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1. Introduction

Identification and estimation of both agents’ value of a match in one-to-one match-

ing models with transferable utility have been the subject of increasing interest in the

last decade. Two important applications are in the fields of family economics with the

marriage market (where the econometrician observes matching patterns, but not the

transfers) and labor economics with the labor market, or more generally the literature

on hedonic models (where the econometrician observes both the matching patterns

and the transfers).

In the case when transfers are not observed, thus in the case of the marriage

literature, Choo and Siow (2006) is a key reference which allowed to bring theoretical

models to the data. Subsequent references such as Chiappori et al. (2015), Galichon

and Salanié (2015) and Dupuy and Galichon (2014) have extended the structure of

the model in various dimensions. In particular, Dupuy and Galichon (2014) have

provided a framework for estimation of a matching model where agents match on

continuous characteristics, which they have applied to marriage market data.

In the case when transfers are observed, however, transfers may potentially pro-

vide useful supplementary information about the partners’ values of a match. In the

analysis of the labor market, for example, wages may be observed. The literature

referred to above is not very explicit on how this information may be used. Many

authors, such as Ekeland et al. (2004), Heckman et al. (2010) and Galichon and

Salanié (2015), among others, suggest techniques that implicitly or explicitly require

to perform nonparametric estimation (“hedonic regression”) of the wage curve prior

to the analysis. While this works well in the case when the relevant characteristics

is single-dimensional, as in Ekeland et al. (2004) and Heckman et al. (2010), or dis-

crete, as in Galichon and Salanié (2015), this is problematic when the characteristics

are continuous and multivariate. In this framework, Salanié (2015) shows that this

structure implies very strong testable restrictions.
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In this note, we build a flexible and tractable model of equilibrium matching and

wages on the labor market, and we show how to estimate the model using a maximum

likelihood approach. This work therefore extends our previous work, Dupuy and

Galichon (2014), to the case when transfers are observed.

Our paper is closely related to the literature on compensating wage differentials

initiated as an application of Rosen’s (1974) hedonic model to the labor market by

Lucas (1977) and Thaler and Rosen (1976), soon followed by many others; see Rosen

(1986) for an elegant presentation of the theory and a review of the early empirical

literature, and Viscusi and Aldy (2003) for a more recent review of the empirical liter-

ature. The approach in this vein consists in performing the reduced form estimation

of the wage-amenities gradient to uncover the marginal willingness of workers to pay

for or accept certain levels of (dis-)amenities at their job. A crucial assumption of this

approach is that the data contains rich enough information about a worker’s skills

to control for wage differentials due to productivity differentials across workers. For

instance, Brown (1980) proposed using panel data to estimate workers’ fixed effects

and control hence for unobserved heterogeneity whereas Garen (1988) suggested an

instrumental variable approach. Departure from this assumption implies an inherent

bias in the estimates of the compensating wage differentials, and Hwang et al. (1992)

have shown that this bias can be large. Our method contributes to this literature

by proposing a structural estimation technique to derive unbiased estimates of the

value of job amenities and productivity in a matching market where agents match on

multivariate and continuous characteristics using data about a single market.

Our model is also related to a growing empirical literature applying the celebrated

estimation technique proposed in Abowd et al. (1999) to decompose workers’ wage

differentials into differentials due to observed workers’ characteristics, unobserved

workers’ heterogeneity and firms’ heterogeneity using matched employer-employee

panel data, see among others Abowd et al. (2002), Andrews et al. (2008;2012),

Gruetter and Lalive (2009), Woodcock (2010) and Torres et al. (2013). Workers and
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firms fixed effects capture reduced form notions of workers and firms types that are

fixed over time and are identified using the mobility of workers across firms over time.

The outline for the rest of the paper is as follows. Section 2 introduces the model

and characterizes equilibrium. Section 3 presents our parametric specification of

the model and a maximum likelihood estimator on data about matches and wages.

Section 4 summarizes and concludes.

2. The model

The purpose of this section is to succinctly present our model, which is a bipartite

continuous matching model with transferable utility and logit unobserved heterogene-

ity. In our context, equilibrium transfers (wages) are observed. This is relevant for

instance in the labor market, as opposed to the marriage market where transfers are

typically unobserved. We limit ourselves to the introduction of the notation needed

for the construction of our estimator, emphasize on the additional identification and

estimation results obtained when transfers are observed and refer the interested reader

to the original paper for more details about its otherwise main properties. In the re-

mainder, to fix ideas, we use the example of the labor market where typically transfers,

in the form of wages, are observed.

2.1. Set up. Consider a one-to-one, bipartite matching model with transferable util-

ity. Assume that a worker’s characteristics are contained in a vector of attributes

x ∈ X = Rdx , while a firm’s characteristics are captured by a vector of attributes

y ∈ Y = Rdy .

