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Abstract

Systemic risk quantification in the current literature is concentrated on market-based meth-
ods such as CoVaR(Adrian and Brunnermeier (2016)). Although it is easily implemented,
the interactions among the variables of interest and their joint distribution are less addressed.
To quantify systemic risk in a system-wide perspective, we propose a network-based factor
copula approach to study systemic risk in a network of systemically important financial insti-
tutions (SIFIs). The factor copula model offers a variety of dependencies/tail dependencies
conditional on the chosen factor; thus constructing conditional network. Given the network,
we identify the most “connected” SIFI as the central SIFI, and demonstrate that its systemic
risk exceeds that of non-central SIFIs. Our identification of central SIFIs shows a coincidence
with the bucket approach proposed by the Basel Committee on Banking Supervision, but
places more emphasis on modeling the interplay among SIFIs in order to generate system-
wide quantifications. The network defined by the tail dependence matrix is preferable to that
defined by the Pearson correlation matrix since it confirms that the identified central SIFI
through it severely impacts the system. This study contributes to quantifying and ranking
the systemic importance of SIFIs.

Key words: factor copula, network, Value-at-Risk, tail dependence, eigenvector centrality

JEL Classification: C00, C14, C50, C58

1 Introduction

Systemic risk is a very important aspect of economic risk and played a significant role in the

financial crisis of 2008. It continues to be an extremely relevant topic today. An important
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question is how systemic risk can be quantified. The notion of systemic risk and a macroprudential

approach, relevant to financial stability and the functioning of financial markets, has gained

significant attention from regulators, financial analysts and academic researchers.

The Financial Stability Board (FSB) together with the Basel Committee on Banking Supervision

(BCBS) developed a methodology to select SIFIs and attribute them to categories (“buckets”).

Depending on the buckets, additional common equity loss absorbency is prescribed in terms of a

percentage of risk-weighted assets. This methodology is the so-called “indicator-based measure-

ment approach” which is based on a number of indicators postulated to capture the level of global

systemic importance. Among them are such indicators as bank size measured by total exposures,

interconnectedness, substitutability and complexity, see Basel Committee on Banking Supervision

(2013). Though these indicators are important, they do not necessarily reflect the global scope of

the bank’s operations and may suffer from arbitrary weight assignment. Moreover, this approach

is relatively qualitative and is limited to reflecting the fact that financial institutions vary widely

and by occasion. It may not completely capture the scope of risk nor reflect the degree of risk

carried by SIFIs over time.

The quantitative approach is therefore proposed as a necessary supplement. The question is how

to quantify systemic risk. Market-based approaches, which rely more on public market data, are

relatively prevalent due to availability. The interdependencies, playing the main role in systemic

risk, can be inferred from market data. The aggregate risk measures such as Value-at-Risk (VaR),

Expected Shortfall (ES), Marginal Expected Shortfall (MES) and Conditional VaR (CoVaR) are

used to quantify systemic risk (see Diebold and Yılmaz (2014); Girardi and Tolga Ergün (2013);

Banulescu and Dumitrescu (2015); Acharya et al. (2017)). However, the majority of them stand for

a pairwise case; thus, it may be difficult to justify systemic risk from a system-wide perspective,

which requires an explicit multivariate framework. The network-based approach is therefore

proposed for this reason, and it is rigorous in theory and readily implemented in practice.

This study proposes a network-based factor copula approach which combines the network-based

and market-based methods. In this framework, we begin our analysis by probing into a bank–bank

network to sketch the type and strength of connectedness. Using the factor copula model to build
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up the conditional connectivity, we then apply the market-based approach to quantify systemic

risk given the predefined network. The central SIFI can be chosen as the one with a relatively

higher impact on the system, which is also the main concept of MES or CoVaR. However, to

implement the MES or the CoVaR method, one may rely on a built-in index comprised of a group

of institutions. Extending the pairwise case to a high-dimensional tail risk spillover is unclear in

the framework based on CoVaR or MES. Alternatively, the multivariate Gaussian framework is

presumed, but it is very restrictive as it imposes neither tail nor asymmetric dependence, leading

to underestimation of the risk of a financial system.

The factor copula model, a general conditional independence model developed by Krupskii and

Joe (2013), provides a wide range of dependence types and joint distributions. In particular,

dependence in the variables of interest can be explained by a few risk factors. Secondly, the

number of parameters in the correlation or tail dependence matrix can be dramatically reduced.

The main idea is that instead of directly defining the dependence structure between the variables

of interest, one can map the variables into manageable factors and define a dependence structure

through these factors.

The SIFI that contributes most to systemic risk should be the one creating higher connectivity,

and can be named the “central SIFI”. This central SIFI systemically impacts the remaining SIFIs,

leading to widespread distress or triggering broader contagion. Adrian and Brunnermeier (2016)

point out that some institutions are individually systemic since they are so interconnected and

generate negative risk spillover effects on others, while other smaller institutions may be systemic

as a herd. In view of its role in connectedness, the central SIFI could be regarded as the factor

in the factor copula model. The resulting correlation/tail dependence matrix is therefore defined

through any SIFI in response to the central SIFI, which reduces the number of dependence pa-

rameters in the correlation matrix from O(d2) to O(d). The remaining SIFIs conditional on this

central SIFI are conditionally independent, which permits us to establish a d-dimensional distribu-

tion by means of bivariate linking copulas. The double-t factor copula with better goodness of fit

is chosen in this study for the construction of theoretical tail dependence matrices and estimation.

Given the theoretical tail dependence matrices implied by the double-t factor copula model, one
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can identify the central nodes and quantify the VaR of the portfolio (PVaR) comprising other non-

central SIFIs conditional on the central SIFI. This PVaR estimate is an ideal measure of systemic

risk triggered by a particular SIFI, and one can therefore rank the systemic importance for each

SIFI by comparing the magnitude of PVaR estimates of them. In a factor copula framework, the

systemic relevance of SIFIs can be decisively determined by the overall tail risk they spread to

other SIFIs. The central SIFI, due to its interconnectedness, is more likely to spill over its distress

to other SIFIs. As a result, the tail risk of an individual SIFI or a group of SIFIs contingent

on the failure of a few major SIFIs should be more severe than the tail risk incurred by non-

central institutions. Such central SIFI identification can be also useful when stress-testing using

individual bank failure as a starting point. The application of the proposed framework to stress

test the fragility of the system conditional on the stress of the central SIFI is demonstrated.

We contribute to a growing body of literature in several aspects. First, the existing studies con-

struct a synthetic index or system used to represent a group of institutions or state variables. By

doing so, the spillover in high-dimensional data can be boiled down to a bivariate case (i versus

system). The network-based factor copula is not bound to this situation, but is able to explicitly

model the joint distribution of non-i SIFIs conditional on ith SIFI in order to quantify the risk

impact to its d − 1 counterparties. Second, the distributional assumption behind the CoVaR

framework is Gaussian for its analytical tractability. As pointed out by Adrian and Brunnermeier

(2016) the Gaussian setting results in a neat analytical solution, but its tail properties are less

desirable than those of more general distribution specifications. The factor copula model is pro-

posed for this reason, so that the marginal distributions and copula function both can be freely

chosen, constituting a more realistic joint distribution in the end. Third, we propose three types

of dependence structures, and make use of them to define the networks and the central SIFIs.

We show that the network defined by the copula-implied tail dependence matrix can permit the

central SIFI to be identified through it as the one triggering higher tail risk and distress.

The outline of this study is as follows: in Section 2, we construct the network of SIFIs to imply

their dependencies and in Section 3, we introduce the factor copula theory and theoretical tail

dependence derived from it. The estimation technique is also documented. In Section 4, we
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propose a network-based factor copula approach used to estimate the PVaR values and perform a

stress test conditional on the identified central SIFIs. The empirical findings and discussions are

provided in Section 5. Section 6 concludes concludes with suggestions for further research.

2 Network analysis of SIFIs

2.1 Measures of dependence

Dependence of random variables can be defined via a variety of aspects such as symmetric ver-

sus asymmetric, linear versus nonlinear or tail versus entire distribution. It can be empirically

measured or model-implied. Here we discuss several prevalent methods in constructing pairwise

dependence.

The Pearson correlation coefficient is a popular measure of linear association between random

variables. Given random observations xit and xjt, t = 1, . . . , T , T is a time horizon, the Pearson

correlation coefficient ρPij is defined as follows:

ρPij
def=

∑T
t=1(xit − xi)(xjt − xj)√∑T

t=1(xit − xi)2
√∑T

t=1(xjt − xj)2
(1)

Statistical dependence is determined through joint distributions. Of particular interest are ex-

treme or tail dependencies, because they allow measuring the level of risk in the financial markets

during market crashes more efficiently than association measures. Copula functions are flexi-

ble and efficient instruments which allow setting a wide range of dependency between random

variables with various marginals.

Given d dimensions, a copula is a d-dimensional joint distribution with U [0, 1]-uniform marginals.

According to the Sklar’s theorem, if C is a copula and FX1 , . . . , FXd are continuous marginal

distributions of X1, . . . , Xd, then one can uniquely construct a joint distribution F (x1, . . . , xd) =

C{FX1(x1), . . . , FXd(xd)}. Extreme or tail dependence can be explicitly defined given a specific
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copula. These measures gauge the strength of dependence in the tails of a bivariate distribution.

