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Non-technical summary

Research Question

There is no clear consensus on whether the asset management industry contributes to

financial instability by imposing systemic risk to the financial system. In particular, how

to quantify systemicness of funds is an open question. The Financial Stability Board

(2015) mentions asset liquidation and exposure risk as channels through which stress can

propagate within the sector, and therefore size and leverage could serve as systemicness in-

dicators. Danielsson and Zigrand (2015) advocate focusing on funds’ negative externalities

in order to gauge their impact on financial instability. In our model, those externatilities

stem from the price impacts generated by the asset liquidations of funds, which affect the

market value of other investors’ portfolios.

Contribution

This paper contributes to the debate on the systemicness of investment funds by devel-

oping a stress test model for mutual funds which we then apply to the set of U.S. equity

mutual funds. For this purpose, we extend the Greenwood, Landier, and Thesmar (2015)

fire sale model, by incorporating the well-documented flow-performance relationship as

an additional funding shock. In our empirical application we quantify both fund-specific

and aggregate vulnerabilities to systemic asset liquidations over time.

Results

Our main finding is that mutual funds’ aggregate vulnerability to fire-sales is relatively

small compared to related studies on the banking sector. This suggests that systemic

risks among mutual funds are unlikely to be a major concern, at least when looking at

this part of the financial system in isolation. We explore the determinants of individual

funds’ vulnerability to systemic asset liquidations, highlighting the importance of funds’

liquidity transformation. Thus, a clear understanding of funds’ liquidity profile is essential

for enhancing the corresponding micro- and macroprudential policy tools. Therefore,

regulators should monitor structural vulnerabilities in the fund sector arising through

liquidity transformation.



Nichttechnische Zusammenfassung

Fragestellung

Ob und in welchem Ausmaß der Sektor der Investmentfonds zur Instabilität des Finanz-

systems beiträgt, ist eine noch offene Frage. Insbesondere ist die Frage ungeklärt, durch

welche Kanäle sich ein Schock im Finanzsektor verbreitet. Ein denkbarer Kanal sind Not-

verkäufe von Wertpapieren, die ein Fonds tätigen muss, um nach einem Refinanzierungs-

schock genügend liquide Mittel zu erlangen. Diese Notverkäufe können zu Kursrückgängen

bei den entsprechenden Wertpapieren führen und dadurch andere Fonds in Mitleidenschaft

ziehen.

Beitrag

Dieses Papier trägt zur Debatte über die Systemrelevanz von Investmentfonds bei, in-

dem ein Stresstestmodell entwickelt wird, bei dem der oben skizzierte Kanal modelliert

wird, und dieses anschließend für U.S. amerikanische Aktienfonds angewendet wird. Für

diesen Zweck erweitern wir ein Modell für Wertpapiernotverkäufe um die in der Litera-

tur umfassend dokumentierte Beziehung zwischen dem Mittelzufluss zu einem Fonds und

dessen Wertentwicklung. In unserer empirischen Studie quantifizieren und analysieren wir

sowohl fondsspezifische als auch aggregierte Verwundbarkeiten gegenüber systemischen

Wertpapierverkäufen über die Zeit hinweg.

Ergebnisse

Unsere Ergebnisse zeigen, dass die Verwundbarkeiten des Investmentfondssektors durch

den oben skizzierten Kanal klein sind. Als eine wesentliche Determinante für fonds-

spezifische Verwundbarkeiten gegenüber Wertpapierverkäufen erweist sich die von Fonds

vorgenommene Liquiditätstransformation. Somit ist ein genaues Verständnis der Liqui-

ditätsprofile der Fonds essentiell für die Verbesserung der entsprechenden mikro- und

makroprudenziellen Instrumente.
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1 Introduction

Ever since the global financial crisis of 2007-09, the shadow banking system (or more
accurately non-bank non-insurer financial intermediaries) has been under close scrutiny
with regard to its potential contribution to financial instability (Financial Stability Board
(2011, 2015); Office of Financial Research (2013); European Central Bank (2014); Interna-
tional Monetary Fund (2015); Bauguess (2017)). This is particularly true of the global as-
set management industry – comprising, among others, mutual funds, hedge funds, pension
funds, and university endowments – which has grown tremendously both in terms of size
and importance over the last decades. Figure 1, which is reproduced from (Bank for In-
ternational Settlements, 2014, p. 115), illustrates this growth for the period 2002-12 by
showing the total assets held by the 500 largest global asset managers over this period.
This growth highlights the increasing importance of market-based financial intermedi-
ation, which offers both new funding opportunities for businesses and households, but
might also entail new risks (Bank for International Settlements (2014)). For example,
Figure 1 illustrates an increasing trend towards a more concentrated industry: the share
of assets held by the 20 largest institutions has grown over time (see also European Cen-
tral Bank (2014)).1 Thus, the behavior of a relatively small number of asset managers
might have a strong impact on market dynamics and ultimately on funding costs for the
real economy.2

Figure 1: Growth and concentration in the asset management industry. The plot is taken
from (Bank for International Settlements, 2014, p. 115) and shows both the total assets
under management for 500 global asset managers and the share of assets held by the 20
largest institutions.

So far, there is no clear consensus on whether the asset management industry con-
tributes to financial instability. On the one hand, empirical evidence suggests that sig-

1We will see below that we do not necessarily observe a similar trend for the subset of U.S. equity
funds which will be the main focus of this study.

2Asset managers are typically evaluated on the basis of short-term performance, and fund revenues
are linked to fluctuations in customer fund flows. These arrangements can exacerbate the procyclicality
of asset prices, and greater concentration in the sector could in fact strengthen this effect (see Feroli,
Kashyap, Schoenholtz, and Shin (2014)).
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nificant portfolio overlap and correlated trading strategies among institutions can indeed
have major systemic repercussions. Two prominent examples are first, the role of portfo-
lio insurers in the market crash of October 1987 and second, the systemic repercussions
of the hedge fund Long Term Capital Management in 1998. On the other hand, leading
industry representatives repeatedly argue that asset managers are not a source of systemic
risks. For example, the Investment Company Institute claims that existing micropruden-
tial regulations for investment funds (e.g., leverage and liquidity constraints) are effective
in the sense that these were quite robust during the most recent crisis episodes (Invest-
ment Company Institute (2016)). However, just because we have not seen any major
issues in the recent past does not ensure that we will not see anything in the future.
Therefore, there is a general need for regulators and policymakers to understand whether
the industry is vulnerable to systemic crises.

How to quantify systemicness of asset managers is an open question. The Finan-
cial Stability Board (2015) mentions asset liquidation and exposure risk as channels
through which stress can propagate within the sector, and therefore size and leverage
could serve as systemicness indicators. Danielsson and Zigrand (2015) advocate focusing
on asset managers’ negative externalities in order to gauge their impact on financial insta-
bility. The externatility stems from the price impacts generated by the asset liquidations
of leveraged asset managers, which affect the market value of other investors’ portfolios.

In this paper we quantify the vulnerability of asset managers to systemic asset liquida-
tions, incorporating all of the above elements. Specifically, we focus on the economically
important subset of U.S. domestic equity mutual funds for the period 2003-14.3 At the
end of 2014, this fund type accounted for more than 52% of the investment industry’s
total assets (Investment Company Institute (2015)). The main advantage of restricting
ourselves to this particular subset of funds is that we have both detailed data on these
funds’ stock holdings for the period 2003-14, and we can also match the holdings data
with stock-specific information (most importantly price impact parameters).

We perform a macroprudential stress test which accounts for both funding liquidity
shocks and fire-sale price dynamics, thus including the two key components of stress-tests
identified by Greenwood and Thesmar (2011), and Tarullo (2016). The stress test is
based on an extension of the model by Greenwood et al. (2015), who proposed a simple
model to assess systemic vulnerabilities due to fire sales in the banking sector. In our
model, systemic risks can arise due to significant overlap in funds’ investment portfolios,
coupled with illiquid asset markets and additional funding shocks driven by outflows due
to past negative performances. In the Greenwood et al. (2015) model, systemic risks are
largely driven by leverage - something that makes sense for highly leveraged financial
institutions, such as commercial banks. However, directly applying this model to the
mutual fund sector is likely not very informative, mainly because mutual funds generally
make very little use of leverage and rely instead on short-term funding by promising daily
redeemable fund shares (e.g., Pozen and Hamacher (2011)). Therefore, we extend the
model by including the well-documented flow-performance relationship, which means that

3Within the asset management industry, mutual funds comprise by far the most important subset of
financial institutions. For example, in the U.S. more than 90.4 million individuals, or roughly 43% of
all households, invested their money through mutual funds in 2014. Furthermore, mutual funds have
been among the largest investors in U.S. financial markets for the last two decades, holding roughly one
quarter of all outstanding stocks at the end of 2014 (Investment Company Institute (2015)).
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negative returns will be followed by additional outflows (Sirri and Tufano (1998); Berk
and Green (2004)). Hence, in the extended model, the original fire-sale mechanism could
be relevant even in the absence of leverage, and a small initial shock could potentially
wipe out significant parts of the fund industry’s asset holdings.

The extended model allows us to quantify the vulnerabilities of both the aggregate
mutual fund sector and those of individual funds over time. Our main finding is that
the mutual funds’ aggregate vulnerability according to this propagation mechanism is
generally small and its time dynamics strongly depend on the choice of price impact
parameters. For example, despite the strong growth of the system over our sample period,
we find that aggregate vulnerability only increases over time when we fix the price impact
parameters. Even in this case, however, aggregate vulnerabilities are small: in response
to a negative shock of -5% on all stocks, the maximum value of aggregate vulnerability
(i.e., the fraction of equity wiped out due to the fire-sale mechanism, relative to initial
equity) is in the order of less than 0.0001%. We identify three reasons for these very small
numbers: (1) the flow-performance relationship is weak; (2) the typical overlap between
funds’ stock portfolios is relatively low4; and (3), mutual funds use little leverage. In
particular, the fact that mutual funds are subject to tight leverage constraints leaves us
with tiny vulnerabilities in comparison with those reported by Greenwood et al. (2015) for
the largest European banks. In summary, these results suggest that systemic risks among
mutual funds are unlikely to be a major concern, at least when looking at this part of the
financial system in isolation. Finally, we explore the determinants of individual funds’
contribution to systemic asset liquidations. Here, we highlight the importance of fund
size, diversification levels, and portfolio illiquidity, and we discuss implications for future
stress test designs.

Our paper is one of the first attempts to develop a macroprudential stress-test for asset
managers with an application to the U.S. mutual fund industry. Closest to our work is a
blogpost by the New York Fed (Cetorelli, Duarte, and Eisenbach (2016)), which performs
a comparable stress test for U.S. high-yield bond funds. Dunne and Shaw (2017) relate
fund-specific characteristics, such as leverage or usage of derivatives, to funds’ exposure
to a tail event in the fund sector (Marginal Expected Shortfall). By contrast, the vast
majority of existing work on systemic risk tends to concentrate on the banking sector (see
Glasserman and Young (2016) for a recent survey). Note that this literature is mainly
concerned with default contagion in interbank markets, where banks can be connected
either directly (e.g., via borrowing and lending relationships on the interbank market)
or indirectly (e.g., via holding similar assets in their portfolios). Glasserman and Young
(2015) showed that direct connections between banks are unlikely to be a major source
of systemic risk, but contagion can be dramatically amplified when allowing for indirect
connections as well. In line with mounting empirical literature on the existence of fire-
sales in various asset markets (e.g., Pulvino (1998) for real assets; Coval and Stafford
(2007) for equities; Ellul, Jotikasthira, and Lundblad (2011) and Manconi, Massa, and
Yasuda (2012) for corporate bonds), a growing literature is looking at the importance
of overlapping portfolios and asset liquidations as a source of systemic risk (Cifuentes,
Ferrucci, and Shin (2005); Wagner (2011); Greenwood et al. (2015); Cont and Schaanning

4Fricke (2017) performs a detailed analysis of portfolio overlap among U.S. mutual funds using the
same dataset. He finds that the observed portfolio overlap is significant relative to randomized versions
of mutual funds’ portfolios.
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(2017); Getmansky, Girardi, Hanley, Nikolava, and Pelizzon (2016)). We add to this
literature by using actual data on mutual funds’ stock portfolios in order to quantify the
sector’s vulnerability to systemic asset liquidations over a relatively long sample period.