Let w (x, y) be the wage of worker x when working for firm y. It is assumed that

worker x not only values her wage at firm y but also the amenities of her job at

firm y and let α̃ (x, y) denote the value of these amenities at firm y for a worker x.

As in Dupuy and Galichon (2014), the value of amenities is further assumed to be

decomposed into a systematic value α (x, y) and a random value ε (x, y) modelled as
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Gumbel random process, whose definition is recalled in Appendix A. One therefore

has α̃ (x, y) = α (x, y) + σ1ε (x, y) where σ1 is a scaling factor. By Proposition A.1

in that appendix, this implies that the density of probability that choosing firm y is

optimal for a worker of type x is given by

π (y|x) =
exp

(
α(x,y)+w(x,y)

σ1

)
∫
Y exp

(
α(x,y′)+w(x,y′)

σ1

)
dy′

(2.1)

while the expected indirect utility of worker x is

u (x) = σ1 log

∫
Y

exp

(
α (x, y′) + w (x, y′)

σ1

)
dy′. (2.2)

Similarly, it is assumed that γ̃ (x, y) measures the value of productivity when a

firm y matches with a worker x. This value consists of a systematic part γ (x, y)

and a random part η (x, y) modelled as a Gumbel random process, i.e. γ̃ (x, y) =

γ (x, y)+σ2η (x, y) where σ2 is a scaling factor. A firm y employing worker x generates

therefore profits γ̃ (x, y) − w(x, y). Under this specification, one can show that the

density of probability that choosing worker x is optimal for a firm of type y is given

by

π (x|y) =
exp

(
γ(x,y)−w(x,y)

σ2

)
∫
X exp

(
γ(x′,y)−w(x′,y)

σ2

)
dx′

(2.3)

while the expected indirect profits of firm y is

v (y) = σ2 log

∫
X

exp

(
γ (x′, y)− w (x′, y)

σ2

)
dx′ (2.4)

It is assumed that there is the same mass of workers and firms, and that the workers’

types x have a density of probability f (x), and the firms’ types y have a density of

probability g (y). Therefore a feasible matching between workers and firms, which
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consists in the probability density π (x, y) of occurrence of a (x, y) pair, should have

marginal densities f and g. More formally,

M (f, g) =

{
π : π (x, y) ≥ 0,

∫
Y
π (x, y) dy = f (x) and

∫
X
π (x, y) dx = g (y)

}
.

We now define an equilibrium on this market.

Definition 1. An equilibrium outcome (π,w) consists of an equilibrium matching

π (x, y), and an equilibrium wage w (x, y) such that:

(i) Matching π is feasible: π ∈M (f, g), and

(ii) Matching π is optimal for workers and firms given wage curve w, i.e. (2.1)

and (2.3) hold.

Note that when the scaling factors of the random values σ1 and σ2 tend to zero, the

firm’s problem and the worker’s problem converge to the deterministic maximization

problems

u (x) = max
y∈Y
{α (x, y) + w (x, y)} and v (y) = max

x∈X
{γ (x, y)− w (x, y)}

and the equilibrium problem consists in finding w (x, y) and π (x, y) which are com-

patible with optimality in these problems. See Remark 2.4 below.

2.2. Equilibrium Characterization. Let

φ(x, y) := α(x, y) + γ(x, y)

be the deterministic joint value of a match between a worker of type x and a firm of

type y.

Theorem 1. Under the above assumptions:

(i) The equilibrium matching π ∈M (f, g) is given by

π (x, y) = exp

(
φ (x, y)− a (x)− b (y)

σ

)
, (2.5)
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where (a, b) normalized so that a (x0) = 0 for some x0 ∈ X is the unique solution to

the system of equations∫
Y

exp

(
φ (x, y)− a (x)− b (y)

σ

)
dy = f (x) (2.6)∫

X
exp

(
φ (x, y)− a (x)− b (y)

σ

)
dx = g (y) .

(ii) The terms a and b that appear in (2.5) are related to the expected indirect

utilities u and profits v that appear in (2.2) and (2.4) by

u (x) = a (x) + σ1 log f (x) + t

v (y) = b (y) + σ2 log g (y)− t

for some t ∈ R.

(iii) The equilibrium wage w is given by

w (x, y) =
σ1

σ
(γ (x, y)− b (y)) +

σ2

σ
(a (x)− α (x, y)) + t. (2.7)

Proof. See the Appendix.

Theorem 1 suggests a few important remarks.

Remark 2.1 (Location normalization). If a(x) and b(y) are solutions of system (2.6),

so are a(x)+t and b(y)−t. Using Equation (2.7) of Theorem 1, the equilibrium wages

are w (x, y) for the former solution and w (x, y) + t for the later. The nonuniqueness

of the solution for system (2.6) requires a normalization which is reflected in both the

constant term t appearing in the equilibrium wages equation (2.7) and the arbitrary

choice a (x0) = 0.

