated with λ̂ are nonnegative, i.e., p̂ ≥ 0.12 For this reason we are (only)

interested in the largest real-valued eigenvalue λ̂ of G and in the associated eigenvector p̂,

which we refer to as the Perron vector.

We may obtain even more specific results if the matrix G is irreducible.13 The Perron–

Frobenius theorem for nonnegative, irreducible matrices (see Theorem 2 in Appendix C)14

states that the Perron root is positive, λ̂ > 0, that it is a simple eigenvalue of G, that all

other eigenvalues are absolutely smaller than λ̂, that the associated Perron vector is positive,

p̂ > 0,15 and that the eigenvector p̂ is unique up to a scalar multiple.

Finally, if the matrix G is positive or if it is irreducible and primitive (which is a weaker

requirement), then the Perron root is unique. This result is stated by the Perron–Frobenius

theorem for primitive matrices, see Theorem 3 in Appendix C. In fact, if G is irreducible,

our assumptions will guarantee that G is primitive, and thus there are no other eigenvalues

of G whose absolute values are equal or greater than λ̂ (see Lemma 4 in Appendix C).

11The eigenvalues are the roots of the characteristic polynomial (of degree n), i.e., the solutions of Eq. (3).
12By definition, some but not all components of p̂ can be zero.
13A square matrix A is called reducible if there exists a permutation matrix P such that P−1AP is an

upper block triangular matrix. If such a matrix P does not exist, A is called irreducible. (See Appendix C for

a more detailed definition.) Chakravarti (1975, Theorem 1 and 2) provides a result that allows for a simple test

of the irreducibility of a matrix. Note that some authors refer to (ir)reducible matrices as (in)decomposable,

e.g., Takayama (1985).
14For more details on different versions of the Perron–Frobenius theorem, the reader is referred to, for

example, Takayama (1985, Ch. 4.B, p. 367ff), Gantmacher (2000), or Horn and Johnson (1990).
15Conversely, only if G is reducible may some, but not all, components of p̂ be zero.
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The Perron–Frobenius theorem thus proves to be a fundamental result to safeguard the

existence and uniqueness of EVP, two results which we will prove in the next section. However,

while this theorem renders our concept well defined, it does not yet provide its properties. In

order to show that EVP has reasonable economic properties, we show in Section 4.3 that EVP

nicely respects, among others, the following ideas: that a player’s productivity is increasing in

the productivity of their teammates; that the productivity of a player who fails to contribute

anything to a team’s success is zero; and that symmetric players are treated identically.

From the perspective of applications, it is straightforward to calculate coworker produc-

tivities, as measured by EVP, for the members of a given team, provided that the matrix G

is available. However, since frequently one cannot directly observe the (marginal) effect of

worker i’s productivity on worker j’s productivity, the coefficient matrix G is not given, but

its elements have to be calculated from the data. Having defined coworker productivity in

terms of the EVP, the problem thus boils down to calculating G. In Section 5 we demon-

strate the calculation of the matrix G using two different examples of available data; a third

example is provided in Appendix A.

4. Existence and properties of eigenvalue productivity

In this section, we formalize our assumptions onG, demonstrate the existence and uniqueness

of eigenvalue productivity, define a set of welcome properties of some measure of coworker

productivity, and show that EVP satisfies these properties.

4.1. Normalization of the productivity matrix. For convenience we normalize gii(N ) =

1 for all i ∈ N , implying G ≥ I, We summarize this in the following assumption.

Assumption 1. The matrix of pairwise productivity coefficients G is semipositive and irre-

ducible with main diagonal elements being normalized to unity: G ≥ I.

Remark 1. This normalization can be done w. l. o. g. so that we may set, more generally,

gii(N ) = c,∀i ∈ N , for some nonnegative constant c, and our assumption will be replaced

by G ≥ c I; in particular, for c = 0, our assumption says that G is semipositive. The

next lemma provides a formal proof of this. In order to acknowledge the possibility of an

arbitrary, nonnegative normalization of the diagonal elements, we will only require G to be

semipositive, i.e., G ≥ 0, in the definition of the EVP (Definition 1), but will assume G ≥ I

for expository purposes apart from that. ⋄

Lemma 1. Given some quadratic matrix A, define B := A+ αI with α ∈ R. Then, λ is an

eigenvalue of A and x is the associated eigenvector if, and only if, µ = λ+α is an eigenvalue

of B with the associated eigenvector x.

Proof. By the definition of an eigenvalue and its associated eigenvector, we have 0 = (A −
λI) · x = (A+ αI− (λ+ α)I) · x = (B− µI) · x �
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According to Lemma 1, a translation of the diagonal elements yields a corresponding

translation of the eigenvalues but leaves the eigenvectors unchanged. For this reason, such

a shift leaves the Perron vector unchanged (provided that A and B := A − αI are both

nonnegative). Consequently, we may choose any normalization of the diagonal elements of

G, i.e., gii = c,∀i ∈ N for any c ≧ 0, without affecting the values of EVP.

Remark 2. If gij = 0 ∀i, j, i 6= j, we obtain from Eq. (1) gii = (1/λ)gii ∀i, and thus λ = 1.

But G = I (or, more generally, G = c I according to Remark 1) is an uninteresting case, of

course, as in this case all (pairwise) team effects would be absent. Therefore, we assumed

G ≥ I in Assumption 1. ⋄

4.2. Existence and uniqueness of the eigenvalue productivity. This section contains

our first two main results.

Proposition 1 (Existence of the EVP). Let the set of team members be N = {1, . . . , n} with

n ∈ N . For any semipositive n× n matrix of pairwise, directional production coefficients G,

there exists a semipositive vector of eigenvalue productivities p ≥ 0.

Proof. The proof follows from the existence of a nonnegative Perron vector for nonnegative

matrices, see Theorem 1 in Appendix C. Then, since p 6= 0 by definition of an eigenvector,

we conclude that p is semipositive. �

The next result establishes the uniqueness of the EVP under the prerequisite that G is

irreducible.

Proposition 2 (Uniqueness of EVP). For any nonnegative, irreducible n × n matrix of

pairwise, directional production coefficients G, the EVP-vector p ≥ 0 is unique up to a

scalar multiple.

Proof. The proof follows from the uniqueness of the nonnegative Perron vector for irreducible

matrices, see Theorem 2, in particular part 3, in Appendix C. �

If we had not assumed in Proposition 2 that G was irreducible, the root λ̂ would not

necessarily have been a simple root, and the EVP-vector would not necessarily be unique.

That is, p and q with p 6= θq for any θ ∈ R can be eigenvectors associated with λ̂.

By Assumption 1, it holds that G ≥ I, and thus G 6= I, so the Perron root is larger than

one.

Corollary 1. Given the semipositive matrix G and some normalization of the diagonal

elements gii = c ≧ 0, the Perron root of G satisfies λ̂ > c. In particular, for the normalization

gii = 1, we have λ̂ > 1.

Proof. The proof follows from the fact that gii = c ≧ 0 implies G ≥ c I and from Lemma 3

in Appendix C. �
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Finally, ifG is an irreducible nonnegative matrix, thenG is primitive if it has at least one

nonzero diagonal element (see Lemma 4 in Appendix C). Since we normalized the diagonal

elements to unity,16 any irreducible productivity matrix G is also primitive, and consequently,

we may apply the Perron–Frobenius theorem for primitive matrices, (see Theorem 3 in Ap-

pendix C).

4.3. Properties of eigenvalue productivity. We use the following notation. We write

x(−i) ≡ (x1, . . . , xi−1, xi+1, . . . xn), and similarly we write A(−i) for the matrix generated

from A by removing column i and row i. Also, let x(−[i]) ≡ (xi+1, . . . xn) denote the vector

after removal of the first i components. For any two vectors x and y, we write 〈x,y〉 to

denote their (standard) inner product. We write ei to denote the ith unit vector of length

n; and 1 to denote the all–ones vector (1, . . . , 1)T of length n. Also, let π be a permutation

of the team members (i.e., a one-to-one function from N to itself), and let π(G) represent

the correspondingly permuted matrix where the rows and the columns of G are permuted as

specified by π. In particular, πij denotes the minimal permutation where only the indices of

players i and j are permuted, i.e., πij : N → N with πij(i) = j, πij(j) = i and πij(k) = k

for all k 6= i, j. This allows us to define the i–j permutation equality of vectors x and y by

x ⊜ij y :⇔ πij(x) = y ⇔ πij(y) = x.