The remainder of this paper is organized as follows: in Section 2, we introduce an
extended version of the model developed by Greenwood et al. (2015) that is more relevant
for asset managers. In Section 3, we describe the dataset, explain in detail how we cali-
brate the model parameters. Section 4 shows aggregate vulnerabilities for different price
impact scenarios. Section 5 takes a closer look at fund-specific vulnerabilities, and Sec-
tion 6 explores the effect of adding heterogeneity in the flow-performance relationship on
aggregate vulnerabilities. Section 7 discusses the main findings, and Section 8 concludes.

2 Model

In this section we present an extended version of the model introduced by Greenwood
et al. (2015). There are N funds (investors) and K assets (investments). Let M{N×K}

denote the matrix of portfolio weights, where each element 0 ≤ Mi,k ≤ 1 is the market-
value-weighted share of asset k in investor i’s portfolio, and

∑

k Mi,k = 1 by definition.
Each fund i is financed with a mix of debt, Di, and equity, Ei. A{N×N} is the diagonal
matrix of funds’ assets with Ai,i = Ei +Di ∀i. B{N×N} is the diagonal matrix of leverage
ratios with Bi,i = Di/Ei ∀i. Finally, F1 denotes a (K × 1) vector of asset-specific returns
(this is the initial shock). All pre-shock variables have a time index of 0.

The main steps are as follows:

1. We impose an initial shock on the value of funds’ asset holdings.

2. The initial shock will lead investors in mutual funds to withdraw some of their
money (flow-performance relationship).

3. Funds have fixed leverage targets and aim to keep their portfolio weights constant.

4. Asset liquidations have price impact.

In the following, we describe these steps in detail.

2.1 Step 1: Initial Shock

In matrix notation, we obtain funds’ portfolio returns as

R1 = MF1, (1)

with R1 being a (N × 1) vector. This gives us funds’ updated total assets

A1 = A0(1 +R1), (2)

which yields to an equivalent change in the net asset value of funds’ equity

E1 = E0 + A0R1,
5 (3)

5If the initial shock is large enough, equity could become negative. To avoid this from happening, we
could write E1 as max(E0 +A0R1, 0) and D1 as D0 +min(E0 +A0R1, 0). For simplicity, we assume that
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and debt (assuming that the initial shock does not wipe out all of the funds’ equity)

D1 = D0. (4)

2.2 Step 2: Response on the Funding Side

In line with a vast existing literature (e.g., Sirri and Tufano (1998); Berk and Green
(2004)), we assume a positive linear relationship between fund performance and net in-
flows. Hence, negative (positive) fund performance is followed by an outflow (inflow)
of money. To allow for different responses for different types of funding, we derive the
equations for the general case where equity and debt may have different flow-performance
sensitivities, γE and γD, as introduced below.6

The most simple scenario is that net equity inflows (in absolute terms) are a linear
function of a fund’s realized portfolio return from step 1. This can be written as

∆E2

E1
= γER1, (5)

where γE is the flow-performance sensitivity parameter of equity, and ∆E2 is the net
inflow in dollars. Note that the assumed linearity implies that positive and negative
returns are treated symmetrically, whereas empirically there appears to be an asymmetry
in the flow-performance relationship (see Sirri and Tufano (1998) for equity funds, and
Goldstein, Jiang, and Ng (2016) for bond funds, and Franzoni and Schmalz (2017) for
different market states).7 Similarly, we can write the change in refinancing power as

∆D2 = γDR1D1 = γDR1D0, (6)

where γD is the flow-performance sensitivity parameter of debt, and ∆D2 is the net inflow
in dollars.8

With these additional adjustments on the liability side of the balance sheet, updated
equity and debt can be written as

E2 = E1(1 + γER1), (7)

and
D2 = D1(1 + γDR1). (8)

the initial shock is small enough to not wipe out the entire equity.
6In the case of investment funds, investors can redeem their equity shares, while in the case of banks,

some short-term borrowing may dry up. In the general case, equity and debt may be redeemed simulta-
neously.

7In order to keep the model as simple as possible, we stick to the linear relationship in the following.
The model can also be written down for more general nonlinear relationships, but this comes at the cost
of having to estimate additional model parameters.

8 Eq. (6) seems most reasonable for institutions with very short-term debt financing. In fact, we
would achieve similar results to those presented here if we distinguish between short- and long-term debt
financing, respectively, D0 = DL

0 + DS
0 . That would allow us to assume more realistically that only

short-term creditors would be prone to withdraw their funds (not roll over the loans), while long-term
debt is much more slow-moving, see Gorton and Metrick (2012).

5



Using the above definitions for D1 and E1, we can write total assets as

A2 = A1 +∆E2 +∆D2

= A0

(

1 +R1

(

1 + γE

(

R1 +
1

1 +B

)

+ γD B

1 +B

))

,
(9)

where we have used the fact that E0/A0 = 1/(1+B). The fund has to liquidate assets in
order to make the payments, which will affect demand in step 3 below.

Note that the additional funding shock can be seen as an amplifier of the original shock.
More precisely, we can write the adjusted portfolio return (before asset liquidation) as

R̃2 =
A2 −A0

A0

= R1

(

1 + γE

(

R1 +
1

1 +B

)

+ γD B

1 +B

)

.

(10)

Hence, all other things equal, R̃2 will be closer to R1 for more leveraged firms (higher B),
with a weaker flow-performance sensitivity (lower γE and γD).9

For the case of no withdrawal of debt, we would impose γD = 0 and γE > 0, in which
case the adjusted fund return reads as

R̃2 = R1

(

1 + γE

(

R1 +
1

1 +B

))

. (11)

The relationship between R̃2 and the parameters γE and B is nonlinear and can have a
substantial impact on the resulting portfolio returns in the model. For example, a fund
without leverage (B = 0) and γE = 2.5 will have a R̃2 that is amplified by a factor
of 3 compared to the original R1. Note that the flow-performance relationship will be
somewhat milder for less levered funds (higher B amplifies R1 less strongly) since their
equity tranche is relatively small. As we will see below, highly levered funds will, however,
liquidate more assets in order to achieve their leverage target (next step).

Finally, note that in the case where equity and debt have the same flow-performance
sensitivity, i.e., where γ = γE = γD, Eq. (10) reduces to

R̃2 = R1 (1 + γ(1 +R1)) . (12)

2.3 Step 3: Leverage Targeting with Fixed Portfolio Weights

In line with Greenwood et al. (2015), we assume that funds target their leverage and aim
at holding their portfolio weights constant when liquidating (or buying) assets. These two
assumptions are quite realistic: first, funds need to specify the composition of both their
asset and liability side in their sales prospectuses and are unlikely to deviate significantly
from their proposed targets. Second, empirical evidence suggests that mutual funds tend
to sell assets according to their liquidity pecking order during normal times, but at a

9If we were to distinguish between short- and long-term debt, see footnote 8, the last term would read

γD DS
0

A0

, where DS
0 is the amount of short-term debt in the initial balance sheet.
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pro-rata basis during times of market stress (Jian, Li, and Wang (2016)). Given that
funds will have to liquidate an amount ∆E2 +∆D2 due to the withdrawal of short-term
funding (equity and debt) after a negative shock, we need to add this component to the
total amount to be liquidated

φ̃
︸︷︷︸

Amount to be liquidated

= γEM ′E1R1
︸ ︷︷ ︸

Net inflow of equity

+ γDM ′D1R1
︸ ︷︷ ︸

Net inflow of debt

+ M ′A0BR̃2
︸ ︷︷ ︸

Leverage targeting

, (13)

which gives a (K × 1) vector of net asset purchases by all funds in period 3. The last
term in Eq. (13) corresponds to the φ in the Greenwood et al. (2015) model, which we
recover when we set γD = γE = 0. Eq. (13) assumes that both γD and γE are the same
across funds. We can easily account for a more general case by setting up two diagonal
matrices ΓE

{N×N} and ΓD
{N×N}, where each element γE

i,i and γD
i,i can be fund specific.10

With this formulation, we end up with

φ̃ = M ′
(
ΓEE1 + ΓDD1

)
R1 +M ′A0BR̃2, (14)

where the vectorized version of Eq. (10) can be written as

R̃2 = R1 ◦
[
1N + ΓE(R1 + (1 +B)−11N) + ΓDB(1 +B)−11N

]
, (15)

where 1N is an (N × 1) vector of ones, and ◦ denotes element-wise multiplication.

2.4 Step 4: Fire-Sales Generate Price Impact

Asset sales generate a linear price impact

F3 = Lφ̃, (16)

where L is the matrix of price impact ratios, expressed in units of returns per dollar of
net sales. This gives a final return of

R3 =MF3 = MLφ̃

=MLM ′
([

ΓEE1 + ΓDD1

]
R1 + A0BR̃2

)

.
(17)

Note that, if anything, the linearity assumption made here likely overestimates the
actual price impacts and thus the vulnerability of the system. Empirically, it has been
documented that price impact appears to follow a square-root law, i.e., is a concave
function (see Engle, Ferstenberg, and Russell (2012)). Hence, liquidating twice as many
assets leads to a price impact that is less than twice the original one.

2.5 Measuring Vulnerability Exposures

Consider what happens after a negative shock, F1 = (f1, f2, · · · , fK), ∀f ∈ {−1; 0), to
asset prices: it translates into dollar shocks to funds’ assets given by A1MF1. The ag-

10Assuming that the Γ matrices are diagonal implies that we ignore cross-fund correlations in the net
inflows.
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gregate direct effect on all funds’ assets is the sum of these values: 1′NA1MF1. This
shock will have additional knock-on effects for individual funds due to investors’ fund
share redemptions. Funds’ net-inflows are equal to (ΓEE1 + ΓDD1)MF1, which we can
aggregate as before by multiplying with 1N . Note that these direct effects do not involve
any contagion between funds. The model suggests, however, that funds with similar asset
holdings should have similar outflows and similar sensitivities to fund returns.

Using Eq. (17), we can compute the aggregate dollar effect of shock F1 on fund assets
through fire-sales. To do so, we pre-multiply by 1′NA0, and normalize by the initial total
equity, E0,

ÃV =
1′NA0R3

E0
=

1′NA0MLM ′
([

ΓEE1 + ΓDD1

]
R1 + A0BR̃2

)

E0
. (18)

ÃV measures the percentage of aggregate fund equity that would be wiped out by funds’
asset liquidation in case of a shock of F1 to asset returns. Similar to Greenwood et al.
(2015), we can decompose aggregate vulnerability into each fund’s individual contribution

Si =
1′NA0MLM ′δiδ

′
i

([
ΓEE1 + ΓDD1

]
R1 + A0BR̃2

)

E0

, (19)

where δi is a (N × 1) vector with all zeros except for the ith element, which is equal to
one, and

∑N

i Si = ÃV .
Finally, we also define a fund’s indirect vulnerability with respect to shock F1 as the

impact of the shock on its equity through the deleveraging of other funds:

IVi =
δ′iA0MLM ′

([
ΓEE1 + ΓDD1

]
R1 + A0BR̃2

)

Ei,i

. (20)

To the best of our knowledge, there is no documented evidence on a flow-performance
relationship with regard to debt financing for mutual funds; therefore, we set γD = 0 in
everything that follows. In summary, the model relies on five crucial inputs: (1) fund
size; (2) fund leverage; (3) portfolio weights; (4) flow-performance relationship; (5) price
impact parameters.

3 Model Application: Vulnerable U.S. Equity

Mutual Funds?

In this section, we apply our model to the set of U.S. domestic equity funds. We restrict
ourselves to this particular fund type since we have accurate information on their asset
holdings over a relatively long sample period. Moreover, we can match these holdings
with stock-specific information from CRSP-Compustat, which allows us to estimate the
price impact parameters separately for each stock over time. In the following, we will
explain in detail how we calibrated the model parameters.
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3.1 Data

The data used here come from two different sources. First, we obtain mutual funds’ port-
folio holdings and additional fund-specific information from the CRSP Survivor-Bias-Free
Mutual Fund Database (following the literature, we aggregate different share classes to
the fund level, e.g., Cremers and Petajisto (2009)). Portfolio holdings are available at
the quarterly level from March 2003 onwards and our final sample comprises 48 quarters
between 2003-Q1 and 2014-Q4.11 In everything that follows, we disregard short positions.
Second, we obtain daily stock-specific information from the merged CRSP-Compustat
data. The final dataset gives us detailed information on the domestic equity holdings
of U.S. mutual funds and we therefore restrict ourselves to equity funds with a focus on
domestic stocks (we only kept funds with CRSP objective codes starting with ’ED’). In
line with the literature, we drop exchange traded funds in everything that follows. On
the other hand, we do not exclude index funds from our analysis; while this is standard
practice in other strands of literature (e.g., in performance analyses tend to focus on ac-
tively managed funds), index funds are subject to the same fire-sale mechanism described
above and thus need to be included.

