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CONDITIONAL MOMENT RESTRICTIONS AND THE ROLE OF
DENSITY INFORMATION IN ESTIMATED STRUCTURAL MODELS

ANDREAS TRYPHONIDES

HUMBOLDT UNIVERSITY

Abstract
While incomplete models are desirable due to their robustness to misspecification, they

cannot be used to conduct full information exercises i.e. counterfactual experiments and

predictions. Moreover, the performance of the corresponding GMM estimators is fragile

in small samples. To deal with both issues, we propose the use of an auxiliary conditional

model for the observables f(X|Z,ϕ), where the equilibrium conditions E(m(X,ϑ)|Z) = 0

are imposed on f(X|Z,ϕ) using information projections, and (ϑ, ϕ) are estimated jointly.

We provide the asymptotic theory for parameter estimates for a general set of conditional

projection densities, under correct and local misspecification of f(X|Z,ϕ). In either cases,

efficiency gains are significant. We provide simulation evidence for the Mean Squared

Error (MSE) both under the case of local and fixed density misspecification and apply

the method to the prototypical stochastic growth model. Moreover, we illustrate that

given (ϑ̂, ϕ̂) it is now feasible to do counterfactual experiments without explicitly solving

for the equilibrium law of motion.
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1. Introduction

The use of estimated structural models has become pervasive in both academia and

economic policy institutions. In order to answer quantitative questions within a data

coherent framework, practitioners have resorted to a variety of full or limited information

methods. Nevertheless, while economic theory provides a set of equilibrium conditions, it

rarely dictates the complete probability distribution of observables. The latter is necessary

to perform full information analysis i.e. counter-factual experiments and probabilistic

forecasts, and this forces users to make several auxiliary assumptions. For example, one

has to choose which solution concept to use and type (and degree) of approximation to

consider.

Although approximations make computation of the solution of the model easier, this can

possibly cause a form of misspecification with respect to the exact model. Approximations

to non linear models might not necessarily work well, as they can distort the dynamics

implied by the model (den Haan and de Wind, 2010). Distorting the dynamics can lead

to severely wrong inference about parameters and policy recommendations. Moreover,

as shown by Canova and Sala (2009), approximation and model solution can introduce

further uncertainties like loss of identification.

With regard to the types of equilibria considered, although some equilibria can be easily

discarded due to economic reasoning, it is often the case that this is done with not so

strong evidence Pesaran (1987); Blanchard (1979). Different types of equilibria are a priori

equally plausible, and selecting one type of equilibrium can have important implications

for inference regarding the effectiveness of policy. A classic example is the determination

of inflation and the identification of fiscal monetary regimes as discussed in Leeper and

Leith (2016).

The most prominent approach to estimating models that are not completely specified

is the Generalized Method of Moments (GMM) and its variants (Hansen, 1982). Nev-

ertheless, the performance of GMM is distorted in small samples (Hansen, Heaton, and

Yaron, 1996). This paper considers an alternative method for estimating the parameters
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of a dynamic structural model which does not require the equilibrium decision rules and

produces an estimated probability model for the observables. We propose the use of what

we refer to as a ”base” conditional probability measure with density f(X|Z, ϕ) where Z is

conditioning information. This measure can be generally interpreted as an approximate

model for the observables. Utilizing a variation of the method of information projections

Kitamura and Stutzer (1997); I.Csiszar (1975) we obtain a probability distribution that

satisfies the conditional restrictions of the economic model, that is E(m(X,ϑ)|z) = 0, and

is as close as possible to the base measure. This is also related to the recent work of

Giacomini and Ragusa (2014) in a forecasting context.

We develop the corresponding frequentist inference, while we limit most of our analysis

to the case of finite dimensional ϕ. However, extensions under suitable assumptions are

possible1. Furthermore, we deal with correctly specified or locally misspecified classes of

f(X|Z, ϕ). In case of local misspecification, we show that the proposed method is akin

to shrinkage towards the approximate model. More interestingly, an explicit form of the

asymptotic variance of the estimator is provided. Under the condition that there exists

an admissible parameter of f(X|Z, ϕ) such that the moment conditions are satisfied, the

efficiency attained is higher than the semi-parametric lower bound obtained using only

sample information (see Chamberlain (1987)). The reason for this result is that since we

are using more information on the density, the estimator automatically generates more

valid moment restrictions than the purely non-parametric case, and efficiency therefore

increases. Moreover, local misspecification of the density in the form of improper finite

dimensional restrictions leads to even more efficiency gains and therefore an asymptotic

bias - variance trade-off. We provide simulation comparisons of the Mean Squared Error

(MSE) of the estimator for the case of local and non local density misspecification which

corroborate our theoretical results. We also apply the method to simulated data from the

prototypical stochastic growth model, the results of which we report in Appendix C.

1Independent work by Shin (2014) proposes Bayesian algorithms to implement the exponential tilting
estimation using flexible mixtures of densities. Our contribution is mostly on the frequentist properties of
exponential tilting for a general parametric family of densities and our results are therefore complementary
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The strand of literature that is closer to the methodology considered in this paper is

the literature on Exponential Tilting i.e. Schennah (2007); Kitamura and Stutzer (1997);

Imbens, Spady, and Johnson (1998), and Generalized Empirical Likelihood criteria i.e.