Remark 2.2 (Scale normalization). Equation (2.5) clearly indicates that the match-

ing probabilities are scale invariant with respect to σ, i.e. two markets otherwise

similar but one with (α, γ, σ) and one with (α
σ
, γ
σ
, 1) generate the same equilibrium
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matches. However, inspection of Equation (2.7) reveals that wages are not scale in-

variant with respect to σ. While the two markets discussed above generate the same

equilibrium matches, they generate different equilibrium wages. As a results, with ob-

served wages, one can identify the scale of the systematic value of a match φ together

with the amount of heterogeneity necessary to rationalize the data. The normaliza-

tion of φ required when only matches are observed (see Dupuy and Galichon, 2014),

is not necessary when in addition wages are also observed. Interestingly enough, this

implies that both the scale of the deterministic value of a match φ and the amount of

unobserved heterogeneity necessary to rationalize the data can be compared across

markets when both matches and wages are observed in those markets.

Remark 2.3 (Identification of α and γ). The deterministic value of amenities α

and productivity γ do not appear individually in the expression of the equilibrium

matches in Equation (2.5), only the joint value of a match φ appears in this equation.

However, α and γ do appear separately in the formula of the equilibrium wages in

Equation (2.7). This clearly indicates that when only matches are observed, one

cannot identify and hence estimate the deterministic value of amenities α separately

from the deterministic value of productivity γ whereas, in contrast, if wages are

observed, one actually can identify and estimate these objects separately.

Remark 2.4 (The Becker-Shapley-Shubik model). When σ → 0, the model con-

verges to the classical model of Monge-Kantorovich, which is a continuous extension

of the model by Becker-Shapley-Shubik. Indeed, when σ1 and σ2 tend to zero, the

scaling coefficients of the random value of job amenities and productivity ε and η,

tend to zero, then the model becomes nonstochastic. Intuitively, when σ1 → 0,

the worker’s expected indirect utility u (x) tends to the deterministic indirect utility

maxy {α (x, y) + w (x, y)}, and it follows from (2.1) that the conditional choice dis-

tribution π (y|x) becomes concentrated around the optimal firm y such that u (x) =

α (x, y) + w (x, y). Similarly, when σ2 → 0, firm y’s expected indirect profits v (y)
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tends to the deterministic indirect profits maxx {γ (x, y)− w (x, y)}, and π (x|y) be-

comes concentrated around the optimal worker x such that v (y) = γ (x, y)−w (x, y).

Combining these two results, π (x, y) becomes concentrated around the set of pair

(x, y) such that u (x) + v (y) = φ (x, y), hence, in the limit when σ1 and σ2 tend to

zero, we have 
π ∈ M (f, g)

u (x) + v (y) ≥ φ (x, y) ∀x ∈ X , y ∈ Y

u (x) + v (y) = φ (x, y) π − a.s.

These are the classical stability conditions in the Monge-Kantorovich problem (see

Villani, 2003 and 2009), whose variants have been applied in Economics by Becker

(1973), Shapley and Shubik (1963), Gretsky, Ostroy, Zame (1992).

Remark 2.5 (The Sattinger model). Our model embeds Sattinger’s workhorse model

extensively used in the labor economics literature (see Sattinger, 1979 and 1993). This

model indeed corresponds to a matching market with no unobserved heterogeneity

(σ → 0; see Remark 2.4), unidimensional observed types (dx = dy = 1), in which

workers only care about their compensation (α = 0) and where the firm’s value of

productivity is smooth and supermodular (i.e. ∂2γ (x, y) /∂x∂y exists and is positive).

Under these restrictions, both the worker’s and firm’s problems become deterministic,

and the conditional distribution π(y|x) in this case is concentrated at one point y =

T (x), where T (x) is the only assignment of workers to firms which is nondecreasing.

The equilibrium wage w only depends on x and satisfies the differential wage equation,

namely

w′ (x) =
∂γ (x, T (x))

∂x
, (2.8)

and an explicit formula for the equilibrium wage is obtained by integration.
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Remark 2.6 (Continuous Mixed Logit demand). It follows from formula (2.1) that

the density of market demand for firms of type y is given by

∫
X

exp
(
α(x,y)+w(x,y)

σ1

)
∫
Y exp

(
α(x,y′)+w(x,y′)

σ1

)
dy′

dx

which is a continuous Mixed Logit model. Likewise, the density of market demand

for workers of type x has a similar expression. The equilibrium wage w (x, y) equates

these quantities to the respective densities of supply, g(y) and f(x) respectively.