To be precise, the coefficients of lower and upper tail dependence are defined as follows:

ΛL
ij

def= lim
q→0+

P(Xj ≤ F−1
j (q)|Xi ≤ F−1

i (q)),

= lim
q→0+

P(Xi ≤ F−1
i (q), Xj ≤ F−1

j (q))
q

, (2)

ΛU
ij

def= lim
q→1−

P(Xj > F−1
j (q)|Xi > F−1

i (q)),

= lim
q→1−

P(Xi > F−1
i (q), Xj > F−1

j (q))
1− q . (3)

Alternatively, as proposed by Schmidt and Stadtmüller (2006), tail dependence can be estimated

by means of empirical tail copulas. This allows to estimate tail dependence coefficients in a non-

parametric setting. The marginal distributions are modelled using empirical distribution functions

to avoid misspecification due to possible wrong parametric fit of the marginal distributions. The

non-parametric estimators for (2), (3) are written as follows:

Λ̂L
ij ≈

1
k

T∑
t=1

I{
R

(t)
i ≤kxi,R

(t)
j ≤kxj

}, (4)

Λ̂U
ij ≈

1
k

T∑
t=1

I{
R

(t)
i >T−kxi,R

(t)
j >T−kxj

} . (5)

where Ri, Rj are denoted as T × 1 vectors of ranks of xit, xit. The parameter k ∈ {1, . . . , T}

(threshold) is chosen via a plateau-finding algorithm which corresponds to balancing bias and

variance. For the asymptotic results to hold, it is assumed that k = k(T ) → ∞ and k/T → 0

as T → ∞. The estimators are shown to have asymptotically normal distribution under both

known and unknown marginal distributions. The details can be found in Schmidt and Stadtmüller

(2006).

The economic rationale behind choosing either correlation or tail dependence matrices is subject

to the risk being addressed. Correlation-based dependence accounts for variance risk while tail

dependence aims to capture tail risk. It is advisable to build up a dependence matrix from

tail dependence coefficients ΛL
ij, ΛU

ij or the empirical counterparts Λ̂L
ij, Λ̂U

ij for lower and upper
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tail dependence. Similar emphasis can be found in Adrian and Brunnermeier (2016). Once

interdependence between financial variables has been defined, further analysis is necessary to

determine the network structure of the underlying system. Combined with the centrality approach,

tail risk network analysis can provide valuable insights into extreme risk connective structure on

a systemic scale.

2.2 The description of SIFIs and their interdependencies

Thirty global SIFIs listed and updated by FSB in November 2015 are ideal samples to study

systemic risk in a network framework. For this study, we disregard two SIFIs, Agricultural Bank

of China and Banque Populaire CE, due to their relatively shorter data periods, and use the

remaining 28 SIFIs in the period 1 January 2007 to 31 December 2014. In Table 1, we list the

names of the SIFIs with the corresponding indices and symbols assigned in this research, and sum-

marize the bank-specific attributes such as debt ratio, firm size, country where the headquarters

are located and the buckets assigned by BCBS. Debt ratio, a ratio of total debt to total assets,

captures the fragility of a bank, while the size – as total assets – serves as a proxy for the bank

being too big to fail. The bucket in the last column is defined in Table 2 of the Basel Committee

document Global systemically important banks: updated assessment methodology and the higher

loss absorbency requirement, July 2013, which is designed to reduce the moral hazard problems

and systemic risk by requiring additional common equity loss absorbency as a percentage of risk-

weighted assets from 3.5% (Bucket 5), 2.5% (Bucket 4), 2.0% (Bucket 3), 1.5% (Bucket 2) to 1%

(Bucket 1).

Through (4), we calculate empirical lower tail dependence matrices Λ̂L
ij for 28 SIFIs and show

them in Figure 1. Each panel plot in this figure depicts the empirical lower tail dependence in a

particular calendar year given its daily return data collected from Datastream. Consistent with

Chen et al. (2017), one can observe the tail dependence that appeared in a geographic location e.g.

a cluster in the U.S., the U.K., China, Europe and Japan. The yellow squares are generated by

geographic dependencies, and the tail dependencies on a geographic basis are about 0.6. During
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the European debt crisis in 2011-2012, the European SIFIs and the U.S. SIFIs by group exhibit

stronger tail dependence with more yellow color distribution.

2.3 Adjacency matrix construction

To study systemic risk in a network framework, we need a convenient mathematical representation

of a network. Graph theory is very useful to represent and visualize complexity of interactions

between network elements. A graph is composed of a number of nodes/vertices and the edges

between nodes. In this study, each node represents a particular SIFI, while the edge between two

nodes indicates their dependence. The representation is achieved via an adjacency matrix. The

adjacency matrix A with elements aij for a simple undirected graph is defined as follows:

A =


aij if there’s an edge between nodes i and j

0 otherwise,
(6)

where aij determine the weights of edges between i, j = 1, . . . , N . For an unweighted network (all

edges bear the same weight), all aij = 1.

The adjacency matrix can be constructed via the aforementioned dependence matrix , that is, the

Pearson correlation matrix, the empirical tail dependence matrix or the tail dependence matrix

implied by the factor copula model. Transforming dependence matrix into a binary adjacency

matrix is analogous to statistical shrinkage techniques used to select the relevant variables into

the system. The statistical rationale is that the network of SIFIs is very likely to be sparse, see

Bluhm et al. (2016), which means that some edges are statistically relevant but some are not.

It is not advisable to take all pairwise dependencies into account if their dependencies are not

beyond a certain threshold. An observation is also made by Chen et al. (2017) and Barigozzi

and Brownlees (2016). The adjacency network structure in this study is based on binary weights

representing the statistically significant links between the nodes, with one (zero) used to represent

a strong (weak) dependence.

The method of Ng (2006) proposes a breakpoint analysis framework to partition the order depen-
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dencies into two groups. Through a uniform spacings analysis, the problem of testing cross-section

correlation/dependency is turned into a problem of testing uniformity and non-stationarity. A

subset of nonzero dependencies can be determined by minimizing a sum of square residuals.

The idea of uniform spacings can be generalized to any dependence matrix as long as its elements

can be assumed U [0, 1]-distributed. To be precise, given a N × N dependence matrix pij, i, j =

1, . . . , N , breakpoint determination is achieved via several steps:

1. Sort cross-sectional dependencies into an ordered vector p = (p1, p2, ..., pn), where p1 is the

smallest one and pn is the largest one, n = N(N − 1)/2,

2. Perform a uniform transformation of p via the standard normal cdf:

Φ =
(
Φ
(√

T |p1|
)
,Φ
(√

T |p2|
)
, ... ,Φ

(√
T |pn|

))
, (7)

3. Calculate the spacings ∆φj = Φ
(√

T |ρj|
)
− Φ

(√
T |ρj−1|

)
,

4. Perform the optimization

θ̂ = arg min
θ∈R

fn(θ), (8)

where fn(θ) = ∑dθne
j=1 (∆φj − µs)2 + ∑n

j=dθne+1 (∆φj − µL)2 and µs = 1
dθne

∑dθne
j=1 ∆φj, µL =

1
dn(1−θ)e

∑n
j=dθne+1 ∆φj, dθne is the integer part of θn.

As a consequence,
⌊
θ̂n
⌋
yields an optimal break location achieving a minimum total sum of

variances from two subgroups to make the dependencies in the given group as homogeneous as

possible.

Figure 2 shows the resulting adjacency matrices based on the empirical tail dependence matrices

in Figure 1. The adjacency matrices vary over time. In 2007 and 2008, the Chinese SIFIs (nodes

13-15) are relatively isolated from the U.S. SIFIs (nodes 1-8); however, they turn to connect

with world as of 2009. We find a lower degree of adjacency between Japanese SIFIs and others,

implying that weak tail dependence might be attributed to the relatively conservative lending

policies launched in Japan.
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3 Factor copulas

3.1 General theory

Copulas in general are flexible tools for modelling multivariate distributions which allow for the

separate modelling of marginal distributions and the dependence structure. Sklar’s theorem pos-

tulates that every multivariate distribution can be represented via the corresponding marginal

distributions and a copula. This property allows construction of a wide range of dependence

structures for random variables which are converted to U(0, 1)-uniform ones. This is done to

guarantee that a copula has uniform univariate marginal distributions.

Factor copula models go a step further from other copula types to address the issue of high di-

mensionality and polynomial-time complexity in copula parameter estimation. Given d marginal

distributions, usual copula constructions (e.g., direct multivariate copulas, vines) involve estimat-

ing O(d2) parameters. Factor copulas allow for parameter estimation to be done in linear time:

for instance, compared to vine pair-copula models, they reduce the number of parameters to be

estimated to O(d), see Krupskii and Joe (2013).

