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1 Introduction

Many economically important activities take the form of contests, i.e., games

where players invest effort or resources in trying to increase their probability

of winning a prize or prizes. Examples include, but are not limited to, armed

conflict (see, e.g., Skaperdas [8]), rent seeking (Tullock [13] is the seminal con-

tribution), competition in R&D (see, e.g., Fullerton and McAfee [2]), sports

competitions (see, e.g., Szymanski [11]), litigation (see, e.g., Tullock [12]), and

certain types of imperfect competition in product markets. A large literature

(see, e.g., Konrad [4] for a comprehensive survey) studies theoretical and em-

pirical aspects of contests.

In this paper, we consider the hitherto relatively overlooked question of

how players select which contest to enter, if they can only enter one contest

out of several. Azmat and Möller [1] study a similar problem, but focus on how

different contests might attract contestants of different abilities. In contrast,

we study how the self-allocation of identical contestants affects global equi-

librium effort, in particular when the number of contestants is large. Other

papers concerned with large contests and effort maximization are Olszewski

and Siegel [7, 6]. The problem studied in this paper is also related to the liter-

ature on how to allocate prizes in contests so as to maximize effort (see, e.g.,

Moldovanu and Sela [5]).

We can think of many settings in which the contest-selection problem might

arise, such as the following.

• Athletes consider which out of several sports competitions to enter.

• Firms have to select a market to be active in.

• Lobbyists choose a bureaucrat or regulator to influence.

• Researchers in the cut-throat, publish-or-perish nightmare of academia

select a topic to work on.

We find, in particular, that a self-allocation equilibrium may be such that

it maximizes aggregate effort across contests—something that may be good
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or bad, from a welfare standpoint, depending on the intended application. If

the contest technology is the “lottery” model introduced by Tullock [13], the

effort-maximizing allocation of contestants to contests is always the equilib-

rium outcome. For a more general class of contests that has the property that

it makes sense to talk about adding and subtracting players, it is always the

equilibrium result in the limit as the number of contestants approaches infin-

ity. That is, a large number of contestants who allocate themselves to contests

spontaneously will do so in a fashion that leads to approximately the same

aggregate equilibrium effort as in the allocation that maximizes global effort

across contests.

2 Examples

2.1 Lottery contests

Consider a set of N identical risk neutral individuals, where N is “sufficiently

large” in a sense to be made precise later on. Suppose there are K contests

with strictly positive prizes v1, v2, . . . , vK . Each individual can enter exactly one

contest. If individual i and Nk −1 others enter contest k , and i expends effort

or resources xk i , his probability of winning is

pk i (xk 1, xk 2, . . .) =

�

xk i/
∑

j xk j if
∑

j xk j > 0

1/Nk otherwise.

That is, the contest success function is the lottery contest made popular by

Tullock [13].
Suppose xk i comes at unit cost. Then contestant i ’s payoff function in con-

test k is

uk i = pk i (xk 1, xk 2, . . .)vk − xk i .

Assuming there are at least two contestants in contest k , there cannot be an

equilibrium in which nobody expends anything. For suppose everyone else

spends nothing. Then contestant i wins with probability 1/Nk if he also spends
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nothing, but with certainty if he spends some arbitrarily small amount. Since

there must be some such small amount that would make spending profitable,

it cannot be a best reply for contestant i to also spend nothing. Hence there

is no equilibrium in which nobody spends anything.

We are therefore justified in characterizing contestant i ’s best-reply spend-

ing by the first-order condition

∂ uk i

∂ xk i
=

∑

j 6=i xk j
�

∑

j xk j

�2 vk −1= 0.

Rearrangement reveals that each contestant’s best reply depends only on ag-

gregate spending. Hence there is a symmetric equilibrium where each indi-

vidual spends

xk =
Nk −1

N 2
k

vk ,

and hence in aggregate

Nk xk =
Nk −1

Nk
vk ,

enjoying individual equilibrium utility

vk

N 2
k

.