Let gi• denote the ith row of matrix G; and g•j , the jth column of G. We say that

players i and j contribute equally in total terms, if 〈gi•,1〉 = 〈gj•,1〉. A player i ∈ N who is

contributing nothing to the productivity of the other team members, i.e., gT

i• = ei, is referred

to as a null player. Let M(i) ≡ { j |gj• ⊜ij gi•, j ∈ N} denote the set of players with (after

suitable permutations) identical pairwise productivities as player i, including player i. We

refer to a player j ∈ C(i) ≡ { j |gij = gji = 0, j ∈ M(i) \ {i}} as a clone of i, and to C(i) as

the set of clones of i.

Using this notation, we formalize the following properties for a productivity measure

ϕ, and then show that EVP has those properties. We say that a productivity measure

ϕ : Rn×n
+ → R

n
+ satisfies

symmetry: if for two players i, j ∈ N , gi• ⊜ij gj•, then ϕi = ϕj.

permutation covariance: for any permutation π: π(ϕ(G)) = ϕ(π(G)).

null player property: if player i ∈ N is a null player, then ϕi = 0.

aggregate balance: if all players contribute equally in total terms, then ϕi = ϕj,

∀i, j ∈ N .

differentiability: ϕ is differentiable with respect to the team coefficients gij .

The properties symmetry and permutation covariance17 represent quite natural proper-

ties of a productivity measure. In particular, symmetry requires that players contributing

16The same argument applies to any positive normalization of the diagonal elements gii = c > 0.
17Property permutation covariance can be equivalently expressed as follows. Suppose π is a permutation.

Let P = [pij ] be the permutation matrix defined by π, i.e., pπ(j)j = 1, j = 1, . . . , n, and pij = 0, for all

i 6= π(j). Then PT
ϕ(G) = ϕ(PTGP).
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equally to each team member should be treated identically by the productivity measure, while

permutation covariance demands that a renumbering (or renaming) of the players should not

affect their productivity measures. Thus, upon renumbering the players, the productivity

measures change accordingly, and in this sense the productivity measure is covariant with

that renumbering.

The null player property states the natural requirement that a player contributing noth-

ing to a team should be assigned a productivity measure of zero. The property of aggregate

balance postulates that if all players contribute equally in total terms, then the same pro-

ductivity measure should be assigned to each team member irrespective of the distribution

of their pairwise productivities. This property does not require, though, that two players

contributing in equal total terms have the same productivity measure, unless all other n− 2

players also contribute the same total amounts (or unless, due to symmetry , the two players

contribute equally to each player). differentiability is an economically reasonable and math-

ematically convenient property implying that small productivity changes do not bring about

abrupt changes in the productivity measure: rather, small perturbations of the productivity

matrix lead to small changes in the productivity measure.18

In addition, we define the following monotonicity properties. We say that a productivity

measure ϕ : Rn×n
+ → R

n
+ satisfies

relative monotonicity: if the ith row ofG is perturbed by dgi• ≥ 0T, then the relative

productivity measure of player i, ϕi/ϕj , ∀i, j, i 6= j, does not decrease.

absolute monotonicity: normalize ϕ such that ϕi = 1, then a semipositive pertur-

bation of the ith row of G by dgi• ≥ 0T does not increase the productivity of any

player j ∈ N , j 6= i, i.e., ϕ(G) ≧ ϕ(G+ eigi•).
duplication monotonicity: if player j ∈ N is a clone of player i ∈ N , then ϕi(N ) ≦

ϕi(N \ {j}).

The properties relative monotonicity and absolute monotonicity characterize the behav-

ior of the productivity measure if the pairwise production coefficients of player i (weakly)

increase; that is, they characterize the effects of semipositive perturbations of the ith row ofG.

Naturally, since a semipositive perturbation of the ith row of G means that player i becomes

more productive than at least one other player, we should expect the productivity measure

to respect this increase in productivity of player i. In particular, relative monotonicity and

absolute monotonicity say that, after suitable normalization, the (relative) productivity mea-

sure of player i should not decrease in response to an increase in the pairwise contributions

of that player. For this reason, we refer to these properties as monotonicity.

Finally, the property duplication monotonicity states that if we add a clone of player i to

the team N , the EVP of player i, and thus of all players of type i, i.e., all players j ∈ M(i),

does not increase. Loosely speaking, enlarging a team by adding clones (weakly) decreases

the EVP of all players whose characteristics are duplicated. Intuitively, the more clones of

18The results for the derivatives of the Perron vector with respect to the matrix elements can be found, for

example, in Meyer and Stewart (1988) and Deutsch and Neumann (1985).
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player i the team contains, the less crucial or the more dispensable this player (or type of a

player) becomes.

Proposition 3 (Properties of EVP). Let G satisfy Assumption 1. Then, the productivity

measure EVP, p ≥ 0, has the properties of symmetry, permutation covariance, null player

property, aggregate balance, differentiability, relative monotonicity, absolute monotonicity,

and duplication monotonicity.

Proof. Proof of symmetry . Let two players have identical pairwise productivities. W. l. o. g. we

permute the ordering of these players so that we have for players 1 and 2: g1• ⊜12 g2•. As-

sume, on the contrary, p1 6= p2. We obtain from the first two rows of Eq. (2) λp1 = 〈g1•,p〉
and λp2 = 〈g2•,p〉. Subtracting both equations and using g12 = g21 yields

(1− g12) p1 + (g12 − 1) p2 = λ (p1 − p2) ⇔ (λ− 1 + g12) (p1 − p2) = 0.

Since by Lemma 1 λ > 1, and g12 ≧ 0, this is impossible, and thus p1 6= p2 implies a

contradiction.

The proof of permutation covariance follows from Lemma 2, see Appendix C, page 30.

Proof of null player property . W. l. o. g. we permute the ordering of the players such that

the null player gets index 1. Then,

G =

(

1 0T

b G(−1)

)

.

If p is the eigenvector associated with λ̂, we obtain from Eq. (2)

0 =
(

G− λ̂In

)

· p

=

((

1 0T

b G(−1)

)

− λ̂

(

1 0T

0 In−1

))

·
(

p1
p(−1)

)

=

(

1− λ̂ 0T

b G(−1) − λ̂In−1

)

·
(

p1
p(−1)

)

⇐⇒ p1 = 0 ∧
(

G(−1) − λ̂In−1

)

· p(−1) = 0, (4)

where we again used the fact that λ > 1 by Lemma 1.

Proof of aggregate balance. IfG has a constant row sum of µ, we haveG·1 = µ1, implying

that µ is an eigenvalue of G and 1 is the associated eigenvector. Since G is irreducible,

µ equals the Perron root λ̂ (alternatively, this follows from Lemma 3) and its associated

eigenvector is unique (up to a scalar multiple).

Proof of differentiability . A proof of the differentiability of a simple eigenvector with

respect to the entries of the matrix can be found in Wilkinson (1965, pp. 66-77).

Proof of relative monotonicity . See Theorem 2.1 and the proof thereof in Elsner et al.

(1982). We reproduce that theorem in Appendix D, see Theorem 4 on page 32.
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Proof of absolute monotonicity . See Theorem 3.1 and the proof thereof in Elsner et al.

(1982). We reproduce that theorem in Appendix D, see Theorem 5 on page 32.

Proof of duplication monotonicity . By definition of a clone, we have g1• ⊜ij g2• with the

first two elements being 1 and 0 (and the same holds for the first two columns i.e. g•1 ⊜ij g•2).
Hence,

G =







1 0 xT

0 1 xT

y y B






and G(−1) =

(

1 xT

y B

)

,

with length n−2 vectors x,y ≧ 0, and an (n−2)×(n−2) matrix B satisfying Assumption 1.

Let (µ,q) be the leading eigenpair (i.e. the Perron root and the Perron eigenvector) of G,

then

0 = (G− µI) · q =













1 0 xT

0 1 xT

y y B






− µI






·







1

1

q(−[2])






=







1− µ+ xT · q(−[2])

1− µ+ xT · q(−[2])

2y + (B− µI)q(−[2])






.

Since the first two equations coincide, we may drop either of both, arriving at

0 =

((

1 xT

2y B

)

− µI

)

·
(

1

q(−[2])

)

=
(

G̃− µI
)

· q(−1),

where

G̃ ≡
(

1 xT

2y B

)

= G(−1) +

(

0 0T

y 0

)

= G(−1) +Y,

with Y ≡ ỹ · eT1 and ỹ ≡ (0,yT)T. We decompose the perturbation

Y =
n
∑

i=2

Yi, with Yi ≡ ỹi ei · eT1 .

into n−1 successive perturbations Yi, i = 2, . . . , n. Since perturbation Yi (weakly) increases

the ith row of G(−1) leaving all other rows unaffected, we know from Theorem 5 that this

perturbation (weakly) increases the ith component of the (normalized) Perron vector ofG(−1).