A general multivariate factor copula model assumes a linear dependence structure of d observed

variables Z and p conditional factors W :

Zj = θj|1W1 + . . .+ θj|pWp + ψjεj, j = 1, . . . , d. (9)

where 1 ≤ p < d. In a one factor case, the representation (9) assumes the form:

Zj = θj|1W +
√

1− θ2
j|1εj, j = 1, . . . , d. (10)

In the factor copula model, the copula-dependent uniform random variables uj def= FZj(zj), j =

1, . . . , d, obtained from the marginal transformation of Zj in Z
def= (Z1, . . . , Zd)T are assumed

to be conditionally independent given variable V def= FW (w). The factor copula expression is
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then derived via the mixture families approach. Assume p = 1 (one-factor case), define U def=

(U1, . . . , Ud)T , V , all U(0, 1), i.i.d., then:

Cv(u1, . . . , ud) = F (Z1, . . . , Zd)

=
∫
D
FZ|V (z|v)dFV (v)

=
∫
D

d∏
j=1

FZj |V (zj|v)dFV (v)

=
∫
D

d∏
j=1

CFZ(Zj)|V (FZ(zj)|v)dv

=
∫
D

d∏
j=1

CUj |V (uj|v)dv, (11)

denotes a one factor copula with conditionally independent marginals U1, . . . , Ud, given varaible

V ; here D def= [0, 1], the first and fourth equality come from Sklar theorem and uniformity, the

third one from the independence assumption. Any conditional independence model given V can

be expressed in this form after uniform transformation. The dependence structure of U is then

defined through conditional distributions modeled by a sequence of bivariate copulas that link

variables Uj to variable V .

The expression (10) allows to generate different dependence structures given the distributions of

W and ε. Oh and Patton (2015) demonstrate the flexibility of the class of factor copulas by

choosing marginals as normal, t and Skew-t distributions to accommodate possible dependencies.

However, the copulas with asymmetric and tail dependence such as double-t and Skew-t-t factor

copula normally do not have closed form. In a simple example with W = Φ−1(v) and ε both

being N(0, 1), the resulting copula is Gaussian. It follows that (see Appendix 9.1)

CUj |V (uj|v) = Φ
Φ−1(uj)− θj|1Φ−1(v)√

1− θ2
j|1

 . (12)

The resulting expression for (11) is then

Cw(u1, . . . , ud) =
∫
D

d∏
j=1

{
(Φ−1(uj)− θj|1w)/

√
1− θ2

j|1

}
ϕ(w)dw. (13)
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In general, the conditional independence formulated by the factor model, given independent uni-

formly distributed random variables V = v, Uj, takes the form

CUj |V (uj|v) = Fεj

F−1
Zj

(uj)− θj|1F−1
W (v)√

1− θ2
j|1

 , (14)

Here W , εj can have arbitrary continuous distributions, the distribution FZj is obtained from the

convolution of θj|1W and
√

1− θ2
j|1εj, according to the form of (10).

3.2 Factor copula under particular distributions

Specific variations of (14) are obtained by using parametric continuous distributions for the factor

W and the idiosyncratic shock εj, respectively. Some common examples, see McNeil et al. (2015),

include the so-called double-t and the double-GH copulas where both W and εj follow univariate

tν and generalized hyperbolic (GH) distributions, respectively. If one utilizes the representation

(11)-(14) for parameter estimation, one has to numerically compute FZj (via convolution) and its

inverse at a particular point in every iteration. This makes the computation prohibitively slow

and the model impossible to use for practical purposes.

One can address this problem by using distributions which possess stability under convolution as

well as fit financial data well. Among such distributions we find the family of stable distributions

which, for specific values of their parameters, asymptotically exhibit power law behaviour in the

tails (heavy-tailed distributions). Stable distributions can give a better fit to financial data in

many cases compared to that of distributions with exponentially decaying tails, see Nolan (2014).

On the other hand, these distributions may overestimate extreme risks and can be computationally

intensive in parameter estimation.

An alternative is the class of GH distributions which are closed under convolution given certain

constraints on their parameters. As was shown in previous research by Borak et al. (2010),

statistical tests such as Kolmogorov and Anderson-Darling goodness-of-fit statistics show that

two subclasses of the GH distribution, the hyperbolic and the normal inverse Gaussian (NIG)
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distributions provide the best model for financial data. The double-NIG copula approach was

applied by Kalemanova et al. (2007) for synthetic CDO pricing. Explicit dependence of the

parameters of the convolution distribution FZj on the factor loading parameter θj|1 had to be

introduced in order to perform the convolution.

A drawback of GH distributions is that they allow for nonzero tail dependence in the factor copula

framework only under restrictive assumptions. To be precise, Hammerstein (2016) concluded that

asymmetric GH distributions have their coefficients of tail dependence either 0 or 1 while the

symmetric ones have zero tail dependence. If one decides to use the GH class instead, one relies

on imposing restrictive assumptions on the parameters.

3.3 Tail dependence for factor copulas

For a factor copula represented by a linear structure (10) the tail dependence coefficients in (2)

and (3) can be derived in explicit form. Although factor copulas generally lack a closed-form

density, using extreme value theory the analytical expression for the implied tail dependence can

be therefore achieved. The implied tail dependence from factor copulas is the “conditional tail

dependence”, that is, it is derived given the factor W . Conditioning on the chosen factor, we can

define a d-dimensional tail dependence matrix in a conditional fashion and compare it with the

unconditional one. The choice of factor together with the selected copula distribution determine

the resulting tail dependence matrix.

Proposition 3.3.1. Let the factor copula be generated by the linear factor structure (10). Also

let FW and Fεj have regularly varying tails with a common tail index α > 0 so that P(W < −s) =

P(W > s) = AW s
−α, P(εj < −s) = P(εj > s) = Aεs

−α as s→∞, AW > 0, Aε > 0.

Then it follows that

ΛL
ij =

AW θ
α
i|1

AW θαi|1 + Aε(1− θ2
i|1)α/2 (15)

if the following conditions hold: AW θαi|1θαj|1 + Aε(1 − θ2
i|1)α/2θαj|1 > AW θ

α
j|1θ

α
i|1 + Aε(1 − θ2

j|1)α/2θαi|1
and simultaneously θi|1 < θj|1 or AW θαi|1θαj|1 + Aε(1 − θ2

i|1)α/2θαj|1 < AW θ
α
j|1θ

α
i|1 + Aε(1 − θ2

j|1)α/2θαi|1
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and simultaneously θi|1 > θj|1. On the other hand, it holds that

ΛL
ij =

AW θ
α
j|1

AW θαj|1 + Aε(1− θ2
j|1)α/2 (16)

if the following conditions hold: AW θαi|1θαj|1 + Aε(1 − θ2
i|1)α/2θαj|1 < AW θ

α
j|1θ

α
i|1 + Aε(1 − θ2

j|1)α/2θαi|1
and simultaneously θi|1 < θj|1 or AW θαi|1θαj|1 + Aε(1 − θ2

i|1)α/2θαj|1 > AW θ
α
j|1θ

α
i|1 + Aε(1 − θ2

j|1)α/2θαi|1
and simultaneously θi|1 > θj|1.

Proof. See Appendix 9.2.

Proposition 3.3.2. Let the factor copula be generated by the linear factor structure (10). Also

let FW and Fεj be t(µ, σ, ν) and t(ν), then

AW = (νσ2) ν+1
2

ν3/2σB(ν/2, 1/2) , (17)

where B(·, ·) is the beta function, ν is degree of freedom.

Proof. See Appendix 9.3.

Through Eqs.(15), (16)and (17), one can derive the resulting theoretical tail dependence matrix

conditional on W in an application of double-t factor copula.

3.4 Copula parameter estimation

Estimation of copula parameters with likelihood methods often involves quantities which do not

have closed form, therefore one has to use approximative numerical methods. The likelihood

function for factor copula can be derived via direct differentiation of the integrand in (11). Alter-

natively, one can proceed by differentiating an absolutely continuous joint distribution function FZ

with strictly increasing, continuous marginal distribution functions FZ1 , . . . , FZd , which generates
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an implicit copula C(u1, . . . , ud) with the corresponding density, see McNeil et al. (2015).

c(u1, . . . , ud; θ) =
fZ(F−1

Z1 (u1), . . . , F−1
Zd

(ud))
fZ1(F−1

Z1 (u1))·, . . . , ·fZd(F−1
Zd

(ud))
, (18)

where fZ is the joint density of Z1, . . . , Zd; FZj , fZj , j = 1, . . . , d are the marginal distribution

and density of Zj, respectively. Referring (11)-(14), it can be shown that fZ, FZj and fZj take

the following forms:

fZ(Z1, . . . , Zd) =
∫ 1

0

d∏
j=1

fεj

Zj − θj|1F−1
W (v)√

1− θ2
j|1

 dv,
FZj(zj) =

∫ 1

0
Fεj

zj − θj|1F−1
W (v)√

1− θ2
j|1

 dv,
fZj(zj) =

∫ 1

0
fεj

zj − θj|1F−1
W (v)√

1− θ2
j|1

 dv.