Remark 2.7 (Identification). Suppose the values of σ1 and σ2 are known, and σ1 +

σ2 = 1 for notational simplicity. Equations (2.1) and (2.3) clearly indicate that

α (x, y) + w (x, y) is identified up to a function c (x) by σ1 lnπ (x, y) + c (x), and

γ (x, y)−w (x, y) is identified up to a function d (y) by σ2 lnπ (x, y) +d (y). It follows

that α is identified up to fixed effects c (x) by

α (x, y) = σ1 lnπ (x, y)− w (x, y) + c (x) ,

while γ is identified up to fixed effects d (y) by

γ (x, y) = σ2 ln π (x, y) + w (x, y) + d (y) .

This result has been exploited in a nonparametric setting by Galichon and Salanie

(2015) and Salanie (2015). In this paper, it is exploited in a parametric setting based

on basis functions of x and y (see Section 3.3). Indeed, since α is identified up to

fixed effects c (x), the parametrization of α can only include basis functions depending

on both x and y or on y only but it cannot include basis functions depending on x

only. By a similar reasoning, the parametrization of γ cannot include basis functions

depending on y only.
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3. Parametric estimation

3.1. Observations. Assume that one has access to a random sample of the popula-

tion of matches of firms and workers. For each match, this sample contains informa-

tion about the worker’s characteristics, her wage and the firm’s characteristics. The

observations consist in {(Xi, Yi,Wi) , i = 1, ..., n}, where n is the number of observed

matches, i indexes an employer-employee match, Xi and Yi are respectively the vec-

tors of employee’s and employer’s observable characteristics, which are assumed to

be sampled from a continuous distribution, and Wi is a noisy measure of the true

unobserved wage W ∗
i assumed to be such that

Wi = W ∗
i + εi

where measurement error εi follows a N (0, s2) distribution and is independent of

(Xi, Yi). The latent wage W ∗
i is assumed to be an equilibrium wage, and is thus

related to (Xi, Yi) by

W ∗
i = w (Xi, Yi)

where w(., .) is as given by Equation (2.7).

3.2. Scaling. For the sake of readability and to avoid additional notational burden,

we propose the following rescaling of the model. Replace α by σα, γ by σγ, φ by σφ,

a by σa, and b by σb, so that the equations of the model become

π (x, y) = exp (φ (x, y)− a (x)− b (y)) , (3.1)

where (a, b) is the unique solution to the system of equations
∫
Y exp (φ (x, y)− a (x)− b (y)) dy = f (x)∫
X exp (φ (x, y)− a (x)− b (y)) dx = g (y) ,

(3.2)

still normalized by a (x0) = 0, and the terms a and b are related to u and v by

u (x) = σa (x) + σ1 log f (x) + t, and v (y) = σb (y) + σ2 log g (y)− t (3.3)
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and the equilibrium wage w is given by

w (x, y) = σ1 (γ (x, y)− b (y)) + σ2 (a (x)− α (x, y)) + t. (3.4)

This scaling is without loss of generality since from Equation (3.4) one can estimate

parameters σ1 and σ2 and hence σ = σ1 +σ2 and therefore recover the pre-scaling val-

ues of α and γ. In the remainder of the paper, Equations (3.1)–(3.4) will characterize

the model to estimate.

3.3. Parametrization. Let A and Γ be two vectors of Rk parameterizing the func-

tion of workers’ systematic net value of job amenities α and the function of firms’

systematic value of productivity γ, in a linear way, so that

α(x, y;A) =
K∑
k=1

Akϕk(x, y), and γ(x, y; Γ) =
K∑
k=1

Γkϕk(x, y),

where the basis functions ϕk are linearly independent, and may include functions that

depend on x (respectively y) only. Note that by definition, the function of the joint

value of a match reads as

φ(x, y; Φ) =
K∑
k=1

Φkϕk(x, y), (3.5)

where Φk = Ak + Γk. Inspection of Equation (3.4) reveals that, given the parametric

choice above, equilibrium matching and wages are parameterized by (A,Γ, σ1, σ2, t).

The model is hence fully parameterized by θ = (A,Γ, σ1, σ2, t, s
2), which we make

explicit by writing the predicted equilibrium wage as w(x, y; θ).

3.4. Estimation by maximum likelihood. The main purpose is to estimate the

vector of parameters θ. To this aim we adopt a maximum likelihood approach. It

follows from Remark (2.3) that the likelihood of observing a pair (x, y) only depends

on Φ = A+ Γ, and is given by

π(x, y; Φ) = exp (φ (x, y; Φ)− a(x; Φ)− b(y; Φ)) ,
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where a(x; Φ) and b(y; Φ) are uniquely determined by system of equations (3.2). Since,

by assumption, measurement errors in wages are independent of (X, Y ), the log-

likelihood of an observation (x, y, w) at parameter θ is therefore

logL (x, y, w; θ) = log π (x, y; Φ)− (w − w (x, y; θ))2

2s2
− 1

2
log s2,

and hence, the log likelihood of the sample reads as:

logL (θ) = nEπ̂

[
φ (X, Y ; Φ)− a (X; Φ)− b (Y ; Φ)− (W − w (X, Y ; θ))2

2s2

]
− n

2
log s2

(3.6)

where π̂ (x, y) is the observed density of matches in the data.

