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Data Descriptor: A new global
anthropogenic heat estimation
based on high-resolution nighttime
light data
Wangming Yang1, Yibo Luan2, Xiaolei Liu1, Xiaoyong Yu3, Lijuan Miao4,5 & Xuefeng Cui6,7

Consumption of fossil fuel resources leads to global warming and climate change. Apart from the negative
impact of greenhouse gases on the climate, the increasing emission of anthropogenic heat from energy
consumption also brings significant impacts on urban ecosystems and the surface energy balance. The
objective of this work is to develop a new method of estimating the global anthropogenic heat budget and
validate it on the global scale with a high precision and resolution dataset. A statistical algorithm was
applied to estimate the annual mean anthropogenic heat (AH-DMSP) from 1992 to 2010 at 1 × 1 km2

spatial resolution for the entire planet. AH-DMSP was validated for both provincial and city scales, and
results indicate that our dataset performs well at both scales. Compared with other global anthropogenic
heat datasets, the AH-DMSP has a higher precision and finer spatial distribution. Although there are some
limitations, the AH-DMSP could provide reliable, multi-scale anthropogenic heat information, which could
be used for further research on regional or global climate change and urban ecosystems.

Design Type(s) data integration objective • time series design

Measurement Type(s) climate change

Technology Type(s) computational modeling technique

Factor Type(s) DataTypes

Sample Characteristic(s) Earth • anthropogenic environmental process
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Background & Summary
Anthropogenic heat is wasted heat in the form of sensible and latent heat (http://www.ametsoc.org/
amsedu/) that is released to the urban canopy mainly by means of heating and cooling, running
appliances, transportation, and industrial processes, which convert energy into anthropogenic heat1–4.
Nearly 70% of energy is consumed within cities occupying a mere 2% of the Earth’s surface area, and
future scenarios indicate that global primary energy consumption will rise 1.6 times (864.7 quadrillion kJ)
from 2010 to 2040 (http://www.worldenergyoutlook.org/). Although anthropogenic heat accounts for
only 1% of the greenhouse gas forcing, it causes the majority of regional warming, such as urban heat
islands1,2, urban boundary heights, and hourly intensity of precipitation at the city level2–5, especially at
night. Anthropogenic heat reduces the intensity of precursor species (NOx) in the urban atmosphere due
to the dilution, increases concentrations of near surface ozone6,7, and raises risks for morbidity and
mortality of the residents through increasing the air temperatures in urban areas8. Meanwhile, many
studies indicate that anthropogenic heat increases the temperature, especially in urban regions and cold
seasons, which affects the Asian winter monsoon circulation9 and disrupts the normal global atmospheric
circulation patterns10. Considering the remarkable growth of energy use expected in the future11,
anthropogenic heat will play an increasingly important role in the radiative forcing of the atmosphere,
global climate changes, and urban ecosystem impacts.

Therefore, calculating a high spatial resolution global scale anthropogenic heat flux (AHF) dataset is
necessary for studying climate impacts. According to the characteristics of anthropogenic heat, three
main approaches have been developed: observations, detailed statistical models (building/traffic energy
modelling), and inventory approaches. As a classical method, the inventory approach is used globally to
estimate global-scale anthropogenic heat12,13, using the assumption that any heat emitted by energy
consumption is completely converted to anthropogenic heat. The observation approach includes an
energy budget residual approach14–16 and in situ eddy covariance observations13. Statistical detailed
models, such as the town energy budget (TEB) or urban canopy model17, have been developed according
to building materials, heights, equipment, as well as transportation equipment18–20. Each approach has its
own advantage; however, the inventory approach is more efficient for large-scale studies than the other
two, which are limited by their demand categories and modelling resolutions. Some attempts have been
made at developing a global AHF dataset. In the first global anthropogenic heat dataset (released in 2009,
referred to as the Flanner study hereafter), Flanner proportionally downscales the total country-level non-
renewable energy consumption to a 2.5-minute resolution according to the spatial population density21.
However, this global dataset has unreliable information for regions where the population density does not
have a clear statistical relationship with economic development and energy consumption, such as in
China22. To overcome the limitations of Flanner’s study, in Chen’s study, a simple model was built based
on the relationship of nighttime light data from the US Air Force Defense Meteorological Satellite
Program/Operational LineScan System (DMSP/OLS) and energy consumption23. However, information
in downtown areas has lower reliability due to the saturation and temporal fluctuation characteristics of
nighttime light data24. In this study, we attempted to develop an updated method of generating an
improved precision and high spatial resolution global anthropogenic heat dataset. Normalized difference
vegetation index (NDVI) was used to calibrate DMSP/OLS data, and then used as a proxy to downscale
the country-level inventory data to a 1 × 1 km spatial resolution. Using statistical methods, we validated
the feasibility of the method and the reliability of the AH-DMSP dataset.