Plugging the above specified joint density, distribution and marginal distribution into (18), an

implied copula density is therefore obtained and consequently used for a log-likelihood repre-

sentation. One-dimensional numerical integration is performed to determine the integral on the

interval [0, 1] in (18). Krupskii and Joe (2013) implement the Gauss-Legendre quadrature for

numerical integration and optimization for maximum likelihood. A quadrature rule approximates

the following definite integral on a suitable domain D:

∫
D
f(x)dx ≈

q∑
k=1

ωkf(xk), (19)

where q is the number of quadrature points, xk are the quadrature points or nodes and ωk are

the quadrature weights. The expressions for ωk for different quadrature rules can be found, e.g.,

in Abramowitz and Stegun (1965). According to Joe (2015), the number of quadrature points

q around 20-30 per dimension is usually adequate for the maximum likelihood estimate to be

numerically stable. We use q = 21 in the empirical study below. The parameter vector θ of the

15



joint density c(u1, . . . , ud; θ) can then be estimated using maximum likelihood expressed as

L(u1, . . . , ud; θ) =
T∏
t=1

c(u1,t, . . . , ud,t; θ) (20)

The inverse distribution F−1
Zj

relies also on numerical computation. It would be computationally

expensive to determine this quantity in each iteration of the likelihood optimization, therefore we

use an approximative numerical method. First, two grids in the intervals [0, 1] and [−1, 1] for u

and θj|1, respectively, are created. Then, given a pair of values (u, θj|1), the value of F−1
Zj

(u; θj|1)

can be determined via a root-searching algorithm for the problem FZj(x; θj|1)− u = 0 by solving

for x. Given a 2-dimensional rectilinear grid of F−1
Zj

(u; θj|1) values, one can perform bilinear

interpolation to determine the values of F−1
Zj

in each MLE iteration. The matrix F−1
Zj

(u; θj|1) is

computed only once prior to estimation, which significantly saves computational effort.

4 A network-based factor copula approach

To quantify the systemic risk caused by a particular SIFI, one can estimate the tail risk in the

system conditional on SIFI i being in stress. It is worth noting that the tail risk in the system

is estimated through a joint distribution specified by a factor copula framework. Ranking the

estimated tail risks conditional on each SIFI achieves the goal of ranking the systemic importance

among SIFIs, which determines the corresponding required level of additional loss absorbency. A

network-based factor copula approach is therefore proposed for this application. It is implemented

via a two-stage procedure: in the first stage we perform centrality analysis to identify the SIFIs

which happen to be the central nodes; at the second stage we implement the factor copula model

conditional on the identified central SIFIs to estimate the tail risk in the system and perform

stress tests to central SIFIs.
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4.1 Eigenvector centrality

Eigenvector centrality analysis is one of means to identify the most “important” vertices (nodes)

in networks. In this study, the identified central nodes potentially contribute most to overall

systemic risk.

Using the adjacency matrix of a network (graph), we can track the neighbours for each node νi.

Let γ(νi) denote node centrality and define the centrality of a node proportional to the sum of its

neighbours’ centralities:

γ(νi) def= 1
λ

N∑
j=1

aj,iγ(νj) (21)

where aj,i are the elements of the adjacency matrix A defined in (6) and λ is a fixed constant.

Letting Γ = (γ(ν1), γ(ν2), ..., γ(νN))T as the centrality vectors for all nodes, we can restate the

above equation as

λΓ = AΓ (22)

Eq. (22) indicates that Γ is an eigenvector of A, and λ is the corresponding eigenvalue. In fact,

if we choose to impose a positivity constraint on the centralities’ vector Γ, this is the largest

eigenvalue of the adjacency matrix A, and the corresponding eigenvector is the vector of network

centralities. The central nodes can be selected by ranking the elements in the selected eigenvector.

As is intuitively seen from the definition (21), the eigenvector centrality measure assigns more

importance to the nodes which have either many connections to other nodes or to the nodes which

are themselves important.

4.2 Identification of central SIFIs

The question for which nodes can be considered as central nodes is subject to the underlying

network structure being constructed. The identified central nodes contribute to tail risk in the

system if the underlying adjacency matrix is defined through the tail dependence matrix, whereas

it may simply account for variance risk if the correlation/covariance matrix is investigated. The
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identification can be carried out through various dependence structures, namely the Pearson corre-

lation matrix(ρPij), the empirical tail dependence matrix (Λ̂L
ij) and the theoretical tail dependence

matrix implied by the factor copula model(ΛL
ij). We then undertake the following investigations:

1. Eigenvector centrality analysis based on the A matrix defined by ρPij in (1)

2. Eigenvector centrality analysis based on the A matrix defined by Λ̂L
ij in (4)

3. Singular value norm of ΛL
ij implied by the double-t factor copula model, refer to Proposition

3.3.1and 3.3.2

The first and the second investigation are based on the eigenvector centrality analysis to make

use of the adjacency matrix defined by the Pearson correlation and the empirical tail dependence,

respectively. Note that a breakpoint technique by Ng (2006) is applied to convert a dependence

matrix into a binary one. The third investigation uses the singular value norm as a measure of

systemic risk. This is motivated by the fact that the node it is conditioned upon, is omitted from

the analysis; therefore, complete eigenvector centrality analysis is not feasible.

The singular value norm of A matrix determines the “magnitude” of A; in this study it measures

the degree of systemic risk caused by the degree of “connectedness” in the financial system which

is generated, e.g., by extreme tail dependence or statistical association.

The (largest) singular value norm of A is defined as:

‖A‖ def= max
x
‖Ax‖2

s.t. ‖x‖2 = 1

The solution can be derived as:

‖A‖ =
√
λmax, (23)

where λmax is the largest eigenvalue of the positive semidefinite matrix A>A. The norm of matrix

A is the maximum singular value of A, which is also the square root of the largest eigenvalue of
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A>A. The central SIFI can therefore be identified if the singular value norm conditional on it is

the largest one in the financial system.

4.3 Central SIFI as conditioning variable

To quantify institution i’s systemic risk for the extent to which it can endanger the system due

to its tail event in its return distribution, we suggest controlling for the systematic risk in the

return distribution and considering only the idiosyncratic part. By doing so, we then get a clear

systemic risk measure exclusively triggered by “firm-specific risk”. Furthermore, we control for the

GARCH effect in the firm-specific return. To be more specific, the mean equation controls for the

market effect, while the variance equation details the volatility evolution of univariate variables in

a GARCH(1,1) framework. Student’s t innovation is assumed for the firm-specific residual return.

Rj,t = aj + bjRM,t + εj,t, j = 1, . . . , d. (24)

h2
j,t = ωj + βjh

2
j,t−1 + αjε

2
j,t−1 (25)

Zj,t =
√

νj
h2
j,t(νj − 2)εj,t ∼ tνj (26)

where Rj,t is the stock return series of institution j, RM,t is the MSCI world market index return

series collected from Datastream, and the residual Zj,t is the standardized residual return series

controlled for world market return and the GARCH effect. Nevertheless, the dependence among

Z = (Z1, . . . , Zd) may not be necessarily mutually independent, especially when systemic risk

emerges in the system.

The central nodes obtained from section 4.2 are the financial institutions with a higher degree of

connectedness to the rest of the SIFIs. In this regard, they can be perceived as factor in the factor

copula model in the distributional sense. That is, if we control for the network effect of these

institutions, which may induce systemic risk, we achieve approximate conditional independence

in the network.
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Then the factor representation in (10) assumes the following form:

Zj = θj|iZi +
√

1− θ2
j|iεj, j = 1, . . . , i− 1, i+ 1, . . . , N, (27)

where Zj are residual return series of “non-central“ SIFIs from (26), N is the total number of

SIFIs, i is the central node index. The corresponding expression for the copula in (14) is then:

CUj |Zi(uj|zi) = Fεj

F−1
Zj

(uj)− θj|izi√
1− θ2

j|i

 , (28)

4.4 Choice of distribution

We limit our attention to the double-t factor copula in this study for the following reasons: (i) it

fits financial data reasonably well, see Hull and White (2004); (ii) it allows for the construction of

analytical tail dependence coefficients, see Section 3.3; (iii) in Section 4.3, the systemic risk being

emphasized is the risk triggered by “firm-specific risk” after controlling for market risk. The firm-

specific risk is likely to be distributed as Student-t as suggested by Oh and Patton (2016), while

the market factor is Skew-t distributed. Archimedean copulas, however, allow for tail dependence

but usually have only one or two parameters to characterize the dependence between all variables,

which presumes a relatively homogeneous dependence and is not so favorable for a high-dimension

application.

We compare our proposed factor copula models with two alternative elliptical factor copulas e.g.

Gaussian and skewed-t-t in terms of goodness-of-fit measured by the Akaike information criterion

(AIC) which results from maximum likelihood estimation:

• Gaussian factor copula: Zi and εj are chosen as N(µ, σ) and N(0, 1), respectively;

• Double-t factor copula: Zi and εj are chosen as t(µ, σ, ν) and t(ν), respectively;

• Skewed-t-t factor copula: Zi and εj are chosen as the skewed-t distribution by Hansen

(1994) and t(ν), respectively.
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As shown in Table 2, these results demonstrate that, judging by average AIC values over estimates

under different SIFIs as conditioning factors, the choice of double-tmodel is supported. It is chosen

in 5 out of 8 years, including financial crisis periods 2007-2008 and 2011-2012. In other calender

years it yields the AIC values as comparable as those from the skewed-t-t model. The skewed-t-t

model is selected in 2009-2010 while the Gaussian configuration can be accepted only in 2013. The

choice of the double-t factor copula model is supported in terms of goodness-of-fit analysis, and

the double-t specification especially possesses desirable analytical properties in the tail measures

and relative parsimony. We therefore make use of it for the empirical application in the next

section.