Newey and Smith (2004) in a conditional moment restrictions framework. Formally, our

estimator is not an extension of GEL criteria, in the same way the ETEL estimator

(Schennah (2007)) cannot be obtained as a particular version of GEL estimator. We

depart from this literature by considering a generalized version of exponential tilting in

the "first step", where the form of f(X|Z, ϕ) is parametrically specified.

The paper is organized as follows. In Section 2, we introduce information projections

and we provide an asset pricing example. In Section 3 we outline the large sample prop-

erties under correct specification of f(X|Z, ϕ). Section 4 provides a formal shrinkage

formulation and the asymptotic distribution in case of local misspecification while Sec-

tion 5 provides simulation evidence. Section 6 concludes. Appendix A provides some

analytical details for the example and discusses the computational aspect of the method

and the case of non differentiable models. Appendix B contains some of the proofs, while

the rest are in the supplemental material. Appendix C contains further Monte Carlo

results and a basic application on simulated data.

Finally, a word on notation. Let N0 denote the length of the data and Ns the length

of simulated series. X is an nx × 1 vector of the variables of interest while Z is an nz × 1

vector of conditioning variables. Both X and Z induce a probability space (Ω,F ,P). In

the paper three different probability measures are used, the true measure P, the base

measure Fϕ which is indexed by parameters ϕ and the H(ϕ,ϑ) measure which is obtained

after the information projection. Moreover, these measures are considered absolutely

continuous with respect to a dominating measure v, where v in most interesting cases is

the Lebesgue measure. All these measures possess the corresponding density functions p, f

and h. The set of parameters ψ is decomposed in ϑ ∈ Θ, the set of structural (economic)

parameters and ϕ the parameters indexing the density f(X|Z, ϕ). In addition, Ps is

the conditional distribution where s can be a variable or a parameter. Furthermore,
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ml(X,Z, ϑ) is a general X ⊗Z measurable moment function and m(X,Z, ϑ) is an nm× 1

vector containing these functions. For any matrix function Di, the subscript i denotes

the evaluation at datum (xi, zi). The operator →p signifies convergence in probability

and →d convergence in distribution; N (., .) signifies the Normal distribution with certain

mean and variance. In terms of norms, ||.|| signifies the Euclidean norm unless otherwise

stated. In addition ||.||TV is the Total Variation distance2. EP and is the mathematical

expectations operator with respect to measure P . Finally, VP (x) signifies the variance

of variable x under the P− measure while VP̃,s(x) is the second moment of a particular

function s̃(.).

2. Information Projections as Perturbations to the Base Measure

For completeness, we present below the formal problem of an information projection.

Given a class of candidate base densities f(X,Z|ψ), a conditional information projection

is equivalent to solving for the following program:

min
h(X|Z,ϕ)∈Hθ

ˆ
h(X|Z, ψ)log

(
h(X|Z, ψ)
f(X|Z, ϕ)

)
h(Z)d(X,Z)(2.1)

where

a) Hθ :=
{
h ∈ Lp :

ˆ
h(X|Z, ψ)m(X,Z, θ)dX = 0,

ˆ
h(X|Z, ψ)dX = 1, Z a.e.

}

In the information projections literature the minimization problem in 2.1 subject to

constraint (a) is called exponential tilting as the distance metricminimized is the Kullback

Leibler distance, whose convex conjugate has an exponential form.

The setHθ is the set of admissible densities i.e. the densities that by construction satisfy

the moment conditions. Given this class of densities, we perform extremum estimation
2||.||TV = sup

B∈Ω

´
B
|f − p|dv
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using the log likelihood function as follows:

maxψ∈Ψ
´

log(h?(X|Z, ψ))dP(X,Z)(2.2)

The above problem can be conveniently rewritten such that the choice of density

h(X|Z, θ) is equivalent to the choice of a perturbation M(X,Z, θ) to the prior dens-

ity, that is h(X|Z, ϑ, ϕ) = f(X|Z, ϕ)M(X,Z, ϑ). The perturbation factor M(X,Z, ϑ)

will be a function of the sufficient information to estimate θ and is in general not unique.

Selecting h(X|Z, ϑ, ϕ) by minimizing the Kullback-Leibler distance to the prior density

is one way of selecting a unique factorM. The program therefore becomes as follows:

minM∈M Ef(X|Z,ϕ)h(Z)M(X,Z, ϑ) logM(X,Z, ϑ)

where

M :=
{
M∈ Lp : Ef(X|Z,ϕ)M(X,Z, θ)m(X,Z, θ) = 0

Ef(X|Z,ϕ)M(X,Z, θ) = 1
}

The solution to the above problem, that is, the optimal perturbation factor is the

following:

M? = exp (λ(Z) + µ(Z)′m(X,Z, ϑ))

which implies the choice of the following family of distributions:

(2.3) h(X|Z, ψ) = f(X|Z, ϕ) exp (λ(Z) + µ(Z)′m(Y, ϑ))

where µ is the vector of the Lagrange multiplier functions enforcing the conditional mo-

ment conditions on f(X|Z, ϕ) and λ is a scaling function.

Had we used an alternative objective function to (2), e.g. another particular case

from the general family of divergences in Cressie and Read (1984), this would result to
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a different form for h?(X|Z, ψ). Under correct specification for f(X|Z, ϕ), this choice

does not matter asymptotically, while it matters in finite samples. Exponential tilting

ensures a positive density function h? while it has been shown that it is robust under

misspecification of the moment conditions Schennah (2007).