AH-DMSP shows that the majority of anthropogenic heat is mainly produced in the developed
regions-the eastern part of North America, Western Europe, the eastern and southern parts of Asia as a
result of the high intensity and magnitude of human activities in these regions. All of the annual
maximum values appear in urban regions. Changes in anthropogenic heat between 1990 and 2010 were
significant in the metropolis regions of both the developing and developed countries.

Methods
Data
DMSP/OLS nighttime light data. Cloud-free composite DMSP/OLS data from 1992 to 2010 were
acquired from the National Oceanic and Atmospheric Administration’s (NOAA) National Geophysical
Data Center25. Three of four satellites from the DMSP carry the OLS in low-altitude polar orbits to record
nighttime data. The DMSP/OLS has the unique capability to detect low levels of visible near infrared
(VNIR) radiance at night. With the OLS ‘VIS’ band data, it is possible to detect clouds illuminated by
moonlight, plus lights from cities, towns, industrial sites, gas flares, and ephemeral events such as fires
and lightning-illuminated clouds. Data values range from 1–63. Areas with no cloud-free observations are
represented by the value 255. The stable average nighttime lights detected by DMSP/OLS contain the
lights from cities, towns, and other sites with persistent lighting, including gas flares. Ephemeral events,
such as fires, were discarded26,27. Background noise was identified and replaced with zero values. In this
work, the DMSP/OLS data is regarded as a proxy to the energy consumption intensity in cities and towns,
as well as in other persistent lighting sites, including gas flares (Data Citation 1).

Normalized difference vegetation index (NDVI) Data. Gap-filled, snow-free, Nadir Bidirectional
Reflectance Distribution Function (BRFD) Adjusted Reflectance (NBAR) data derived from the Moderate
Resolution Imaging Spectro radiometer (MODIS) MCD43D products were used to generate NBAR-
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NDVI time series. For each year 2001–2010, the annual mean NDVI was calculated for each pixel27,28. To
calibrate DMSP/OLS data, we prefer the annual mean NDVI to the annual maximum NDVI, because the
former is more stable and less sensitive to seasonal and intra-annual fluctuations. To keep temporal
consistency with the DMSP/OLS data, we extended the annual mean NDVI from year 2001 as constant
values back to 1992, to complement the period 1992–2001. This decision is supported by the observation
that there is not significant annual variation in the annual mean NDVI for urban regions during
2001–2010 (Data Citation 2).

Gridded population data. We obtained gridded population density data for the year 2000 which are
2.5 arc-minute grid cells of the Gridded Population of the World v3 (GPWv3), provided by the Centre for
International Earth Science Information Network (Data Citation 3). The population density grids were
derived by dividing population count grids by a land area grid, and represent persons per square
kilometre29,30.

Statistical energy consumption data. Statistics of national primary energy consumption for 224
countries were obtained from the U.S. Energy Information Administration (EIA)11. The statistics include
energy from the four main primary energy sources: coal, petroleum, natural gas, and renewable energy.
Chinese urban level energy consumption was obtained from the Urban Statistical Yearbook for China
(http://data.stats.gov.cn/easyquery.htm? cn=E0103). Gross national income (GNI) per capita for each of
224 countries was obtained from the World Bank (http://data.worldbank.org/income-level/OEC). A
portion of the primary energy sources are used to produce secondary energy (for example, the coal used
by a power station to generate electricity) in non-urban areas that is then consumed by urban residents at
the end of the energy flow. In this case, the wasting heat in the processing procedure was not taken into
consideration since it has little influence on total heat emitted. We therefore use only the four primary
energy source classifications in this study.