The final sample contains 7,914 unique funds and 98,054 fund-quarter observations.
The flow-performance regressions will be based on monthly data, in which case we have
429,330 fund-month observations.

3.2 Estimation of Model Parameters

In the following, we describe in detail the computation of model parameters.

3.2.1 Fund Size

Fund size is defined as the dollar value of a fund’s portfolio as reported in the matched
holdings data. The left panel of Figure 2 shows the total dollar volume of the system
over time in trillion dollars, adjusted for inflation (indexed to 2014-Q4 based on the CPI
available from the St. Louis Fed) to make them comparable over time.12 The solid line
shows the total volume when including all reported holdings, and the dashed-dotted line
shows the values for domestic equity funds (DE) only. Clearly, the system has grown
over the sample period, partly because the market value of the asset holdings depends
on market prices, which also explains the strong effect of the global financial crisis in
Figure 2. The right panel of Figure 2 shows the number of active DE funds and the
number of active stocks.13 Over the sample period the number of active funds (black line)
increased quite significantly, while the number of stocks (dotted line) has been shrinking
over time.

11Note that there is a structural break in the fund identifiers in CRSP: all fund ID’s were replaced
with new ones from 2010-Q3 to 2010-Q4. Moreover, there are no holdings data available for 2010-Q4
and, for the sake of simplicity, for this particular quarter we take the portfolio holdings from 2010-Q3 in
the analysis below. Alternatively, we could set the 2010-Q4 portfolio holdings equal to the average of the
previous and following quarter.

12In the following, we adjusted all nominal dollar volumes for inflation.
13Funds are defined as those DE funds that report their holdings in CRSP in a given quarter. Active

stocks are defined as those stocks that are held by at least one fund and for which we have additional
information in CRSP/Compustat.
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Figure 2: System size. Left: total dollar value of mutual funds’ equity holdings over
time in 2014 US$ (trillion). The solid line shows the values when including all funds that
report their holdings in the CRSP Mutual Fund Database, and the dashed line shows the
values for domestic equity (DE) funds only which will be the main focus of this study.
Right: number of DE funds and stocks in our sample over time.

As discussed by Greenwood et al. (2015), a more concentrated system might be more
vulnerable to systemic asset liquidations. Figure 1 showed that the asset holdings of the
500 largest global asset managers have become increasingly concentrated over the last
decade. An obvious question is whether there is a similar trend for the set of DE mutual
funds considered in this study. Figure 3 shows the relative market share of the largest
fund(s) over time. More precisely, we divide the total assets under management of the 1,
5, and 20 largest funds by the total size of the system. Somewhat surprisingly, we find that
the fraction of assets held by the largest and the 5 largest funds has been relatively stable,
while the share of the largest 20 funds has actually decreased over time. This finding could
be driven by the growing number of active mutual funds over our sample period and the
relatively high levels of competition in the industry (Malkiel (2013)). Overall, based on
these dynamics alone, we do not necessarily expect aggregate vulnerabilities of the system
to increase over time.

3.2.2 Leverage

It is well known that mutual funds in the U.S. are subject to tight leverage constraints.
According to the Investment Company Act of 1940, ”[b]y law, the value of its borrowings
may not exceed one-third of the value of its assets” (see (Pozen and Hamacher, 2011,
p. 28)). In terms of our model, this means that the maximum value of D

A
is 0.33, or

equivalently, the maximum value of leverage is B̄ = 0.5. Unfortunately, our dataset
does not include the funding side of funds’ balance sheets. Given that we are ultimately
interested in the maximum vulnerability of the system (worst case scenario), we assume
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Figure 3: Market concentration. This Figure shows the relative market share of the
largest 1, 5, and 20 fund(s) over time, respectively.

that all funds are using maximum leverage of B̄. We see this as the most conservative
choice, but one should keep in mind that Greenwood et al. (2015) report leverage values
exceeding 30 for the largest European banks. Therefore, we expect the mutual fund sector
to be much less vulnerable to systemic asset liquidations compared with commercial banks.

3.2.3 Portfolio Weights and Overlap

In our dataset, we observe the actual equity holdings of U.S. mutual funds. The most
granular holdings matrix is M{N×K}, where N is the number of active funds and K the
number of active stocks.14 Recall that an element Mi,k ≥ 0 gives the weight of stock k in
fund i’s portfolio (share of market value), with

∑

k Mi,k = 1 ∀i.
Since we observe additional information on the stocks, we also run our model based on

more coarse-grained portfolios, say Ma
{N×Ka} with Ka < K. In the following, we focus on

SIC industry codes (4-digits, 2-digits, and 1-digit).15 For example, the 4-digit SIC clas-
sification defines 1,353 unique industry codes, and each element Ma

i,k shows the portfolio
weight of stocks from industry k in fund i’s portfolio. The 2- and 1-digit classifications
are defined in a similar fashion, and contain 84 and 10 industries, respectively. Clearly,
with fewer asset classes, the average overlap between any pair of investors will be higher
(see below), meaning that the system’s vulnerability for the more granular portfolios Ma

will always exceed that of the most granular portfolios M .

14Note that only active stocks are of interest in the following, since stocks need to be held by at least
one mutual fund to be subject to any kind of fire-sale cascades.

15We also classified stocks into different size deciles (based on market capitalization). In terms of
aggregate vulnerability, the results are comparable to those reported below for the SIC classification.
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Figure 4: Portfolio overlap. For each quarter we show the cross-sectional average value
of Eq. (21) for different aggregation levels. ’Stocks’ corresponds to the original holdings
reported in the CRSP Mutual Fund Database.

In Greenwood et al. (2015), aggregate vulnerability depends on the typical overlap of
investors’ portfolios. One obvious question, therefore, is whether we observe an increasing
trend in portfolio overlap. In order to answer this question, we define the overlap of two
funds’ portfolios as

Overlapi,j =

∑K

k=1Mi,kMj,k
√

∑K

k=1(Mi,k)2 ×
√
∑K

k=1(Mj,k)2
, (21)

where i 6= j. Technically, Overlap is defined as the angle between the vectors of portfolio
weights between fund i and fund j. Overlap ranges between 0 and 1, with higher values
indicating more similar portfolios. If two funds have no assets in common, their overlap
equals 0; if they hold the exact same portfolios, their overlap corresponds to 1.

Figure 4 shows the cross-sectional average overlap over time for different levels of
portfolio aggregation. The solid line shows the typical overlap based on the most granular
stock-specific portfolios; the other cases show the results for the aggregated industry-
specific portfolios. As expected, portfolio overlap increases with fewer asset classes. In all
cases, the values are significantly larger than the minimum value of zero, but similarly the
values are also always substantially below its maximum possible value of 1. With regard
to the evolution over time, we do not observe any clear trends in portfolio overlap for
either aggregation level, but the values appear to be remarkably stable for all aggregation
levels.16 From these numbers one would not expect an increasing trend in aggregate

16See Fricke (2017) for a detailed analysis of portfolio overlap among mutual funds.
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Figure 5: Price impact. For each stock, we calculate the daily Amihud-ratio as
|Returnk,t|/DVolumek,t, where |Returnk,t| and DVolumek,t are the absolute return and
the dollar volume of stock k on day t, respectively. We then take the quarterly average
of these daily values separately for each stock. Dollar-trading volumes are adjusted for
inflation. For each quarter, we show the cross-sectional average values (equal-weighted
and weighted by market capitalization). The y-axis is displayed in logarithmic scale.

vulnerability purely due to the dynamics of portfolio overlap.

3.2.4 Price Impact

We estimate stocks’ price impacts based on the daily CRSP data. For this purpose, we
use the standard Amihud-ratio as our measure of price impact (Amihud (2002)), since
Goyenko, Holden, and Trzcinka (2009) have shown that the Amihud-ratio is indeed an
adequate proxy for monthly illiquidity conditions.

The Amihud-ratio for asset k on day d is defined as the daily absolute return over the
total dollar volume,

Amihudk,d =
|Returnk,d|

DVolumek,d
. (22)

For each asset separately, we then take the quarterly average of these daily observations
and define the price impact of that asset in quarter t as

PriceImpactk,t =
1

Dk,t

∑

Amihudk,d, (23)

where Dk,t is the number of daily observations for asset k in quarter t. As for the value
of the total holdings above, we adjust the price impacts for inflation (the denominator
is based on nominal dollar volumes). This adjustment then allows us to compare price
impacts over time.
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As an illustration of the overall dynamics, Figure 5 shows the cross-sectional average
(equal-weighted and value-weighted, respectively) price impact over time, as defined in
Eq. (23), on a semi-logarithmic scale. Not surprisingly, the value-weighted average is
much smaller since stocks with a higher market capitalization tend to be more liquid than
assets with a lower market capitalization. In fact, the value-weighted price impact is two
orders of magnitude smaller than the equal-weighted price impact. Due to the dependence
of the Amihud-ratio on volatility, it also comes as no surprise that there is a clear peak
in price impacts during the global financial crisis.17 Finally, it is worth noting that the
typical price impact is several orders of magnitude larger than the values determined by
Greenwood et al. (2015): the average values in Figure 5 are 4.77× 10−6 and 1.11× 10−8,
respectively.18

Note that whenever we aggregate funds’ stock portfolios to the SIC industry level,
we calculate the price impact of each industry bucket as the weighted average of the
individual stocks in that particular bucket.

3.2.5 Flow-Performance Relationship

The existence of a flow-performance relationship has become something of a ’stylized
fact’ in the mutual fund literature. The basic idea is that there is a positive relationship
between funds’ past performance and their future net inflows. The estimation equation is

Flowsi,t = a + b× Controlsi,t + γE × Returni,t−1 + ǫi,t, (24)

where Flowsi,t is the net inflow of fund i in month t, which we calculate as

Flowsi,t =
TNAi,t − TNAi,t−1(1 + Returni,t)

TNAi,t−1
, (25)

with TNA as total net assets. Given that we think of the stress test happening at relatively
short time-scales, we will estimate Eq. (24) using data at the highest available frequency,
namely monthly.19

There are many different ways to estimate parameter γE: first, one has to decide on
the time dimension, i.e., do we estimate parameters for the full sample (γE is constant
over time) or based on rolling window regressions? Secondly, one has to decide whether
the parameter should be estimated separately for each fund (in which case γE would
have a fund-specific index i), or whether one wants to pool data for different funds (e.g.,
across all funds or by fund type). Since there are no obvious answers to these questions,
in the baseline scenario we use the most transparent approach and pool observations
for all funds over time and estimate one γE for all funds.20 This way, the estimated

17In Appendix A we show the typical price impacts for very active trading days.
18For the set of large European banks, Greenwood et al. (2015) assume a price impact of 10−13 for most

of their asset classes. The main reason is that Greenwood et al. (2015) compute the implied price impact
of the complete stock market by aggregating the individual ratios according to

∑

k(wk)
2(Amihudk)

2 (see
footnote 12 in the working paper version of their article). It is not clear why one should use squared price
impacts in the first place, and we rather stick to the raw Amihud value in everything that follows.

19We also experimented with quarterly data. In this case, the estimates for γE are even smaller than
those shown below (results available upon request from the authors).

20We add further data filters for these regressions: we exclude funds that are less than one year old,
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vulnerabilities in the next section will not be driven by any time dynamics in the flow-
performance relationship. We discuss this assumption below and relax it in Section 6,
where we introduce heterogeneity regarding γE across fund types and explore how this
affects the aggregate vulnerabilities relative to the baseline scenario.