Successively repeating this argument, all n− 1 components of the Perron vector are (weakly)

increased relative to the first component. �

EVP thus has a set of desirable properties. Since we explained them above, we may

restrict ourselves here to some additional comments related to the specific structure of the

EVP. It is a remarkable observation that while the Perron root of G is a non-decreasing

function of positive perturbations,19 the components of the corresponding (normalized) Per-

ron vector are non-increasing. Since this translates into a relative increase in the EVP of

the player whose row-entries are semipositively perturbed, i.e., weakly increased, this is a

19As we are interested in the Perron vector, we do not explicitly discuss the properties of the Perron root.

Among others, Seneta (1981), Berman and Plemmons (1994), Varga (2009), and Pinkus (2010) analyze how

the eigenvalues of a matrix vary as functions of the elements of the matrix and show that the eigenvalues, and

hence the Perron root, exhibit nice monotonicity properties.
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plausible, and even natural feature of the EVP. In view of the property permutation covari-

ance, the self-referential structure, and the linearity of the EVP, it is quite intuitive that the

property aggregate balance holds: if all players contribute by the same total amount to the

team, the same productivity measure will be assigned to all players. Notably, the reverse also

holds, so that we infer:

Corollary 2. The EVPs of all players coincide if, and only if, all players have equal total

productivities.

∀i, j ∈ N : 〈gi•,1〉 = 〈gj•,1〉 ⇔ p = α 1, α > 0.

Proof. Since p is an eigenvector and λ the associated eigenvalue of G, we have by Eq. (1),

G · α 1 = λα 1 ⇔ G · 1 = λ1 ⇔ 〈gi•,1〉 = λ,∀i = 1, . . . , n. �

While a sufficient condition for two players having the same productivity measure is

that, by symmetry , both players equally contribute to the productivities of all players, equal

pairwise contributions are not necessary for two players to have the same productivity mea-

sure.

Example 1. A simple example is the matrix

A =











1 0 2 2

0 1 1 1

0 2 1 0

1 0 0 1











with eigenvalues {3,−1, 1, 1} and an eigenvector associated with the (absolutely) largest

eigenvalue, (2, 1, 1, 1)T . Hence, players 2, 3, and 4 all have the same EVP although their

pairwise contributions do not coincide. Also, this example illustrates that the reverse impli-

cation of aggregate balance does not hold: equal total contributions are not necessary for two

players to have equal productivity measures: players 3 and 4 have the same EVP although

their total contributions do not coincide, as A · 1 = (5, 3, 3, 2)T . ⋄

The property null player property not only ensures that such a player obtains an EVP

equal to zero, but also that that we may add or remove null players from the team without

affecting the EVPs of the other players (including the null players).

Corollary 3. A null player can be removed from (or added to) a team without affecting the

EVP of any player, that is, p(−i)(G) = p(G(−i)).

Proof. This result follows from the proof of Proposition 3, see Eq. (4). �

Comparing the EVPs of the teams N and N \ {i} where i is a dummy player, we see

from Corollary 3 that p(G) and p(G(−i)) only differ by the element pi = 0 (the EVP of the

dummy player), which is contained in p(G) but not in p(G(−i)). In this sense, the EVP

vector of the team is unaffected by the removal (or the addition) of null players.
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In this section we analyzed and discussed the properties of the EVP, presuming a pairwise

productivity matrix G. The following section demonstrates how G can actually be obtained

in a given situation.

5. Calculation of Eigenvalue Productivity

In this section we first show how to calculate the productivity matrix G in general, and then

we employ two examples to illustrate the applicability of our approach. The first example

is a small artificial example, the second a real-world example where we consider a group of

directors, actors and directors of photography who work together to produce different movies.

(A third example of a team consisting of a group of researchers who collaborate on different

research projects, co-authorships in publications, can be found in Appendix B.) In all cases,

we have a situation where teams work in different compositions to realize a project, e.g.,

movies, publications, and where a suitable measure of success is available. Variations in the

team composition and in the success of the project are essential, as those allow us to calculate

the matrix G.

5.1. Calculation of the matrix G in general. First, delete from the team, i.e., from

the set N , those workers who have never been in action during the given period. Then,

calculate the entries of G as follows: For each given pair20 of workers {i, j}, i, j ∈ N , consider

those projects in which i and j have worked together, that is, where both were included in

the team composition. Calculate the ratio of the points21 achieved in these projects to the

maximal number of points the teams including the pair {i, j} could have potentially achieved.

Let sij denote this point ratio, which measures the success (performance) of the pair {i, j}
over all team compositions. Next, consider those projects where worker i was a member of

the team (worker j may or may not have been a member of the team), and calculate the

points the respective teams have achieved in these projects divided by the maximal number

of points those teams could have potentially achieved; denote this point ratio by si ≡ sii,

which measures the success (performance) of worker i. Collecting all pair-success ratios gives

the symmetric matrix S := (sij)i,j∈N .

Then define gij := sij/sj , which represents the success of the pair {i, j} relative to the

success of worker j, an effect which is arguably associated with the presence of worker i.

This allows us to define G by G := (gij)i,j∈N . As a convention, for pairs of workers {i, j}
that have never been jointly included in some team composition during the period, we set

sij =
√
sisj and thus gij =

√

si/sj . Observe that G is nonnegative, and (generically) not

symmetric.

Next, in order to obtain the entries of G, we relate the performance of a pair of workers

to the performance of either of its two workers. More precisely, comparing the performance

of the pair {i, j}, measured by sij, with the performance of worker j, sj, we obtain the ratio

20In this context, the word pair refers to an unordered pair; that is, to a set containing exactly two elements.
21For convenience, we use the term points to refer to the success measure.
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Table 1. Results of the team for varying compositions

no. compositions projects points max. pts. ratio

1 ACD 2 3 6 1
2

2 ACE 4 12 12 1

3 ADE 3 1 9 1
9

4 BCD 3 4 9 4
9

5 BCE 2 6 6 1

6 BDE 3 0 9 0

sum 17 26 51 26
51

gij := sij/sj for all team members i, j ∈ N . Then, gij measures the relative performance

of the pair {i, j} compared to the overall performance of worker j. In this way we are able

to build the matrix G, where, by construction, the main diagonal elements equal unity, i.e.,

gii = 1 for all i ∈ N . Then, the ith row of G gives the performance of each pair {i, j} (i

fixed) normalized by the performance of worker j. Loosely speaking, the elements of the

ith row capture the increase in the productivity of each worker due to the contribution of

worker i. Inversely, the ith column of G represents how each of the team members contributes

to the performance of worker i. In this way, G represents all relative normalized pairwise

performance measures.

5.2. Example 1: A simple example. Consider a team consisting of six workers N =

{A,B,C,D,E, F}. Assume that over a specific time period the team has put into effect 17

projects in six different compositions, and has realized 26 out of 51 possible (abstract) points

of success. The detailed results for the specific team compositions are displayed in Table 1.

Apparently worker F has never been included in a team during the year, so that F ’s team

productivity can neither be reasonably defined nor measured. Accordingly, we completely

disregard worker F henceforth. Moreover, observe that workers A and B were never included

in the same team composition, a feature which may occur, for example, for workers with the

same area of expertise, e.g., IT specialists, or in team sports for players playing the same

position, e.g., goalies.

Before we proceed to calculate the EVP of each single worker, it is worthwhile to pause for

a second and to inspect Table 1 for the individual contributions of the workers. Apparently,

the success of the team has improved whenever C joined the team: compare the composition

ADE with ACD, ADE with ACE, BDE with BCD, and BDE with BCE. In all of these

comparisons, the ratio of achieved points to maximal points has gone up by replacing either

D or E by C. It thus appears that the coworker productivity of C is relatively high. This

should be reflected in our measure of individual productivity, the EVP. Also, it is easy to

verify that the team performance has improved whenever B has been replaced by A; and

that the team performance has declined whenever D has been included. Accordingly, the

EVP should assign a higher coworker productivity to A than to B, and it should assign
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Table 2. Individual results for each worker

worker incl. in composition points max. pts. si

A {1, 2, 3} 16 27 16
27

B {4, 5, 6} 10 24 5
12

C {1, 2, 4, 5} 25 33 25
33

D {1, 3, 4, 6} 8 33 8
33

E {2, 3, 5, 6} 19 36 19
36

worker D a particularly poor coworker productivity. At the end of our calculation of the

EVPs, we shall see that this is exactly the case.

From Table 1 we calculate the results for each single worker i by disregarding those

projects where i was not included in the composition. The individual results are shown in

Table 2. In the next step we have to calculate the success for each pair of workers {i, j}, i, j ∈
N , which is done in Table 3.