Methodology
The algorithm for calculating the global anthropogenic heat product (AH-DMSP) developed in this study
is presented in a flowchart (Fig. 1). First, we extracted the urban areas from calibrated DMSP-OLS and
MODIS NDVI from 1992 to 2010 (details in step 1 and 3). Second, for each country, we separated the
primary energy consumption (coal, petroleum, natural gas, and renewable energy) into urban and non-
urban consumption using the urban consumption ratio from the International Energy Agency (IEA)
(details in step 2). Third, a strong exponential relationship between urban area and energy consumption
(R2= 0.9, P= 0.039) was found from the available statistical data (Fig. 2). Based on this relationship, the
energy consumption in urban areas obtained from Step 2 was inserted in the urban map obtained from
Step 3. Most large factories or refineries are located in urban areas. Therefore, the energy consumed in an
urban area not only includes the energy consumption for domestic use but also industrial usage. Human
metabolism occupied a small share of the total heat released by human activities, and we therefore
excluded it. We note that statistical errors in urban energy consumption are a function of urban area and
energy consumption. In order to alleviate their effects, we can allocate the total urban energy into patches
based on percent-normalized urban energy from Fig. 2. Finally, we downscaled the total urban energy
consumption to the pixel-level using the corresponding spatial proxy obtained in Step 1. The rural energy
consumption at the country level was allocated directly into each grid. Finally, the energy consumption
value was divided by elapsed time, and the resulting AH-DMSP of each grid cell was converted to
anthropogenic heat flux (AHF, W.m−2).

The calculation is simplified by the following balance equation:

An ¼
X4

i¼1

ki:Eni

where An is the total anthropogenic heat of country n (1, 224); ki is the conversion rate of type i energy to
heat, in which type i refers to the four sub-types of energy consumption: coal, petroleum, natural gas, or
renewable energy, and Eni is the energy consumption of type i for country n. The values for k were
obtained from the EIA (http://www.eia.gov/beta/international/data).

Step 1: Calibrating DMSP/OLS: Saturation and temporal fluctuation
Noise caused by less important persistent lighting sites such as gas flares, and ephemeral events such as
fires in DMSP/OLS, occur mainly in the desert regions far from human habitants, but may affect
anthropogenic heat precision. Here we masked out areas with a gridded population density less than 1
per 2.5 arc-minutes with the assumption that they would have no release of anthropogenic heat.

There are two drawbacks in the DMSP/OLS data: inter-annual variation and digital saturation in
downtown areas31–34. Due to the auto-calibration system on the remote sensors, DMSP/OLS composites
from different years cannot be inter-compared31. To address this problem, we employed the method
developed by Elvidge32, using a second-order polynomial function to calibrate the annual fluctuation of
DMSP/OLS data. Saturation values in DMSP/OLS data largely restrict the capacity of characterizing
variations of inner urban region. We used a new spectral index to correct the saturated pixels, the
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Figure 1. Flow chart of calculations.

Figure 2. Relationship between urban areas and energy consumption. Relationship between urban areas and

energy consumption for a total of 35 red points representing urban areas and their corresponding energy

consumption (statistical data can be accessed in Supplementary File 1).

www.nature.com/sdata/

SCIENTIFIC DATA | 4:170116 | DOI: 10.1038/sdata.2017.116 4



Vegetation Adjusted Normalized Urban Index(VANUI) developed by Zhang35, based on the assumption
that vegetation abundance is closely and inversely correlated with the intensity of energy consumption in
urban areas.

Step 2: Estimating ratios of urban energy consumption to total national consumption
The International Energy Agency (IEA) only calculates the ratios of urban energy consumption to total
national consumption for four regions: United States, European Union, Austral-Asia, and China (Data
Citation 4). In addition to these four regions, we introduce a simple method to estimate the urban energy
consumption ratios for other countries or regions. First, 224 countries were grouped into two classes:
high-income and low-income countries (including middle-income countries) based on gross national
income (GNI) per capita. Second, the average urban energy consumption ratios from the United States,
European Union, and Australia were applied to the high-income countries, while the ratio from China
was applied to the other countries. The urban and rural energy consumption for each country could then
be separated.

Step 3: Extracting urban boundaries by support vector machines (SVM)
The existing global urban datasets have been applied for many studies of climate change and ecology
(e.g., the Global Rural Urban Mapping Project or MODIS 500 m urban extent maps)36, but their temporal
resolutions do not meet our requirements. Many previous studies indicate that the SVM algorithm31,34,37,
which is widely used for classification and regression analysis, performs well at monitoring urban patches.
It has the advantage of improving the accuracy of classification by encompassing substantial information,
such as economic activities and urban vegetables38. Moreover, this method is not sensitive to the initial
training samples, and it has the flexibility of multi-temporal and multi-spatial analysis39.