However, note that a, b and w that appear in (3.6) are computed in the popu-

lation; here, we only have access to a sample, so we compute the sample analog of

system (3.2), that is 
∑n

j=1 exp
(
φij (Φ)− ai − bj

)
= 1/n∑n

i=1 exp
(
φij (Φ)− ai − bj

)
= 1/n

(3.7)

with the added normalization a1 = 0, which ensures uniqueness of the solution.

(Note that since we have assumed that the population distribution is continuous, each

sampled observation occurs uniquely, hence the right-hand side here is 1/n; however,

this could easily be extended to a more general setting). We denote (ai (Φ) , bi (Φ))

this solution at Φ. This allows us to compute a sample estimate of the equilibrium

wage wi (θ) as

wi (θ) := σ1 (γii (Γ)− bi (Φ)) + σ2 (ai (Φ)− αii (A)) + t, (3.8)

where the notation αij (A) substitutes for α (Xi, Yj;A), and similarly for γij (Γ).

We are thus able to give the expression of the log-likelihood of the sample in our

next result. Recall that θ = (A,Γ, σ1, σ2, t, s
2) and Φ = A+ Γ.
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Theorem 2. The log likelihood of the sample is given by

log L̂ (θ) = log L̂1 (θ) + log L̂2 (θ) , (3.9)

where

log L̂1 (θ) =
n∑
i=1

(φii (Φ)− ai (Φ)− bi (Φ)) (3.10)

and,

log L̂2 (θ) = −
n∑
i=1

(Wi − wi (θ))2

2s2
− n

2
log s2, (3.11)

where φij (Φ) := φ(Xi, Yj; Φ) is as in (3.5), ai (Φ) and bi (Φ) are obtained as the

solution of (3.7), and where wi (θ) is given by (3.8).

Proof. See Appendix B.

Theorem 2 motivates the following remarks.

Remark 3.1 (Interpretation of the objective function). Expression (3.9) has a straight-

forward interpretation. The term log L̂1 (θ), whose expression is given in Equa-

tion (3.10) comes from the observed matching patterns. It only depends on θ through

Φ = A+ Γ, and one has

1

n

∂ log L̂1

∂Φk

= Eπ̂ [ϕk(X, Y )]− EπΦ [ϕk(X, Y )]

where Eπ̂ is the sample average and EπΦ the expectation with respect to

πΦ
ij := exp

(
φij (Φ)− ai (Φ)− bj (Φ)

)
.

Hence, the contribution of the first term is to equate the predicted moments of the

matching distributions to their sample counterparts. The term log L̂2 (θ), whose

expression appears in Equation (3.11) tends to match the predicted wages wi (θ)

with the observed wages Wi in order to minimize the sum of the square deviations

(Wi − wi (θ))2. Hence, the contribution of the second term is to equate the predicted



ESTIMATION OF JOB AMENITIES AND LABOR PRODUCTIVITY 15

wages with their sample counterparts. Of course, s2 will determine the relative weight-

ing of those two terms in the joint optimization problem. If s2 is high, which means

wages are observed with a large amount of noise, then the first term becomes pre-

dominant in the maximization problem. In the limit s2 → +∞, the problem will boil

down to a two-stage problem, where the parameter Φ is estimated in the first stage,

and the rest of the parameters are estimated in the second stage by Non-Linear Least

Squares conditional on A+ Γ = Φ. In the MLE procedure, s2 is a parameter, and its

value is determined by the optimization procedure.

Remark 3.2 (Concentrated Likelihood). In most applications, the parameters of

primary interest are those governing workers’ deterministic values of amenities and

firms’ deterministic values of productivity, i.e. A and Γ respectively. The remaining

parameters (σ1, σ2, t, s
2) are auxiliary, and the focus of attention is the concentrated

log-likelihood, which is given by

log l (A,Γ) := max
σ1,σ2,t,s2

log L̂ (θ) = log L̂1 (Φ) + max
σ1,σ2,t,s2

log L̂2

(
A,Γ, σ1, σ2, t, s

2
)
.

where as usual, Φ = A + Γ. Denoting σ∗1, σ
∗
2, t
∗ and s∗2 the optimal value of the

corresponding parameters given A and Γ, one gets

(σ∗1, σ
∗
2, t
∗) = arg min

σ1,σ2,t

n∑
i=1

(Wi − wi (θ))2 , (3.12)

which is the solution to a Nonlinear Least Squares problem which is readily imple-

mented in standard statistical packages, and s∗2 = n−1
∑n

i=1 (Wi − wi (θ∗))2. The

partial derivative of the concentrated log likelihood with respect to Ak is given by

∂ log l (A,Γ)

∂Ak
=
∂ log L̂1 (Φ)

∂Φk

+
∂ log L̂2 (A,Γ, σ∗1, σ

∗
2, t
∗, s∗2)

∂Ak

and a similar expression holds for ∂ log l/∂Γk. These formulas are proved in the

Appendix B.