5 Empirical results

5.1 Estimates of factor loading θj|i

Figure 3 shows the estimates of θj|i in each calendar year. In 2007, the European SIFIs(nodes

16-24) are broadly connected with each conditioning node lying on the x-axis. In 2008 and 2009,

the θj|i estimates of U.S. SIFIs conditional on the SIFIs in the U.S. (i = 1, . . . , 8) or outside

the U.S (i = 9, . . . , 28) are generally above 0.5. Similar findings can be seen in the European

debt crisis during 2011-2012. The principal investigation is to search for the node i (in x-axis)

showing widespread connectedness with the remaining j nodes (in y-axis), which is observed by

the greater values of θj|i. Taking 2012 as an example, one can observe that the system becomes

more connected (it has more yellow grids) if we set State Street (SST, node 7), Wells Fargo (WFC,

node 8) or even HSBC (node 11) as the conditioning nodes. In fact, the centrality analysis through

the singular value norm of copula-implied tail dependence matrix identifies these three SIFIs as

central nodes which potentially trigger a system-wide tail risk and endanger the function of the

banking system.

More importantly, with the θj|i estimates, the theoretical tail dependence matrix implied by the

double−t factor copula defined in (15), (16) and (17) is therefore derived and shown in Figure 4. As
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an example, in 2012, conditional on HSBC for its central role, the copula-implied tail dependencies

in European(nodes 16-21) and British(nodes 9-11) SIFIs are overwhelmingly profound; however,

this is not the case if conditional on an arbitrary non-central node such as Mitsubishi UFJ (MTU).

In this case, one cannot observe any tail dependence between the British and European SIFIs.

Similar findings can be seen in 2007 in Figure 4. Conditional on central node NDA (node 23),

a strong tail dependence between the U.S. SIFIs and the remaining SIFIs is obvious, whereas it

becomes invisible conditional on a non-central node such as CCB(node 15).

5.2 Portfolio VaR, stress test and network analysis

Given a particular central SIFI Zi, the systemic risk in the group of the non-central SIFIs Zj

is then quantified by the factor-copula-based Portfolio Value-at-Risk (PVaR) and the portfolio

return conditional on the stress of Zi. Both systemic risk measures are estimated according to

the following algorithm:

Algorithm 1 Factor copula PVaR calculation and stress test
1: Perform univariate GARCH filtering to get Zi and Zj.
2: Derive uniform marginals uj for each Zj and v for Zi via marginal cdf transformation.
3: Estimate copula parameters θj|i in (27) by maximum likelihood (see Eq. 20) .
4: Generate copula-dependent random numbers given the estimates θ̂j|i (see Algorithm 2).
5: Perform GARCH simulation of dependent residuals and calculate the PVaR as 5% or 1%-

quantile of the simulated portfolio returns
6: Perform a stress test given Zi’s stress

Generation of copula-dependent random numbers given the estimated factor copula parameters

θ̂j|i is an essential step for PVaR calculation in Algorithm 1. A straightforward procedure can be

applied to simulate from a one-factor copula model. Given the number of simulated samples nsim

and a forecast horizon H for the PVaR, we pre-allocate a nsim ·H × N array U and proceed as

outlined in Algorithm 2:

The resulting row vectors (u1, . . . , uN) in U will be a sample from the distribution Czi(u1, . . . , uN ; θ̂j|i).

Copula-dependent random numbers in the second step of Algorithm 2 are determined via numeric

inversion of (28) as mentioned in the previous section.
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Algorithm 2 One-factor copula simulation
1: for i← 1, nsim do
2: Simulate v, p1, . . . , pN as independent U(0, 1)-distributed random numbers.
3: Compute uj = C−1

Uj |V (pj|v; θ̂j|i), j = 1, . . . , N .
4: Return (u1, . . . , uN).
5: Store (u1, . . . , uN) in the ith row of U .
6: end for

Given U , in the last step of Algorithm 1 the autocorrelation and heteroscedasticity observed in

the original residual returns are re-introduced back into the copula-dependent uniform random

values for PVaR calculation.

A systemic crisis is caused by a failure of one institution and the subsequent spreading of the

distress to the whole system, see Brechmann et al. (2013). In the framework of our conditional

factor copula model, the distress level in the system can be measured by the expected portfolio

returns conditional on the stress event of the central node. Explicitly, the stress return (SRi) of

portfolio conditional on the tail event of institution i can be defined as follows:

SRi
def= E(ω>Z|v = 0.01), (29)

where ω is a vector of portfolio weights. The weight on each SIFI is its market capitalization to

account for “too-big-too-fail” issue.

Given a stressed situation happening to the central SIFI, we simulate the resulting impact on

the remaining SIFIs. As long as the central node is precisely identified, a simultaneous drop

in the values of the remaining SIFIs is expected. A 1% quantile of stock return distribution

is a common attempt for initiating a fictitious stress scenario. One merit of the factor copula

framework is that we can work directly with uniformly distributed data on this quantile level.

The expectation in (29) is computed via Monte-Carlo simulations. Given distress in institution i,

we simulate a widespread impact on the remaining SIFIs by drawing samples from the distribution

of U−i|Ui = 0.01.

Our ultimate goal is to show that the central SIFIs, in comparison with non-central SIFIs, poten-

tially trigger higher PVaR estimates and the stress return conditional on them. If this conjecture is
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confirmed, for a ranking purpose, the following quantification of systemic risk is optional because

the quantification based on the factor copula model certainly requires computational effort.

Portfolio Value-at-Risk calculation and its conditional stressed return are performed for each year

under consecutive assumptions that every SIFI potentially drives tail risk, although we may expect

that central SIFIs have more prominent impacts. Table 3 summarizes the PVaR estimates for

each calendar year, while Table 4 reports the conditional stress return of the portfolio. Obviously,

each SIFI triggers different magnitudes of tail risk of the portfolio consisting of the remaining

SIFIs. From 2007 to 2008, the PVaR estimates, presenting the quantile value of portfolio returns

controlling market risk, increase on average from 2.107% to 3.455% at the 95% level and from

3.692% to 5.648% at 99% level on a daily basis, showing an increasing systemic risk in the U.S.

subprime crisis.

The results in Tables 3 and 4 demonstrate that the choice of the central nodes by the singular value

norm of the copula-implied tail dependence matrix more often coincides with the choice made by

centrality analysis performed on the empirical tail dependence matrix. This is reasonable as both

of these measures gauge extreme rather than volatility risk captured by the dependence matrix

based on the Pearson correlation coefficients. Although they coincidentally identify the central

nodes, they are not completely identical in the sense of the information content of the network

(empirical tail dependence vs. copula-implied dependence), or the centrality method (eigenvector

centrality vs. the singular value norm). We therefore detail their results in separate subsections.

5.2.1 Results from empirical tail dependence-based centrality analysis

As can be seen in Tables 3 and 4, empirical tail dependence-based centrality analysis seems

capable of selecting important nodes in the network over time. Note that the central node is

not exclusively unique during an investigative period, it is possible that few nodes bear very

comparable centrality scores. The resulting network structures are shown in Figures 5, 6. In

2008, three financial institutions - Barclays (BCS), Standard Chartered (STAN) and BNP Paribas

(BNP)- are chosen as central nodes. They are conveniently identified as a group or a “cluster”
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on the network plot in Figure 5. Two of these institutions are British SIFIs and one of them is a

French SIFI. The choice is reasonable, as Barclays was the bank that might have been expected to

fail. It purchased the US broker/deal operations of Lehman Brothers after the latter’s bankruptcy

for almost $2bn in September 2008. Furthermore, each of the three institutions chosen had wide

exposure to emerging markets, including troubled assets. More specifically, BCS, STAN and BNP

took over Lehman’s structured products’ businesses in India.

For 2012, as shown in Figure 6, STAN and HSBC are selected as central nodes, both being

British SIFIs. The banks were fined $1.9 billion and $300 million, respectively, by US authorities

for their role in financial transactions involving criminals and states under US sanctions. Both

institutions have historically had a very large exposure to emerging markets. In the second quarter

of 2015, almost 41% of HSBC’s net operating income was generated in Asia. Together with Latin

America and the Middle East and Africa, these markets generated 54.81% of the bank’s income,

as reported by The Banker (2015). At the same time, Asia, the Middle East and Africa provided

88% of STAN’s operating income and 97% of profits in the first half of 2015.

In 2013, China Construction Bank (CCB) and ICBC are chosen as central nodes, as shown in

Figure 6. That year, the Chinese ICBC moved to first place in the Banker’s Top 1000 World

Banks, see ICBC: the world’s new largest bank (2013). China Construction Bank dislodged

Citigroup from fifth place with a 15% increase in capital. HSBC was ranked fourth.

5.2.2 Results from factor copula-implied tail dependence-based analysis

The proposed network-based factor copula approach generates the copula-implied tail dependence.