Table 3. Pair results

pair incl. in composition points max. pts. sij
{A,C} {1, 2} 15 18 5

6

{A,D} {1, 3} 4 15 4
15

{A,E} {2, 3} 13 21 13
21

{B,C} {4, 5} 10 15 2
3

{B,D} {4, 6} 4 18 2
9

{B,E} {5, 6} 6 15 2
5

{C,D} {1, 4} 7 15 7
15

{C,E} {2, 5} 18 18 1

{D,E} {3, 6} 1 18 1
18

Using that data we build the matrix S, the matrix of pairwise success,22 displayed in Eq. 5.

We then proceed to calculate the entries of G (displayed also in Eq. 5) as described in the

last subsection.

S =

















16
27

2
√
5

9
5
6

4
15

13
21

2
√
5

9
5
12

2
3

2
9

2
5

5
6

2
3

25
33

7
15 1

4
15

2
9

7
15

8
33

1
18

13
21

2
5 1 1

18
19
36

















G =

















1 8
3
√
5

11
10

11
10

156
133

3
√
5

8 1 22
25

11
12

72
95

45
32

8
5 1 77

40
36
19

9
20

8
15

77
125 1 2

19
117
112

24
25

33
25

11
48 1

















(5)

Finally, we have to calculate the eigenvalues of G, which are 4.97, 0.8665, −0.8585,

0.1017, and −0.0797. Since the first eigenvalue is the (absolutely) largest one, we obtain

22Recall, that in building S we have used the conventions sii := si and sij :=
√
sisj for pairs {i, j} who

have not been included in any team composition, which here applies only to {A,B}.
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λ̂ = 4.97, and the associated eigenvector is (after normalizing by the first component) p(λ̂) =

(1, 0.7849, 1.3276, 0.4492, 0.9203), which is the vector we have been looking for: the between-

EVP vector.23

As appraised earlier when inspecting Table 1, the EVPs of worker A and C are high,

while those of B and D are low. Apparently, the EVP reflects our intuitive notion of coworker

productivity.

5.3. Example 2: Success of teams in movies. The movie industry offers suitable data to

exemplify the applicability of EVP. Since movies are produced by varying teams of directors,

actors, directors of photography, writers etc., team compositions change from one movie to

another. Apparently, for any given genre of movies, some teams perform better or are more

successful than others, implying that the team composition is crucial for the specific success

of a movie. At the same time, success measures for movies are readily available: numbers of

moviegoers, license fees, awards received, rankings in journals or on internet platforms may

be used as indicators of success or quality.

In order to illustrate that our concept of EVP also functions well on this data, we consider

a particular class of movies and the team of actors and directors of photography producing

them, and compute the EVPs for all of those team members. To keep the example tractable,

and thus the number of movies manageable, we consider a class of movies where the castings

have significant overlaps, so that pairs of team members repeatedly take part in different

movies of this class. To this end, we restrict the class of movies to a specific class: movies

directed by the German director, movie maker and actor Rainer Werner Fassbinder.24 Among

other works, his oeuvre includes 40 feature-length movies that he completed between 1969

and 1982.25 From those 40 movies we exclude Theater in Trance, because it is a documentary

movie, and Wie ein Vogel auf dem Draht, because it is basically a one–woman TV show for

and of Brigitte Mira. Disregarding those movies, our data set contains 38 movies with 38

different teams. By construction, as a producer Fassbinder is a member of all teams, and thus

we remove him unless he (also) has a role as an actor (9 movies). Our data set contains the

main actors, including those who play a ‘significant’ part, and the directors of photography

for those 38 movies—altogether 23 team members. (The complete list of these 38 movies

and 23 team members is included in Tables 4 and 9, respectively, the latter displayed in

Appendix B. The data was collected on the Homepage of the Rainer Werner Fassbinder

Foundation (Fassbinder, 2017).) We use the IMDb–user rating as an indicator of success of

a movie (IMDb.com, 2017).

23Note that we may normalize p(λ̂) in any way which appears to be convenient: thus, any multiple of p(λ̂):

αp(λ̂), α > 0 may also serve as a vector of coworker productivities. In particular, we could have chosen to

normalize so that
∑

pi(λ̂) = n yielding p(λ̂) = (1.1156, 0.8756, 1.481, 0.5011, 1.0267).
24Fassbinder, born May 31, 1945 in Bad Wörishofen, Bavaria, Germany, died June 10, 1982 in Munich,

Germany, is considered as one of the most important representatives of the so-called New German Cinema

movement.
25In addition, he produced three short movies (This Night, Der Stadtstreicher, and Das kleine Chaos), an

episode within the movie Deutschland im Herbst, and a TV–version of the cinema movie Bolwieser.
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Table 4. EVP–ranking of the artist

rank artist label no. movies IMDb EVP

1 Irm Herrmann F 12 0.768 1.048

2 Lilo Pempeit K 11 0.773 1.043

3 Karl Scheydt N 9 0.761 1.04

4 Klaus Löwitsch I 6 0.763 1.036

5 Xavier Schwarzenberger W 5 0.772 1.034

6 Juliane Lorenz S 10 0.759 1.024

7 Kurt Raab L 10 0.754 1.021

8 Michael Ballhaus U 14 0.754 1.013

9 Jürgen Jürgens V 4 0.752 1.01

10 Volker Sprengler P 6 0.738 1.001

11 Ulli Lommel J 10 0.734 1.

12 Rudolf Waldemar Brehm B 5 0.722 0.995

13 Hans Hirschmüller G 5 0.732 0.995

14 Margit Carstensen C 12 0.733 0.988

15 Hannah Schygulla O 17 0.716 0.986

16 Rainer Werner Fassbinder E 9 0.717 0.986

17 Thea Eymesz R 13 0.719 0.985

18 Ingrid Caven D 8 0.729 0.979

19 Dietrich Lohman T 13 0.708 0.977

20 Franz Walsch Q 14 0.721 0.969

21 Harry Baer A 11 0.71 0.968

22 Katrin Schaake M 4 0.693 0.96

23 Günther Kaufmann H 9 0.692 0.943

Since we repeat the same steps as in Example 1, we only provide the basic results. First,

we use the IMDb–ratings to compute IMDb–based scores for each artist, which are displayed

in the fifth column of Table 4. Then, we compute the IMDb–based scores for each pair of

artists, and use this data to compute the matrices S and G (both of which can be found

in Appendix B, see page 30). Finally, we use matrix G to compute the EVP–vector: We

find that the (absolutely) largest eigenvalue is λ̂ = 22.9679, and the associated eigenvector is

(after normalizing
∑

pi = n)

p(λ̂) = (0.968, 0.995, 0.988, 0.979, 0.986, 1.048, 0.995, 0.943, 1.036, 1., 1.043, 1.021,

0.96, 1.04, 0.986, 1.001, 0.969, 0.985, 1.024, 0.977, 1.013, 1.01, 1.034) .

The ranking of the artists implied by p(λ̂) is provided in Table 4.26

26The coefficient of correlation between EVP and the IMDb–score is 0.9601.
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6. Conclusion

In this paper, we treated a classic problem in labor and personnel economics: how can one

measure individual contributions to a team or a group? Owing to the fact that a team’s out-

put is, by definition, produced jointly, and frequently simultaneously, coworker productivity,

i.e., individual contributions to the joint output, is both difficult to conceptualize and hard to

measure. In this paper, we contribute to resolving both issues. We first derived a new concept

with which to measure coworker productivity, which we referred to as ‘eigenvalue productiv-

ity’ (EVP), as it is built upon eigenvector centrality, a concept well established in network

analysis. Then, we showed that under rather mild regularity conditions, such an EVP vector,

measuring the contributions of all team members, exists and is unique; and we demonstrated

that this vector has convenient economic properties, namely symmetry , permutation covari-

ance, null player property , aggregate balance, differentiability , relative monotonicity , absolute

monotonicity , and duplication monotonicity . Finally, using data of team success, we provided

one artificial and two real-world examples to demonstrate how the productivity matrix can

be generated, and then calculated the EVP vector for all cases.