Remark 3.3 (Extension to missing wages). In many applications, data will come

from surveys where typically non response to questions about earnings are frequently
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encountered. Our proposed estimation strategy extends to the case where, for some

matches, wages are randomly missing. The log likelihood expression presented in

Theorem 2 offers a very intuitive way of understanding how missing wages for some

observations will impact the estimation. To formalize ideas, let p be the probability

that for any arbitrary match the wage is missing. The sample is still representative of

the population of matches, but part of the sample consists of matches with observed

wages , i.e. (Xi, Yi,Wi)
no

i=1, and the other part of matches with missing wages, i.e.

(Xi, Yi, .)
n
i=no+1 where no is the number of matches with observed wages and n is as

before the size of our sample of matches (we have re-ordered the observations such

that those matches with observed wages are indexed first). The log likelihood in this

situation is therefore

log L̂ (θ) = log L̂1 (θ) + log L̂2 (θ) + no log p+ (n− no) log (1− p)

where log L̂1 (θ) is given as in Equation (3.10) and log L̂2 (θ) reads now as

log L̂2 (θ) = −
no∑
i=1

(Wi − wi (θ))2

2s2
− no

2
log s2 (3.13)

thus p = n0/n. As no tends to 0, and hence p tends to 0, the log likelihood function

tends to log L̂1 (θ). In contrast, when no tends to n, and hence p tends to 1, the

expression of log L̂2 (θ) in Equation (3.13) tends to that of log L̂2 (θ) in Equation (3.11)

such that the log likelihood function tends to Equation (3.9).

3.5. Gradient of the log-likelihood. Let Da and Db be the two n×K matrices of

respective terms ∂ai (Φ) /∂Φk and ∂bj (Φ) /∂Φk respectively. Let Π be the matrix of

terms πΦ
ij = exp

(
φij (Φ)− ai (Φ)− aj (Φ)

)
, and let Π̃ be the same matrix where the

entries on the first row have been replaced by zeroes. Let E be the n×K matrix whose

terms Eik are such that E1k = 0 for all k, and Eik =
∑n

j=1 π
Φ
ijϕk (xi, yj) for i ≥ 2 and

all k. Let F be the n×K matrix of terms such that Fjk =
∑n

i=1 π
Φ
jiϕk (xi, yj).
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Lemma 1. The derivatives of the ai’s and the ai’s with respect to the Φk’s are given

by matrices Da and Db such that

(
Da

Db

)
=

 I Π̃

Π′ I

−1(
E

F

)
. (3.14)

Proof. See Appendix B.

Again, recall θ = (A,Γ, σ1, σ2, t, s
2) and Φ = A+ Γ.

Theorem 3. (i) The partial derivatives of log L̂1 (θ) with respect to Ak and Γk are

given by

∂ log L̂1 (θ)

∂Ak
=
∂ log L̂1 (θ)

∂Γk
=

n∑
i=1

ϕk(xi, yi)− n
n∑

i,j=1

πΦ
ijϕk(xi, yj)

and the partial derivatives of log L̂1 (θ) with respect to all the other parameters is zero.

(ii) The partial derivatives of log L̂2 (θ) with respect to any parameter entry θk other

than s is given by

∂ log L̂2 (θ)

∂θk
= s−2

n∑
i=1

(Wi − wi (θ))
∂wi (θ)

∂θk

(iii) The partial derivative of log L̂2 (θ) with respect to s2 is given by

∂ log L̂2 (θ)

∂s2
=

n∑
i=1

(Wi − wi (θ))2

2s4
− n

2s2

(iv) The partial derivative of wi (θ) with respect to t is one, its derivative with

respect to σ1 is γii (Γ)−bi (Φ), its derivative with respect to σ2 is ai (Φ)−αii (Γ). The

partial derivative of wi (θ) with respect to Ak and Γk are given by

∂wi (θ)

∂Ak
= σ2

(
∂ai (Φ)

∂Φk

− ϕk (xi, yi)

)
− σ1

∂bi (Φ)

∂Φk

∂wi (θ)

∂Γk
= σ1

(
ϕk (xi, yi)−

∂bi (Φ)

∂Φk

)
+ σ2

∂ai (Φ)

∂Φk

.
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(v) The partial derivatives ∂ai (Φ) /∂Φk and ∂bi (Φ) /∂Φk are given by expres-

sion (3.14) in Lemma (1).

Proof. See Appendix B.