Moreover, in the case in which f(X|Z, ϕ) belongs to the exponential family and the

moment conditions are linear, exponential tilting is the natural choice. We present an

illustrative example of projecting on densities that satisfy moment conditions that arise

from economic theory. In this simple case, due to linearity, the resulting distribution

after the change of measure implied by the projection is conjugate to the prior. Economic

theory therefore imposes structure on the moments of the prior density.

2.1. An Example from Asset Pricing. Consider the restrictions implied by the con-

sumption - savings decision of the representative household on the joint stochastic process

of consumption, Ct, and gross interest rate, Rt. This means that they should satisfy the

following Euler equation:

EP(βRt+1Uc(Ct+1)− Uc(Ct)|Ft) = 0

where Ft is the information set of the agent at time t and U(Ct) = C2
t . Under Rational

expectations, the agent uses the objective probability measure to formulate expectations.

Suppose that a prior statistical model is a bivariate VAR for consumption and the

interest rate which, for analytical tractability, are not correlated. Their joint density

conditional on Ft is therefore: ct+1

Rt+1

|Ft

 ∼ N


 ρcct

ρRRt

 ,
 1 0

0 1




Given the assumption on the utility function, E(Rt+1Ct+1|Ft) = ct
β
. This is a covariance

restriction as it implies that Cov(Rt+1, Ct+1|Ft) = Ct
β

(1 − RtβρcρR). The new density
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h(Ct+1, Rt+1|Ft) is therefore:
 Ct+1

Rt+1

|Ft

 ∼ N


 ρcCt

ρRRt

 ,
 1 Ct

β
(1−RtβρcρR)

∗ 1




Since we know the new density in this case, the perturbationM(X,Z;ϑ), can be reverse

engineered as follows:

M =

N

 ρcCt

ρRRt

 , I2



−1

N


 ρcCt

ρRRt

 ,
 1 Ct

β (1−RtβρcρR)

∗ 1




= exp

−1
2

 Ct+1 − ρcCt

Rt+1 − ρRRt


′ 1 Ct

β (1−RtβρcρR)

∗ 1


 Ct+1 − ρcCt

Rt+1 − ρRRt




In Appendix A, we illustrate how the same expression for M can be obtained formally

using a conditional density projection3, that is, solving 2.1 subject to the first constraint

(a). Note that in this example, the fact that the Euler equation is a direct restriction

on the parameters of the base density is an artifact of the form of the utility function

assumed, and is therefore a special case. In more general examples an analytical solution

cannot be easily obtained and we therefore resort to simulation. Details of the algorithm

are provided in Appendix A.

In the rest of the paper we analyze the frequentist properties of using the tilted density

to estimate ψ ≡ (ϑ, ϕ). The main challenge is the fact that we project on a general

possibly misspecified density. Explicitly acknowledging for estimating the parameters of

the density yields some useful insight to the behaviour of the estimator.

3. Large Sample Theory

This section illustrates asymptotic results, that is consistency and asymptotic distribu-

tion for ψ. The properties of the estimator, as expected, depend crucially on the distance

between the prior and the true population conditional density. We provide an explicit

3More precisely, what is obtained is the density conditional on Z = z.
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shrinkage formulation when the distance vanishes at a N
1
2

0 rate and we comment on the

case of employing non-parametric estimators4.

Before stating the main results, we make certain assumptions that are fairly standard

in parametric extremum estimation and are necessary and sufficient for the Propositions

to be valid. For a stationary ergodic sequence {Xi, Zi}N0
i=1,n≥1, we assume the following:

ASSUMPTIONS I.

(1) (COMP) Θ ⊂ Rk,Φ ⊂ Rl are compact. Therefore Ψ ≡ Θ×Φ ⊂ Rk+l is compact.

(2) (ID)∃!ψ0 ∈ int(Ψ) : ψ0 = arg max
Ψ

E log h(x|z, ψ0)

(3) (BD-1a)∀l ∈ 1..M and for d ≤ 4, P ∈ {Fϕ,P} :

EP |z supψ ||ml(x, ϑ)||d,EP |z supψ ||ml,ϑ(x, ϑ)||d, and EP |z supψ ||ml,ϑϑ(x, ϑ)||d are fi-

nite, Pz-a.s.

(4) (BD-1b)supψ EP(.|z)||eµ
′
i|m(x,z,ϑ)|||2+δ <∞ for δ > 0, ∀µ(z) > 0,P(.|z)− a.s 5

(5) (BD-2)supψ E(log h(x|z, ψ))2+δ̃ <∞ where δ̃ > 0.

(6) (PD-1) For any non zero vector ξ and closed Bδ(ψ) , δ > 0, and P ∈ (Fϕ,P),

infξ×Bδ(ψ) ξ
′EPm(x, ϑ)m(x, ϑ)′ξ > 0 and supξ×Bδ(ψ) ξ

′EPm(x, ϑ)m(x, ϑ)′ξ <∞

Assumptions (1)-(2) correspond to typical compactness and identification assumptions

found in Newey and McFadden (1994) while (3) assumes uniform boundedness of con-

ditional moments, up to a set of measure zero. Assumption (4) assumes existence of

exponential absolute 1 + δ moments and (5) boundedness of the population objective

function6. Finally, (6) assumes away pathological cases of perfect correlation between

moment conditions.