Here, we use the annual mean NDVI and calibrated DMSP/OLS as input information to the
SVM-based algorithm, and extracted the urban boundaries for every year. We set the threshold
(excluding water pixels inside the urban boundary) at DMSP/OLS >30 and NDVI o0.3 for developing
countries39, and at DMSP/OLS >53 and NDVI o0.3 for developed countries. The Gaussian radial basis
function (RBF, exp(− γ|μ− ν|^2)) was used as the kernel function, with the coefficient of cost ( − c= 2) set
to 2 and gamma was 0.02 (− g= 0.02). Noise in DMSP/OLS can be caused by a variety of reasons, such as
variability in the atmosphere interference, and may cause errors in the boundary extraction output. Due
to the stability of urban patches, we assumed that any urban patch detected in an earlier year by DMSP/
OLS should be maintained in the results of later urban boundaries. In the end, we generated urban
boundary data for each year during the period 2001–2012.

Step 4: Estimating energy consumption for all urban patches
When a city starts expansion, it normally means its urban population grows and energy consumption
grows accordingly. However, when a city reaches a mature stage of economic development and
infrastructure construction, energy consumption will grow relatively slower than its expansion due to
increase of energy efficiency. City energy data are difficulty to find and the difficult of acquiring urban
energy data lies in consideration of city boundary issues (Data Citation 4). Therefore, we try to interpret
energy consumption with city size in this study. The correlation parameters are developed with statistical
data in China, which is provided in Supplementary File 1.

There was a strong exponential relationship between the urban area and energy consumption
(y=−0.001x2+8.30x− 24.25, P= 0.039, where y is the urban energy consumption (10 million kg) and x is
the urban magnitude (km2) (Fig. 2). This relationship was then applied to extract energy consumption for
each urban patch from the total national urban energy consumption calculated in 2.2.2 and 2.2.3.

It is common practice to validate the accuracy of global-scale AHF estimation with anthropogenic heat
data using a detailed statistical model, which consists of heat released from three components: the
building sector, transportation, and human metabolism. The building sector is always divided into heat
released from electricity consumption and from heating fuels, such as natural gas and fuel oil40. The
detailed model focuses on the end-user of energy, while the inventory method focuses on primary energy.
These methods can improve model accuracy by incorporating better information about individual cities20

. For this study, the annual mean AHF estimated using our method was validated by AHF data estimated
using the detailed model at multiple scales, from the city to province level. These data were estimated
using the detailed statistical model and were compared with zone averaged AHF from the AH-DMSP for
specific cities or provinces. Meanwhile, inter-validations of spatial patterns and single points for specific
cities were also performed with previously created global gridded datasets. These annual mean global
datasets were calculated by the inventory approach, and single points for specific AHF data were zone
averaged.

Code availability
The algorithm is coded in Matlab and C. AHF.m is the main procedure to calculate AH-DMSP. The
global urban dataset is produced by Global_urban.m and its core parts are opened source code which are
provided by Chang and Lin (http://www.csie.ntu.edu.tw/ ~ cjlin/libsvm). Areas of global urban patches
are calculated by Recursion.c and only binary files can be inputted and outputted in the procedure
(write_binary.m and write_tif.m are designed for converting file format between binary and tiff). ArcGIS
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and Matplot or Python are exploited to draw figures. This code is available alongside the dataset at
figshare (Data Citation 4).

Data Records
AH-DMSP dataset
AH-DMSP is a global gridded dataset of annual mean anthropogenic heat and its spatial resolution for
the entire planet is 1 × 1 km2. Tagged image file format (TIFF) and network common data form

Figure 3. Temporal and spatial patterns of the annual mean AHF from 1992 to 2010. The bottom right

figure,2010–1992, represents the differences in AHF between 1992 and 2010.
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(NetCDF) of AH-DSMP are provided in the repository (Data Citation 4). For the TIFF formats of
AH-DMSP, its tfw format file is about spatial information of longitude and latitude for corresponding file.
These data can be processed by GIS software, Matlab, Ncl or R etc. The uploaded data includes
AH-DMSP at 1992,2001 and 2010 and is stored in uint16, which can be converted to annual mean
anthropogenic flux (W.m− 2) by a factor 0.1 (Data Citation 4).