4. Conclusion

Over the last decade, a great deal of efforts has been made to bring matching

models to data. In the transferable utility class of models, following Choo and Siow’s

seminal contribution, various extensions have been proposed to enrich the empirical

methodology. These extensions were so far limited to the case when transfers are not

observed. However, the observation of transfers allows to widen the scope of identified

objects in this class of models, and in particular allows the analyst to separately

identify the (pre-transfer) values of a match for each partner. Our paper proposes

a very intuitive and tractable maximum likelihood approach to structurally estimate

these values of a match for each partner using data about matches and transfers from

a single market.
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Appendix A. The continuous logit framework

Recall that the value for a worker x of the job amenities at firm y is given by

U (x, y) + σ1ε (x, y) where U (x, y) = α (x, y) + w (x, y) is deterministic, and ε (x, y)

is a worker-specific random process. As in Dupuy and Galichon (2014), we choose

to model the random process ε (x, y) as a Gumbel random process, introduced by

Cosslett (1988) and Dagsvik (1988), which we now describe.
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Assume that workers can only possibly have access to a countable random subset

of firms. We call this subset of known firms a worker’s “prospects”. Hence, a worker

can only choose to work for a firm within her prospects. Let k ∈ N index firms

in a worker’s prospects and {(yk, εk) , k ∈ N} be the points of a Poisson process on

Y × R with intensity dye−εdε. A worker of type x therefore chooses to work at firm

l of type yl = y in her prospects if and only if l is a solution of the worker’s utility

maximization program

Ũ = max
y∈Y
{U (x, y) + σ1ε (x, y)} = max

k∈N
{U (x, yk) + σ1εk} ,

where Ũ denotes the worker’s (random) indirect utility. The worker’s program induces

conditional density of choice probability of firm’s type given worker’s type, which is

expressed as follows:

Proposition A.1. The conditional density of probability of choosing a firm of type

y for a worker of type x is given by

π (y|x) =
exp

(
U(x,y)
σ1

)
∫
Y exp

(
U(x,y′)
σ1

)
dy′

while the expected indirect utility of worker x, denoted u (x) = E
[
Ũ |x

]
, is expressed

as

u (x) = σ1 log

∫
Y

exp

(
U (x, y′)

σ1

)
dy′.

This result was obtained by Cosslett (1988) and Dagsvik (1988). The intuition of

the result is that the c.d.f. of the random utility Ũ conditional on X = x is given by

FŨ |X=x (z|x) = Pr
(
Ũ ≤ z|X = x

)
, which is the probability that the process (yk, εk)

does not intersect the set {(y, e) : U (x, y) + σ1e > z}. Hence, the log probability of

the event Ũ ≤ z is minus the integral of the intensity of the Poisson process over this
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set, that is

log Pr
(
Ũ ≤ z|X = x

)
= −

∫
Y

∫
R

1 {U (x, y) + σ1e > z} e−εdedy

= − exp

(
−z + log

∫
Y

exp

(
U (x, y)

σ1

)
dy

)
,

which is the c.d.f. of a Gumbel distribution with location parameter log
∫
Y exp (U(x, y)) dy,

and scale parameter σ1.

Appendix B. Proofs

Proof of Theorem 1. Part (i) is proved in Dupuy and Galichon (2014), Theorem 1,

and recalled below for completeness. It follows from Equations (2.1) and (2.2) that

π (y|x) = exp

(
α (x, y)− u (x) + w (x, y)

σ1

)
, (B.1)

thus

σ1 log π (x, y) = α (x, y)− u (x) + σ1 log f (x) + w (x, y) (B.2)

and similarly on the other side of the market,

σ2 log π (x, y) = γ (x, y)− v (y) + σ2 log g (y)− w (x, y) . (B.3)

Adding Equation (B.2) to (B.3) yields

σ log (π (x, y)) = φ (x, y)− a (x)− b (y) (B.4)

where a (x) = u (x) − σ1 log f (x) − t and b (y) = v (y) − σ2 log g (y) + t, where t is

chosen so that a (x0) = 0, thus t = u (x0)− σ1 log f (x0). The potentials a and b that

appear in Equation (B.4) are such that π ∈M (f, g), i.e.
∫
Y exp (φ (x, y)− a (x)− b (y)) dy = f (x)∫
X exp (φ (x, y)− a (x)− b (y)) dx = g (y) ,

.