In order for everyone to be satisfied with their choice of contest, it cannot be

the case that a contestant would strictly prefer to participate in a different con-

test. Hence, ignoring the integer problem, in a self-allocation equilibrium it

has to hold that
v1

N 2
1

=
v2

N 2
2

= . . .=
vK

N 2
K

.

Consider now an allocation of individuals to contests that maximizes aggre-

gate equilibrium effort

Z =
∑

k

Nk −1

Nk
vk

subject to the constraint
∑

k

Nk =N .
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We can find the solution by forming the Lagrangian

L =
∑

k

Nk −1

Nk
vk −λ

∑

k

Nk

with associated first-order conditions

∂ L

∂ Nk
=

vk

N 2
k

−λ= 0 for all k .

Since this implies that equilibrium utility is the same in all contests, we have

found that the self-allocation equilibrium maximizes aggregate effort.

Ignoring the integer problem is not innocuous when we are dealing with

small numbers of contestants. Consider a setting with two contests with the

same prize v and three contestants. If only integer allocations of players to

contests are possible, in equilibrium two players will enter one contest and

the single remaining player the other. Nobody would want to switch, since

the player in the single-player contest would get an equilibrium utility of v /9

rather than v , and a player in the two-player contest could not improve his

utility by switching. Aggregate effort across contests is v /2, but would have

been 2v /3 if all three players had been in the same contest. Hence under the

integer restriction, self-allocation here not only does not maximize effort, but,

in fact, minimizes it. (We owe this example to Jingfeng Lu.)

2.2 Oligopoly

The effort-maximization result has interesting implications for a class of oligopoly

models. Consider Cournot, or quantity, competition in markets with isoelastic

demand, i.e., where if qk i is the output of firm i in market k , inverse demand

in market k is given by

Pk (qk 1, qk 2, . . .) =
Ak

∑

j qk j
,

with Ak > 0.
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Assume there are no fixed costs, and that all firms have access to the same

production technology once they are in market k . If the constant average and

marginal cost of producing in market k is ck > 0, firm i ’s profit function in

market k is then

πk i (qk 1, qk 2, . . .) =
Ak

∑

j qk j
qk i − ck qk i .

Maximizing this with respect to qk i , taking the output of other firms as given,

is equivalent to maximizing the transformed profit function

πk i (qk 1, qk 2, . . .)
ck

=
qk i

∑

j qk j

Ak

ck
−qk i .

Letting qk i = xk i for all i and Ak/ck = vk for all k , we see that this is the same

game as the lottery contest studied above. Hence under equilibrium self-allocation

into markets, firms will (one is tempted to say “as if led by an invisible hand”)

allocate themselves so as to maximize aggregate output across markets, sug-

gesting a kind of welfare theorem for this class of oligopoly models (again, of

course, provided there are sufficiently many firms that ignoring the integer

restriction is not problematic).

3 The general case

3.1 Contests

As before, suppose there are K contests with strictly positive prizes v1, . . . , vK

and N risk neutral individuals who must each choose to enter one of the con-

tests. If individual i and Nk −1 others enter contest k , and i expends effort or

resources xk i , we now assume his probability of winning is given by the more

general success function

pk i (xk 1, xk 2, . . .) :=

�

f (xk i )/
∑

j f (xk j ) if
∑

j f (xk j )> 0

1/Nk otherwise,
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where f is three times continuously differentiable and such that f ′ > 0, f (0) =
0, and f ′′ ≤ 0.

This success function is close to the class axiomatized by Skaperdas [9],
and seems the most general one that still allows us to conveniently scale a

contest up or down by adding or subtracting identical players.

Individual i ’s payoff function is

ui (k , x ) := pk i vk − xk i .

His first order condition for an interior maximum is

∂ ui

∂ xk i
=

f ′(xk i )
∑

j 6=i f (xk j )
�

∑

j f (xk j )
�2 vk −1= 0.

Szidarovszky and Okuguchi [10] show that there is a unique equilibrium in

this setting. Furthermore, since contest k is symmetric it has a symmetric

equilibrium where individual i sets xk i such that it satisfies

f ′(xk i )
f (xk i )

Nk −1

N 2
k

vk = 1.