With a procedure for obtaining the productivity matrix from the compositions of a given

team and its performance over a period, we are equipped with an applicable method to cal-

culate the individual productivity of each worker, as defined by the EVP. Since this or a

similar type of data is frequently available, our concept can be widely used to calculate co-

worker productivities. Therefore, our concept can be easily employed in empirical work in

labor economics (and team sports economics), as it can be suitably adapted to a specific data

set. In sum, we showed that EVP is a properly defined concept, which has several economi-

cally desirable properties and is suitable for real-world data. We are therefore confident that

EVP not only constitutes a significant theoretical contribution, but may also help calculate

coworker productivities in applied empirical work.
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Appendix A. Example 3: A research group

We consider a team consisting of a group of researchers of various economics departments

at European universities27 and take their publication records as a measure of the success of

cooperation within this team. As we are interested in the mutual productivity effects between

the members of this group and their implied pairwise productivity coefficients, we disregard

any stand-alone work as well as joint work with external, i.e. out of group researchers. Hence,

we drop all external coauthors and—after removal of those—also disregard all single-authored

publications. This procedure helps focus on the immediate cooperation of the members of the

research group and their productivity effects; also, it avoids boosting the example excessively

by including (a large number of) external researchers.

After removing those publications that are not coauthored by at least two members of

the research group, the team consists of 14 members labeled by

N = {A,B,C, F,G,H, I, J,K,L,M,N,O, P}.
The members of team N have published 45 articles in peer-reviewed journals within the two-

year period 2015–2016. They collaborated in 26 different teams of coauthors, publishing up

to seven research articles a team. Each member of N collaborated in up to 13 different teams

of coauthors, publishing up to 15 research articles (team member C).

To measure the significance of a publication (success of a coauthorship) we use the

ranking of economics journals established by the German economic newspaper Handelsblatt

(HB) in 2015, (Handelsblatt, 2015). This list assigns each (established) journal to either of

the categories: A+, A, B+, B, C+, C, and D, which are associated with the cardinal measures

(points) 1, 0.6, 0.3, 0.2, 0.15, 0.1 and 0.05, respectively. We multiply these points with

100 such that the maximal possible points for a publication are 100 for a publication in a

top-ranked journal (A+), and 5 for a mediocre-ranked journal (D).28

Table 5 represents our database consisting of the publication data associated with the

joint publications of the team members. The columns of this table display the (internal)

coauthors, the number of publications of this team of coauthors (frequency with which the

team of authors appears in our data set), the number of all coauthors (internal and external),

the number of internal coauthors (members of N ) and the ranking score of the journal. The

average points achieved by a paper amounts to 22.67, while the average points achieved by a

team of coauthors amounts to 22.02, both of which is slightly better than a publication in a

B–journal. Using the data set shown in Table 5, we compile the data for any particular team;

this data is provided in Table 6.

From Table 5 we calculate the results for each single researcher i ∈ N by focusing on

those projects where i was included in the team of authors. The individual results are shown

in Table 7. The individual success ratio si represents the individual HB–score. While this

27The data source is an existing research group, but to guarantee anonymity we do not use real names. The

details of the publication records were collected from the researchers’ personal and/or institutional websites.
28Publications in journals that were not included in the ranking received 5 points.
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Table 5. Results of the research group

no. team of no. pub- no. authors no. authors journal

coauthors lications internal ranking

1 ACK 1 5 3 100

2 AO 7 7 2 10

3 BCK 1 4 3 20

4 CFK 1 4 3 10

5 AMO 3 4 3 60

6 AO 7 4 2 5

7 AMO 3 4 3 60

8 BM 1 2 2 5

9 BC 2 2 2 20

10 BC 2 3 2 5

11 CJMN 1 4 4 20

12 CH 1 3 2 20

13 CHIK 1 5 4 5

14 HO 3 5 2 10

15 HO 3 4 2 5

16 CK 1 2 2 60

17 BCFM 1 5 4 60

18 JK 1 5 2 5

19 JP 4 3 2 60

20 JLP 2 4 3 5

21 BJ 2 3 2 10

22 JP 4 4 2 30

23 JLP 2 3 3 5

24 KN 1 13 2 5

25 IK 3 3 2 5

26 IK 3 3 2 20

27 FK 1 3 2 10

28 CGK 1 4 3 5

29 CHKL 1 4 4 5

30 IK 3 2 2 20

31 AO 7 2 2 30

32 AO 7 3 2 20

33 AMO 3 3 3 60

34 AO 7 2 2 15

35 AO 7 5 2 30

36 BJ 2 3 2 5

37 CMN 2 3 3 20

38 CN 1 3 2 10

39 CMN 2 4 3 60

40 MN 1 2 2 10

41 HO 3 4 2 5

42 AO 7 4 2 10

43 JP 4 2 2 5

44 JP 4 3 2 60

45 KP 1 4 2 20
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score measures the success of each member of the team accomplished in collaboration with

different sets of coauthors, it disregards the specific team compositions and hence the coworker

productivities. Acknowledging these coworker productivities, EVP will (generically) result

in a measure of coworker productivity different from the HB–score; however, we would, of

course, expect a strong (positive) correlation between both, the HB–score and the EVP. (We

use the HB–scores to compare the EVP–scores with some established ranking method; yet,

any other reasonable ranking method may equally serve to check the plausibility of EVP.)

In the next step, we calculate the success ratio for each pair of researchers {i, j}, i, j ∈ N ,

which is done in a way analogous to that of calculating Table 7. For example, the pair {C,F}
collaborated in the teams BCFM and CFK publishing two articles with scores 60 and 10;

thus, their pair score equals sCF = 70/200 = 7/20. Using that data, the matrix of pairwise

success coefficients S is given as in Eq. (6). In the next step we use the matrix S and proceed

to calculate the entries of G as described above (see page 16). The result is displayed in

Eq. (7).

Table 6. Publications of the different coauthorships

coauthors publications no. papers points max points success ratio

ACK {1} 1 100 100 1 1.

AMO {5, 7, 33} 3 180 300 3

5
0.6

AO {2, 6, 31, 32, 34, 35, 42} 7 120 700 6

35
0.171

BC {9, 10} 2 25 200 1

8
0.125

BCFM {17} 1 60 100 3

5
0.6

BCK {3} 1 20 100 1

5
0.2

BJ {21, 36} 2 15 200 3

40
0.075

BM {8} 1 5 100 1

20
0.05

CFK {4} 1 10 100 1

10
0.1

CGK {28} 1 5 100 1

20
0.05

CH {12} 1 20 100 1

5
0.2

CHIK {13} 1 5 100 1

20
0.05

CHKL {29} 1 5 100 1

20
0.05

CJMN {11} 1 20 100 1

5
0.2

CK {16} 1 60 100 3

5
0.6

CMN {37, 39} 2 80 200 2

5
0.4

CN {38} 1 10 100 1

10
0.1

FK {27} 1 10 100 1

10
0.1

HO {14, 15, 41} 3 20 300 1

15
0.067

IK {25, 26, 30} 3 45 300 3

20
0.15

JK {18} 1 5 100 1

20
0.05

JLP {20, 23} 2 10 200 1

20
0.05

JP {19, 22, 43, 44} 4 155 400 31

80
0.388

KN {24} 1 5 100 1

20
0.05

KP {45} 1 20 100 1

5
0.2

MN {40} 1 10 100 1

10
0.1
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Table 7. Publication success of the team members

author no. teams no. publ. points success ratio si

A 3 11 400 4
11 0.364

B 5 7 125 5
28 0.179

C 13 15 420 7
25 0.28

F 3 3 80 4
15 0.267

G 1 1 5 1
20 0.05

H 4 6 50 1
12 0.083

I 2 4 50 1
8 0.125

J 5 10 205 41
200 0.205

K 12 14 290 29
140 0.207

L 2 3 15 1
20 0.05

M 6 9 355 71
180 0.394

N 5 6 125 5
24 0.208

O 3 13 320 16
65 0.246

P 3 7 185 37
140 0.264
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0.3636 0.2548 1. 0.3114 0.1348 0.1741 0.2132 0.273 1. 0.1348 0.6 0.2752 0.3 0.31

0.2548 0.1786 0.2625 0.6 0.0945 0.122 0.1494 0.075 0.2 0.0945 0.325 0.1929 0.2097 0.2172

1. 0.2625 0.28 0.35 0.05 0.1 0.05 0.2 0.2929 0.05 0.4 0.275 0.2625 0.272

0.3114 0.6 0.35 0.2667 0.1155 0.1491 0.1826 0.2338 0.1 0.1155 0.6 0.2357 0.2562 0.2655

0.1348 0.0945 0.05 0.1155 0.05 0.0645 0.0791 0.1012 0.05 0.05 0.1404 0.1021 0.1109 0.115

0.1741 0.122 0.1 0.1491 0.0645 0.0833 0.05 0.1307 0.05 0.05 0.1813 0.1318 0.0667 0.1484

0.2132 0.1494 0.05 0.1826 0.0791 0.05 0.125 0.1601 0.125 0.0791 0.222 0.1614 0.1754 0.1818