Lastly, we should stress that the existing literature typically uses adjusted performance
measures (returns relative to some benchmark) rather than raw returns. Clearly, adjusting
all funds’ returns using the same benchmark (such as S&P 500) will not have an impact
on our estimate of γE when using the Fama and MacBeth (1973) methodology. The
results might, however, differ when different funds’ returns are adjusted using a different
benchmark. In this regard, we find comparable results to those reported below when using
style-adjusted and fund-family-adjusted returns, respectively (see Appendix B). Many
studies also use factor-model alphas instead of returns (e.g., Goldstein et al. (2016)).21

Results Table 1 shows the results of this exercise, using different control variables and
estimation approaches, with Newey-West standard errors in parentheses. Columns (1) to
(5) show the results using simple pooled OLS: the first column only includes the lagged
(1-month) return and flow as control variables. The other columns then add further lags,
fund size, and fund-/time-FEs to the regressions. Overall, we find that the parameter on
Return(t-1) is always strongly positively significant, but generally rather small. In fact,
the maximum value for γE is 0.1490 when using pooled OLS. The last column shows the
results when using Fama-MacBeth regressions, which yields γE = 0.2748. Given that
the typical R2 is highest in this case, and in order to explore the worst case scenario
in the model application, we stick to this value of γE in the following. Note that our
estimates are broadly comparable with those of Franzoni and Schmalz (2017), who used
a similar methodology. We should stress, however, that this is still a small value: a
return of -5% would translate into additional net outflows of only −5% × .2748 ≈ -1.37%,
suggesting that the vulnerability of the system is likely to be small even when including
the flow-performance relationship.

Discussion Before moving on, it is worth stressing that the approach taken in the
baseline scenario, namely fixing the same γE for all funds and for all periods, is mainly
chosen for the sake of transparency. Given that our model already contains a number of
moving parts (most importantly fund portfolios and price impacts), fixing γE can be seen
as a reasonable benchmark. However, we do acknowledge that the assumption of a uniform
flow-performance relationship across all fund types is likely unrealistic, and we therefore
performed a large number of additional analyses with regards to the baseline regressions
in Table 1. We report the most important results in Table 2 and leave additional analyses
for Appendix B.

and we also drop extreme flow/return observations (above/below +200%/-50%).
21In the technical Appendix to their blogpost, Cetorelli et al. (2016) describe a two-step estimation

approach for γE based on fund alphas: in the first stage, they estimate fund-specific alphas using a
12-month rolling window regression of fund returns on the market return separately for each fund. In
the second stage, they regress funds’ flows against the estimated alphas. For the sake of completeness,
we performed a similar exercise using both fund returns and fund alphas. The results can be found in
Appendix B.2. In this case, we find that the coefficients are rather broadly distributed around zero (with
many negative values) and a smaller average value than our baseline estimate when using fund returns.
We therefore stick to our baseline approach in the following.
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Flow-Performance Relationship

Dependent variable: Flows(t)
(1) (2) (3) (4) (5) (6)

Return(t-1) 0.0508** 0.0553** 0.0629** 0.1402** 0.1490** 0.2748**
(0.0039) (0.0037) (0.0036) (0.0111) (0.0109) (0.0268)

Return(t-2) 0.0125** 0.0271** 0.0671** 0.0882** 0.1885**
(0.0037) (0.0036) (0.0107) (0.0107) (0.0330)

Return(t-3) 0.0095 * 0.0240** 0.0366** 0.0569** 0.0996**
(0.0038) (0.0037) (0.0111) (0.0110) (0.0164)

Return(t-4) 0.0133** 0.0310** 0.0472** 0.0696** 0.0507
(0.0038) (0.0037) (0.0107) (0.0105) (0.0349)

Return(t-5) -0.0014 0.0188** 0.0090 0.0387** 0.0664**
(0.0038) (0.0037) (0.0101) (0.0100) (0.0179)

Return(t-6) 0.0097 * 0.0284** 0.0413** 0.0687** 0.1047**
(0.0039) (0.0039) (0.0116) (0.0114) (0.0273)

Return(t-7) 0.0004 0.0132** 0.0382** 0.0657** 0.0647**
(0.0036) (0.0035) (0.0107) (0.0104) (0.0231)

Return(t-8) 0.0004 0.0100** 0.0154 0.0454** 0.0832**
(0.0036) (0.0035) (0.0106) (0.0100) (0.0221)

Return(t-9) 0.0096 * 0.0245** 0.0273 * 0.0611** 0.0780**
(0.0039) (0.0038) (0.0111) (0.0111) (0.0237)

Return(t-10) -0.0139** 0.0028 -0.0207 0.0156 0.0070
(0.0038) (0.0037) (0.0117) (0.0112) (0.0335)

Return(t-11) 0.0149** 0.0329** 0.0397** 0.0748** 0.0387 *
(0.0035) (0.0034) (0.0105) (0.0103) (0.0177)

Return(t-12) 0.0099** 0.0331** 0.0240 * 0.0676** 0.0351 *
(0.0034) (0.0034) (0.0103) (0.0101) (0.0164)

Flows(t-1) 0.0884** 0.0616** 0.0156 * 0.0587** 0.0119 0.0760**
(0.0050) (0.0065) (0.0064) (0.0064) (0.0064) (0.0098)

Flows(t-2) 0.0839** 0.0437** 0.0825** 0.0414** 0.0848**
(0.0057) (0.0055) (0.0057) (0.0055) (0.0073)

Flows(t-3) 0.0590** 0.0252** 0.0584** 0.0235** 0.0433 *
(0.0053) (0.0052) (0.0053) (0.0052) (0.0178)

Flows(t-4) 0.0348** 0.0033 0.0345** 0.0020 0.0332**
(0.0054) (0.0054) (0.0054) (0.0054) (0.0092)

Flows(t-5) 0.0515** 0.0242** 0.0509** 0.0226** 0.1053 *
(0.0054) (0.0053) (0.0054) (0.0053) (0.0500)

Flows(t-6) 0.0418** 0.0169** 0.0413** 0.0155** 0.0162
(0.0054) (0.0052) (0.0054) (0.0052) (0.0187)

Flows(t-7) 0.0247** 0.0017 0.0250** 0.0010 0.0564
(0.0052) (0.0050) (0.0052) (0.0050) (0.0324)

Flows(t-8) 0.0332** 0.0104 * 0.0335** 0.0095 0.0114
(0.0051) (0.0051) (0.0051) (0.0050) (0.0215)

Flows(t-9) 0.0339** 0.0137** 0.0345** 0.0132** -0.0218
(0.0050) (0.0050) (0.0050) (0.0050) (0.0467)

Flows(t-10) 0.0262** 0.0079 0.0270** 0.0076 0.0223**
(0.0049) (0.0048) (0.0049) (0.0048) (0.0069)

Flows(t-11) 0.0174** -0.0008 0.0180** -0.0014 0.0178**
(0.0044) (0.0044) (0.0044) (0.0044) (0.0052)

Flows(t-12) 0.0303** 0.0137** 0.0306** 0.0128** 0.0309**
(0.0047) (0.0047) (0.0047) (0.0047) (0.0060)

log(TNA(t-1)) -0.0032** -0.0015** -0.0232** -0.0016** -0.0240** -0.0058
(0.0001) (0.0001) (0.0006) (0.0001) (0.0006) (0.0033)

Fund FE No No Yes No Yes -
Time FE No No No Yes Yes -
Fama-MacBeth - - - - - Yes
adj. R2 0.014 0.052 0.116 0.056 0.121 0.168
Obs. 417,801 306,570 306,570 306,570 306,570 306,570

∗ p<0.05; ∗∗ p<0.01

Table 1: This table shows the results of the flow-performance regressions, with γE being
the parameter on Return(t-1). All regressions based on monthly data using standard OLS
(Newey-West standard errors in parentheses). The last column is our main specification
and shows the results for Fama-MacBeth regressions, in which case we report the time-
series average of cross-sectional regression coefficients and the adjusted R2. TNA is a
fund’s total net assets, and Flow is defined in Eq. (25).
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Robustness: Flow-Performance Relationship

Dependent variable: Flows(t)
(1) (2) (3)

Subsample Index funds Illiquidity Quartile
(Most liquid) (Least liquid)

2003-08 2009-14 No Yes 1 2 3 4
Return(t-1) 0.2951** 0.2521 ** 0.2578** 0.4396** 0.2089** 0.2822** 0.3235** 0.2498**

(0.0263) (0.0487) (0.0236) (0.0907) (0.0428) (0.0327) (0.0302) (0.0371)
Return(t-2) 0.1810** 0.1970 ** 0.1693** 0.2026 * 0.1707** 0.1209** 0.1571** 0.1875**

(0.0217) (0.0661) (0.0154) (0.0945) (0.0370) (0.0364) (0.0363) (0.0321)
Return(t-3) 0.1219** 0.0744 ** 0.0980** 0.0044 0.0664 0.1488** 0.1502** 0.1603**

(0.0206) (0.0257) (0.0208) (0.0840) (0.0444) (0.0377) (0.0307) (0.0324)
Return(t-4) 0.0912** 0.0051 0.0926** 0.0299 0.1076 * 0.0342 0.0945** 0.1032**

(0.0202) (0.0705) (0.0138) (0.1013) (0.0424) (0.0399) (0.0281) (0.0286)
Return(t-5) 0.0558 * 0.0783 ** 0.0696** -0.0045 0.1431** 0.0840 * 0.0890 * 0.0718

(0.0252) (0.0256) (0.0144) (0.0869) (0.0442) (0.0376) (0.0377) (0.0395)
Return(t-6) 0.0782** 0.1346 * 0.0895** 0.0734 0.0648 -0.0175 0.1033** 0.0650 *

(0.0196) (0.0536) (0.0165) (0.0969) (0.0499) (0.0388) (0.0282) (0.0314)
Return(t-7) 0.0643** 0.0653 0.0879** -0.1099 0.0581 0.0131 0.0660 * 0.0709

(0.0227) (0.0422) (0.0279) (0.0923) (0.0395) (0.0378) (0.0328) (0.0374)
Return(t-8) 0.0813** 0.0854 * 0.0793** 0.0854 0.0430 0.0279 0.0408 0.0609

(0.0222) (0.0399) (0.0208) (0.0989) (0.0447) (0.0329) (0.0350) (0.0385)
Return(t-9) 0.0218 0.1414 ** 0.0570** 0.0196 0.0620 0.0629 0.0517 0.1220**

(0.0207) (0.0434) (0.0134) (0.1036) (0.0407) (0.0393) (0.0317) (0.0435)
Return(t-10) 0.0329 -0.0221 0.0461** -0.1829 * 0.0567 0.0357 0.1024** 0.0668 *

(0.0210) (0.0673) (0.0147) (0.0871) (0.0446) (0.0370) (0.0330) (0.0269)
Return(t-11) 0.0517 * 0.0242 0.0438** 0.0136 0.0604 0.0323 0.0563 0.0309

(0.0218) (0.0286) (0.0125) (0.1037) (0.0385) (0.0374) (0.0317) (0.0315)
Return(t-12) 0.0611** 0.0058 0.0363** 0.0526 0.0235 0.0669 0.0356 -0.0202

(0.0209) (0.0252) (0.0129) (0.0914) (0.0402) (0.0372) (0.0319) (0.0273)
Flows(t-1) 0.1125** 0.0350 * 0.1299** -0.0778** 0.0345 0.1093** 0.0739** 0.0966**

(0.0114) (0.0146) (0.0101) (0.0200) (0.0205) (0.0173) (0.0212) (0.0211)
Flows(t-2) 0.0929** 0.0757 ** 0.0903** 0.0468 * 0.0968** 0.0687** 0.0689** 0.1000**

(0.0106) (0.0098) (0.0084) (0.0197) (0.0165) (0.0205) (0.0180) (0.0158)
Flows(t-3) 0.0637** 0.0204 0.0627** 0.0238 0.0900** 0.0919** 0.0594** 0.0634**

(0.0111) (0.0356) (0.0194) (0.0193) (0.0145) (0.0182) (0.0202) (0.0125)
Flows(t-4) 0.0501** 0.0143 0.0230 0.0139 0.0250 0.0433 * 0.0658** 0.0335 *

(0.0115) (0.0143) (0.0195) (0.0185) (0.0172) (0.0182) (0.0170) (0.0132)
Flows(t-5) 0.0678** 0.1476 0.0540** 0.0763** 0.0509** 0.0382 * 0.0602** 0.0575**

(0.0096) (0.1058) (0.0062) (0.0185) (0.0139) (0.0176) (0.0179) (0.0121)
Flows(t-6) 0.0251 * 0.0063 0.0457** 0.0306 0.0201 0.0587** 0.0252 0.0398**

(0.0099) (0.0384) (0.0134) (0.0172) (0.0285) (0.0162) (0.0174) (0.0127)
Flows(t-7) 0.0237 * 0.0931 0.0319** 0.0334 * 0.0246 0.0206 0.0299 0.0255 *