We can define a solution function g implicitly by

f (g (Nk , vk ))
f ′(g (Nk , vk ))

=
Nk −1

N 2
k

vk .

Since we have f ′ > 0 and f ′′ ≤ 0, the expression f (xk i )/ f ′(xk i ) is strictly in-

creasing in xk i , so g (Nk , vk ) is well defined for all Nk , vk . Furthermore, g (Nk , vk )
is increasing in vk and decreasing in Nk if Nk ≥ 2, since

∂

∂ Nk

�

Nk −1

N 2
k

�

=
2−Nk

N 3
k

By definition of g the equilibrium utility in contest k is

vk

Nk
− g (Nk , vk ),

and the total effort in contest k is

Nk g (Nk , vk ).
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3.2 Self-allocation equilibrium

We now consider the implications of allowing individuals to enter any one

contest they like, costlessly. In equilibrium, no individual must then strictly

prefer to join a different contest, and hence equilibrium utility has to be the

same in all contests.

Ignoring the integer problem, assume Nk individuals enter contest k . If

there is an equilibrium where at least one individual enters each contests then

this self-allocation equilibrium (N1, . . . , NK ) is characterized by

vk

Nk
− g (Nk , vk ) =

vk+1

Nk+1
− g (Nk+1, vk+1),

K
∑

k=1

Nk =N ,

and

N1, N2, . . . , NK ≥ 1,

where N is the given total number of individuals.

Proposition 1 Given K and v1, . . . , vK there is some N ∗ such that for all N ≥N ∗

there is a unique self-allocation equilibrium where all contests are non-empty.

For N <N ∗ there is no such equilibrium. Furthermore, we have that

N ∗ ≤
K
∑

k=1

vk

min{v1, . . . , vK }
.

Proof. Define V1 by

V1(N1, v1) :=
v1

N1
− g (N1, v1).

Then
∂ V1(N1, v1)
∂ N1

=−
v1

N 2
1

−
∂ g (N1, v1)
∂ N1

.

If
∂ g (N1, v1)
∂ N1

≤−
v1

N 2
1

,
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then

∂

∂ N1

f (g (N1, v1))
f ′(g (N1, v1))

=
�

1−
f (g (N1, v1)) f ′′(g (N1, v1))

f ′(g (N1, v1))2

�

∂ g (N1, v1)
∂ N1

≤ −
v1

N 2
1

,

where the inequality uses that f ≥ 0 and f ′′ ≤ 0 by assumption. Therefore

we cannot have that ∂ g (N1, v1)/∂ N1 ≤ −v1/N
2

1 since the right hand side and

the left hand side of the equation that defines g must have the same partial

derivative with respect to N1 and

∂

∂ N1

�

N1−1

N 2
1

v1

�

=
2−N1

N 3
1

v1 >−
v1

N 2
1

.

In a self-allocation equilibrium with just two contests and prices v1 and v2

we have to have that

V1(N1, v1) =V1(N2, v2), N1+N2 =N , and N1, N2 ≥ 1. (1)

Assume, without loss of generality that v1 ≥ v2. If

V1(N −1, v1)> v2 =V1(1, v2),

then there is no solution to (1) since

V1(N1, v1)≥V1(N −1, v1)>V1(1, v2)

for all N1 ≤ N − 1. If V1(N − 1, v1) ≤ v2, then there is a unique solution to (1)
since V1(Nk , vk ) is strictly and continuously decreasing in Nk and

V1(N −1, v1) ≤ V1(1, v2),

V1(1, v1) > V1(N −1, v2).

The equilibrium is found by setting N1 =N −1, N2 =N −N1 and then decreas-

ing N1 until the values of the payoffs in the two contests equalize. If we define

N ∗
1 to be such that V1(N ∗

1 , v1) = v2, then we have proven the result for K = 2.

9



Notice also that the payoff that the individuals get in the two contest equilib-

rium is continuously decreasing in N since both N1 and N2 will be higher in

equilibrium if N increases.