Uniqueness of such (a, b) such that a (x0) = 0 is proved in Rüschendorf and Thomsen

(1993), Theorem 3.
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Let us now show (ii). Taking the logarithm of Equation (B.1) and rearranging

yields

u (x) = α (x, y) + w (x, y) + σ1 log f (x)− σ1 log π (x, y) (B.5)

A similar procedure using the expression for π (x|y) obtains,

v (y) = γ (x, y)− w (x, y) + σ2 log g (y)− σ2 log π (x, y) . (B.6)

Adding Equation (B.5) to (B.6) and using Equation (B.4) yields

u (x) + v (y) = σ1 log f (x) + σ2 log g (y) + a (x) + b (y) . (B.7)

By rearranging Equation (B.7) to obtain

u (x)− σ1 log f (x)− a (x) = σ2 log g (y) + b (y)− v (y)

one notes that since the right hand-side only depends on x and the left hand-side

only depends on y, both these terms must be equal to a constant, denoted t. Hence,

u (x) = a (x) + σ1 log f (x) + t, and (B.8)

v (y) = b (y) + σ2 log g (y)− t. (B.9)

Let us finally show (iii). Plugging Equation (B.8) into Equation (B.5) and rear-

ranging yields

w (x, y) = a (x)− α (x, y) + t+ σ1 log π (x, y) ,

which, using Equation (B.4) to substitute for log π (x, y), provides the following ex-

pression of the equilibrium wages as a function of α, γ, a, b and t,

w (x, y) =
σ1

σ
(γ (x, y)− b (y)) +

σ2

σ
(a (x)− α (x, y)) + t. (B.10)

Proof of Theorem 2. Immediate given the discussion before the Theorem.
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Proof of Lemma 1. Recall that

(Da)ik :=
∂ai (Φ)

∂Φk

and (Db)jk :=
∂bj (Φ)

∂Φk

for 1 ≤ i ≤ n and 1 ≤ k ≤ K. Note that the system in Equation (3.2) is normalized

such that a1 (Φ) = 0, one has that ∂a1 (Φ) /∂Φk = 0 for all k. Differentiation yields

Da1k = 0

Da1k +
n∑
j=1

πΦ
ijDbjk = Eik, i ∈ {2, ..., n}

n∑
i=1

πΦ
ijDaik +Dbjk = Fjk, j ∈ {1, ..., n} ,

where πΦ
ij = exp

(
φij (Φ)− ai (Φ)− aj (Φ)

)
. Recall that under the linear parameteri-

zation we have adopted in Section 3.3, ∂φij (Φ) /∂Φk = ϕk(xi, yj) and let

E1k = 0, Eik =
n∑
j=1

πΦ
ijϕk(xi, yj) for i ≥ 2, and

Fjk =
n∑
i=1

πΦ
ijϕk(xi, yj) for all j,

this system rewrites  I Π̃

Π′ I

(Da
Db

)
=

(
E

F

)
(B.11)

where block Π̃ is the n × n matrix of term π̃Φ
ij so that π̃Φ

1j = 0 for all j ∈ {1, ..., n}

and π̃Φ
ij = πΦ

ij for i ≥ 2 and all j ∈ {1, ..., n}, and block Π is the n×n matrix of term

πΦ
ij. It is easily checked that the matrix on the left hand-side of (B.11) is invertible.

One therefore obtains Da and Db as

(
Da

Db

)
=

 I Π̃

Π′ I

−1(
E

F

)
.
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Proof of Theorem 3. The log-likelihood given in Equation (3.9) is made of two terms,

the first of which, log L̂1 (θ) only depends on θ through Φ, while the second one,

log L̂2 (θ) depends on all the parameters of the model. The differentiations yielding

points (i)-(v) are straightforward.

Proof of the statement in Remark 3.2. Recall θ = (A,Γ, σ1, σ2, t, s
2). The maximum

likelihood problem can be written as

max
θ

log L̂ (θ) = max
A,Γ

log l (A,Γ)

where log l (A,Γ) = maxσ1,σ2,t,s2 log L̂ (θ) is the concentrated log-likelihood which can

be rewritten as

log l (A,Γ) = log L̂1 (θ) + max
σ1,σ2,t,s2

log L̂2 (θ) . (B.12)

where

max
σ1,σ2,t,s2

log L̂2 (θ) = −min
s2

(
n

2
log s2 +

1

2s2
min
σ1,σ2,t

n∑
i=1

(Wi − wi (θ))2

)
(B.13)

The second minimization in Equation (B.13) is an Ordinary Least Squares problem

whose solution given A,Γ, denoted (σ∗1, σ
∗
2, t
∗), is the vector of coefficients of the OLS

regression of W on (γ − b, a− α, 1). The value of s2, denoted s∗2, is given by

s∗2 =

∑n
i=1 (Wi − wi (θ∗))2

n
.

The envelope theorem yields an expression for the gradient of the concentrated

log-likelihood with respect to the concentrated parameters A and Γ, that is

∇A,Γ log l (A,Γ) = ∇A,Γ log L̂1 (θ∗) +∇A,Γ log L̂2 (θ∗) .

The elements of the first part of the gradient are given in Theorem 3 part (i) whereas

parts (ii), (iv) and (v) of Theorem 3 provide the building blocks for the elements of

the second part of the gradient.
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