Note that the assumptions above correspond to the case of estimation of a density with

finite dimensional parameters ϕ. In case ϕ is infinite dimensional, the conditions have
4Conditional density projections can therefore rationalize regularized versions of "optimal" GMM, see for
example Hausman, Lewis, Menzel, and Newey (2011) for the case of the Continuous Updating Estimator
(CUE).
5 Note that BD-1a and BD-1b imply that supψ EPzi

||eµ′
im(x,zi,ϑ)+λ(zi,ϑ)m(x, zi, ϑ0)||2+δ <∞ for d−2 >

δ > 0 and ∀zi.
6The additional subtlety here is that it has to hold for the base measure and the true measure. Given
absolute continuity of P(X|Z) with respect to f(X|Z), the existence of moments under P(X|Z) is sufficient
for the existence of moments under f(X|Z)
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to be sufficiently generalized. Such a generalization involves additional conditions that

control for parametric or semi-non parametric estimators for f(x|z). In the former class of

estimators we would need to define a function S(x, z) that essentially replaces the usual

score function in the finite dimensional case and corresponding stochastic equicontinuity

and mean square differentiability conditions, see again Newey and McFadden (1994). In

the semi-non parametric case, since the estimation space becomes a function of the sample

size, i.e. Φn ⊆ Φn+1... ⊂ Φ, conditions on the uniform convergence and continuity of the

objective function have to be suitably adjusted, see for example Chen (2007).

Although we abstract from the above generalizations, the characterization of the asymp-

totic distribution using the high level assumption of asymptotically correctly specified

f(X|Z) is sufficient to illustrate the main trade-off arising when a practitioner wants to

do inference using an estimated probability model without solving for the equilibrium law

of motion.

Recall that we maximize the empirical analogue to (2.2), which, abstracting from sim-

ulation error, is equivalent to the following:

max
(θ,ϕ)∈Θ×Φ

Qn(θ, ϕ) ≡ 1
N0

∑
i=1..N0 log (f(xi|zi, ϕ) exp(µ′im(xi, zi, ϑ) + λi)

where

∀i = 1..n, µi :
ˆ
f(X|zi, ϕ) exp(µ′im(X, zi, ϑ)m(X, zi, ϑ)dX = 0

λi :
ˆ
f(X|zi, ϕ) exp(µ′im(X, zi, ϑ)dX = 1

where for notational brevity we substituted Z = zi for zi. Comparing our objective

function with that of Kitamura, Tripathi, and Ahn (2004), apart from using exponential

tilting in the "first step", we also do not smooth using local values for the instrument

Z. Accounting for local smoothing would complicate in un unnecessary way the analysis

without apparent gain. Most importantly, as the relevant applications are in macroe-

conomics, instruments will be lagged values of Xt, whose distribution is already pinned

down by f(.). In other non-time series applications, Z is treated as fixed.
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The corresponding first order conditions of the estimator are going to be useful in order

to understand both the asymptotic but also the finite sample results. Denoting by M the

Jacobian of the moment conditions, the first order conditions are the following:

ϑ : 1
N

∑
i

(µ(zi)′M(xi, zi, ϑ) + µθ(zi)′m(xi, zi, ϑ) + λϑ(zi)) = 0

ϕ : 1
n

∑
i

(s(xi, zi, ϕ) + µϕ(zi)′m(xi, zi, ϑ) + λϕ(zi)) = 0

where:

µ(zi) = arg min
µ∈Rk

´
f(X|zi, ϕ) exp(µ′m(X, zi, ϑ)dX

λ(zi) = 1− log
(´

f(X|zi, ϕ) exp(µ(zi)′m(X, zi, ϑ)dX
)

With regard to the existence of µ(Z), or equivalently, the existence of the conditional

density projection, Komunjer and Ragusa (2016) provide primitive conditions for the case

of projecting using a divergence that belongs to the φ− divergence class and moment

restrictions that have unbounded moment functions. Assumptions BD-1a and BD-1b

are sufficient for their primitive conditions (Theorem 3).

In Appendix B we provide expressions for the first and second order derivatives of

(µ(Zi), λ(Mi)) which determine the behaviour of ψ̂ in the neighborhood of ψ?0. More

interestingly, these expressions will be useful for the characterization of the properties of

our estimator in the case that the total variation distance between the prior density and

the true density is not zero. In particular, the shrinkage direction will be towards the

approximate model.

We first outline certain Lemmata which are systematically applied in the proofs of all

propositions, and they are also useful in understanding the the source of the differences

to traditional GEL estimation, apart from using exponential tilting in the "first step". We

delegate the proofs to the auxiliary Lemmata to the supplemental material.
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Lemma 3.1. For any Z-measurable function g(µ), Ezg(µ̂i)→ Ezg(µi) and consequently,

Ezλ̂i → Ezλ.

Proof. See Appendix B �

Lemma 3.2. µi = Op(TV (fN0 , pN0)). Furthermore,

∀i ∈ {1..nz},max
i

sup
ϑ
|µ′im(ϑ, zi)| = Op(TV (fN0 , pN0)N

1
d

0 )

Proof. See Appendix B �

A specific case of the above result is that of Newey and Smith (2004), where the total

variation distance between the two densities is TV (fN , pN) = Op(N−ξ0 ) and therefore

µi = op(1) and if 1
d
< ξ < 1

2 , maxi supϑ |µ′im(ϑ, zi)| = op(1).

Corollary 3.2.1. µi = Op( 1
Ns

∑
j=1..Nsm(xj, zi, ϑ)).