0.273 0.075 0.2 0.2338 0.1012 0.1307 0.1601 0.205 0.05 0.05 0.2 0.2 0.2246 0.275

1. 0.2 0.2929 0.1 0.05 0.05 0.125 0.05 0.2071 0.05 0.2858 0.05 0.2258 0.2

0.1348 0.0945 0.05 0.1155 0.05 0.05 0.0791 0.05 0.05 0.05 0.1404 0.1021 0.1109 0.05

0.6 0.325 0.4 0.6 0.1404 0.1813 0.222 0.2 0.2858 0.1404 0.3944 0.275 0.6 0.3229

0.2752 0.1929 0.275 0.2357 0.1021 0.1318 0.1614 0.2 0.05 0.1021 0.275 0.2083 0.2265 0.2346

0.3 0.2097 0.2625 0.2562 0.1109 0.0667 0.1754 0.2246 0.2258 0.1109 0.6 0.2265 0.2462 0.2551

0.31 0.2172 0.272 0.2655 0.115 0.1484 0.1818 0.275 0.2 0.05 0.3229 0.2346 0.2551 0.2643
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1. 1.427 3.5714 1.1677 2.6968 2.0889 1.7056 1.3319 4.8276 2.6968 1.5211 1.3212 1.2188 1.173

0.7008 1. 0.9375 2.25 1.8898 1.4639 1.1952 0.3659 0.9655 1.8898 0.8239 0.9258 0.8517 0.822

2.75 1.47 1. 1.3125 1. 1.2 0.4 0.9756 1.4138 1. 1.0141 1.32 1.0665 1.0293

0.8563 3.36 1.25 1. 2.3094 1.7889 1.4606 1.1405 0.4828 2.3094 1.5211 1.1314 1.0408 1.0045

0.3708 0.5292 0.1786 0.433 1. 0.7746 0.6325 0.4939 0.2414 1. 0.356 0.4899 0.4507 0.435

0.4787 0.6831 0.3571 0.559 1.291 1. 0.4 0.6376 0.2414 1. 0.4596 0.6325 0.2708 0.5615

0.5863 0.8367 0.1786 0.6847 1.5811 0.6 1. 0.7809 0.6034 1.5811 0.5629 0.7746 0.7126 0.6877

0.7508 0.42 0.7143 0.8768 2.0248 1.5684 1.2806 1. 0.2414 1. 0.507 0.96 0.9126 1.0405

2.75 1.12 1.0459 0.375 1. 0.6 1. 0.2439 1. 1. 0.7247 0.24 0.9173 0.7568

0.3708 0.5292 0.1786 0.433 1. 0.6 0.6325 0.2439 0.2414 1. 0.356 0.4899 0.4507 0.1892

1.65 1.82 1.4286 2.25 2.8087 2.1756 1.7764 0.9756 1.3799 2.8087 1. 1.32 2.4375 1.2217

0.7569 1.0801 0.9821 0.8839 2.0412 1.5811 1.291 0.9756 0.2414 2.0412 0.6972 1. 0.92 0.8879

0.825 1.1741 0.9376 0.9608 2.2188 0.8 1.4033 1.0958 1.0901 2.2188 1.5211 1.087 1. 0.9651

0.8525 1.2166 0.9715 0.9955 2.2991 1.7809 1.4541 1.3415 0.9655 1. 0.8185 1.1263 1.0362 1.
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Table 8. EVP–ranking of the researchers

rank author EVP HB–score no. publ.

1 A 1.8082 0.3636 11

2 M 1.6208 0.3944 9

3 F 1.3146 0.2667 3

4 C 1.2889 0.28 15

5 O 1.1088 0.2462 13

6 P 1.0622 0.2643 7

7 B 1.033 0.1786 7

8 K 0.9855 0.2071 14

9 N 0.9282 0.2083 6

10 J 0.8132 0.205 10

11 I 0.6768 0.125 4

12 H 0.5212 0.0833 6

13 G 0.4386 0.05 1

14 L 0.4001 0.05 3

Finally, we have to calculate the eigenvalues of G. Computing these, we find that

the (absolutely) largest eigenvalue is λ̂ = 14.4093, and the associated eigenvector is (after

normalizing
∑

pi = n)

p(λ̂) = (1.8082, 1.033, 1.2889, 1.3146, 0.4386, 0.5212, 0.6768, 0.8132,

0.9855, 0.4001, 1.6208, 0.9282, 1.1088, 1.0622) .

This is the EVP–vector we have been looking for.29 The resulting ranking of the members of

the research group N is provided in Table 8. We infer that in view of the publications of the

team members, the ranking according to EVP appears to be reasonable. In particular, the

ranking according to EVP is similar to, yet different from, the naive method when we rank the

members according to their individual HB–scores disregarding the effects of cooperation.30

Appendix B. Supplementary material of Example 2

Table 9 contains all full-length Fassbinder movies and their IMDb ratings and their years

of production.

29We may normalize p(λ̂) in any way which appears to be convenient, and thus any multiple of p(λ̂), i.e.,

αp(λ̂), α > 0 may also serve as an EVP–vector.
30The coefficient of correlation between EVP and the HB–score is 0.9675.
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Table 9. Full-length Fassbinder movies: teams and IMDb–user ratings

no. team IMDb German title English title year

4. EGJOQT 6.7 Liebe ist kälter als der Tod Love is Colder than Death 1969

5. ADHOQRT 6.5 Götter der Pest Gods of the Plague 1969

6. ABEFGOQT 7.2 Katzelmacher Katzelmacher 1969

7. AKLQT 7.7 Warum läuft Herr R. Amok? Why does Herr R. run Amok? 1969

8. HMORT 6.5 Rio das Mortes Rio das Mortes 1979

9. ABCDGHLO 6.6 Das Kaffeehaus Das Kaffeehaus 1970

10. AHJMOQRU 6.6 Whity Whity 1970

11. CEOQT 6.1 Niklashauser Fahrt The Niklashausen Journey 1970

12. EMNRT 6.8 Der amerikanische Soldat The American Soldier 1970

13. DEJLNOQU 7.0 Warnung vor einer heiligen Nutte Beware of a Holy Whore 1970

14. ABFHORT 6.6 Pioniere in Ingolstadt Pioneers in Ingolstadt 1970

15. FGINRT 7.6 Händler der vier Jahreszeiten The Merchant of Four Seasons 1971

16. CFMORU 7.8 Die bitteren Tränen der Petra von Kant The Bitter Tears of Petra von Kant 1971

17. ABRT 7.2 Wildwechsel Jailbait 1972

18. BFGJLNOT 8.5 Acht Stunden sind kein Tag Eight Hours are not a Day 1972

19. ACEJOT 7.6 Bremer Freiheit Bremen Freedom 1972

20. CDIJKLNU 7.9 Welt am Draht World on a Wire 1973

21. CFIJK 7.2 Nora Helmer Nora Helmer 1973

22. HIU 7.8 Martha Martha 1973

23. EFKNRV 8.1 Angst essen Seele auf Fear Eats the Soul 1973

24. FJKNORTV 7.1 Fontane Effi Briest Effi Briest 1974

25. AEFLNRU 7.8 Faustrecht der Freiheit Fox and his Friends 1974

27. CDFKLRU 7.7 Mutter Küsters’ Fahrt zum Himmel Mother Küster Goes to Heaven 1975

28. CDFKLV 7.7 Angst vor der Angst Fear of Fear 1975

29. U 8.0 Ich will doch nur, dass ihr mich liebt I Only Want You to Love Me 1975

30. CDJLPRUV 7.2 Satansbraten Satan’s Brew 1975

31. CJPSU 7.6 Chinesisches Roulette Chinese Roulette 1976

33. LPQSU 7.3 Bolwieser (Kino) The Stationmaster’s Wife 1976

34. CU 7.5 Frauen in New York Women in New York 1977

35. IPQSU 7.4 Despair — Eine Reise ins Licht Despair 1977

37. IKOQSU 7.9 Die Ehe der Maria Braun The Marriage of Maria Braun 1978

38. DHKNP 7.7 In einem Jahr mit 13 Monden I a Year of 13 Moons 1978

39. ACHOPS 7.1 Die dritte Generation The Third Generation 1978

40. FKOQSW 8.8 Berlin Alexanderplatz Berlin Alexanderplatz 1979

41. AEKOQSW 7.2 Lili Marleen Lili Marleen 1980

42. QSW 7.7 Lola Lola 1981

44. SW 8.0 Die Sehnsucht der Veronika Voss Veronika Vross 1981

45. HQSW 6.9 Querelle Querelle 1981
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0.71 0.69 0.71 0.655 0.745 0.72 0.69 0.668 0.736 0.71 0.745 0.737 0.66 0.78 0.692 0.71 0.704 0.694 0.715 0.713 0.72 0.731 0.72