Assume that we have proven the result for k contests. Then we can define

Vk (N , v1, . . . , vk ) to denote the payoff that an individual gets in any contest in

the unique self-allocation equilibrium with N individuals and k contests with

prices v1, . . . vk . We also know that there is some N ∗
k such that Vk (N , v1, . . . , vk )

is well defined and continuously decreasing in N for all N ≥ N ∗
k . In an equi-

librium with k +1 contests we have to have that

Vk (N −Nk+1, v1, . . . , vk ) =V1(Nk+1, vk+1). (2)

If

Vk (N −1, v1, . . . , vk )> vk+1 =V1(1, vk+1)

then there is no such equilibrium with Nk+1 ≥ 1 since Vk (N −Nk+1, v1, . . . , vk ) in-

creases when Nk+1 increases. Similarly, we cannot find an equilibrium where

all contest are non empty if Vk (N ∗
k , v1, . . . , vk ) < V1(N −N ∗

k , vk+1). But, for all N

that are sufficiently large such that

Vk (N −1, v1, . . . , vk ) ≤ vk+1, and

Vk (N
∗

k , v1, . . . , vk ) ≥ V1(N −N ∗
k , vk+1)

there is a unique choice of Nk+1 ≥ 1 that satisfies (2) and thus a unique self-

allocation equilibrium with k +1 contests.

To show the last part of the result assume that N ≥
∑K

k=1(vk/min{v1, . . . , vK }),
and without loss of generality assume that vk =min{v1, . . . , vK } for k = 1, . . . , k̄ .

We then have that

Vk̄ (k̄ , v1, . . . , vk̄ ) = v1.

Set Nk = 1 for k = 1, . . . , k̄ , and for k = k̄ +1, . . . , K pick Nk such that

V1(Nk , vk ) =
vk

Nk
− g (Nk , vk ) = v1.

Then, by construction, N1, . . . , NK is a self-allocation equilibrium for the num-

ber
∑K

k=1 Nk of individuals since the payoff in each contest is v1. It follows that

10



VK (N ′, v1, . . . , vK ) is well defined for N ′ ≥
∑K

k=1 Nk . Since vk/Nk ≥ v1 for all k we

also have that
K
∑

k=1

Nk ≤
K
∑

k=1

vk

v1
≤N ,

so in particular VK (N , v1, . . . , vK ) is well defined. �

3.3 Effort maximization

In this subsection, we consider how to allocate individuals to contests so as to

maximize total effort across contests.

Define Zk :=Nk g (Nk , vk ) and total global effort

Z =:
∑

k

Zk ,

and let h (x ) := f (x )/ f ′(x ).1

Proposition 2 If h is convex, then the problem of maximizing Z subject to the

constraint that
∑

k Nk = N has a unique solution that is characterized by the

equations ∂ Zk/∂ Nk = ∂ Z1/∂ N1 for all k together with the constraint.

Proof. We have that

h ′(x ) = 1−
f (x ) f ′′(x )

f ′(x )2
,

so if h is convex then
d

d x

�

1−
f (x ) f ′′(x )
( f ′(x ))2

�−1

≤ 0

Since g is defined implicitly by

f (g (N , v ))
f ′(g (N , v ))

−
N −1

N 2
v = 0,

the implicit function theorem implies that

∂ g (N , v )
∂ N

=
2−N
N 3

( f ′)2− f f ′′

( f ′)2

v =
2−N

N 3

�

1−
f f ′′

( f ′)2

�−1

v,

1For more on the role of the h function in contests, see Wärneryd [14] and Inderst et al [3].
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where the functions f , f ′, f ′′ are evaluated at the point g (N , v ). So

∂ Z1

∂ N1
= g (N1, v1) +N1

∂ g (N1, v1)
∂ N1

= g (N1, v1) +
2−N1

N 2
1

�

1−
f f ′′

( f ′)2

�−1

v1,

and

∂ 2Z1

∂ N 2
1

=
∂ g (N1, v1)
∂ N1

+
N1−4

N 3
1

�

1−
f f ′′

( f ′)2

�−1

v1+
2−N1

N 2
1

∂

∂ N1

�

1−
f f ′′

( f ′)2

�−1

v1

Suppose N1 ≥ 2. Then g (N1, v1) is decreasing in N1, and since h is convex

this implies that

∂

∂ N1

�

1−
f (g (N1, v1)) f ′′(g (N1, v1))

( f ′(g (N1, v1)))2

�−1

≥ 0.