(0.0110) (0.0677) (0.0114) (0.0168) (0.0147) (0.0142) (0.0153) (0.0112)
Flows(t-8) 0.0306** -0.0103 0.0079 0.0468 * 0.0409** 0.0373** 0.0334 * 0.0590**

(0.0095) (0.0445) (0.0147) (0.0191) (0.0134) (0.0134) (0.0132) (0.0134)
Flows(t-9) 0.0203 * -0.0692 -0.0241 0.0352 * 0.0323 * 0.0312 * 0.0241 0.0189

(0.0086) (0.0989) (0.0471) (0.0159) (0.0150) (0.0136) (0.0167) (0.0103)
Flows(t-10) 0.0264** 0.0176 0.0251** 0.0506 * 0.0455 * 0.0290 0.0308 * 0.0166

(0.0086) (0.0111) (0.0059) (0.0205) (0.0176) (0.0148) (0.0134) (0.0097)
Flows(t-11) 0.0212** 0.0139 0.0238** 0.0143 0.0281 * 0.0091 0.0193 0.0095

(0.0069) (0.0078) (0.0046) (0.0149) (0.0138) (0.0177) (0.0128) (0.0109)
Flows(t-12) 0.0286** 0.0334 ** 0.0198** 0.0604** 0.0404** 0.0354 * 0.0259 0.0211**

(0.0091) (0.0076) (0.0047) (0.0173) (0.0133) (0.0144) (0.0163) (0.0080)
log(TNA(t-1)) -0.0015** -0.0107 -0.0056 -0.0030** -0.0010** -0.0001 -0.0012** -0.0011**

(0.0002) (0.0070) (0.0033) (0.0005) (0.0002) (0.0012) (0.0004) (0.0002)
Fama-MacBeth Yes Yes Yes Yes Yes Yes Yes Yes
adj. R2 0.176 0.158 0.175 0.443 0.381 0.436 0.420 0.351
Obs. 126,244 180,326 272,168 34,402 35,709 34,824 35,304 35,255

∗ p<0.05; ∗∗ p<0.01

Table 2: Robustness checks, flow-performance regressions. γE is the parameter on
Return(t-1). All regressions based on monthly data using Fama-MacBeth regressions,
where we report the time-series average of cross-sectional regression coefficients, their
Newey-West standard errors in parentheses and the adjusted R2. TNA is a fund’s total
net assets, and Flow is defined in Eq. (25).



Table 2 contains three different exercises:

(1) Subsamples. We split the sample into two equal-sized subsamples, where the first
subsample covers the years 2003-08, and the second covers 2009-14. We estimate
γE separately for both subsamples. It turns out that the value is slightly higher in
the first subsample (γE = 0.2951 versus 0.2521). However, both values are roughly
within one standard deviation of the original estimate for the whole sample; we
therefore conclude that the values are not significantly different during the two
subsamples.22

(2) Index funds. Index funds have gained increasing importance over the last few
decades. For example, Malkiel (2013) reports that, within the mutual fund sector,
actively managed funds had a market share of 97% in 1990, and only 71% in 2010.
Given that index funds are likely to behave very differently from non-index funds, we
estimate parameters separately for the two fund types.23 Interestingly, index funds
display a significantly larger value relative to non-index funds (γE = 0.4396 versus
0.2578). In other words, investors respond much more strongly to index funds’ past
performance. This finding might be caused by lower trading costs of index funds
compared to actively managed funds which might attract short-term investors (see
Malkiel (2013)). Due to the increasing importance of index funds over time, we
explore the aggregate vulnerabilities for this scenario in Section 6 below.

(3) Illiquid funds. Relatively illiquid funds tend to be more fragile in the sense that
there are strong first-mover advantages among investors in those funds (Goldstein
et al. (2016)). Hence, we estimate the flow-performance relationship separately for
funds with different liquidity profiles. For each month we sort funds into illiquidity
quartiles based on their portfolio-weighted Amihud ratio. The last four columns of
Table 2 show the results for the different quartiles, where the first (fourth) quartile
corresponds to the most liquid (illiquid) funds. As expected, the most liquid funds
display the weakest flow-performance relationship (γE = 0.2089). Interestingly, the
relationship is strongest for the relatively illiquid funds in quartile 3 (γE = 0.3235).
On the other hand, for the most illiquid funds we find a substantially smaller value
than for funds in quartile 3 (γE = 0.2498). This suggests that investors in the
most illiquid funds tend to be more cautious in terms of their withdrawals. We will
explore the aggregate vulnerabilities for this scenario in Section 6 below as well.

Lastly, we also looked at small versus large funds (see Table 9 in Appendix B):

(4) Size. Larger funds are likely to have a stronger impact on other funds, simply be-
cause their asset liquidations are larger in absolute terms. Hence, we also estimated
the flow-performance relationship separately for small and large funds, respectively,
based on whether a funds’ TNA is below-/above-median in a given quarter. As
shown in Appendix B, we find that the values are larger for small funds (γE =
0.3239 versus 0.2411). Again, we explore the aggregate vulnerabilities for this sce-
nario in Section 6.

22In line with Franzoni and Schmalz (2017), when excluding observations from the global financial
crisis period (2008-10) we get a value of γE ≈ 0.33 which is slightly larger than the baseline result.

23For example, it is common practice in the flow-performance literature to drop index funds from the
analysis (e.g., Goldstein et al. (2016))).

18



4 Results: Aggregate Vulnerabilities Over Time

In the following, we consider a shock scenario where we impose an initial shock of -5% on
all stocks24 and calculate the aggregate vulnerabilities (AV) separately for each quarter.
The model parameters are calibrated as defined above, but we will differentiate three
scenarios with regard to our choice of the price impact parameters:

- Scenario 1 : Price impact time-varying and asset-specific.

- Scenario 2 : Price impact asset-specific but constant over time.

- Scenario 3 : Homogeneous price impact of 4.77 × 10−6 for all assets in all quarters
(the typical value of the equal-weighted average price impact).

We will see that the first two scenarios generate AVs of similar orders of magnitude,
and somewhat higher values in the last scenario. Interestingly, we will also see that the
time dynamics of the AVs are rather different for the three scenarios.

4.1 Scenario 1 : Price Impact Time-Varying and Asset-Specific

The top left panel of Figure 6 shows the results for Scenario 1 : the solid line shows
the AV for the most granular portfolios, and the other lines show the results for more
aggregated SIC industry portfolios. (Note that the plot is in semi-logarithmic scale.) Not
surprisingly, the AVs are significantly smaller for the most granular stock portfolios, since
the average portfolio overlap is relatively small in this case (Figure 4). However, the order
of magnitude of the AVs is very small in all cases: in response to a negative shock of -5%,
we expect a tiny maximum knock-on effect in the order of 0.00001%. When looking at
the dynamics over time, we clearly see that in this scenario the AVs are almost purely
driven by the dynamics of the price impact. Indeed, the Pearson-correlation between the
value-weighted price impacts shown in Figure 5 and the AV is 0.89 for the most granular
portfolios and above 0.95 for the industry portfolios.

Lastly, we test whether there is a significant time trend in the AV time series. For
this purpose, we regress the quarterly AVs on a constant and a time trend. The results
in Table 3 show that the AVs in Scenario 1 exhibit no significant time trend. In other
words, when using time-varying and asset-specific price impacts we do not find that the
system has become more vulnerable despite the strong growth in terms of system size.

4.2 Scenario 2 : Price Impact Asset-Specific

(No Time Dynamics)

In order to explore the AVs without time variation in the estimated price impacts, the
top right panel of Figure 6 shows the AVs for the case when we set each stock’s price
impact to its average value over time. The order of magnitude of the estimated AVs is
comparable to the ones shown in the left panel for Scenario 1. However, in this case,
the AVs appear to slowly increase over time. This is confirmed by the trend analysis in
Table 3: in this case, the time trend is positive and significant.

24Note that the AV scales linearly in the initial shock. In other words, an initial shock of -20% yields
an AV which is 4 times that of a -5% shock.
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Figure 6: Aggregate vulnerability for the three different price impact scenarios. Top
left: Scenario 1 (price impact time-dependent and asset-specific). Top right: Scenario 2

(price impact asset-specific but constant over time). Bottom: Scenario 3 (price impact
= 4.77 × 10−6 for all assets/quarters). In all cases, the solid line shows the aggregate
vulnerability for the granular stock portfolios; the other lines show the results for the
aggregated portfolios (based on SIC industry classifications). Note that the y-axis is
displayed in logarithmic scale.



Trend Analysis, AV

Scenario

1 2 3

Trend 0.0073 0.0363** 0.0274**
Constant 0.6135** 0.4346** 0.8924**
R2 0.0379 0.7012 0.6472
Obs. 48 48 48

∗ p<0.05; ∗∗ p<0.01

Table 3: Testing for time trends in the aggregate vulnerabilities (AVs) of the U.S. mutual
fund industry. This table shows the results from OLS regressions of the AVs on a constant
and a time trend for the three scenarios described in the main text. Note: for the sake of
comparison, we divide each AV time series by the initial value in 2003-Q1.

4.3 Scenario 3 : Homogeneous Price Impact

(No Time Dynamics)

Finally, we set the same price impact for all assets, thereby ignoring both cross-sectional
and time-series variations in the price impacts. The results are shown in the bottom
panel of Figure 6. In this case, the estimated AVs are somewhat larger than the first two
scenarios, largely because the assumed price impact is the equal-weighted average over
the sample period. Moreover, we find that the AVs have increased significantly over time
(see Table 3), but are still small: the maximum AV is on the order of 0.001%.

Overall, these results indicate that the aggregate vulnerability of the system is small,
irrespective of the scenario under study. Hence, systemic asset liquidations are unlikely to
be a major issue for the set of U.S. equity mutual funds, at least when looking at this part
of the asset management industry in isolation. We will discuss this finding in more detail
below. On the other hand, the results in Table 3 suggest that the AVs tend to exhibit a
positive time trend under the last two scenarios. Hence, the system has not necessarily
become more vulnerable over time.

5 A Closer Look at Fund-Specific Vulnerabilities

This section turns to an in-depth analysis of fund-specific vulnerabilities, namely systemic-
ness and indirect vulnerability (see Eqs. (19) and (20)). In particular, we are interested in
exploring the determinants of these measures, something that is of utmost importance for
regulators and supervisors in formulating a macroprudential framework on asset managers
(Financial Stability Board (2017)).

Generally speaking, we are interested in the following cross-sectional regressions

log(yi,t) = at + bt × log(Xi,t−1) + ǫi,t, (26)

where yi,t is the fund-specific vulnerability indicator of interest (systemicness or indirect
vulnerability, respectively), X contains our set of control variables (always using the first
lag to alleviate the endogeneity problem), and b is the corresponding parameter vector.
Note that we take the logarithm for all variables to adjust for skewness and mitigate the
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effect of extreme observations.
In everything that follows, we estimate parameters following the Fama and MacBeth

(1973) methodology, and explore different sets of control variables that allow us to predict
fund-specific vulnerabilities. Table 4 reports the correlations between the variables that
will be of interest in the following; interestingly, multicollinearity does not appear to be
an issue here, since most correlations are relatively small in absolute terms.