The singular value norm based on this dependence enables us to rank the connectedness scores,

and identify the more relevant ones. Methodologically, we contribute to the current literature for

the methods used to quantify systemic risk, and we show how it can be built in a high-dimension

domain. We shed some light on this issue and report the corresponding results. Continuing the

discussion in Table 3 and 4, in 2008 we find that JP Morgan (JPM) and CITI (C) are identified as

central nodes, and they indeed result in higher PVaR estimates and negatively impact, measured
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by SRi, to the global banking system. In 2011 and 2012, the period of the European debt crisis,

HSBC is systemically very important due to the higher tail risk and more severe stress it brings

into the system. The centrality analysis from both empirical and copula-implied tail dependence

indicates that HSBC, as the central node, is very likely to spread a system-wide risk to other

SIFIs and destabilize the system. Accordingly, this SIFI, in terms of its systemic importance,

should be highly regulated by its risk exposure and charged for additional capital buffer.

It is worth noting that Wells Fargo (WFC) has been identified as a central node since 2012,

which may reflect the fact that as of the third quarter of 2011 WFC has been the largest retail

mortgage lender in the U.S., amounting to $1.8 trillion in home mortgages (30% market share

for U.S. mortgages). In October 2012, WFC was sued by U.S. federal attorney Preet Bharara

over questionable mortgage deals. The consecutive identification in the case of WFC, through

the network implied by the factor copula model, warns of a possible risk propagation by WFC.

Recently, FSB committed its risk potential and upgraded its bucket bracket from 1 to 2, as shown

in the 2016 G-SIBs list.

The methods proposed in Section 4.2 reveal a less-convergent identification for central SIFIs shown

in Table 3 and 4. Using the lists of SIFIs and the corresponding bucket level reported by FSB

during 2012-2014 in Table 5, we compare the performances of three identification methods along

with the bucket approach proposed by the Basel Committee. With a focus on highly important

institutions, we only report the top two buckets, namely Buckets 4 (2.5% additional capital

buffer) and 3 (2.0% additional capital buffer). In 2012, Deutsche Bank (DB), identified by the

eigenvector centrality of the Pearson correlation matrix, is allocated in Bucket 4. However, DB

generates relatively lower PVaR estimates and milder stress than HSBC (also located in Bucket 4),

identified by the empirical and copula-implied tail dependence matrix. The same observation in

2014 documents that JPM(in Bucket 4), identified by the copula-implied tail dependence matrix,

indeed induces higher systemic risk than the risk from the SIFIs chosen by the other two methods.

The last three rows of Table 3 report the average PVaR values from three methods (C for copula

tail dependence; T for empirical tail dependence; P for Pearson correlation). It shows that the

central node identification through copula-implied tail dependence causes higher downside risk in
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the system.

In summary, the ranking based on the singular value norm of a copula-implied tail dependence

matrix is more capable of identifying the SIFIs with higher systemic risk as measured by the PVaR

estimates and the stress returns. It also shows a certain degree of coincidence with the bucket

approach, but places more emphasis on modeling the interplay among SIFIs in order to produce

a system-wide quantification. The capital buffer charge calculation based on it is supposed to

be reasonable. Rather naturally, the centrality analysis based on the Pearson correlation matrix

performs worse as the risk being addressed is not volatility risk but tail risk.

6 Conclusions

To quantify and rank the systemic importance of 28 SIFIs selected by FSB and the Basel Com-

mittee of Banking Supervision, we propose a network-based factor copula approach. In this

framework, we firstly construct the copula-implied network structure and identify the central

SIFIs there, then using the joint distribution defined by the factor copula model, we quantify the

tail risk of the remaining SIFIs as a whole conditional on the predefined central SIFI. The factor

copula is tractable in a high-dimensional estimation and flexible in terms of distributional choice,

which permits researchers a system-wide investigation.

We visualize the interplay and the network among SIFIs from their dependencies defined by the

Pearson correlation matrix, the empirical and the copula-implied tail dependence. The network

from the Pearson correlation matrix can document variance risk but is limited for tail risk. The

central SIFI based on this network is very unlikely to trigger risk contagion in the system. The

network implied by the factor copula model is, however, unique because of its “conditional” nature.

The network conditional on the central SIFI is exceptionally dense; others are more sparse. Using

the singular-value matrix norm of the copula-implied tail dependence matrix, we show that the

identified central SIFI induces the highest tail risk and severe stress in the system. Accordingly,

this SIFI, in terms of its systemic importance, should be highly regulated by its risk exposure and
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charged for additional capital buffer.

The framework in this study and the system risk measures based on it are completely system-wide,

which are proposed to resolve an obstacle in a high-dimensional setting. The network and joint

distribution of it can therefore be tackled and modeled. The application of this framework in

the analysis of stress-testing is demonstrated. The network-based factor copula approach can be

useful for regulators to quantify the connectedness of a network and overall tail risk conditional

on a specific SIFI.
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7 Tables

Table 1: Summary information on SIFIs
Index SIFI Firm Size Debt Ratio Bucket Country

1 JP MORGAN CHASE (JPM) 21.506 0.261 4 U.S.
2 BANK OF AMERICA (BAC) 21.446 0.302 2 U.S.
3 BANK OF NEW YORK MELLON (BKM) 19.499 0.095 1 U.S.
4 CITIGROUP (CITI) 21.359 0.300 3 U.S.
5 GOLDMAN SACHS (GS) 20.624 0.509 2 U.S.
6 MORGAN STANLEY (MS) 20.501 0.417 2 U.S.
7 STATE STREET (SST) 19.106 0.153 1 U.S.
8 WELLS FARGO (WFC) 20.980 0.183 1 U.S.
9 ROYAL BANK OF SCTL (RBC) 21.588 0.252 1 U.K.
10 BARCLAYS (BCS) 21.604 0.286 3 U.K.
11 HSBC (HSBC) 21.682 0.127 4 U.K.
12 STANDARD CHARTERED (STAN) 20.136 0.187 1 U.K.
13 BANK OF CHINA (BOC) 21.200 0.160 1 China
14 ICBC (ICBC) 21.508 0.089 1 China
15 CHINA CON.BANK (CCB) 21.281 0.092 1 China
16 BNP PARIBAS (BNP) 21.684 0.136 3 France
17 CREDIT AGRICOLE (ACA) 21.489 0.211 1 France
18 SOCIETE GENERALE (GLE) 21.184 0.139 1 France
19 DEUTSCHE BANK (DB) 21.630 0.200 3 Germany
20 UNICREDIT (UCG) 20.929 0.360 1 Italy
21 ING GROEP (ING) 21.156 0.103 1 Netherlands
22 SANTANDER (SAN) 21.158 0.368 1 Spain
23 NORDEA BANK (NDA) 20.476 0.326 1 Sweden
24 CREDIT SUISSE GROUP (CS) 20.744 0.339 2 Switzerland
25 UBS GROUP (UBS) 21.008 0.251 1 Switzerland
26 MITSUBISHI UFJ (MTU) 21.533 0.159 2 Japan
27 MIZUHO (MFG) 21.247 0.233 1 Japan
28 SUMITOMO.MITSUI (SMFG) 21.044 0.125 1 Japan

* Debt ratio is defined as the ratio of total debt to total assets of a bank; and bank size is the log value of total assets;
denominated in US dollars.
** Mean values during the sample period (2007-2014) are shown. The buckets assigned by BCBS correspond to required
levels of additional common equity loss absorbency as percentage of risk-weighted assets from 3.5% (Bucket 5), 2.5%(Bucket
4), 2.0%(Bucket 3), 1.5%(Bucket 2) to 1%(Bucket 1)
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Table 2: Computed AIC values for the double-t factor copula for SIFIs as conditioning factors
2007 2008 2009 2010 2011 2012 2013 2014

JPM 1651.28 2045.88 1141.86 1357.16 2028.69 1513.45 1640.60 1614.30
BAC 1706.51 2031.10 1174.55 1441.01 2055.94 1580.20 1629.78 1630.56
BKM 1636.44 2074.27 1194.11 1397.11 2072.05 1523.37 860.99 1645.34
CITI 1634.90 2063.41 1325.78 1394.93 2046.94 1556.02 1636.46 1592.45
GS 1715.00 2042.24 1284.64 1382.44 2050.40 1577.14 1638.96 1554.63
MS 1684.45 2057.85 1328.22 1444.16 2029.10 1564.48 1628.97 1681.20
SST 1686.35 2087.27 1307.09 1428.15 2069.61 1463.50 1570.56 1680.90
WFC 1651.84 2028.51 1167.38 1437.59 2066.66 1533.89 1641.15 1674.39
RBC 1595.68 1849.94 1484.51 1365.52 1853.41 1463.53 845.95 1569.47
BCS 1451.79 1877.24 1498.32 1292.15 1879.69 1446.24 854.39 1484.49
HSBC 1596.56 1945.31 1512.65 1381.76 2019.95 1524.02 852.89 1657.91
STAN 1608.93 1992.46 1525.08 1384.64 2039.55 1514.48 855.66 1631.04
BOC 1640.55 2076.90 1494.07 1398.34 2071.61 1570.16 1630.85 1640.68
ICBC 1703.39 2084.07 1174.55 1427.86 2077.28 1574.48 1628.97 1635.90
CCB 1707.12 2086.74 1178.36 1402.34 2076.61 1576.92 1614.87 1668.66
BNP 1377.52 1739.24 1497.51 1337.11 1753.46 1317.70 1345.96 1440.48
ACA 1483.89 1751.81 1514.19 1346.18 1869.66 1243.30 1418.62 1428.57
GLE 1441.02 1842.23 1506.49 1341.52 1783.64 1435.82 909.70 1375.61
DB 1574.20 1892.67 1483.93 1342.50 1879.15 1459.55 890.65 1549.03
UCG 1523.50 1875.63 1496.74 1364.46 1869.26 1371.54 1447.63 1460.33
ING 1583.65 1900.56 1478.99 1363.44 1923.17 1409.35 1053.89 1493.61
SAN 1611.87 1876.42 1508.17 1356.46 1905.50 1452.59 1047.23 1455.44
NDA 1642.83 1911.01 1511.90 1352.62 2004.55 1537.59 858.64 1615.30
CS 1544.85 1838.39 1493.00 1331.33 1934.72 1373.82 1506.82 1561.10
UBS 1552.63 1833.23 1521.49 1322.45 1948.43 1424.10 846.26 1561.43
MTU 1696.56 2055.61 1496.29 1455.03 2069.47 1559.77 1632.48 1602.83
MFG 1675.29 1960.57 1475.75 1327.70 2089.85 1546.52 1618.28 1679.91
SMFG 1702.30 2085.83 1461.46 1349.79 2070.68 1550.42 1644.11 1683.69