Since (2−N1)/N 2
1 ≤ 0 it follows that

∂ 2Z1

∂ N 2
1

≤
∂ g (N1, v1)
∂ N1

+
N1−4

N 3
1

�

1−
f f ′′

( f ′)2

�−1

v1

=
2−N1

N 3
1

�

1−
f f ′′

( f ′)2

�−1

v1+
N1−4

N 3
1

�

1−
f f ′′

( f ′)2

�−1

v1

=
−2

N 3
1

�

1−
f f ′′

( f ′)2

�−1

v1 < 0.

If instead N1 ∈ [1, 2), then g (N1, v1) is increasing in N1 and

∂

∂ N1

�

1−
f (g (N1, v1)) f ′′(g (N1, v1))

( f ′(g (N1, v1)))2

�−1

≤ 0, and

2−N1

N 2
1

> 0

which also implies that ∂ 2Z1/∂ N 2
1 < 0.

Since ∂ 2Z /∂ N 2
k < 0 for all k , and since ∂ 2Z /∂ Nk∂ Ni = 0 if k 6= i , total

effort Z is a strictly concave function of (N1, . . . , Nk ). It follows that the problem

of maximizing effort subject to the constraint that
∑

k Nk = N has a unique

solution given by the first order conditions. �
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The following result shows that if f ′′ = 0 then three things happen: (i) the

self-allocation equilibrium maximizes effort; (ii) the self-allocation equilib-

rium has the lowest possible number of people in the contest with the highest

value (i.e., there are no other functions f for which there are fewer people in

the contest with the highest value in equilibrium); and (iii) the allocation that

maximizes effort also has the lowest possible number of people in the contest

with the highest value.

Proposition 3 Suppose that h is convex, and assume without loss of generality

that v1 ≥ v2 ≥ · · · ≥ vK . Then, if N is sufficiently large, both the self-allocation

equilibrium and the allocation that maximizes effort are such that

N 2
i ≥

vi

vi+1
N 2

i+1

for i = 1, . . . , K − 1. If f ′′ = 0, then the weak inequalities are equalities and the

self-allocation equilibrium maximizes effort.

Proof. Suppose there are only two contests, assume that N1 and N2 are such

that v1/N
2

1 = v2/N
2

2 , and set γ= v1/N
2

1 . Then

f (g (N1, v1))
f ′(g (N1, v1))

= h (g (N1, v1)) = (N1−1)γ, and

f (g (N2, v2))
f ′(g (N2, v2))

= h (g (N2, v2)) = (N2−1)γ.

So,

h (g (N1, v1))−h (g (N2, v2)) = γ(N1−N2). (3)

Since h ′ ≥ 1 it follows that

g (N1, v1)− g (N2, v2)≤ γ(N1−N2)

which implies

v1

N1
−

v2

N2
= γ(N1−N2)≥ g (N1, v1)− g (N2, v2).
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If f ′′ = 0, then h ′ = 1 and the weak inequality is an equality and we have found

the equilibrium. Otherwise N1 must be increased to reach the equilibrium.

Since h is convex, and since g (N1, v1)≥ g (N2, v2), it follows from (3) that

h ′(g (N1, v1))(g (N1, v1)− g (N2, v2))≥ γ(N1−N2). (4)

Assume that (N −2)2/4≥ v1/v2. Then v1/N
2

1 = v2/N
2

2 and N1+N2 =N implies

N2 ≥ 2. Since h ′(g (N1, v1))/h ′(g (N2, v2))≥ 1 it follows that
�

N2

∂ g (N2, v2)
∂ N2

−N1

∂ g (N1, v1)
∂ N1

�

h ′(g (N1, v1)) (5)

= γ(2−N2)
h ′(g (N1, v1))
h ′(g (N2, v2))

−γ(2−N1)

≤ γ(2−N2)−γ(2−N1)

= γ(N1−N2).