More precisely, the analysis proceeds in three steps: first, we explore to what extent
the lagged fund-specific characteristics that appear in the model equations (namely fund
size, portfolio illiquidity, and interconnectedness) are able to predict future values of the
vulnerability measures. In a way, this can be seen as a simple model validation step.
However, despite considering lagged exogenous variables in the regressions, this analysis
comes at the cost of an endogeneity bias which hampers inferring any causal relation-
ships between vulnerabilities and these fund-specific characteristics. Second, we therefore
replace the model-inherent characteristics from the first step with alternative measures.
For example, we approximate fund size by fund age and percentage net-inflows. We find
that the regression results are qualitatively very similar to the ones from the first step,
such that our analysis indeed uncovers the determinants of fund-specific vulnerabilities.
Third, we address concerns on a potential outlier bias related to the market liquidity
aggravation around the financial crisis (see Figure 5) and explore the robustness of our
findings by conducting a subsample analysis that excludes observations from the 2008-09
period. In line with this three-step analysis, the following regression tables will consist of
three panels each (Panel A, B, and C).
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Variables IV1 S1 IV2 S2 IV3 S3 Age Flows6M TNA HHI MeanOverlap IlliqAmihud IlliqSpread

Vulnerabilities
IV1 1.000
S1 -0.162** 1.000
IV2 0.601** -0.141** 1.000
S2 -0.153** 0.599** -0.081** 1.000
IV3 0.484** -0.184** 0.233** -0.164** 1.000
S3 -0.159** 0.493** -0.132** 0.207** -0.133** 1.000
Size
Age -0.195** 0.200** -0.140** 0.155** -0.143** 0.249** 1.000
Flows6M 0.003 -0.003 0.003 -0.001 0.015** -0.002 -0.006 1.000
TNA -0.075** 0.270** -0.049** 0.252** -0.052** 0.273** 0.252** 0.004 1.000
Interconnectedness
HHI 0.103** -0.103** 0.058** -0.124** 0.178** -0.019** 0.014** 0.010** -0.021** 1.000
MeanOverlap -0.162** -0.028** -0.198** -0.110** 0.113** 0.328** 0.109** -0.001 0.095** -0.149** 1.000
Illiquidity
IlliqAmihud 0.169** 0.098** 0.054** 0.019** -0.013** -0.030** -0.021** -0.001 -0.012** 0.009** -0.078** 1.000
IlliqSpread 0.196** 0.157** 0.123** 0.079** -0.081** -0.117** -0.098** -0.005 -0.043** -0.029** -0.336** 0.614** 1.000

* p<0.05, ** p<0.01

Table 4: Correlation matrix. This Table shows the correlation structure of vulnerability measures and fund specific variables. IVi

(Si) measures funds’ indirect vulnerability to asset fire-sales (systemicness) according to the three different price impact scenarios.
Age represents the fund age measured in month; Flows6M is the average net flow over the last 6 months; TNA are the total net
assets; HHI is the Hirschmann-Herfindahl-Index of portfolio concentration; MeanOverlap is fund’s average portfolio overlap with
other fund portfolios; and IlliqAmihud and IlliqSpread is the portfolio-weighted average illiquidity measure of a given fund’s portfolio,
based on the Amihud-ratio and the quoted relative spread, respectively.
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5.1 Towards Understanding Funds’ Vulnerabilities (Scenario 1)

In the previous section we calculated aggregate vulnerabilities for three different price
impact scenarios. It should be clear that the most relevant case is Scenario 1, since it
allows for asset- and time-specific price impacts. Hence, we use the results from Scenario 1

as our baseline scenario and explore the two other cases as a kind of robustness check
below.

5.1.1 Step 1: Model-Inherent Measures

The first step is to explore to what extent the fund-specific characteristics going into the
model are able to predict future vulnerabilities. According to the model, we expect the
following relationship: systemicness increases with a larger fund size or interconnectedness
since larger funds should fire-sale more assets, and a higher interconnectedness means that
those funds sell assets that are held by many other funds as well.

The reverse should be true for indirect vulnerability, since larger and more diversified
funds should be less vulnerable to other funds’ asset liquidations (see Greenwood et al.
(2015)). The correlations in Table 4 are in line with this reasoning. More illiquid funds
should be both more systemic and vulnerable in general, since illiquid funds have to fire-
sale a larger share of their portfolios to meet investors’ redemptions and are also likely to
suffer more from other funds’ asset liquidations.

The first set of regressions, therefore, uses only three control variables, namely fund
size (defined as TNA), interconnectedness (defined as a fund’s average portfolio overlap
with all other funds, MeanOverlap)25, and illiquidity (defined as the portfolio-weighted
average Amihud-ratio of a fund, IlliqAmihud)26:

log(yi,t) = at + b1,t × log(TNAi(t-1)) + b2,t × log(MeanOverlapi(t-1))

+b3,t × log(IlliqAmihud
i (t-1)) + ǫi,t.

(27)

Table 5 Panel A reports the results which are generally as expected: larger funds
are less vulnerable to other funds’ asset liquidations (lower IV), but contribute more to
aggregate vulnerability (higher S) and are therefore systemically more important. Second,
more connected funds exhibit lower IV (likely due to the benefits of diversification) but
contribute to a larger extent to the sector’s asset fire-sales (higher S). Finally, illiquid funds
are both more vulnerable and more systemic.27 Overall, these results confirm our model
predictions and those of Greenwood et al. (2015). We should stress that our measure
of interconnectedness, MeanOverlap, appears to capture portfolio diversification: funds
have high MeanOverlap only if they hold a large number of stocks, and over-weigh widely
held stocks at the same time.

25To be precise, for each quarter we calculate this fund-specific portfolio overlap as follows: for each pair
of funds, we calculate their portfolio overlap according to Eq. (21). At each point in time, MeanOverlap
of fund i is then defined as the average Overlap of this particular fund with all other funds.

26We calculate the illiquidity of fund i in quarter t as
∑

k Mi,kPriceImpactk,t, where PriceImpactk,t is
defined in Eq. (23). See Yan (2008) for a similar approach.

27We performed several robustness checks. First, we obtain qualitatively similar results when using
pooled OLS with time- and fund-FEs (unreported result). Second, we ran the regressions without taking
logs of the dependent variables and winsorized the top and bottom 1% of observations, which does not
alter our results either.
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Determinants of Fund-Specific Vulnerabilities (Scenario 1)

Panel A Panel B Panel C
Full Sample Full Sample No Crisis

log(IV1) log(S1) log(IV1) log(S1) log(IV1) log(S1)
Model-inherent measures
log(TNA(t-1)) -0.5832** 0.5898**

(0.0541) (0.0548)
log(MeanOverlap(t-1)) -0.3409** 0.1676**

(0.0606) (0.0564)
log(IlliqAmihud(t-1)) 0.0772** 0.3245**

(0.0133) (0.0143)
Alternative measures
log(1+Age(t-1)) -0.9402** 0.9657** -0.9320** 0.9577**

(0.0197) (0.0160) (0.0237) (0.0191)
Flows6M(t-1) -0.6697** 0.4111 * -0.5889 * 0.3447

(0.2204) (0.2000) (0.2582) (0.2338)
log(HHI(t-1)) 0.4674** -0.4995** 0.4818** -0.5074**

(0.0210) (0.0132) (0.0242) (0.0149)
log(IlliqSpread(t-1)) 1.0425** 0.6690** 0.9868** 0.5858**

(0.0370) (0.0444) (0.0365) (0.0413)
Fama-MacBeth Yes Yes Yes Yes Yes Yes
Mean R2 0.561 0.536 0.281 0.254 0.282 0.255
Obs. 72,872 72,872 59,430 59,430 46,440 46,440

∗ p<0.05; ∗∗ p<0.01

Table 5: The determinants of fund-specific indirect vulnerability (IV1) and systemic-
ness (S1), respectively, for Scenario 1. Results are based on quarterly data using Fama-
MacBeth regressions (Newey-West standard errors in parentheses), including a constant
that is omitted from the output. All variables are defined in the main text and in Table 4.
Panels A and B cover the full sample period from 2003-14 and Panel C reports results of
the subsample without the financial crisis period 2008-09.



5.1.2 Step 2: Alternative Measures

In order to overcome endogeneity concerns, the second step is to regress vulnerabilities
on variables that are not directly included in the model (“alternative measures”). Let us
briefly explain how we substitute each of the measures from Section 5.1.1.

Size: Fund age turns out as a natural proxy of fund size since older funds tend to
be larger (Yan (2008)). The economic intuition behind this link is that older funds were
able to expand their assets under management over a longer period of time compared to
younger funds. However, fund age might not capture size in general. Therefore, we also
include funds’ average net inflows over the last 6 months, Flows6M, as an additional size
proxy. Flows are less deterministic (compared to age) and are likely to capture growth
dynamics in the recent past.28

Interconnectedness : Portfolio concentration is considered as an inverse proxy for inter-
connectedness as a highly diversified fund might have at least some common asset hold-
ings with other funds. Portfolio concentration is defined as the standard Hirschmann-
Herfindahl Index, or HHI.29 Not surprisingly, HHI and MeanOverlap are negatively cor-
related (Pearson correlation of -0.15, see Table 4), such that both measures appear to
capture some aspects of diversification or interconnectedness, respectively.
Illiquidity : An asset’s relative spread tends to better capture asset illiquidity, while the
Amihud-ratio is more related to price impact (see Goyenko et al. (2009)). Therefore,
we consider the portfolio-weighted relative spread, IlliqSpread, as an alternative liquidity
measure.30

With these alternative measures we then run the following regression

log(yi,t) = at + b1,t × log(Agei(t-1)) + b2,t × Flows6Mi (t-1) + b3,t × log(HHIi(t-1))

+b4,t × log(IlliqSpreadi (t-1)) + ǫi,t.
(28)

Table 5 Panel B shows the results when using these alternative measures. The results
are consistent with those shown in Panel A: older funds, with larger percentage flows in
the recent past have lower indirect vulnerabilities (IV) and higher systemicness (S). More
concentrated funds (higher HHI) have higher IVs and lower systemicness. Finally, more
illiquid funds have both higher IVs and higher systemicness.

5.1.3 Step 3: Subsample analysis

Table 5 Panel C addresses concerns that the effect of liquidity on funds’ vulnerabilities
is due to market liquidity aggravation around the financial crisis (see Figure 5). In order
to test whether the fund-specific vulnerabilities are mainly driven by this period, we run
the same Fama-MacBeth regressions as in the previous step but exclude all observations
during the crisis years 2008-09. This subsample analysis delivers nearly identical regression
parameters and suggests that our findings are not driven by the financial crisis. In sum,
this test does not indicate any potential outlier bias of our sample.

28Given that flows can take negative values, we do not take logarithms in this case.
29Note that the HHI is based on the most granular portfolios, with HHIi =

∑

k(Mi,k)
2. We checked

that the results are qualitatively similar when using the vulnerabilities from the SIC industry portfolios.
30To be precise, we define the relative spread of stock k in quarter t as

Spreadk,t = 1
Dk,t

∑ Bidk,d−Askk,d

(Bidk,d+Askk,d)/2
.
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Determinants of Fund-Specific Vulnerabilities (Scenario 2)

Panel A Panel B Panel C
Full Sample Full Sample No Crisis

log(IV2) log(S2) log(IV2) log(S2) log(IV2) log(S2)
Model-inherent measures
log(TNA(t-1)) -0.5678** 0.6004**

(0.0544) (0.0543)
log(MeanOverlap(t-1)) -0.4484** 0.1180

(0.0540) (0.0624)
log(IlliqAmihud(t-1)) 0.2670** 0.5438**

(0.0124) (0.0193)
Alternative measures
log(1+Age(t-1)) -0.9306** 0.9679** -0.9265** 0.9557**

(0.0261) (0.0142) (0.0318) (0.0165)
Flows6M(t-1) -0.8073** 0.2868 -0.7911** 0.1453

(0.2271) (0.2310) (0.2747) (0.2580)
log(HHI(t-1)) 0.2895** -0.6805** 0.3091** -0.6838**

(0.0253) (0.0173) (0.0280) (0.0206)
log(IlliqSpread(t-1)) 1.7760** 1.3971** 1.7743** 1.3788**

(0.0473) (0.0754) (0.0491) (0.0834)
Fama-MacBeth Yes Yes Yes Yes Yes Yes
Mean R2 0.551 0.492 0.292 0.279 0.300 0.284
Obs. 72,872 72,872 59,430 59,430 46,440 46,440

∗ p<0.05; ∗∗ p<0.01

Table 6: The determinants of fund-specific indirect vulnerability (IV2) and systemic-
ness (S2), respectively, for Scenario 2. Results are based on quarterly data using Fama-
MacBeth regressions (Newey-West standard errors in parentheses), including a constant
that is omitted from the output. All variables are defined in the main text and in Table 4.
Panels A and B cover the full sample period from 2003-14 and Panel C reports results of
the subsample without the financial crisis period 2008-09.

5.2 Additional Robustness Checks

For robustness and in order to expand our examination, we additionally analyse funds’ vul-
nerabilites for the other two price impact scenarios. Specifically, we will look at Scenario 2

(time-fixed, asset-specific price impacts) and Scenario 3 (equally-weighted average price
impact for all assets) in the following.

