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Smooth Principal Component Analysis for High

Dimensional Data

Yingxing Li* Wolfgang K. Hirdlefand Chen Huang?

Abstract

This paper considers smooth principle component analysis for high di-
mensional data with very large dimensional observations p and moderate
number of individuals N. Our setting is similar to traditional PCA, but
we assume the factors are smooth and design a new approach to estimate
them. By connecting with Singular Value Decomposition subjected to
penalized smoothing, our algorithm is linear in the dimensionality of the
data, and it also favors block calculations and sequential access to memory.
Different from most existing methods, we avoid extracting eignefunctions
via smoothing a huge dimensional covariance operator. Under regularity
assumptions, the results indicate that we may enjoy faster convergence
rate by employing smoothness assumption. We also extend our meth-
ods when each subject is given multiple tasks by adopting the two way

ANOVA approach to further demonstrate the advantages of our approach.

Keywords: Principal Component Analysis; Penalized Smoothing; Asymp-
totics; Multilevel; fMRI;
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1 Introduction

Massive data attract lots of research interest these days, as the volume and
dimensionality of these data leads to intensive analysis and calls for new statis-
tical tools. One particular example is to study functional Magnetic Resonance
Images (fMRI), which aims at identifying the active reaction regions in brain
and better understanding how brain makes investment decisions (see Rangel,
Camerer and Montague, 2008; Mohr et al. 2010, Majer et al. 2014). In these
neuroeconomics studies, subjects were given risk related tasks and needed to
make decisions. Simultaneously, the fMRI scanner records the changes in each
subject’s brain blood flow at volume and oxygen level during neural activity.
Such blood-oxygen-level-dependent (BOLD) signals are captured on 3 dimen-
sional spatial maps of brain voxels over time. If vectorization is conducted, the
dimensionality of data for one person in one task could be roughly 10° at each

second.

Principle component analysis (PCA) has been a very popular tool in mul-
tivariate data analysis. However, it faces challenges when applied to very high
dimensional data. For example, the huge dimensionality of the BOLD signals
feasibility of the conventional eigen-decomposition and reduce the estimation
accuracy when extracting the fundamental factors. Although Singular Value
Decomposition (SVD) could be adopted to partly reduce the dimension of co-
variance (see Golub and Reinsch 1970), PCA could be further improved if one
utilizes some mild structure assumptions on the factors. For example, Heller,
Stanley, Yekutieli, Rubin and Benjamini (2006) points out that the active risk

related regions should be contiguous region in brain rather than discrete voxels.

This motivates the analysis functional principal component analysis (fPCA),
see Rao (1958), Ramsay and Silverman (1997). In fPCA, data are represented
with continuous curves and decomposed to factors and factor loadings. When

applied to fMRI analysis, the factors could be viewed as a nonparametric ap-



proach for spatial connection and it could represent the risk related region. The
factor loadings are then used to capture the temporal and subject behaviors,
and they may be associated with risk altitude of individuals (van Bémmel et al
2013). Viviani, Gron and Spitzer (2005) implemented FPCA to the smoothed
or functional fMRI data of 3 subjects, where single subject was considered sep-
arately. Zipunnikov et al. (2011) reached higher computational efficiency by
exploiting SVD. Chen et al. (2015) propose a 3D image fPCA approach, which
avoids vectorizing the 3D location coordinates to 1D and improves quality of

spatial representation.

In this paper, we consider smooth principal component analysis for massive
data. In our settings, we assume a balanced design. The number of individuals
might be moderate, but the observations (subjected to non-negligible measure-
ment errors) for each individual are high-dimensional. Different from most ex-
isting methods, we avoid direct estimating the smooth covariance operator and
extract its eigenfunctions, thus achieve much more computation advantages.
The use of SVD makes our algorithm to be linear in the dimensionality of the
data, and it also favors block calculations and sequential access to memory. We
shall provide details about our approach and its theoretical property in Section

2, and discuss more of its extensions in Section 3.