Together (4) and (5) imply

∂ Z1

∂ N1
= g (N1, v1) +N1

∂ g (N1, v1)
∂ N1

≥ g (N2, v2) +N2

∂ g (N2, v2)
∂ N2

=
∂ Z2

∂ N2
.

If h ′ = 1, then the weak inequality is an equality and we have found the al-

location that maximizes effort. Otherwise N1 must be increased to equalize

∂ Z1/∂ N1 and ∂ Z2/∂ N2 and maximize effort.

We have proven the result for K = 2 but the same argument applies for Ni

and Ni+1 if vi ≥ vi+1. �

Proposition 4 The self-allocation equilibrium maximizes effort for all N and

all values v1, . . . , vK if and only if f ′′ = 0.

Proof. It remains only to prove the “only if” part of this proposition. If the

self-allocation equilibrium maximizes effort, then V1(N1, v1) = V1(N2, v2) and

∂ Z1(N1, v1)/∂ N1 = ∂ Z2(N2, v2)/∂ N2. We have that

−
∂ 2Z1/∂ N 2

1

∂ 2Z1/(∂ N1∂ v1)
= −

2 ∂ g (N1,v1)
∂ N1

+N1
∂ 2g (N1,v1)
∂ N 2

1

∂ g (N1,v1)
∂ v1

+N1
∂ 2g (N1,v1)
∂ N1∂ v1

, and

−
∂ V1/∂ N1

∂ V1/∂ v1
= −

− v1

N 2
1
− ∂ g (N1,v1)

∂ N1

1
N1
− ∂ g (N1,v1)

∂ v1

.
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If f ′′ < 0, then h ′ > 1 and−(∂ 2Z1/∂ N 2
1 )/(∂

2Z1/∂ N1∂ v1) 6=−(∂ V1/∂ N1)/(∂ V1/∂ v1).
This is easy to see at N1 = 2 where ∂ g (N1, v1)/∂ N1 = 0 and the expressions sim-

plify to

−
∂ 2Z1/∂ N 2

1

∂ 2Z1/(∂ N1∂ v1)
= −

N1
∂
∂ N1

�

2−N1

N 3
1

�

v1
h ′

N1−1
N 2

1

1
h ′

=−
− v1

4h ′

1
4h ′

= v1, and

−
∂ V1/∂ N1

∂ V1/∂ v1
= −

−v1
4

1
N1
− N1−1

N 2
1

1
h ′

=
v1
4

1
2 −

1
4

1
h ′

< v1.

Since−(∂ 2Z1/∂ N 2
1 )/(∂

2Z1/∂ N1∂ v1) 6=−(∂ V1/∂ N1)/(∂ V1/∂ v1) the functions V1

and ∂ Z1/∂ N1 do not have the same level sets and thus the equations V1(N1, v1) =
V1(N2, v2) and ∂ Z1(N1, v1)/∂ N1 = ∂ Z2(N2, v2)/∂ N2 do not have the same solu-

tions. �
We have already established a common lower bound for the number of

people in the the contest with the highest value. We can also establish a com-

mon upper bound by arguing intuitively that effort should be higher in con-

tests with higher prices both in the equilibrium and in the allocation that max-

imizes effort, and that this implies that the number of people in the contest

with the highest value cannot be too high since a high number of people dis-

courages effort.

Proposition 5 Assume without loss of generality that v1 ≥ v2 ≥ · · · ≥ vK . Then,

both the self-allocation equilibrium and the allocation that maximizes effort

are such that g (Ni , vi )≥ g (Ni+1, vi+1) for i = 1, . . . , K −1 which is equivalent to

N 2
i

Ni −1
≤

vi

vi+1

N 2
i+1

Ni+1−1
.

