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Smooth Principal Component Analysis for High

Dimensional Data

Yingxing Li∗, Wolfgang K. Härdle†and Chen Huang‡

Abstract

This paper considers smooth principle component analysis for high di-

mensional data with very large dimensional observations p and moderate

number of individuals N . Our setting is similar to traditional PCA, but

we assume the factors are smooth and design a new approach to estimate

them. By connecting with Singular Value Decomposition subjected to

penalized smoothing, our algorithm is linear in the dimensionality of the

data, and it also favors block calculations and sequential access to memory.

Different from most existing methods, we avoid extracting eignefunctions

via smoothing a huge dimensional covariance operator. Under regularity

assumptions, the results indicate that we may enjoy faster convergence

rate by employing smoothness assumption. We also extend our meth-

ods when each subject is given multiple tasks by adopting the two way

ANOVA approach to further demonstrate the advantages of our approach.

Keywords: Principal Component Analysis; Penalized Smoothing; Asymp-

totics; Multilevel; fMRI;
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1 Introduction

Massive data attract lots of research interest these days, as the volume and

dimensionality of these data leads to intensive analysis and calls for new statis-

tical tools. One particular example is to study functional Magnetic Resonance

Images (fMRI), which aims at identifying the active reaction regions in brain

and better understanding how brain makes investment decisions (see Rangel,

Camerer and Montague, 2008; Mohr et al. 2010, Majer et al. 2014). In these

neuroeconomics studies, subjects were given risk related tasks and needed to

make decisions. Simultaneously, the fMRI scanner records the changes in each

subject’s brain blood flow at volume and oxygen level during neural activity.

Such blood-oxygen-level-dependent (BOLD) signals are captured on 3 dimen-

sional spatial maps of brain voxels over time. If vectorization is conducted, the

dimensionality of data for one person in one task could be roughly 106 at each

second.

Principle component analysis (PCA) has been a very popular tool in mul-

tivariate data analysis. However, it faces challenges when applied to very high

dimensional data. For example, the huge dimensionality of the BOLD signals

feasibility of the conventional eigen-decomposition and reduce the estimation

accuracy when extracting the fundamental factors. Although Singular Value

Decomposition (SVD) could be adopted to partly reduce the dimension of co-

variance (see Golub and Reinsch 1970), PCA could be further improved if one

utilizes some mild structure assumptions on the factors. For example, Heller,

Stanley, Yekutieli, Rubin and Benjamini (2006) points out that the active risk

related regions should be contiguous region in brain rather than discrete voxels.

This motivates the analysis functional principal component analysis (fPCA),

see Rao (1958), Ramsay and Silverman (1997). In fPCA, data are represented

with continuous curves and decomposed to factors and factor loadings. When

applied to fMRI analysis, the factors could be viewed as a nonparametric ap-
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proach for spatial connection and it could represent the risk related region. The

factor loadings are then used to capture the temporal and subject behaviors,

and they may be associated with risk altitude of individuals (van Bömmel et al

2013). Viviani, Gron and Spitzer (2005) implemented FPCA to the smoothed

or functional fMRI data of 3 subjects, where single subject was considered sep-

arately. Zipunnikov et al. (2011) reached higher computational efficiency by

exploiting SVD. Chen et al. (2015) propose a 3D image fPCA approach, which

avoids vectorizing the 3D location coordinates to 1D and improves quality of

spatial representation.

In this paper, we consider smooth principal component analysis for massive

data. In our settings, we assume a balanced design. The number of individuals

might be moderate, but the observations (subjected to non-negligible measure-

ment errors) for each individual are high-dimensional. Different from most ex-

isting methods, we avoid direct estimating the smooth covariance operator and

extract its eigenfunctions, thus achieve much more computation advantages.

The use of SVD makes our algorithm to be linear in the dimensionality of the

data, and it also favors block calculations and sequential access to memory. We

shall provide details about our approach and its theoretical property in Section

2, and discuss more of its extensions in Section 3.