Proof. See Appendix B �

Given the above results, we show consistency for both the case of misspecification and

correct specification, and the asymptotic distribution under the latter case. We postpone

the characterization of the asymptotic distribution under local misspecification for the

next section.

3.1. Consistency, Asymptotic Normality and Efficiency. Due to the fact that the

estimator involves a ’two step’ procedure, where the first step involves using only simulated

data, we need to make the assumption that the size of simulated data grows at a higher

rate than sample size. The uniform consistency of the estimator is then shown by first

proving pointwise consistency and then stochastic equicontinuity of the objective function.

Details of the proof are in the Appendix.

Proposition 1. Consistency for ψ?0
Under Assumption I, Lemmata 3.1-3.2:

(ϑ̂, ϕ̂)→
p

(ϑ?0, ϕ?0)

12



Proof. See the Appendix

�

As expected, under correct specification, consistency is for ϑ0. This leads to the follow-

ing corollary:

Corollary 3.2.2. Consistency for ϑ0

If f(X|Z, ϕ̂) is consistent for P(X|Z) or correctly specified, then ϑ?0 = ϑ0.

Proof. See Appendix �

We also derive the limiting distribution of the estimator by the usual first order approx-

imation around ψ0. Below, we present the main result for a general, correctly specified

density. Denoting by G(ψ, .) the matrix of first order derivatives with respect to (ϑ, ϕ),

the asymptotic distribution is regular.

Proposition 2. Asymptotic Normality

Under asymptotic correct specification, Assumption I, Lemmata 3.1-3.2, and for Ns,N0 →

∞ such that N γ̄+1
0
Ns
→c with c > 0 and γ̄ > 1 + 2

d
:

N
1
2

0 (ψ − ψ∗)→
d
N(0,Ω−1)

where Ω = E(G(., z)′Vg(., z)−1G(., z)).

Proof. See the Appendix �

The condition on γ̄ states that the higher d is, i.e. the stronger the boundedness

requirements on the moment conditions, the closer γ̄ is to one. Conversely, when moment

conditions cannot be guaranteed to be bounded for higher orders, simulation size has to

grow at a higher rate.

In the supplemental material we derive the exact form of the variance covariance mat-

rix of the estimator. Given a finite number of conditional moment restrictions and the
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specified density, the efficiency attained is higher than the efficiency bound that does

not use any additional information, as in Chamberlain (1987). To show this, we analyze

the corresponding Jacobian terms and the variance covariance matrix of the first order

conditions. For brevity, we denote dependence on data by the subscript i.

With regard to the Jacobian,

G(ψ0) ≡

 Ḡi,ϑϑ′(ψ̃) Ḡi,ϑϕ′(ψ̃)

Ḡi,ϕϑ′(ψ̃) Ḡi,ϕϕ′(ψ̃)


for Mi(ϑ) ≡ E(M(x, ϑ)|Z), si ≡ E(s(X,ϕ)|Z) and Bi the population projection coeffi-

cient from projecting the score on the user specified moment conditions, the corresponding

components are as follows:

EGi,ϑlϑ′ = EMi(ϑ)′V −1
m (ϑ)Mi(ϑ)(3.1)

EGi,ϑϕ′ = EzMi(ϑ)V −1
m E(mi(ϑ)⊗ si(ϕ)′|Z)(3.2)

= EzM ′
i(ϑ)Bi(ψ)(3.3)

EGi,ϕϕ′ = Ezsi(ϕ)si(ϕ)′(3.4)

Notice that the upper left component is the same as the information matrix correspond-

ing to ϑ when the conventional optimally weighted GMM criterion is employed. The cross

derivative involves the coefficient of projection of the score of the density on the economic

moment conditions. Moreover, 3.4 is the outer product of the score of the density.

With regard to the covariance matrix, Vg(ψ, z), notice that due to stationarity assump-

tions, the form of the long run variance will be Vg(ψ, z) ≡ Vg,0(ψ, z) +∑N0−1
i (Γg,i + Γ′g,i).

More particularly, for sPi ≡mBi, the instantaneous variance-covariance matrix,

V̄ (ψ0) ≡

 V̄11(ψ̃) V̄12(ψ̃)

V̄21(ψ̃) V̄22(ψ̃)


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has the following components:

V̄11 = EzMi(ϑ)′V −1
m Mi(ϑ)

V̄22 = Ez(si(ϕ) + sPi (ϕ))(si(ϕ) + sPi (ϕ))′

V̄12 = 2EzMi(ϑ)′Bi(ψ)

Analogously, the components of the autocovariance terms, Γg,i = 1
k

∑N0
k=i+1 Egkgk−i are

:

E(gkg′k−i)11 = EzMk(ϑ)′E(mk(ϑ)mk−i(ϑ)′)Mk−i(ϑ)

E(gkg′k−i)22 = Ez(sk(ϕ) + sPk (ϕ))(sk−i(ϕ) + sPk−i(ϕ))′

E(gkg′k−i)12 = 2EzMk(ϑ)′Bk−i(ψ)

Interestingly, the expressions above have an intuitive interpretation. If the moment

conditions we use satisfy m(X,Z, ϑ) = s(X,Z, ϕ) + U and E(U|s) = 0, then the the

variance covariance matrix (in the special case of iid data) collapses to:

V̄0 =

 H ′(Vs + VU)−1H 2(H ′ + ∂U
∂φ

)

2(H + ∂U
∂φ

′) 3(Vs + VU) +H


where H ≡ E ∂2

∂ϕϕ′
log f(X,Z, ϕ). Under correct specification of the density, H = Vs and

therefore

V̄0 =

 V ′s (Vs + VU)−1Vs V ′s + ∂U
∂φ

Vs + ∂U
∂φ

′ 3(Vs + VU) + Vs


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In addition, if the moment conditions used span the same space spanned by the scores

of the density, and this is the case when the model is solved, then (G′V̄0G)−1 trivially 7

attains the Cramer - Rao bound as U = 0.