In the self-allocation equilibrium we also have that Ni ≤ (vi/vi+1)Ni+1.

Proof. Suppose there are only two contests and assume that N1 and N2 are

such that v1/N1 = v2/N2. Then

f (g (N1, v1))
f ′(g (N1, v1))

=
N1−1

N 2
1

v1 =
N1−1

N1

v2

N2
≥

N2−1

N2

v2

N2
=

f (g (N2, v2))
f ′(g (N2, v2))

,
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and since f / f ′ is increasing it follows that g (N1, v1)≥ g (N2, v2) and

v1

N1
− g (N1, v1)≤

v2

N2
− g (N2, v2).

If the inequality is an equality we have found the equilibrium and otherwise

N1 must be reduced to reach it. Hence the self-allocation equilibrium is such

that N1 ≤ (v1/v2)N2 and g (N1, v1)≥ g (N2, v2).
Let N1 and N2 be such that v1(N1 − 1)/N 2

1 = v2(N2 − 1)/N 2
2 and set α =

v1(N1 − 1)/N 2
1 . Then g (N1, v1) = g (N2, v2) and h ′(g (N2, v2))/h ′(g (N1, v1)) = 1

which implies

�

N2

∂ g (N2, v2)
∂ N2

−N1

∂ g (N1, v1)
∂ N1

�

h ′(g (N2, v2)) =
v2

N 2
2

−
v1

N 2
1

≥ 0.

Since g (N1, v1) = g (N2, v2) it follows that

∂ Z1

∂ N1
= g (N1, v1) +N1

∂ g (N1, v1)
∂ N1

≤ g (N2, v2) +N2

∂ g (N2, v2)
∂ N2

=
∂ Z2

∂ N2

and thus we have either found the allocation that maximizes effort or N1 must

be decreased to equalize ∂ Z1/∂ N1 and ∂ Z2/∂ N2.

We have proven the result for K = 2 but the same argument applies for Ni

and Ni+1 if vi ≥ vi+1. �
Inderst et al [3] show that if h is convex, then the dissipation rate in a con-

test increases with the number of contestants. If the dissipation rate is in-

creasing and bounded by 1, then it must converge. We show that as the num-

ber of contestants in contest k increases, the dissipation rate in contest k ap-

proaches 1/h ′(0). For large N total effort in both the self-allocation equilib-

rium and the allocation that maximizes effort thus depends only on the slope

of h at the origin.

Proposition 6 Assume that vK =min{v1,... , vK } and define κ(N ) := 1
N

∑K
k=1

vk
vK

.

Let Z e q (N ) and Z ∗(N ) denote, resepectively, total effort in the self-allocation
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equilibrium and total effort in the allocation that maximizes effort as functions

of N . Then, if h is convex, both Z e q and Z ∗ are increasing in N and furthermore

(1−κ(N ))
K
∑

k=1

vk

h ′(vkκ(N ))
≤ Z e q (N )≤ Z ∗(N )≤

K
∑

k=1

vk

h ′(0)
, and

lim
N→∞

Z e q (N ) = lim
N→∞

Z ∗(N ) =
K
∑

k=1

vk

h ′(0)
.

Proof. Since h is convex and since h (0) = 0, we have that h ′(x )x ≥ h (x ). So

g (N1, v1)≥
h (g (N1, v1))
h ′(g (N1, v1))

=
N1−1

N 2
1

v1

h ′(g (N1, v1))
. (6)

It follows from (6) that ∂ Z1/∂ N1 = g (N1, v1)− (N1 − 2)v1/(N 2
1 h ′(g (N1, v1))) > 0.

More generally ∂ Zk/∂ Nk > 0 for all k which implies that both Z e q and Z ∗ are

increasing in N .

Since f is three times continuously differentiable, h−1 is two times contin-

uously differentiable and we can use a Taylor approximation of h−1. We have

that h (0) = 0 and thus

h−1(x ) = x/h ′(0) + x 2B (x )

where B (x ) is bounded for x close to 0. Hence

N1g (N1, v1) = N1h−1(
N1−1

N 2
1

v1) (7)

=
N1−1

N1

v1

h ′(0)
+
(N1−1)2

N 3
1

v 2
1 B (

N1−1

N 2
1

v1).