2 Methodology

Let X, -+, X,, denote independent identically distributed (i.i.d.) random
functions on a compact interval F, satisfying | P E(X?) < oo. For example, if
X; denotes the images of individual ¢, then it could be a d-dimensional array
structure of dimension p = szl pr. Denote the mean function as . Then we

may represent each function X; as

Xi(s) = p(s) + Zzzijabj(s), (1)



where ¢; and 1/315 are the jth factor and its loading respectively, and z/?ij are
i.i.d. random variables with mean 0 and variance O'JQ-. In practice, we may ob-
tain the observations Y;(s) = X;(s) + €;s instead. The error terms ¢;, satisfy

E(e;5)X;) = 0 and var(e;s|X;) is finite.

First, we rewrite the representation in equation (1) by projecting p on ¢;’s.

Then we have
Xi(s) = > ti5(s), (2)
j=1

where ¢; are still the factors and ;; = @ij—i— < p,¢; >. The inner product
between p and ¢; might lead to nonzero mean 1);;, but it helps us to avoid
estimating p, whose accuracy might be low when the number of individuals is
fixed or moderately small. Utilizing representation (2), we estimate 1;; and

¢;(s) by minimizing a constraint minimization criterion:
S S = Y et [ @) < €
7 s j

where ¢§-m)(s) is the mth derivative of ¢;(s) and the choice of m reflects one’s

assumption on the degree of smoothness over ¢;(s).

Note that the above minimization criterion is equivalent to a penalized least

square criterion
5SS = S + 30 [ @),

where the penalty term tries to control the roughness of the estimated ¢;(s).
Let @/;ij an ggj(s) be the minimizer. For fixed qzj’s, we could easily obtain @/;ij by
regressing Y;(s) on ¢;(s). For fixed 1;;’s, we could estimate ¢;(s) as if adopting
penalized nonparametric smoothing on varying coefficient model (Chen, Fang

and Li 2015). Hence one could use an iterative algorithm to obtain all estimates.

As we mentioned in the Introduction session, the dimension of the obser-

vations might be huge. For example, in the study of van Bémmel et al 2013,



the dimension per scan per person could ge 91 x 109 x 91, roughly 10° voxels.
Therefore, we further consider a two stage procedure, which could achieve the
same estimation efficiency with much less computation burden. Specifically, our

algorithm is designed as below:

Stage 1: Use a common smoother and simultaneously smooth all individ-

ual curves. Apply SVD on these smooth curves and extract 1&,]

Stage 2: Conduct penalized regression between Y;(s) and z[Jij to obtain the
smooth estimate gﬁj(s). Regress Y;(s) on ggj(s) to obtain one step update

of Q/AJU
We shall discuss the asymptotic properties of our approach very soon. Here
are more explanations about this two stage procedure. Stage 1 is used to obtain
a consistent estimate of ngSij and the smoothing parameter may not be tuned very
delicately. In contrast, all refinement is done in Stage 2 and the estimates are
then improved as if we have chosen the optimal smoother in Stage 1. To achieve
computation efficiency, we propose to use a common smoother in stage 1 for all
individual curves. On the other hand, this could be shown as equivalent as
adopting a fast bivariate smoothing approach on the covariance function (Xiao,
Li and Ruppert 2013). However, we do not rely on extracting the factors from
the covariance function. Though this could be achieved similarly by regressing
the smooth curves on 1&2’]’ to obtain qAbj (s), we prefer not to do so as such an

approach is very sensitive to the choice of the smoothing parameter in Stage 1.

To study the asymptotics, we consider the following conditions:

C1 Suppose E(Y?*(s)) < oo and Y;(s) = X;(s) + €, instead, where the
error terms €;, satisfy F(e;5|X;) = 0 and var(e;s| X;) is finite. The random
function X;(s) admits representation (2) and the factors ¢;(s) has 2mth

continuous derivative.

C2 We use the pth degree B-splines to model ¢;(s). The knots are equally

spaced on F and the number of knots K satisfies K ~ Cp” for some fixed



constant 'yl .