In general, letting J ≡ M ′Vm0M , W ≡ ((s + sp)(s + sp)′ − 4B′MJ−1M ′B) and Q ≡

ss′−2B′MJ−1M ′B, the inverse of the variance covariance matrix of the estimator G′V̄0G

will have the following form:

Ω =

 J +M ′BW−1B′M M ′B(Inϑ×nϕ −W−1Q)

? B′MJ−1M ′B +QW−1Q′


As is also known from the properties of GEL estimators, the projection in the simulated

first step ensures that the moment conditions are automatically weighted with the variance

covariance matrix to achieve maximum efficiency. What is more in our case is that

additional moment conditions are generated by optimizing with respect to ϕ. Since these

conditions also have information about ϑ, the optimal weighting makes use of it. By

standard arguments, if we just used a trivial inverse V̄0 which was non zero only on the

upper left block, i.e. V̄0,11 = (M ′V −1
m M)−1, the variance of the estimator would not be

at its minimum level. If no information is used for the density, as in the GEL literature,

where a non-parametric estimator for f(X|Z) is employed, then [Ω−1]11 = J−1, the semi-

parametric lower bound8.

In the next section, we show that in the case of misspecification of a parametric density,

the first order conditions of the estimator can be conveniently rewritten such that they are

equivalent to optimal GMM type of first order conditions plus a penalty term, which will

be a function of the discrepancy between f(X|φ, Z) and p(X|Z). Under local misspecific-

ation, this penalty has only second order effects. Moreover, misspecification in the form

7If we let U = 0 then the covariance matrix becomes singular as both m and s give the same information.
Moreover, the first order conditions and G collapse to the standard score function and the Hessian (outer
score product) respectively.
8This finding is also in line with the results of Imbens, Spady, and Johnson (1998) in the context of
testing unconditional moment restrictions, who find that exponential tilting utilizes "efficient" estimates of
probabilities rather than the inefficient 1

N weight used in the empirical likelihood literature. Nevertheless,
efficiency gains in our case are of first order importance.
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of wrong parametric restrictions can result in a bias - variance trade-off for ϑ. This also

provides a shrinkage characterization of the estimator, where shrinkage on the nuisance

parameters translates to efficiency gains in the estimates of structural parameters.

4. Shrinkage Towards the Statistical Model

4.1. Finite dimensional ϕ. In this section we investigate the consequences of density

misspecification. We treat the unknown structural model as the infeasible case, so any

misspecified density will imply certain restrictions on the density of the true structural

model. We focus on misspecification of the type R(ϕ) = 0, where R is possibly non

linear. This is quite general, as it represents not only non-linear restrictions on the space

of parameters indexing a single density f(X|Z, ϕ) but also restrictions on the mixture

weights in finite mixtures of densities.

We first establish a few facts on the (lack of) first order effects of local misspecification of

the density. Recall that the first order conditions of the estimator for ϑ once we substitute

for the expressions for λ(Z) and µ(Z) are the following:

(MP −MH)′V −1
m,κ,fmf +M ′

fV
−1
f,mmP = 0

where for notational simplicity we let mP ≡
´
m(X,Z)dP (X,Z) for any measure P .

Since MP −MH ≡
´
M(x, ϑ)(dP (x, z)− dH(x, z)) the latter quantity collapses to zero

for almost all (x, z) if and only if the base statistical model is correctly specified for the

true data generating process. In this case the population first order conditions become

the same as the Continuously Updating GMM estimator (CU) that is:

M ′
PV
−1
P,mmP = 0
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In case of misspecification, rearranging terms in the above first order condition, the scaled

by N
1
2

0 conditions are as follows:

0 = (MPn −MHn)′V −1
κ,fn

N
1
2

0 (mfn −mP,n) + (MPn −MHn)′V −1
κ,fn

N
1
2

0 mPn + ...(4.1)

... +(M ′
fnV

−1
fn
−M ′

PnV
−1
Pn )N

1
2

0 mPn +M ′
PnV

−1
Pn N

1
2

0 mPn(4.2)

The first three terms are functions of the distance between the proposed and the true

f(x|z). We utilize the fact that we can derive the rate of convergence of the terms involving

functionals of the true and the locally misspecified density. More particularly, we provide

below a decomposition that will be useful when thinking about the effects of discrepancies

between the conditional density used by the econometrician and the true density. This

decomposition will be trivial in the case of smooth parametric models.

Lemma 4.1. Influence function for plug-in estimator Wasserman (2006)

For a general function W (x, z), conditional density Q(x|z) and L(x, z) ≡ W (x, z) −
´
W (x, z)dPz(x|z)

WQn −WP ≡
ˆ
W (x, z)d(Q(x|z)P(z))−

ˆ
W (x, z)d(P(x|z)P(z))

=
ˆ ˆ

L(x, z)dQ(x|z)P(z)

We use Lemma 4.1 to characterize the conditions under which local discrepancies

between the conditional density used by the econometrician and the true density have

an effect on the estimating equations characterizing ϑ. We first present the case that

corresponds to the class of densities considered in this paper, that is the parametric class.