2 Methodology

Let X1, · · · , Xn denote independent identically distributed (i.i.d.) random

functions on a compact interval F , satisfying
∫
F E(X2

i ) < ∞. For example, if

Xi denotes the images of individual i, then it could be a d-dimensional array

structure of dimension p =
∏d
k=1 pk. Denote the mean function as µ. Then we

may represent each function Xi as

Xi(s) = µ(s) +

∞∑
j=1

ψ̄ijφj(s), (1)
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where φj and ψ̄ij are the jth factor and its loading respectively, and ψ̄ij are

i.i.d. random variables with mean 0 and variance σ2
j . In practice, we may ob-

tain the observations Yi(s) = Xi(s) + εis instead. The error terms εis satisfy

E(εis|Xi) = 0 and var(εis|Xi) is finite.

First, we rewrite the representation in equation (1) by projecting µ on φj ’s.

Then we have

Xi(s) =

∞∑
j=1

ψijφj(s), (2)

where φj are still the factors and ψij = ψ̄ij+ < µ, φj >. The inner product

between µ and φj might lead to nonzero mean ψij , but it helps us to avoid

estimating µ, whose accuracy might be low when the number of individuals is

fixed or moderately small. Utilizing representation (2), we estimate ψij and

φj(s) by minimizing a constraint minimization criterion:∑
i

∑
s

(Yi(s)−
∑
j

ψijφj(s))
2, s.t.

∫
F

(φ
(m)
j (s))2 < Cj ,

where φ
(m)
j (s) is the mth derivative of φj(s) and the choice of m reflects one’s

assumption on the degree of smoothness over φj(s).

Note that the above minimization criterion is equivalent to a penalized least

square criterion∑
i

∑
s

(Yi(s)−
∑
j

ψijφj(s))
2 +

∑
j

λj

∫
F

(φ
(m)
j (s))2,

where the penalty term tries to control the roughness of the estimated φj(s).

Let ψ̃ij an φ̃j(s) be the minimizer. For fixed φ̃j ’s, we could easily obtain ψ̃ij by

regressing Yi(s) on φj(s). For fixed ψij ’s, we could estimate φj(s) as if adopting

penalized nonparametric smoothing on varying coefficient model (Chen, Fang

and Li 2015). Hence one could use an iterative algorithm to obtain all estimates.

As we mentioned in the Introduction session, the dimension of the obser-

vations might be huge. For example, in the study of van Bömmel et al 2013,
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the dimension per scan per person could ge 91 × 109 × 91, roughly 106 voxels.

Therefore, we further consider a two stage procedure, which could achieve the

same estimation efficiency with much less computation burden. Specifically, our

algorithm is designed as below:

Stage 1: Use a common smoother and simultaneously smooth all individ-

ual curves. Apply SVD on these smooth curves and extract ψ̂ij .

Stage 2: Conduct penalized regression between Yi(s) and ψ̂ij to obtain the

smooth estimate φ̂j(s). Regress Yi(s) on φ̂j(s) to obtain one step update

of ψ̂ij .

We shall discuss the asymptotic properties of our approach very soon. Here

are more explanations about this two stage procedure. Stage 1 is used to obtain

a consistent estimate of φ̂ij and the smoothing parameter may not be tuned very

delicately. In contrast, all refinement is done in Stage 2 and the estimates are

then improved as if we have chosen the optimal smoother in Stage 1. To achieve

computation efficiency, we propose to use a common smoother in stage 1 for all

individual curves. On the other hand, this could be shown as equivalent as

adopting a fast bivariate smoothing approach on the covariance function (Xiao,

Li and Ruppert 2013). However, we do not rely on extracting the factors from

the covariance function. Though this could be achieved similarly by regressing

the smooth curves on ψ̂ij to obtain φ̂j(s), we prefer not to do so as such an

approach is very sensitive to the choice of the smoothing parameter in Stage 1.

To study the asymptotics, we consider the following conditions:

C1 Suppose E(Y 2+δ
i (s)) < ∞ and Yi(s) = Xi(s) + εis instead, where the

error terms εis satisfy E(εis|Xi) = 0 and var(εis|Xi) is finite. The random

function Xi(s) admits representation (2) and the factors φj(s) has 2mth

continuous derivative.