Technical Validation
Spatial and temporal patterns of AH-DMSP
As shown in Fig. 3, spatial distributions of annual mean AHF are mainly in the developed regions, i.e., the
eastern part of North America, Western Europe, and the eastern and southern parts of Asia. Obviously,
the northern hemisphere contributes significantly more annual mean AHF than the southern
hemisphere, which is consistent with the distribution of intensity and magnitude of human activities.
All of the highest annual values appear in urban regions. Pixels with annual mean AHF greater than 1.59
W.m− 2 occur in densely populated regions, and their numbers increase gradually with increasing global
urbanization. The differences in spatial distribution of annual mean AHF between 2010 and 1992 are
significant for the urban regions in rapidly developing countries, as well as in regions where there has
been ongoing economic depression (for example, in Russia, Poland, and Ukraine).

Figure 4 shows a comparison between the annual mean AHF from AH-DMSP and AHF data
estimated with a detailed statistical model (AHF-stat) from the city to province scales. The statistical tests
at the city and province scales between AH-DMSP and AHF-stat were P= 0.008 and P= 0.65,
respectively. At the city level, AH-DMSP has good estimates of anthropogenic heat for cities whose AHF
was less than 30W.m− 2. However, with urban developments, the differences between AH-DMSP and
AHF-stat became increasingly significant. Root mean square error (RMSE: W.m− 2) between the
AH-DMSP and AHF-stat both the city and province levels were 12.01 and 1.07, respectively. At the
province scale, due to limited data from AHF-stat, the statistical test was insignificant.

To assess the performance of AH-DMSP at the global scale, we made a comparison with two other
global scale datasets from the studies by Chen and Flanner studies (Fig. 5)20,21,41. There are significant
differences between the AH-DMSP, Chen, and Flanner data, both in the value ranges and the spatial
patterns. Spatial patterns are quite similar between AH-DMSP and Chen’s data, since both studies use
DMSP/OLS nighttime data, but the two have quite different value ranges. Most areas had values lower
than 0.44W.m− 2 or higher than 1.31W.m− 2 in AH-DMSP, but the Chen data had values in the range
from 1.02 to 1.31W.m− 2. This implies a significant influence from saturation, and intra- and inter-
annual fluctuations of the DMSP/OLS data. Conversely, the Flanner dataset, which is currently used by
the climate modelling community, had a larger area with AHF values, most of which are lower than
0.44W.m− 2.

Figure 4. Validations of annual mean AH-DMSP with annual mean AHF-stat data at the urban and

provincial scales. These data were obtained from20,23,43–45.
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Figure 5. Annual mean AHF from three global datasets in 2005. Annual mean AHF from three global

datasets in 2005 from 1) AH-DMSP generated for this study, 2) data from Chen, and 3) data from Flanner; the

scales for the three maps are uniform, to allow for direct comparison.
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cites can be found in the Supplementary File 2.
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We make comparisons of the annual means from previous datasets of AHF and AH-DMSP using the
AHF-stat results as the real values. Since it is difficult to access annual mean AHF-stat data corresponding
to the study period, only the Chen and AH-DMSP datasets were parallel compared in this section. From
Fig. 6, with a growth in city magnitude, there is a trend in biases between the global datasets and AHF-stat
data, which shift from positive to negative values and become more significant (city names in Table 1). For
small cities, although the AHF values from global datasets is underestimated, its values are similar to the
AHF-stat (real) values. For mega cities, values are significantly overestimated. From Fig. 6, AH-DMSP is
closer to the real value than the Chen data.

Usage Notes
Although anthropogenic heat is only about 0.3% of the total energy transported to the extra-tropics by
atmospheric and oceanic circulations, it could disrupt normal atmospheric circulation patterns and warm
surface temperatures at the local and global scales10. Therefore, incorporating anthropogenic heat into
climate models could improve the performance of simulations of surface climate warming6,10 and are
beneficial for studying the impacts of increased urban heat on the concentration of precursor species
(e.g., NOx and CO) and resident health, such as morbidity and mortality risk, in cities7,31.

However, detailed evaluation of the impact on climate is deterred by the limited precision and spatial
and temporal resolutions of anthropogenic heat data. The DMSP/OLS data has provided an opportunity
to produce an improved precision and resolution AHF dataset. The applied methodology has been
validated by a detailed anthropogenic heat model at multiple scales, but there are still some needed
improvements. The underlying assumption that all energy is converted into anthropogenic heat is
unreasonable, since some energy consumed will be stored by buildings and converted to other forms of
energy. This assumption could therefore lead to overestimation of anthropogenic heat. Due to difficulties
in observation; it is difficult to establish ratios for converting energy consumption to anthropogenic heat.