Proposition 3. Parametric Smooth Density.

For any (x, z) - measurable function W (.) and P ≡ P (ϕ), P(ϕ) 1-differentiable in φ, the

18



following statement holds:

W
P (φ0+hN

− 1
2

0 )
−WP = N

− 1
2

0 h

ˆ
δW (z)dP(z)

Proof. See Appendix B �

The distance between any functional will therefore have the same order as that of the

distance between the conditional densities. The first three terms in 3.12-3.13 involve

functionals of the moment functions and their corresponding Jacobian matrices. Given

Proposition 1, we can now determine whether the first order estimating equations for ϑ

are affected by the misspecification. What we find is that local misspecification has first

order effects on ϑ̂ only through φ̂.

Proposition 4. Indirect first order effects

Given Proposition 1, the system of equations in (4.1) becomes as follows:

0 = Op(hN
− 1

2
0 ) +M ′

PnV
−1
Pn N

1
2

0 mPn

Proof. See Appendix B �

Note that the misspecification considered is arbitrary as h is arbitrary. Given this

result, we can focus on shrinkage properties for ϑ arising solely because of shrinkage in

φ. We analyze shrinkage by adopting the local asymptotic experiment approach, see for

example Hansen (2016). We investigate convergence in distribution along sequences ψn

where ψn = ψ0 + hN
− 1

2
0 for ψn the true value, ψ0 ∈ Ψ0 the centering value and h the

localizing parameter. The true parameter is therefore ”close” to the restricted parameter

space up to h.
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Proposition 5. Asymptotic Distribution with Local Restrictions

For R(ϕ) ≡ ∂
∂ϕ
r(ϕ), G−1 ≡

 G11 G12

G21 G22

, S1 ≡ [In1 , 0n1×n2 ], S2 ≡ [0n2×n1 , In2 ],

Under assumptions I such that N
1
2

0 Ĝ(ψ̃)−1g(ψn)→
d
Z ∼ N(0,Ω):

(1) N
1
2

0 (ϑ̂− ϑn)→
d
Zr

where Zr ≡ S1Z −G12(ψ0)R(ϕ0)(R(ϕ0)′G22(ψ0)R(ϕ0))−1R(ϕ0)′(S2(Z + h))

(2) For any non zero vector ξ, ξ′(V(S1Z)− V(Zr))ξ ≥ 0

Proof. See Appendix B �

There are two main implications of Proposition 4.2 for ϑ̂. First, for h > 0, the asymp-

totic distribution is non regular i.e. the distribution depends on h (see p. 115 in van der

Vaart (1998)). Second, the variance of ϑn is lower than the conventional semi-parametric

lower bound for regular estimators. For ϑn arbitrarily close to the restricted subspace of

ϑ0, efficiency increases. More importantly, this increase in efficiency is not local as the size

of h is left unrestricted. Note that no statement has been made about the implications

for MSE. Future work can possibly look at restrictions on the domain of h such that this

estimator dominates.

4.2. A note on the Non Parametric Case. While in this paper we have not formally

dealt with non or semi parametric estimation of the conditional density of the observations,

we make a sketch of what can be expected in terms of the behaviour of the estimator.

First, it is clear that the conventional Taylor expansion is not valid anymore in the case

of infinite dimensional φ. We nevertheless can characterize the behaviour of the estimator

using the influence function in the non parametric case.
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When a non parametric estimator is used, then integrating with respect to Q(x|Z)

yields that:

WQn −WP =
∑
i≤N0

ωiL(xi, zi)

where ωi are local weights that depend on the data and some tuning parameter i.e.

bandwidth. Letting ζi ≡ ωiL(xi, zi), we make two observations. First, Eζi is in general

not zero as is typical in non parametric estimation i.e. there is a bias which has the same

order as the bandwidth. Second, the variance of ζi is also typically of order lower than

N−1
0 and therefore the rate of convergence is typically lower than N−

1
2

0 . From equations

3.14-3.14 we can see that as long as this rate of convergence is not as low as N−
1
4

0 , the first

order conditions for ϑ do not have asymptotic first order bias. Moreover, restrictions on

the class of densities considered will in general reduce variance and potentially increase

bias in the estimate of f(X|Z). In order to investigate the effects on estimates of ϑ we

need to compute the influence function for f̂(X|Z) which is beyond the scope of this

paper. Intuitively, optimizing the choice of auxiliary parameters like the bandwidth in a

way that minimizes mean squared error should also minimize the mean squared error for

ϑ, at least in the case of having a rate of convergence faster than N−
1
4

0 . If this is not true,

then we should expect slower rates of convergence for ϑ.

Although we have characterized the implications for the estimation of ϑ conditional

on the choice of the auxiliary conditional density, we have not yet discussed what would

lead to a reasonable choice of density. We provide such a discussion below. Moreover, we

provide some simulation evidence on the performance of this method and an application

to a small scale equilibrium model with standard agent optimization restrictions.