5.2.1 Results for Scenario 2 – Price Impact Asset-Specific
(No Time Dynamics)

Table 6 shows the same regression results for Scenario 2. The results are largely consistent
with those in Table 5 both in terms of parameter signs and significance levels. Overall,
these results suggest that the first two scenarios tend to give very similar results in terms
of which fund-specific characteristics are able to explain funds’ vulnerabilities. The only
differences are for the systemicness regressions, namely that MeanOverlap is insignificant
in Panel A, and Flows are insignificant in Panels B and C. Below we will see that this is
not the case for Scenario 3.
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Determinants of Fund-Specific Vulnerabilities (Scenario 3)

Panel A Panel B Panel C
Full Sample Full Sample No Crisis

log(IV3) log(S3) log(IV3) log(S3) log(IV3) log(S3)
Model-inherent measures
log(TNA(t-1)) -0.6095** 0.5823**

(0.0584) (0.0530)
log(MeanOverlap(t-1)) 0.6314** 1.0331**

(0.0779) (0.0428)
log(IlliqAmihud(t-1)) -0.3138** -0.1613**

(0.0202) (0.0091)
Alternative measures
log(1+Age(t-1)) -0.9214** 1.0051** -0.9108** 0.9975**

(0.0160) (0.0210) (0.0189) (0.0255)
Flows6M(t-1) -0.4422 0.6450** -0.3481 0.5832 *

(0.2397) (0.2104) (0.2805) (0.2496)
log(HHI(t-1)) 0.8120** -0.2502** 0.8070** -0.2745**

(0.0152) (0.0258) (0.0173) (0.0285)
log(IlliqSpread(t-1)) -1.8492** -2.3996** -1.8034** -2.3682**

(0.0844) (0.0491) (0.0981) (0.0551)
Fama-MacBeth Yes Yes Yes Yes Yes Yes
Mean R2 0.531 0.655 0.362 0.415 0.366 0.423
Obs. 72,872 72,872 59,430 59,430 46,440 46,440

∗ p<0.05; ∗∗ p<0.01

Table 7: The determinants of fund-specific indirect vulnerability (IV3) and systemic-
ness (S3), respectively, for Scenario 3. Results are based on quarterly data using Fama-
MacBeth regressions (Newey-West standard errors in parentheses), including a constant
that is omitted from the output. All variables are defined in the main text and in Table 4.
Panels A and B cover the full sample period from 2003-14 and Panel C reports results of
the subsample without the financial crisis period 2008-09.

5.2.2 Results for Scenario 3 – Homogeneous Price Impact
(No Time Dynamics)

In this case we analyze vulnerability dynamics if the same price impact parameter is
assumed for all securities and all time points. As our analysis solely focuses on funds’
equity portfolios, Scenario 3 is comparable to the one proposed by both Greenwood
et al. (2015), and Cetorelli et al. (2016) who assign a specific value for the price impact
parameter for each asset class. This seems like a reasonable approach in the absence
of detailed information on asset liquidity and price impact parameters are derived from
regulatory guidelines, such as Basel III. However, it turns out that this approach can be
problematic in the sense that it predicts very different vulnerabilities at the micro-level.

Comparing Table 7 with our previous findings reveals that some of the parameter
coefficients switch signs. Most importantly, under Scenario 3, illiquid funds tend to be
both less vulnerable and less systemic which stands in sharp contrast to model predictions.

How does a homogeneous price impact for all assets affect the estimation of vulnera-
bilites in the fund sector? One would expect that funds with very liquid (illiquid) portfolios
will be treated as more illiquid (liquid) than what is observed in the data. We address
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(Most liquid) Decile (IlliqAmihud) (Least liquid)
1 2 3 4 5 6 7 8 9 10

Corr(IV1,IV3) 0.900 0.900 0.895 0.887 0.849 0.791 0.738 0.688 0.636 0.298
Corr(S1,S3) 0.908 0.908 0.910 0.906 0.893 0.843 0.771 0.717 0.643 0.378

Table 8: Correlations between indirect vulnerabilities and systemicness from Scenario 1

and Scenario 3, respectively, for different liquidity categories. Decile 1 (10) corresponds
to the most liquid (least liquid) funds. All correlations are significant at the 1%-level.

this question by directly comparing the fund-specific vulnerability measures IV and S of
Scenario 1 and Scenario 3. Therefore, we sort funds into liquidity deciles with respect to
funds’ portfolio liquidity (based on the portfolio Amihud-ratio as a fund’s illiquidity indi-
cator) and compute correlations between fund-specific vulnerabilities of Scenarios 1 and
3. Table 8 reports these correlations. Vulnerabilities of relatively liquid funds (Decile 1-
5) seem to be largely unaffected by considering a homogeneous price impact. For those
funds the correlation lies in a narrow band around 0.90. The correlation decreases for
more illiquid funds and the effect is strongest for the least liquid funds (Decile 10), where
the correlations drop to 0.298 and 0.378, respectively.

Figure 7 provides additional evidence that the most illiquid funds turn out to be both
less vulnerable and less systemic if a homogeneous price impact instead of a time-varying
asset-specific price impact is assumed (Scenario 3 instead of Scenario 1 ). Specifically,
the Figure plots each fund’s rank in terms of its indirect vulnerability (left panel) and
systemicness (right panel) in Scenario 1 and Scenario 3 against each other, where the
ranking is between 0 and 1, where a value of 1 corresponds to the highest vulnerability.
We show the results for both the most liquid funds (Decile 1) and the least liquid funds
(Decile 10), based on IlliqAmihud (see Table 8). If a homogeneous price impact did not
affect fund-specific vulnerabilities, the two scenarios should yield similar rankings and all
observations lie on the main diagonal (solid black line). It turns out that the rankings are
quite different for the two sets of funds under study here: liquid funds (blue dots) tend to
be slightly more vulnerable and systemic, since most observations tend to be below the
main diagonal. On the other hand, illiquid funds (red crosses) reveal an opposite pattern,
since most observations tend to be widespread above the main diagonal. Hence, Scenario 3

underestimates the vulnerabilities for the least liquid funds and slightly overestimates
those for the most liquid funds. In summary, we suggest that the results from Scenario 3

should be treated with care and, whenever possible, time-varying and asset-specific price
impacts should be used.

6 Adding Heterogeneity in the Flow-Performance

Relationship

The results presented so far were based on a homogeneous γE . Here we explore to what
extent adding heterogeneity across different fund types affects the aggregate vulnerabil-
ities. More precisely, we re-applied our model using exactly the same approach as in
Section 4 but explored three alternative specifications regarding γE discussed in Subsec-
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Figure 7: Vulnerability rankings in Scenario 1 plotted against those from Scenario 3.
Left panel: indirect vulnerability. Right panel: systemicness. Both panels show the
relative ranking for funds in liquidity Decile 1 (most liquid) and Decile 10 (least liquid),
respectively, based on IlliqAmihud. For the sake of reference, the solid line shows the 45
degree line. Note: ranks are between 0 and 1, with higher values corresponding to higher
vulnerabilities.

tion 3.2.5 (see Table 2 in the main text and Table 9 in Appendix B), namely we look
at (a) index versus non-index funds; (b) liquid versus illiquid funds; and (c) large versus
small funds. In the following, we only show results for Scenario 1 using the most granular
stock portfolios.31

Figure 8 shows the AVs for the three different cases, relative to those in the baseline
scenario (top left panel of Figure 6). A value larger (smaller) than 1 indicates that the
AV in the alternative scenario is larger (smaller) than in the baseline scenario, and thus
hints that the system is more (less) risky under this alternative specification. The results
are quite remarkable: only for the index/non-index fund scenario do we find that the AVs
tend to be larger compared to the baseline specification. In fact, in this case it appears
that the relative AV tends to increase over time, suggesting that the growth of index funds

31The results are largely comparable for Scenario 2, but can be quite different for Scenario 3, as one
might expect from the results in the previous sections.
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Figure 8: Aggregate vulnerabilities relative to baseline results for Scenario 1 (as shown
in top left panel in Figure 6). Note: ‘Index/Non-Index’ corresponds to specification (2)
in Table 2; ‘Liquid/Illiquid’ corresponds to specification (3) in Table 2; ‘Small/Large’
corresponds to specification (3) in Table 9 in Appendix B.

tends to be quite important from a systemic perspective (Malkiel (2013)). In light of our
results on portfolio diversification in the previous section, these results seem reasonable.
On the other hand, when allowing for differences between funds’ with different portfolio
liquidity or different sizes, the AVs are generally significantly smaller than in the baseline
scenario.

In summary, these results show that adding heterogeneity across different fund types in
terms of the flow-performance relationship does not necessarily lead to a more vulnerable
system. We leave an in-depth analysis of this topic for future research.

7 Discussion

Implications for future stress tests. Do our findings suggest that the mutual fund
sector is robust to systemic crises? The answer is ‘yes’ if we are interested in the set of
U.S. domestic equity funds in isolation. However, it is important to keep in mind the
main reason why we restricted ourselves to this fund type in this paper, namely that we
have accurate information on their stock holdings via the CRSP Mutual Fund Database.

An obvious extension of our analysis would include additional fund types and explore
to what extent this might increase the system’s vulnerability.32 Such an extension seems
particularly relevant because other fund types have been growing in importance over time,

32As these data are not covered by the CRSP Mutual Fund Databas, we leave this extension for future
research.
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especially corporate and high-yield bond funds (Goldstein et al. (2016); Cetorelli et al.
(2016)). Assuming that a typical fixed income fund holds at least some stocks in its
portfolio (and vice versa for equity funds), shocks that originate in one asset class would
spread to other asset classes. Therefore, we would expect higher vulnerabilities when
including these additional fund types. As pointed out by Cetorelli et al. (2016), these
spill-over effects might be even larger when market liquidity worsens and bond fund flows
become more sensitive to fund performance (see Goldstein et al. (2016)).

Policy implications. Our paper contributes to the ongoing discussion about systemic
risk in the asset management sector, especially to the SIFI designation of Non-Bank Non-
Insurer entities (Financial Stability Board (2015)). One indicator for assigning systemic
relevance is fund size, which is readily available and accessible for supervisors in a timely
manner (Financial Stability Board (2015)). Besides size, International Monetary Fund
(2015) suggests considering funds’ investment style as a further indicator, which might be
proxied by a fund’s investment objective (e.g., emerging markets).

Our analysis reveals ambiguous effects of fund size and investment style on vulner-
abilities in the fund sector. In fact, micro- and macroprudential regulators might draw
opposite conclusions from our results. On the one hand, microprudential supervisors are
mainly concerned with the resilience of individual funds to market-wide shocks, which we
capture to a certain extent with our indirect vulnerability (IV ) measure. It turns out
that larger and more diversified funds appear to be more robust to other funds’ delever-
aging on average. On the other hand, macroprudential regulators are more concerned
with the negative externalities imposed by funds, as proposed for example by Danielsson
and Zigrand (2015). In this case, the systemicness (S ) measure is the variable of interest.
We find that larger, more diversified funds (with higher portfolio overlap) strongly con-
tribute to the vulnerabilities of the overall fund sector. This finding relates to the model
of diversification disasters by Ibragimov, Jaffee, and Walden (2011), where financial inter-
mediaries increase systemic risks by attempting to reduce their exposure to idiosyncratic
risks.

Lastly, fund illiquidity tends to contribute to both funds’ own vulnerability and their
impact on other funds. Therefore, both micro- and macroprudential regulators should
closely monitor the liquidity profile of individual funds. In fact, the SEC released a
new set of rules in September 2015 for enhancing liquidity risk management by open-
ended funds (see Hanouna, Noval, Riley, and Stahel (2015)), which was followed by FSB
recommendations to address the liquidity mismatch in the fund sector in January 2017
(Financial Stability Board (2017)). Other regulators have already recognised the need to
monitor the liquidity profiles of individual institutions; for example, the Liquidity Cover-
age Ratio (LCR) has become an important metric for banking regulators, and there is an
active academic debate on how to measure the liquidity profile of individual institutions
(Brunnermeier, Gorton, and Krishnamurthy (2012); Krishnamurthy, Bai, and Weymuller
(2016)).

8 Conclusions

Our paper offers a first attempt to quantify systemic risk among asset managers. For this
purpose, we extended the model of Greenwood et al. (2015) by incorporating the well-
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documented flow-performance relationship. Hence, in response to negative fund returns,
investors will withdraw some of their funds, and mutual funds will need to finance these
redemptions by liquidating assets.