0.69 0.722 0.66 0.66 0.72 0.743 0.743 0.66 0.742 0.85 0.747 0.755 0.707 0.85 0.722 0.73 0.72 0.69 0.74 0.737 0.738 0.737 0.747

0.71 0.66 0.733 0.742 0.685 0.76 0.66 0.685 0.755 0.75 0.762 0.742 0.78 0.79 0.704 0.73 0.61 0.757 0.735 0.685 0.762 0.745 0.752

0.655 0.66 0.742 0.729 0.7 0.77 0.66 0.693 0.79 0.737 0.775 0.735 0.71 0.753 0.67 0.745 0.675 0.713 0.744 0.65 0.745 0.745 0.75

0.745 0.72 0.685 0.7 0.717 0.77 0.695 0.704 0.74 0.71 0.765 0.74 0.68 0.742 0.697 0.727 0.684 0.757 0.72 0.688 0.74 0.81 0.72

0.72 0.743 0.76 0.77 0.77 0.768 0.777 0.66 0.74 0.76 0.777 0.793 0.78 0.782 0.767 0.753 0.8 0.753 0.88 0.74 0.777 0.763 0.88

0.69 0.743 0.66 0.66 0.695 0.777 0.732 0.66 0.76 0.76 0.752 0.755 0.712 0.805 0.725 0.735 0.695 0.76 0.745 0.75 0.743 0.742 0.752

0.668 0.66 0.685 0.693 0.704 0.66 0.66 0.692 0.78 0.66 0.77 0.66 0.655 0.77 0.665 0.74 0.667 0.655 0.7 0.653 0.72 0.722 0.69

0.736 0.742 0.755 0.79 0.74 0.74 0.76 0.78 0.763 0.755 0.767 0.79 0.727 0.775 0.79 0.74 0.765 0.76 0.765 0.76 0.775 0.758 0.768

0.71 0.85 0.75 0.737 0.71 0.76 0.76 0.66 0.755 0.734 0.74 0.765 0.66 0.762 0.725 0.74 0.677 0.697 0.76 0.748 0.726 0.715 0.753

0.745 0.747 0.762 0.775 0.765 0.777 0.752 0.77 0.767 0.74 0.773 0.775 0.732 0.77 0.775 0.77 0.79 0.763 0.797 0.74 0.783 0.763 0.8

0.737 0.755 0.742 0.735 0.74 0.793 0.755 0.66 0.79 0.765 0.775 0.754 0.723 0.78 0.737 0.725 0.733 0.757 0.73 0.81 0.748 0.745 0.763

0.66 0.707 0.78 0.71 0.68 0.78 0.712 0.655 0.727 0.66 0.732 0.723 0.693 0.68 0.697 0.715 0.66 0.692 0.725 0.665 0.72 0.722 0.731

0.78 0.85 0.79 0.753 0.742 0.782 0.805 0.77 0.775 0.762 0.77 0.78 0.68 0.761 0.753 0.77 0.7 0.748 0.76 0.75 0.757 0.76 0.767

0.692 0.722 0.704 0.67 0.697 0.767 0.725 0.665 0.79 0.725 0.775 0.737 0.697 0.753 0.716 0.71 0.711 0.685 0.775 0.698 0.732 0.71 0.8

0.71 0.73 0.73 0.745 0.727 0.753 0.735 0.74 0.74 0.74 0.77 0.725 0.715 0.77 0.71 0.738 0.735 0.72 0.735 0.723 0.738 0.72 0.755

0.704 0.72 0.61 0.675 0.684 0.8 0.695 0.667 0.765 0.677 0.79 0.733 0.66 0.7 0.711 0.735 0.721 0.655 0.76 0.684 0.724 0.737 0.765

0.694 0.69 0.757 0.713 0.757 0.753 0.76 0.655 0.76 0.697 0.763 0.757 0.692 0.748 0.685 0.72 0.655 0.719 0.739 0.69 0.742 0.747 0.745

0.715 0.74 0.735 0.744 0.72 0.88 0.745 0.7 0.765 0.76 0.797 0.73 0.725 0.76 0.775 0.735 0.76 0.739 0.759 0.733 0.755 0.756 0.772

0.713 0.737 0.685 0.65 0.688 0.74 0.75 0.653 0.76 0.748 0.74 0.81 0.665 0.75 0.698 0.723 0.684 0.69 0.733 0.708 0.731 0.71 0.74

0.72 0.738 0.762 0.745 0.74 0.777 0.743 0.72 0.775 0.726 0.783 0.748 0.72 0.757 0.732 0.738 0.724 0.742 0.755 0.731 0.754 0.72 0.763

0.731 0.737 0.745 0.745 0.81 0.763 0.742 0.722 0.758 0.715 0.763 0.745 0.722 0.76 0.71 0.72 0.737 0.747 0.756 0.71 0.72 0.752 0.762

0.72 0.747 0.752 0.75 0.72 0.88 0.752 0.69 0.768 0.753 0.8 0.763 0.731 0.767 0.8 0.755 0.765 0.745 0.772 0.74 0.763 0.762 0.772
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1. 0.956 0.968 0.899 1.04 0.938 0.943 0.965 0.964 0.967 0.964 0.977 0.953 1.025 0.967 0.962 0.976 0.965 0.942 1.007 0.955 0.971 0.933

0.972 1. 0.9 0.906 1.005 0.969 1.015 0.953 0.973 1.158 0.967 1.001 1.021 1.117 1.008 0.989 0.998 0.959 0.975 1.041 0.979 0.98 0.967

1. 0.914 1. 1.018 0.956 0.99 0.902 0.99 0.989 1.022 0.987 0.984 1.126 1.038 0.983 0.989 0.846 1.052 0.968 0.967 1.011 0.99 0.975

0.923 0.914 1.012 1. 0.977 1.003 0.902 1.002 1.035 1.004 1.003 0.975 1.026 0.99 0.935 1.009 0.936 0.992 0.98 0.917 0.989 0.99 0.972

1.049 0.997 0.934 0.961 1. 1.003 0.949 1.018 0.969 0.967 0.99 0.981 0.982 0.976 0.972 0.985 0.948 1.052 0.949 0.971 0.982 1.076 0.933

1.014 1.03 1.036 1.057 1.074 1. 1.061 0.953 0.969 1.035 1.005 1.051 1.126 1.027 1.07 1.02 1.109 1.047 1.159 1.045 1.031 1.014 1.14

0.972 1.03 0.9 0.906 0.97 1.012 1. 0.953 0.996 1.035 0.973 1.001 1.028 1.058 1.012 0.996 0.963 1.057 0.982 1.059 0.986 0.986 0.974

0.941 0.914 0.934 0.951 0.983 0.86 0.902 1. 1.022 0.899 0.996 0.875 0.946 1.012 0.928 1.002 0.924 0.911 0.922 0.922 0.955 0.959 0.894

1.037 1.028 1.03 1.084 1.032 0.964 1.038 1.127 1. 1.029 0.992 1.048 1.05 1.018 1.103 1.002 1.06 1.057 1.008 1.073 1.028 1.007 0.994

1. 1.177 1.023 1.011 0.991 0.99 1.038 0.953 0.989 1. 0.958 1.015 0.953 1.002 1.012 1.002 0.938 0.969 1.001 1.055 0.963 0.95 0.975

1.049 1.035 1.04 1.063 1.067 1.012 1.027 1.112 1.004 1.008 1. 1.028 1.056 1.012 1.082 1.043 1.095 1.061 1.05 1.045 1.039 1.014 1.036

1.038 1.046 1.012 1.009 1.033 1.033 1.031 0.953 1.035 1.042 1.003 1. 1.043 1.025 1.028 0.982 1.017 1.052 0.962 1.143 0.993 0.99 0.988

0.93 0.979 1.064 0.975 0.949 1.016 0.973 0.946 0.952 0.899 0.947 0.958 1. 0.893 0.972 0.968 0.915 0.963 0.955 0.939 0.955 0.959 0.947

1.099 1.177 1.077 1.034 1.036 1.019 1.1 1.112 1.015 1.039 0.996 1.034 0.982 1. 1.051 1.043 0.97 1.04 1.001 1.059 1.004 1.01 0.993

0.975 1.001 0.96 0.919 0.972 0.999 0.99 0.961 1.035 0.988 1.003 0.977 1.006 0.99 1. 0.962 0.986 0.952 1.021 0.985 0.972 0.944 1.036

1. 1.011 0.995 1.022 1.015 0.981 1.004 1.069 0.969 1.008 0.996 0.962 1.033 1.012 0.991 1. 1.019 1.001 0.968 1.021 0.979 0.957 0.978

0.992 0.997 0.832 0.926 0.954 1.042 0.949 0.963 1.002 0.922 1.022 0.973 0.953 0.92 0.993 0.995 1. 0.911 1.001 0.965 0.961 0.979 0.991

0.977 0.956 1.032 0.979 1.056 0.981 1.038 0.946 0.996 0.949 0.988 1.004 1. 0.983 0.956 0.975 0.908 1. 0.973 0.974 0.985 0.992 0.965

1.007 1.025 1.002 1.021 1.005 1.147 1.018 1.011 1.002 1.035 1.031 0.968 1.047 0.999 1.082 0.995 1.053 1.027 1. 1.035 1.002 1.004 1.