Since (N1 − 1)2v 2
1 /N

3
1 → 0 as N1 →∞, and since (N1 − 1)/N1 → 1, it follows

from (7) that N1g (N1, v1)→ v1/h
′(0) as N1→∞. More generally, Nk g (Nk , vk )→

vk/h
′(0) as Nk →∞. Proposition 5 implies that Nk →∞ as N →∞ for all k

both for the self-allocation equilibrium and for the allocation that maximizes

effort and thus Z e q (N )→
∑K

k=1
vk

h ′(0) and Z ∗(N , v1, . . . , vK )→
∑K

k=1
vk

h ′(0) as N →
∞.
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To see that (1−κ(N ))
∑K

k=1
vk

h ′(vkκ(N ))
≤ Z e q (N ) we first assume without loss

of generality that vi ≥ vi+1 for i = 1, . . . , K −1. Then, by Proposition 5, we have

that Ni+1 ≥Ni (vi+1/vi ) in the self-allocation equilibrium which implies

NK ≥
N

∑K
k=1

vk
vK

=
1

κ(N )
. (8)

Since h ′(g (Nk , vk ))g (Nk , vk )≥ h (g (Nk , vk )) = (Nk −1)vk/N
2

k we have that

Nk g (Nk , vk ) ≥ (1−
1

Nk
)

vk

h ′(g (Nk , vk ))
(9)

≥ (1−κ(N ))
vk

h ′(g (Nk , vk ))

where the second inequality uses (8) and that Nk ≥ NK for all k in the self-

allocation equilibrium. We do not know exactly what g (Nk , vk ) is but we do

know that g (Nk , vk )≤ vk/Nk since otherwise Nk g (Nk , vk )> vk ≥ vk/h
′(0)which

contradicts that Nk g (Nk , vk ) increases towards vk/h
′(0) as Nk increases. Thus

h ′(g (Nk , vk ))≤ h ′(vk/Nk )≤ h ′(vkκ(N )) so it follows from (9) that

Nk g (Nk , vk )≥ (1−κ(N ))
vk

h ′(vkκ(N ))

as we wanted to show. �
An immediate corollary of Proposition 6 is that there is a bound on the dif-

ference between total effort in the self-allocation equilibrium and total effort

in the effort maximizing allocation that depends on the curvature of h and

how large the number of contestants N is.

Proposition 7 Suppose that h is convex. The difference between total effort in

the self-allocation equilibrium and total effort in the effort maximizing alloca-

tion is then less than
K
∑

k=1

�

vk

h ′(0)
−

vk (1−κ(N )
h ′(vkκ(N ))

�

. (10)

As N →∞, we have that κ(N ) = 1
N

∑K
k=1

vk
vK
→ 0 and the difference in (10) tends

to 0.
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The difference in (10) depends on the curvature of h because the less curved

h is, i.e., the closer h ′′ is to 0, the smaller is the difference between h ′(0) and

h ′(vkκ(N )). But the difference tends to 0 for large N irrespective of how con-

vex h is. In this sense the result that the self-allocation equilibrium maximizes

total effort holds approximately for large N .

We conclude with an example. Suppose there are 100 contestants in two

contests with v1 = 9 and v2 = 1. From Proposition 3 we know that (N1/N2)2 ≥ 9

which implies N1 ≥ 75. From Proposition 5 we know that 9(N1−1)/N 2
1 ≥ (N2−

1)/N 2
2 which implies N1 ≤ 91. Both the self-allocation equilibrium and the

allocation that maximizes effort are such that dissipation rates are lower than

1/h ′(0) and thus total effort is less than 10/h ′(0). However,κ(N ) = 1/10 so total

effort is always at least (1− 1/10) ∗ 10/h ′(9/10)) = 9/h ′(0.9) so the dissipation

rates are at least 0.9/h ′(0.9).
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