We then applied the model to the set of U.S. domestic equity mutual funds. Overall,
despite calibrating the model parameters to the most adverse scenario, we generally find
the system to be robust to systemic asset liquidations. This result is driven by three
factors: (1) mutual funds use little leverage; (2) the flow-performance relationship is
weak; and (3) the typical overlap between funds’ stock portfolios can be quite strong but
is generally below the maximum value. In particular the fact that mutual funds are subject
to tight leverage constraints makes our estimated vulnerabilities tiny in comparison with
those of Greenwood et al. (2015) for the largest European banks. Overall, our findings
suggest that systemic risks among mutual funds are unlikely to be a major concern, at
least when looking at fire-sale dynamics in the U.S. equity mutual fund sector in isolation.

Lastly, we explored the determinants of individual funds’ risk contribution. In this
regard, we highlighted the importance of fund size, diversification levels, and portfolio
illiquidity. Thus, a clear understanding of funds’ liquidity profile is essential for enhancing
the corresponding micro- and macroprudential policy tools.

Moving forward, we see various interesting avenues for future research. Most impor-
tantly, we aim to apply the model to a broader set of asset managers.
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Appendix

A Robustness Checks: Price Impacts

The price impacts shown in Figure 5 are likely to be representative of the typical market
conditions in a given quarter. More precisely, in the baseline scenario, we calculate the
price impacts as the average values of the daily Amihud ratio for each stock. In order
to explore to what extent one would expect even larger price impacts during very active
periods, Figure 9 shows the results for: (1) trading days with above-median volatility for
each stock within a given quarter; and (2) the same for trading days with above-median
trading volumes for each stock within a given quarter.
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Figure 9: Price impact for very active periods. In the baseline scenario, we calculate
the price impacts as the average values of the daily Amihud ratio for each stock (All
Days, as in the main text). We also calculated price impacts using only the most active
trading days for each stock: (1) based on daily trading volumes in a quarter; (2) based
on absolute returns in a given quarter. We then take the quarterly average of these
daily values separately for each stock. Dollar-trading volumes are adjusted for inflation.
For each quarter, we show the cross-sectional equal-weighted average values. (y-axis in
logarithmic scale).

Interestingly, the results go in opposite directions: price impacts are slightly larger
(smaller) for high volatility (trading volume) days. This indicates that high-volume days
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do not coincide with high-volatility days in general. Overall, however, the typical price
impacts are comparable to those we used in our main analysis in Scenario 1 in the main
text.

B Robustness Checks: Flow-Performance

Relationship

B.1 Pooled Regressions

Table 1 in the main text shows several different specifications for the estimation of the flow-
performance relationship, most importantly the baseline specification using the Fama-
MacBeth methodology. In addition to the results shown in Table 2, here we report
additional robustness checks which generally yield very similar results in terms of the
estimated parameter γE. In this regard, Table 9 shows the most important robustness
checks:

(1) Style-adjusted returns. In this case, we take a fund’s return and subtract the average
return of each fund category (based on CRSP obective codes) separately for each
month.

(2) Fund family-adjusted returns. In this case, we take a fund’s return and subtract the
average return of funds’ from the same fund family (CRSP management company
code) separately for each month, if the fund is member of a fund family.

(3) Size. Here we separate the sample into large and small funds, respectively, based
funds’ TNA to (above- and below-median size groups).

(4) Flow Volatility. Goldstein et al. (2016) find that more illiquid funds tend to display
a stronger flow-performance relationship. In addition to the liquid/illiquid funds
estimation in the main text, it seems natural to also estimate the relationship for
funds with different levels of funding fragility. Here we separate the sample into
funds with high and low levels of flow volatility (above- and below-median funds),
using the 6-month rolling-window flow standard deviations.

(5) Return Volatility. Franzoni and Schmalz (2017) find that funds with higher return
volatility display a weaker flow-performance relationship. Hence, we also estimate
the relationship for funds with different levels of return volatility. Similar to the
previous case, we separate the sample into funds with high and low levels of return
volatility (above- and below-median funds), using the 6-month rolling-window return
standard deviations.
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Flow-Performance Relationship

Dependent variable: Flows(t)
(1) (2) (3) (4) (5)
Style Fam.-adj. Fund size Flow vola Return vola

Returns Returns Small Large Low High Low High
Return(t-1) 0.3225** 0.3405 ** 0.3234** 0.2411** 0.0667** 0.4305** 0.3158** 0.2884**

(0.0244) (0.0484) (0.0274) (0.0172) (0.0037) (0.0291) (0.0264) (0.0225)
Return(t-2) 0.1966** 0.1375 ** 0.1705** 0.1536** 0.0452** 0.2243** 0.2337** 0.1378**

(0.0210) (0.0234) (0.0258) (0.0165) (0.0033) (0.0284) (0.0299) (0.0232)
Return(t-3) 0.1202** 0.0366 0.1053** 0.1130** 0.0343** 0.1348** 0.1744** 0.0901**

(0.0211) (0.0384) (0.0242) (0.0211) (0.0031) (0.0245) (0.0234) (0.0203)
Return(t-4) 0.0823 * 0.0551 ** 0.0818** 0.0862** 0.0183** 0.1109** 0.1378** 0.0842**

(0.0405) (0.0192) (0.0226) (0.0147) (0.0029) (0.0268) (0.0229) (0.0205)
Return(t-5) 0.0990** 0.0764 * 0.0774** 0.0538** 0.0079** 0.0859** 0.1570** 0.0522 *

(0.0189) (0.0326) (0.0245) (0.0198) (0.0030) (0.0268) (0.0269) (0.0213)
Return(t-6) 0.1195** 0.1058 * 0.1085** 0.0528** 0.0096** 0.1035** 0.1143** 0.0569 *

(0.0192) (0.0411) (0.0238) (0.0140) (0.0036) (0.0237) (0.0233) (0.0218)
Return(t-7) 0.0844** 0.1088 0.0441 0.0618** 0.0058 0.0594 * 0.1126** 0.0188

(0.0227) (0.0768) (0.0234) (0.0138) (0.0029) (0.0263) (0.0241) (0.0196)
Return(t-8) 0.0896** 0.0701 ** 0.0772** 0.0505** 0.0167 0.0874** 0.0944** 0.0679**

(0.0185) (0.0229) (0.0260) (0.0149) (0.0103) (0.0272) (0.0238) (0.0220)
Return(t-9) 0.0783** 0.0622 ** 0.0598 * 0.0630** 0.0067 * 0.0772** 0.0738** 0.0850**

(0.0177) (0.0193) (0.0244) (0.0135) (0.0029) (0.0256) (0.0224) (0.0323)
Return(t-10) 0.0648** 0.0474 * 0.0530 0.0324 * 0.0142 0.0395 0.0507 0.0313

(0.0181) (0.0223) (0.0279) (0.0147) (0.0074) (0.0281) (0.0285) (0.0259)
Return(t-11) 0.0472** 0.0374 0.0363 0.0348 * 0.0101** 0.0472 0.0663** 0.0388

(0.0172) (0.0220) (0.0243) (0.0158) (0.0030) (0.0277) (0.0228) (0.0211)
Return(t-12) 0.1074 * 0.0715 0.0350 0.0348 * -0.0002 0.0649 * -0.0031 0.0412

(0.0453) (0.0389) (0.0234) (0.0142) (0.0028) (0.0287) (0.0200) (0.0213)
Flows(t-1) 0.0764** 0.0907 ** 0.0631** 0.1332** 0.2803** 0.0686** 0.1145** 0.0492**

(0.0099) (0.0167) (0.0112) (0.0179) (0.0057) (0.0102) (0.0125) (0.0118)
Flows(t-2) 0.0734** 0.0889 ** 0.0861** 0.0930** 0.1910** 0.0769** 0.0921** 0.0815**

(0.0106) (0.0073) (0.0088) (0.0088) (0.0051) (0.0072) (0.0094) (0.0099)
Flows(t-3) 0.0310 0.0386 * 0.0178 0.0661** 0.1554** 0.0103 0.0707** 0.0243

(0.0205) (0.0187) (0.0270) (0.0150) (0.0049) (0.0326) (0.0156) (0.0281)
Flows(t-4) 0.0557** 0.0287 * 0.0343** 0.0519** 0.1161** 0.0335** 0.0559** 0.0568 *

(0.0191) (0.0137) (0.0085) (0.0083) (0.0037) (0.0072) (0.0086) (0.0236)
Flows(t-5) 0.0684** 0.0695 ** 0.0561** 0.0526** 0.1002** 0.0504** 0.0497** 0.0542**

(0.0145) (0.0144) (0.0079) (0.0093) (0.0041) (0.0062) (0.0078) (0.0085)
Flows(t-6) 0.0142 0.0147 0.0400** 0.0232 0.0047** 0.0364** 0.0298** 0.0130

(0.0206) (0.0205) (0.0105) (0.0179) (0.0011) (0.0081) (0.0069) (0.0284)
Flows(t-7) 0.0151 0.0508 0.0218 * 0.0261** 0.0050** 0.0267** 0.0231** 0.0271 *

(0.0115) (0.0270) (0.0086) (0.0058) (0.0018) (0.0082) (0.0065) (0.0109)
Flows(t-8) 0.0417** 0.0317 ** 0.0317** 0.0319** 0.0052** 0.0332** 0.0427** 0.0262**

(0.0120) (0.0058) (0.0066) (0.0067) (0.0011) (0.0074) (0.0101) (0.0076)
Flows(t-9) -0.0080 -0.0170 -0.0087 0.0296** 0.0066 0.0378** 0.0347** 0.0265**

(0.0478) (0.0468) (0.0478) (0.0105) (0.0038) (0.0123) (0.0111) (0.0073)
Flows(t-10) 0.0236** 0.0344 ** 0.0306** 0.0327 * 0.0065 0.0295** 0.0271** 0.0250**

(0.0069) (0.0096) (0.0066) (0.0138) (0.0037) (0.0067) (0.0073) (0.0077)
Flows(t-11) 0.0181** 0.0171 ** 0.0174 * 0.0267** 0.0022 * 0.0073 0.0171 * 0.0188 *

(0.0051) (0.0051) (0.0068) (0.0068) (0.0009) (0.0142) (0.0066) (0.0072)
Flows(t-12) 0.0263** 0.0286 ** 0.0402** 0.0216** 0.0031 0.0328** 0.0200** 0.0443**

(0.0066) (0.0057) (0.0110) (0.0059) (0.0019) (0.0070) (0.0071) (0.0129)
log(TNA(t-1)) -0.0058 -0.0057 -0.0089** -0.0023** -0.0003 -0.0040** -0.0009** -0.0043

(0.0033) (0.0033) (0.0033) (0.0003) (0.0002) (0.0011) (0.0003) (0.0024)
Fama-MacBeth Yes Yes Yes Yes Yes Yes Yes Yes
adj. R2 0.163 0.165 0.191 0.224 0.686 0.164 0.211 0.203
Obs. 306,570 306,570 143,184 163,386 158,677 147,893 151,900 154,669

∗ p<0.05; ∗∗ p<0.01

Table 9: Additional robustness checks, flow-performance relationship. This table
shows the results of the flow-performance regressions, with γE being the parameter on
Return(t-1). All regressions based on monthly data using Fama-MacBeth regressions
(Newey-West standard errors in parentheses), as in the main text.
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Figure 10: Distribution of fund-specific γEs. We estimate the flow-performance relation-
ship separately for each fund using the same control variables as in our main specification.
In addition, we also show the distribution when using alphas instead of returns.

B.2 Fund-Specific Flow-Performance Relationship

As another robustness check, we also ran the following flow-performance regressions

Flowsi,t = ai + bi × Controlsi,t + γE
i × Returni,t−1 + ǫi,t

separately for each fund, using the same controls as in our main specification (specifically
12 lags of flows and returns).

The results can be found in Figure 10, where we show the distribution of the fund-
specific γ parameters. The solid line gives the results for our baseline case, showing
that the distribution is quite broad with a large number of negative values. While the
typical estimate is positive (Mean = 0.08; Median = 0.03), these values are rather noisy
(Std. dev. = 0.77) and substantially smaller than those used in the model application.

Lastly, we also used a similar approach as Cetorelli et al. (2016) in their blogpost

Flowsi,t = ai + bi × Controlsi,t + γE
i ×Alphai,t−1 + ǫi,t

where Alpha is the intercept of a one-factor model regression using a moving window of
12 months, separately for each month. The dashed-dotted line in Figure 10 shows the
distribution of the estimated γ parameters in this case. Interestingly, the distribution in
even broader compared to the previous case, yielding a non-negligible number of observa-
tions exceeding 4 in absolute terms. Again the typical estimate is positive (Mean = 0.64;
Median = 0.39), but even noisier than before (Std. dev. = 5.63).
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