Average double-t 1610.03 1960.94 1401.32 1375.92 1983.54 1488.00 1312.55 1581.04
Average Gaussian 1497.87 1840.38 1385.13 1253.23 1789.66 1413.78 1462.90 1484.61
Average skewed-t-t 1608.48 1938.29 1407.89 1377.42 1969.90 1481.97 1301.56 1576.41
The last three rows show the average AIC values across SIFIs are generated by double-t, Gaussian and skewed-t-t factor
copula, respectively. In the upper panel, the specific AIC value given a particular SIFI as conditional factor is selectively
shown only for the double-t case due to space constraints. The negative sign in front of AIC value has been suppressed
here.
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Table 3: Portfolio VaR estimates in double-t copula model at 99% and 95% level conditional on each SIFI

Index(Symbol) 2007 2008 2009 2010 2011 2012 2013 2014
PVaR95 PVaR99 PVaR95 PVaR99 PVaR95 PVaR99 PVaR95 PVaR99 PVaR95 PVaR99 PVaR95 PVaR99 PVaR95 PVaR99 PVaR95 PVaR99

1(JPM) 1.972 3.570 3.922C 6.813C 4.155 7.028 2.498 3.296 2.614 4.387 2.755 5.428 2.114 3.827 3.068C 4.825C
2(BAC) 1.786 3.621 3.581 5.755 3.567 6.825 2.218 4.956 3.452 5.629 3.120 5.270 2.667 3.986 2.087 3.956
3(BKM) 1.802 3.822 3.448 6.225 3.363 5.254 1.950 4.014 2.821 4.569 2.742 5.088 1.923 3.848 1.831 3.970
4(CITI) 2.122 3.408 4.016C 7.212C 4.491 7.136 2.943 4.962 2.481 3.600 2.514 3.943 2.508 4.734 2.539P 4.147P
5(GS) 2.366 4.521 3.431 6.296 3.861 5.439 2.621 4.332 2.028 4.417 2.084 5.309 2.587 4.230 1.873 3.348
6(MS) 2.549 5.095 4.260 6.206 3.790 5.801 2.440 3.743 2.375 4.207 2.477 3.953 2.307 4.591 2.446 3.912
7(SST) 1.783 3.829 3.639 5.270 4.008 6.046 2.776 4.787 2.095 4.833 3.161C 6.088C 3.268 5.394 1.812 4.015
8(WFC) 2.689 4.870 3.893 6.603 4.868 6.853 2.747 4.836 2.297 4.672 3.477C 6.255C 3.331C 5.880C 3.218C 4.900C
9(RBS) 2.226 4.031 3.229 5.052 3.903 5.791 2.558 4.215 3.106 4.783 3.170 4.653 2.608 4.462 2.316 4.287
10(BCS) 2.256P,T 3.616P,T 2.781T 4.317T 4.891 6.436 2.704 4.718 2.540 3.885 2.238 3.406 2.088P 3.461P 2.618 4.385
11(HSBC) 1.347 3.211 2.765 4.165 3.414 5.422 1.821 3.312 2.654T,C 5.747T,C 3.707T,C 5.859T,C 2.258T 4.040T 2.217 3.878
12(STAN) 2.352 3.742 3.852T 6.195T 2.719 5.026 2.434 4.003 2.114 3.919 1.806T 3.641T 2.824 5.028 2.366 4.237
13(BOC) 2.455 5.029 3.327 6.344 2.470 3.499 2.645 4.272 2.430 4.710 2.053 4.143 3.107 5.151 2.051 4.075
14(ICBC) 2.212 3.820 3.235 5.307 2.411 3.986 2.413 3.761 2.287 5.170 2.913 4.303 1.683T 3.580T 2.114 3.791
15(CCB) 1.849 3.126 3.226 5.374 2.856 4.353 2.296 4.215 2.207 4.888 2.606 4.487 3.133T 5.213T 2.278 4.173
16(BNP) 2.185 3.502 4.185T,C 6.614T,C 3.456 5.807 3.107T,C 5.024T,C 3.619 5.298 2.816 4.549 2.721P 3.877P 2.605 4.598
17(ACA) 2.173 4.562 3.060 6.123 3.311 5.382 2.495 4.432 2.688 4.061 3.110 4.017 2.291 3.601 1.992 4.383
18(GLE) 2.124 3.277 3.628 4.929 3.107 5.246 2.899 4.325 2.488 5.115 2.322 5.417 2.388 3.239 2.852 3.857
19(DB) 1.651P 4.352P 3.863 6.567 3.069P 4.363P 2.527P 3.704P 3.563P 4.767P 3.255P 4.589P 2.631 3.880 2.800 4.247
20(UCG) 1.741 2.568 3.280 4.894 4.014 5.934 2.594 4.167 2.978 4.378 1.678 3.053 2.752 3.917 2.216 3.938
21(ING) 2.521 3.866 4.128 5.816 3.754 5.345 2.569 4.704 3.076 5.209 2.988 4.856 2.497 4.149 1.805 4.358
22(SAN) 1.374 2.981 3.255 5.232 3.045C 5.043C 3.107 4.754 2.881 4.780 3.054 5.414 2.239 3.920 2.360T 4.741T
23(NDA) 2.608C 5.114C 3.233 5.349 3.556 5.043 3.254 5.011 1.729 3.403 2.231 3.625 3.276 5.226 2.200 3.910
24(CS) 1.258 2.706 3.976 5.883 3.108 5.119 2.281 3.652 1.980 5.121 2.209 5.165 2.450 4.494 2.610 4.120
25(UBS) 1.630 3.559 2.656P 4.683P 3.373T 4.990T 2.611 4.861 2.862 4.739 3.250 4.311 2.966 4.399 2.193 4.059
26(MTU) 2.637 2.340 2.645 4.540 2.482 4.166 2.219 4.152 1.816 2.798 2.249 3.374 2.944 4.515 2.936 4.527
27(MFG) 2.699 2.872 3.192 4.426 2.523 4.436 3.086 4.579 3.322 4.906 3.416 5.190 3.074 4.536 2.213 3.953
28(SMFG) 2.575 2.357 3.027 5.961 2.990 4.215 2.623 4.270 2.024 2.726 2.359 5.969 2.288 4.439 2.911 4.601
Avg of all 2.107 3.692 3.455 5.648 3.484 5.435 2.587 4.324 2.590 4.525 2.706 4.584 2.604 4.343 2.377 4.186
Avg of C 2.608 5.114 4.041 6.880 3.045 5.043 3.107 5.024 2.654 5.747 3.448 6.067 3.133 5.880 3.143 4.862
Avg of T 2.256 3.616 3.606 5.708 3.373 4.990 3.107 5.024 2.654 5.747 2.756 4.700 2.358 4.277 2.360 4.741
Avg of P 1.953 3.984 2.656 4.683 3.069 4.363 2.527 3.704 3.563 4.767 3.255 4.589 2.404 3.668 2.539 4.147
Superscript P , T and C represent the central nodes identified through the Pearson correlation matrix (P), the empirical
tail dependence matrix (T) and the tail matrix implied by factor copula (C), respectively.
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Table 4: Stress testing conditional on each SIFI
Index 2007 2008 2009 2010 2011 2012 2013 2014
1 (JPM) -0.21 -1.78C 0.16 -2.20 -0.12 -0.72 -0.93 -0.50C
2 (BAC) -0.32 -0.51 -0.97 -1.14 0.19 -0.24 -0.26 -0.11
3 (BKM) -0.05 -0.63 -1.51 -0.73 0.00 -0.59 -0.67 -0.43
4 (CITI) -0.45 -1.84C -1.08 0.91 -0.27 -0.65 -0.17 -0.34P
5 (GS) -0.75 -0.68 -0.74 -1.38 -0.22 -0.50 -0.94 -0.13
6 (MS) -0.97 -0.51 0.34 -1.64 -0.59 -0.48 -0.62 -0.72
7 (SST) -0.20 -0.95 -0.46 -0.94 -0.78 -0.67C -0.14 0.32
8 (WFC) -0.64 -1.02 -0.41 -1.81 -0.56 -0.53C -0.40C -0.58C
9 (RBC) -1.35 -0.39 -1.18 -0.64 -0.79 -0.45 -0.06 -0.62
10(BCS) -0.57P,T -0.24T -2.00 2.03 -1.82 -0.57 0.10 -1.02
11(HSBC) -0.24 -0.38 -0.53 -1.12 -1.79T,C -0.78T,C -0.63T -0.75
12(STAN) -0.06 -1.52T -0.20 0.04 -0.52 0.07T -0.28 0.07
13(BOC) -0.80 -0.90 0.05 0.14 -0.79 -0.39 -0.21 -0.16
14(ICBC) -0.41 -1.11 0.27 0.13 -0.41 0.15 -0.21T -0.33
15(CCB) -0.82 -0.64 -0.25 -0.08 -1.01 -0.24 0.12T -0.01
16(BNP) 0.08 -1.99T,C -1.41 -2.39T,C 0.02 -0.33 -0.19P -0.50
17(ACA) -0.64 -1.00 -0.68 -0.44 -0.23 -0.03 -0.71 -0.74
18(GLE) -0.37 -1.25 -1.05 -1.72 -1.36 -0.30 -1.04 -0.34
19(DB) -0.47P -1.27 -0.40P -0.22P -0.73P -0.22P -0.54 -0.52
20(UCG) -0.18 -0.56 -0.48 -0.81 -0.32 -0.44 0.10 -0.42
21(ING) -1.28 -0.91 -0.68 -1.84 -0.05 -0.20 -0.74 -0.16
22(SAN) -0.16 -0.49 -2.49C -1.02 -0.71 -0.56 0.05 -0.36T
23(NDA) -1.11C -0.37 -0.22 -1.85 -0.18 -0.20 -1.04 0.01
24(CS) -0.12 -1.89 -0.74 -1.22 -0.38 -0.12 -0.69 0.08
25(UBS) -0.74 -0.36P -0.79T -0.59 -1.19 -0.61 0.17 0.13
26(MTU) -0.84 -0.24 -0.36 0.78 0.04 0.03 -0.94 -0.06
27(MFG) -0.59 -0.27 0.52 0.52 -0.73 0.20 -0.99 -0.13
28(SMFG) -0.61 -0.84 -0.34 -0.08 -0.80 -0.04 -0.71 -0.30