C3 We adopt the mth order penalty and denote A, as the common penal-
ty parameter used in Stage 1. Denote A; as the penalty parameter for
¢;j(s) used in Stage 2. For any penalty parameter A, define the equivalent
bandwidth as

h =K Y(AKp~1)Y/m), (3)

Denote h. and h; based on A, and A; accordingly. Moreover, assume

h. — 0 and ph. — oo.

Theorem 2.1. Assume Conditions C1-C3, then we have

’l[)ij — 1/’1‘;’ m pTOb

Remark 1: Condition 1 impose regularity conditions on the observations.
As we adopt the penalized approach for estimation, condition 2 and 3 discuss
settings on the choice of penalty and the splines. As pointed out by Li and Rup-
pert (2008), the placement of the knots are not crucial as long as the number of
knots exceed some threshold. Under this large penalty setting, the key smooth-
ing parameter is the penalty term and the penalized smoothing approach using
penalty A is equivalent to the kernel smoothing approach using an equivalent
bandwidth h defined as equation (3). The last assumption on h. is very mild
and it yields consistent estimate of the smooth function X;(s) as well as the
loadings ;.

Theorem 2 below shows that we could achieve higher estimation efficiency if

we carefully tune the smoothing parameter in Stage 2.

Theorem 2.2. Assume Conditions C1-C3. Suppose s is univariate. Let hj ~
p~ /5. Then we have p*/®(¢;(s) — i;) = N(B(s),V(s)), where B(s) and V (s)

are the asymptotic bias and variance.

n the univariate case, the minimal choice of v is 1/5 if p > 1 and 2/5 if p = 0.



Remark 2: We obtain the optimal nonparametric rate for our estimate qgj (s).
Note that this rate is faster than the rate of min(y/n,/p) in traditional PCA
analysis (Bai and Li 2012, Bai and Ng 2013) or y/n in dense functional PCA
analysis (Hall and Hosseini-Nasab 2006, Li and Hsing 2010). We are able to
achieve a faster rate as we adopt the representation (2) which avoids estimating

the mean function pu.

3 Extensions

Now we extend our procedures by allowing multiple tasks for each individual.
We still consider a balanced design such that each subject has the same number
of visits. The number of tasks J could be much large than the number of
individuals n, but n % J is still far smaller than p. To represent the data, we
consider the functional two-way ANOVA approach (Di et al. 2009, Staicu et al.
2014),

Xik(s) = pi(s) + Zi(s) + Wir(s),

where p;(s) are the individual-specific curves, Zj(s) are the task-specific curves

and Wik (s) are the subject- and task-specific deviation.

By the KL decomposition, we could write X;; as

Xin(s) = pi(s) + Y Cijaoia(s) + > ijradia(s),

ij ij
where ¢;1 and ¢;i 2 denote the level 1 and level 2 factors and ;5,1 and ;1 2
are their corresponding loadings. Note that ¢;; for j = 1,2,--- and ¢;»
for j = 1,2,--- are assumed to be orthonormal bases, but they are not re-
quired to be mutually orthogonal. When measurement errors are presented,

then Yk (s) = X;x(s) + eirs are the observations we collect.

We could extend our algorithm for multilevel PCA analysis as below:

1. Average Yji(s) across k to obtain Y;(s).



2. Perform two stage analysis on Y (s) — Y;(s) to estimate 152 and ¢ 2.
3. Define Wlk(s) = Zij 1&27‘}9’2(]3]‘,2(8).
4. Perform two stage analysis on Y, (s) — VAVm(s) to estimate ;51 and ¢; 1.

Under the two way functional ANOVA setting, we are able to capture the
task specific variations as well as the subject- and task-specific deviation. We
expect a further analysis on the loadings 1/;;1 may help us to better distinguish
the importance of our tasks in studying risk perception, while the loadins ;52
may reveal more information about personal risk preference. Further studies

along this area may open more new research direction in neuroeconomic analysis.
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