The observation approach includes in situ eddy covariance observations13 and the energy budget
residual approach14–16. In situ eddy covariance observations of anthropogenic heat are seriously
constrained by site-specific challenges, particularly in urban regions (e.g., permissions to install towers
and equipment, access to measurement sites, and dense human activities)13. These challenges make it
even more complex to find a site suitable for instrument observations and distinguish human activity
signals from background noise in the highly heterogeneous urban environment. Previous studies have
exploited the energy budget residual to calculate anthropogenic heat19; however, some uncertainties are
introduced by latent heat and storage heat. A statistical detailed model, such as the town energy budget
(TEB) or urban canopy model17, were developed by accounting for the building materials and heights, as
well as the equipment used in buildings or transportation18,19. Conversely, for global scale anthropogenic
heat estimations, available data about building, transportation, and urban energy consumption limits the
scope of application. The inventory approach is more efficient for large-scale studies than the other two,
which are limited by their demand categories and resolutions for modelling. The inventory approach is
widely used to estimate global-scale anthropogenic heat12,13.

In order to keep temporal consistency with DMSP/OLS data, the annual mean NDVI for year 2001
was extended back as constant values to 1992, in order to complement the period 1992–2001. The
simplified method produces less influence on the method performance, because the spatial resolution of
MODIS instruments (1 × 1 km) has a limited ability for detecting variations in urban vegetation and
cannot detect decade-scale variations35,39. Gridded population density data for the year 2000 were used to
mask out noises in DMSP/OLS during the study periods. We assumed that areas with a gridded

NO. City NO. City NO. City NO. City NO. City NO. City

1 Oklahoma City 13 Birmingham 25 London 37 Fresno 49 Louisville 61 Baltimore

2 Jacksonville 14 El Paso 26 Indianapolis 38 San Antonio 50 Toulouse 62 Gyeonggi

3 Lexington-Fayette 15 Tulsa 27 Raleigh 39 Stockton 51 Milwaukee 63 Miami

4 Houston 16 Fort Worth 28 Riverside 40 Omaha 52 Pittsburgh 64 Philadelphia

5 Nashville-Davidson 17 Tucson 29 Phoenix 41 Columbus 53 Oakland 65 Boston

6 Colorado Springs 18 Tampa 30 San Diego 42 Portland 54 Cleveland 66 Chicago

7 Salt Lake City 19 Charlotte 31 Denver 43 Atlanta 55 Buffalo 67 San Francisco

8 Kansas City 20 New Orleans 32 Vancouver 44 San Jose 56 Los Angeles 68 Washington

9 Bakersfield 21 Memphis 33 Austin 45 Dallas 57 St Louis 69 San Francisco

10 Manchester 22 Wichita 34 Helsinki 46 Houston 58 Detroit 70 Incheon

11 Greater Manchester 23 London 35 Sacramento 47 Cincinnati 59 Seattle 71 Seoul

12 Corpus Christi 24 Albuquerque 36 London 48 Las Vegas 60 Minneapolis 72 New York

73 Tokyo

Table 1. Relationship between city and NO. for cities labelled by digital number.
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population density value lower than 1 have no release of anthropogenic heat and that the boundary of
human habitations had no significant changes during the study period.

Validation revealed that the values of AH-DMSP were underestimated for certain mega-cities. The
underestimation might relate to the selected ratio of urban energy consumption to the national, and an
allocating function that distributes the total urban energy proportionally to each urban patch. Due to
limitations in available statistics for urban sizes and energy use around the world, only four regions have
ratios of urban energy consumption—United States, European Union, Austral-Asia, and China. The
ratios for other countries were calculated based on gross national income (GNI) per capita, which could
have negative influences on the accuracy of estimated anthropogenic heat for mega cities in these
countries. Previous studies have argued that the SVM-based algorithm is not sensitive to initial training
samples. Therefore, threshold values of NDVI and DMSP/OLS were used for extracting global urban
patches42, and uniform training samples and thresholds of NDVI and DMSP/OLS were utilized around
the world during the study period. This is another reason for underestimation in mega cities. However,
separating total energy consumption into two types, urban and non-urban, then further downscaling
urban energy to each city in each country is a step forward for calculating a robust global AHF product.
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