1.005 1.021 0.934 0.892 0.96 0.964 1.025 0.944 0.996 1.018 0.958 1.074 0.96 0.985 0.974 0.98 0.948 0.959 0.966 1. 0.97 0.944 0.958

1.014 1.022 1.039 1.022 1.033 1.012 1.015 1.04 1.015 0.989 1.014 0.992 1.04 0.994 1.022 0.999 1.004 1.032 0.995 1.031 1. 0.957 0.988

1.029 1.021 1.016 1.022 1.13 0.995 1.014 1.043 0.993 0.974 0.988 0.988 1.042 0.999 0.991 0.975 1.021 1.038 0.996 1.002 0.955 1. 0.987

1.014 1.034 1.026 1.029 1.005 1.147 1.027 0.997 1.006 1.026 1.035 1.012 1.056 1.007 1.117 1.023 1.06 1.036 1.017 1.044 1.012 1.013 1.
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Appendix C. Perron–Frobenius theorems

The following results are collected from Seneta (1981), Takayama (1985, ch. 4.B), Graham

(1987), and Berman and Plemmons (1994).

Let P be an n× n permutation matrix, i.e., a matrix with all elements but one in each

row and in each column being equal to zero.31 An n× n matrix A is called reducible if there

exists a permutation matrix P such that

P−1AP =

(

A11 A12

0 A22

)

,

where A11 and A22 are square submatrices. If this is impossible, i.e., if such a permutation

matrix P does not exist, A is called irreducible. (Note that in this definition, the off-diagonal

matrix A12 need not be square.) Moreover, if a permutation matrix P exists such that

P−1AP is block-diagonal, i.e., A12 = 0, A is called completely reducible.

Lemma 2 (Graham, 1987, p. 50). Let A be an n × n square matrix and P be an n × n

permutation matrix. Then the matrices PAPT and A have the same eigenvalues and, except

for permutation of their elements, the same eigenvectors.

As a direct consequence of Lemma 2, a permutation, that is, a renumbering of the

workers, does not affect their productivity measures. Consequently, eigenvalue productivity

is covariant with any permutation of the team members.

Lemma 3. Let A = (aij) be an n×n irreducible, nonnegative matrix. Then the Perron root

satisfies the inequalities

min
i

∑

j

aij ≦ λ̂ ≦ max
i

∑

j

aij ,

with equality on either side implying equality throughout (i.e., λ̂ can only be equal to the

maximal or minimal row sum if all row sums are equal).

Proof. See Seneta (1981) Theorem 1.5 in conjunction with Corollary 1 therein. �

The first version of the Perron–Frobenius Theorem is concerned with nonnegative ma-

trices.

Theorem 1 (Perron–Frobenius I). Let A be a nonnegative n× n matrix. Then,

(1) A has a nonnegative real eigenvalue λ̂.

(2) A nonnegative eigenvector x̂ ≥ 0 can be associated with λ̂.

(3) If Ax ≧ µx for some µ and x ≥ 0, then µ ≤ λ̂.

(4) For any eigenvalue λ of A, |λ| ≤ λ̂.

(5) If A ≧ B ≥ 0, then λ̂A ≥ λ̂B.

A stronger result can be obtained for irreducible nonnegative matrices.

31For any permutation matrix P we have PT = P−1.
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Theorem 2 (Perron–Frobenius II). Let A be a nonnegative irreducible n×n matrix. Then,

(1) A has a positive real eigenvalue λ̂ equal to its spectral radius ρ(A).

(2) The eigenvector x̂ associated with λ̂ is positive.

(3) The eigenvector x̂ is unique up to a scalar multiple.

(4) If Ax = λx for some λ ≥ 0 and x ≥ 0, then λ = λ̂.

(5) For any eigenvalue λ of A, |λ| ≤ λ̂.

(6) λ̂ increases when any entry of A increases.

(7) λ̂ is a simple eigenvalue of A.

Since a positive matrix is irreducible (Graham, 1987), Theorem 2 equally applies to

positive matrices.

Observe that if A is not irreducible, then

(1) The root λ̂ can be zero.

(In economic applications this case is rather uninteresting.)

(2) Some, but not all, elements of x̂ can be zero.

(3) Both x̂ and ŷ with ŷ 6= θx̂ for any θ ∈ R can be eigenvectors associated with λ̂.

(4) The root λ̂ is not necessarily a simple root.

We now impose an additional restriction on irreducible nonnegative matrices. The class

of irreducible matrices can be partitioned into primitive (or acyclic) and imprimitive (or

cyclic) matrices.

A square nonnegative matrix A is called primitive if there exists a positive integer k

such that Ak > 0. Whether a matrix is primitive or not can easily be verified by means of

the following result. Let Ã be the incidence matrix of A, then A is primitive if, and only if,

Ã is primitive. (A matrix Ã is called the incidence matrix corresponding to a nonnegative

matrix A if all positive entries of A are replaced by ones.)

The following result gives a sufficient condition for A to be primitive, providing an easy

method to test whether or not a matrix is primitive.

Lemma 4. A nonnegative irreducible square matrix A is primitive if it has at least one

diagonal element that is positive.

Since a primitive matrix A is irreducible (see Graham, 1987, p. 136), Theorem 2 also

applies to A:

Theorem 3 (Perron–Frobenius III). Let A be a nonnegative primitive n× n matrix. Then,

conditions (1) to (4) of Theorem 1 hold. Furthermore,

(5) The eigenvector x̂ is unique up to a scalar multiple.

(6) λ̂ increases when any entry of A increases: if 0 < B ≤ A and µ is an eigenvalue of

B, then |µ| ≤ λ̂. Moreover, if |µ| = λ̂, then B = A.

(7) λ̂ is a simple eigenvalue of A.
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Appendix D. Monotonicity results for the Perron vector

The following results are borrowed from Elsner et al. (1982).

Theorem 4 (Elsner, Johnson, and Neumann, 1982). Let A be an n × n nonnegative, irre-

ducible matrix. Then for any nonnegative n-vector v 6= 0,
yi
xi

>
yk
xk

, k 6= i, 1 ≤ k ≤ n,

where x = (x1, ..., xn)
T and y = (y1, ..., yn)

T are Perron vectors of A and A+ eiv
T, respec-

tively.

Note that the largest relative change in the component of a Perron vector corresponding

to the row in A which has been positively perturbed does not imply the largest absolute

change for that component; that is, it does not follow from Theorem 4 that

yi − yk > xi − xk, k 6= i, 1 ≤ k ≤ n.

Yet, if both Perron vectors x and y are normalized so that xi = yi = 1, then Theorem 4

implies that

yk < xk, k 6= i, k = 1, . . . , n.

If in Theorem 4 the assumption that A is irreducible is replaced by the assumption that

the Perron roots ofA andA+eiv
T are simple, then the strict inequalities have to be weakened

to accommodate the possibility that no greater relative change occurs in the ith component

over all other components. Moreover, since some of the entries in the Perron vectors may

well be zero, these inequalities have to be re-arranged to meet such an eventuality.

Elsner et al. (1982) discuss perturbations of the matrix A and the consequences for the

Perron vector in more detail.32

Theorem 5. Let A be an n×n nonnegative matrix whose Perron root is simple with a non-

zero first entry. Assume that v 6= 0 is a nonnegative vector. Then, there exists a positive

number ε0 (possibly dependent on v), such that

d

dε
zk(ε) ≤ 0

for each ε ∈ [0, ε0] and for each 1 ≤ k ≤ n, where for each ε ∈ [0, ε0], z(ε) = (z1(ε), . . . , zn(ε))
T

denotes the Perron vector of

Aε := A+ εe1v
T.

32For an analysis of marginal changes of the matrix elements and the corresponding changes of the Perron

vector, see Franklin (1968, Sec. 6.12).
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