C2 We use the pth degree B-splines to model φj(s). The knots are equally

spaced on F and the number of knots K satisfies K ∼ Cpγ for some fixed
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constant γ1.

C3 We adopt the mth order penalty and denote λc as the common penal-

ty parameter used in Stage 1. Denote λj as the penalty parameter for

φj(s) used in Stage 2. For any penalty parameter λ, define the equivalent

bandwidth as

h = K−1(λKp−1)1/(2m). (3)

Denote hc and hj based on λc and λj accordingly. Moreover, assume

hc → 0 and phc →∞.

Theorem 2.1. Assume Conditions C1-C3, then we have

ψ̂ij → ψij in prob

.

Remark 1: Condition 1 impose regularity conditions on the observations.

As we adopt the penalized approach for estimation, condition 2 and 3 discuss

settings on the choice of penalty and the splines. As pointed out by Li and Rup-

pert (2008), the placement of the knots are not crucial as long as the number of

knots exceed some threshold. Under this large penalty setting, the key smooth-

ing parameter is the penalty term and the penalized smoothing approach using

penalty λ is equivalent to the kernel smoothing approach using an equivalent

bandwidth h defined as equation (3). The last assumption on hc is very mild

and it yields consistent estimate of the smooth function Xi(s) as well as the

loadings ψij .

Theorem 2 below shows that we could achieve higher estimation efficiency if

we carefully tune the smoothing parameter in Stage 2.

Theorem 2.2. Assume Conditions C1-C3. Suppose s is univariate. Let hj ∼

p−1/5. Then we have p2/5(φ̂j(s)− ψij)⇒ N(B(s), V (s)), where B(s) and V (s)

are the asymptotic bias and variance.

1In the univariate case, the minimal choice of γ is 1/5 if p ≥ 1 and 2/5 if p = 0.
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Remark 2: We obtain the optimal nonparametric rate for our estimate φ̂j(s).

Note that this rate is faster than the rate of min(
√
n,
√
p) in traditional PCA

analysis (Bai and Li 2012, Bai and Ng 2013) or
√
n in dense functional PCA

analysis (Hall and Hosseini-Nasab 2006, Li and Hsing 2010). We are able to

achieve a faster rate as we adopt the representation (2) which avoids estimating

the mean function µ.

3 Extensions

Now we extend our procedures by allowing multiple tasks for each individual.

We still consider a balanced design such that each subject has the same number

of visits. The number of tasks J could be much large than the number of

individuals n, but n ∗ J is still far smaller than p. To represent the data, we

consider the functional two-way ANOVA approach (Di et al. 2009, Staicu et al.

2014),

Xik(s) = µi(s) + Zk(s) +Wik(s),

where µi(s) are the individual-specific curves, Zk(s) are the task-specific curves

and Wik(s) are the subject- and task-specific deviation.

By the KL decomposition, we could write Xik as

Xik(s) = µi(s) +
∑
ij

ψij,1φj,1(s) +
∑
ij

ψijk,2φj,2(s),

where φj,1 and φjk,2 denote the level 1 and level 2 factors and ψij,1 and ψijk,2

are their corresponding loadings. Note that φj,1 for j = 1, 2, · · · and φj,2

for j = 1, 2, · · · are assumed to be orthonormal bases, but they are not re-

quired to be mutually orthogonal. When measurement errors are presented,

then Yik(s) = Xik(s) + eiks are the observations we collect.

We could extend our algorithm for multilevel PCA analysis as below:

1. Average Yik(s) across k to obtain Ȳi(s).
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2. Perform two stage analysis on Yik(s)− Ȳi(s) to estimate ψijk,2 and φj,2.

3. Define Ŵik(s) =
∑
ij ψ̂ijk,2φ̂j,2(s).

4. Perform two stage analysis on Yik(s)− Ŵik(s) to estimate ψij,1 and φj,1.

Under the two way functional ANOVA setting, we are able to capture the

task specific variations as well as the subject- and task-specific deviation. We

expect a further analysis on the loadings ψij,1 may help us to better distinguish

the importance of our tasks in studying risk perception, while the loadins ψij,2

may reveal more information about personal risk preference. Further studies

along this area may open more new research direction in neuroeconomic analysis.
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