* Superscript P , T and C represent the central nodes identified through the Pearson correlation matrix
(P), the empirical tail dependence matrix (T) and the tail matrix implied by factor copula (C), respectively
** The expected portfolio return conditional on the stress of given SIFI is estimated through (29)
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Table 5: List of SIFIs/G-SIBs from 2012 to 2014
Bucket 2012 2013 2014

JPM (1) JPM (1) JPM (1)
4 HSBC (11) HSBC (11) HSBC (11)

(2.5%) CITI (4)
DB (19)

BCS (10) BCS (10) BCS (10)
3 BNP (16) BNP (16) BNP (16)

(2.0%) CITI (4) CITI (4)
DB (19) DB (19)

* The buckets assigned by BCBS correspond to required
levels of additional common equity loss absorbency as
percentage of risk-weighted assets from 3.5% (Bucket
5), 2.5%(Bucket 4), 2.0%(Bucket 3), 1.5%(Bucket 2) to
1%(Bucket 1)
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Figure 1: Empirical tail dependence matrices for 28 SIFIs
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Figure 2: Binary adjacency matrices for 28 SIFIs obtained from empirical tail dependence in Figure 1 (black: 1,

white: 0)
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Figure 3: The estimates of θj|i in Eq. 27 (x-axis : i, y-axis : j)
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Figure 4: Factor copula implied tail dependence derived through Eqs. 15, 16 and 17
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Figure 5: SIFI network structures produced by adjacency analysis on the empirical tail dependence matrix
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Figure 6: SIFI network structures produced by adjacency analysis on the empirical tail dependence matrix
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9 Appendix

9.1 Conditional pair Gaussian copula

The expression in (12) is derived noting that CUj |V (uj|v) = ∂CUj ,V (uj, v)/∂v; denoting Φ2(x, y; ρ)
a bivariate cdf with correlation ρ, it follows then

CUj |V (uj|v) =
∂CUj ,V (uj, v)

∂v
(30)

= ∂Φ2 (Φ−1(uj),Φ−1(v);αj1)
∂v

(31)

= ∂Φ2 (Φ−1(uj),Φ−1(v);αj1)
∂Φ−1(v)

∂Φ−1(v)
∂v

(32)

=
∫ Φ−1(uj)

−∞
ϕ2
(
x,Φ−1(v);αj1

) 1
ϕ(Φ−1(v))dx (33)

=
∫ Φ−1(uj)

−∞

1√
2π(1− α2

j1)
exp

{
−(x− αj1Φ−1(v))2

2(1− α2
j1)

}
dx (34)

= 1√
2π

∫ Φ−1(uj)−αj1Φ−1(v)√
1−α2

j1

−∞
exp

{
−u

2

2

}
du (35)

= Φ

Φ−1(uj)− αj1Φ−1(v)√
1− α2

j1

 , (36)

where the sixth equality comes from integration by substitution. The resulting expression in (12)
also can be obtained from the 1-factor correlation structure in (10).

9.2 Proof of Proposition 3.3.1

According to the properties of functions with regular variation, see Feller (1971), given that the
tails of two variables W , εj are different but symmetric, then P(W + εj < −s) = s−α(AW +Aε) +
O(s−α), see also Hyung and de Vries (2007), Oh and Patton (2015). Then it follows:

P(Zj < −s) = P(θj|1W +
√

1− θ2
j|1εj < −s)

= P(θj|1W < −s) + P(
√

1− θ2
j|1εj < −s) + O(s−α)

= AW

(
s

θj|1

)−α
+ Aε

 s√
1− θ2

j|1

−α

= s−α
(
AW θ

α
j|1 + Aε(1− θ2

j|1)α/2
)
, (37)
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as s→∞.

Consider two different dynamics of Zi and Zj, θi|1 6= θj|1. Then, following Oh and Patton (2015),
we find the link between two thresholds si and sj. The relation between si/θi|1 and sj/θj|1 depends
if the value of the expression

AW θ
α
j|1θ

α
i|1 + Aε(1− θ2

j|1)α/2θαi|1 (38)

is smaller or larger compared to the value of

AW θ
α
i|1θ

α
j|1 + Aε(1− θ2

i|1)α/2θαj|1. (39)

This follows from the observation that

P(Zi < −si, Zj < −sj) ≈ P(θi|1W < −si, θj|1W < −sj) + O(s−α)

≈ P
(
W < − si

θi|1
,W < − sj

θj|1

)

≈ P
(
W < min

{
− si
θi|1

,− sj
θj|1

})
, (40)

as s→∞.

Furthermore,

P
(
W < min

{
−si/θi|1,−sj/θj|1

})
=


s−αi AW θ

α
i|1 if |si/θi|1| > |sj/θj|1| ,

s−αj AW θ
α
j|1 if |si/θi|1| < |sj/θj|1| .

(41)

The condition |si/θi|1| > |sj/θj|1| is fulfilled when simultaneously

AW θ
α
i|1θ

α
j|1 + Aε(1− θ2

i|1)α/2θαj|1 > AW θ
α
j|1θ

α
i|1 + Aε(1− θ2

j|1)α/2θαi|1, (42)

θi|1 < θj|1, (43)

or

AW θ
α
i|1θ

α
j|1 + Aε(1− θ2

i|1)α/2θαj|1 < AW θ
α
j|1θ

α
i|1 + Aε(1− θ2

j|1)α/2θαi|1, (44)

θi|1 > θj|1. (45)
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On the other hand, the condition |si/θi|1| < |sj/θj|1| is fulfilled when simultaneously

AW θ
α
i|1θ

α
j|1 + Aε(1− θ2

i|1)α/2θαj|1 > AW θ
α
j|1θ

α
i|1 + Aε(1− θ2

j|1)α/2θαi|1, (46)

θi|1 > θj|1, (47)

or

AW θ
α
i|1θ

α
j|1 + Aε(1− θ2

i|1)α/2θαj|1 < AW θ
α
j|1θ

α
i|1 + Aε(1− θ2

j|1)α/2θαi|1, (48)

θi|1 < θj|1. (49)

Combining the results from Eq.(41) and Eq.(37), the result follows.

9.3 Proof of Proposition 3.3.2

Given the reasoning in Oh and Patton (2015), it follows that as s→ −∞,

fW (s) = αAW (−s)−α−1, (50)

where fW (s) is the probability density of W . Then, using the fact that the tail index α equals
the degrees of freedom ν for the Student-t distribution, using Mathematica, it follows that

AW = lim
s→−∞

fW (s)
ν(−s)−ν−1 ,

= (νσ2) ν+1
2

ν3/2σB(ν/2, 1/2) ,

where B(·, ·) is the beta function; Aε directly follows from AW .
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