5. Discussion and Simulation Evidence

5.1. Discussion on Choice of F (X|Z) and Asymptotic Bias. An obvious way to

avoid distributional misspecification asymptotically is that of non parametrically estima-

tion of F (X|Z), which this paper abstracts from . One of the reasons is that within the
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class of General Equilibrium models, once the equilibrium conditions are determined, we

know a lot about F (X|Z), even before solving the expectational system.

Recall that what is often specified without economic theory in the background, is the

probability distribution of the shocks. Then, the practitioner specifies which moment

conditions should be satisfied by the model. For example, a well known specification for

the production function is the Cobb Douglas form, that is log yt = logAt+(1−α)Kt+αNt

where At is an efficiency factor. Conditional on Kt and Nt being observable, the law of

motion of output is determined by the production function and the process of At. Had At

had been observable too, then we could estimate its law of motion, F̂ (At|zt−1). The next

question is whether we should estimate the law of motion for yt. If F (At|zt−1) and the

Cobb Douglas condition are well specified, then we do not need to estimate F̂ (yt|zt−1).

Since the Cobb Douglas form of the production function, or any other condition, are

derived from economic theory, then they should be correctly specified by assumption.

This is in contrast with partial equilibrium models, like in Gallant and Tauchen (1989),

where estimating the law of motion is more important as it is left unspecified by the

theory posed. In the context of this paper, what is more useful is to look at the extent to

which estimates can be biased when the base density is slightly misspecified, when it is

in principle observed and estimable, but we have limited sample size. Below, we provide

evidence of how severe the effects on MSE can be in a simple setting.

5.2. Monte Carlo Experiments. We conducted two Monte Carlo (MC) experiments

and an estimation exercise of the stochastic growth model with simulated data. In this

section we present the MC experiment for the consumption Euler equation; the rest of

the exercises are in Appendix C .

Estimating the Consumption Euler equation. We investigate performance in terms

of MSE of our estimator compared to CU-GMM in the case of locally and non-locally

misspecified base densities. Similar to the analytical example we used in previous sections,

the DGP is a Bivariate log-Normal VAR for the (demeaned) consumption and interest
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rate :  log C̃t+1

log R̃t+1

 ∼ N


 ρC ρCR

ρRC ρR,


 log C̃t

log R̃t

 ,
 σ2

C σCR

σRC σ2
R




Moreover, assuming a quadratic utility for the representative agent, U(Ct) := αCt − γC2
t

and that βRss = 1 the Euler equation becomes as follows:

Et
(
β
Ct+1Rt+1

Ct
− 1

)
= 0

For the DGE we impose that ρC = ρRC = 0, ρR = 0.95, ρCR = 0.05, β = 0.75 and

Σ = [0.05, 0.002; 0.002, 0.05]. We plot below MSE comparisons for typical sample (and

sub-sample) sizes for quarterly macroeconomic data sets i.e. n = {20...210} for two

experiments. In the first experiment, we compare the performance of the CU-GMM

estimator to our estimator, both in the case of knowing the density and estimating σCR.

As evident, the performance of GMM is much worse than the other two cases, as we

use the empirical distribution function rather than the correctly specified density. In

Figure 5.2 we present the results of restricting σCR to zero: the efficiency gain does not

overcome the resulting bias. However, as we increase the dimension of the estimated

parameters, the MSE gains become noticeable. In fact, in Figure 5.3 we present the case

when we estimate (ρRC , ρR, σCR) s.t. ρCR = 1−ρR compared to estimating just σCR) and

imposing local misspecification T− 1
2hon (ρRC , ρR) for h=0.01 and ρCR = 1−ρR. The bias -

variance trade-off holds for a moderately sized samples, indicating that our estimator can

be potentially useful for estimating models in small subsamples. Moreover, the dominance

over optimal GMM (plotted in Figure 5.1 )is clearly visible .
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Figure 5.1. β̂ for low dimensional Φ vs optGMM

Figure 5.2. β̂ for low dimensional Φ vs True model (1000 MC replications)
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Figure 5.3. β̂ for "high" dimensional Φ vs Restricted model (500 MC replications)

Interpreting GMM as a plug-in estimator using the empirical CDF, where the latter is

the most basic infinite dimensional model for the true CDF, it is not surprising that a

low dimensional but locally misspecified CDF performs better in terms of MSE in small

samples.

6. Conclusion and Future Research

In this paper we have proposed an alternative approach to estimating a probability

model that satisfies conditional moment restrictions coming from economic theory. The

motivation comes from the fact that solving the equilibrium conditions for the decision

rules requires assumptions that may not be valid and more importantly, are not revisable

with the sample size. The use of auxiliary information on the predictive density of the

observations to obtain a complete model enables one to construct estimated predictive

distributions that can be used both for policy and forecasting exercises. We have shown
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the asymptotic properties of this method under correct specification and local misspe-

cification of the parametric conditional density of the observations. With regard to the

latter, parametric models defined by drifting parameter sequences (that are local to the

true parameter) can under some conditions lead to efficiency gains that can justify the

use of auxiliary information even if this information is not accurate.

It is worthwhile to note that the results of this paper are general and therefore not

confined to the case of equilibrium models, but any model defined by conditional mo-

ment restrictions. Using more information on the nuisance parameters leads naturally

to efficiency gains. We have also shown simulation evidence for the performance of this

method at various sample sizes under local and non-local misspecification and we applied

the method to the prototypical stochastic growth model. Since this paper has focused on

the econometric analysis and simulation of the method, we leave substantive applications

for immediate future research.

Overall our method provides a promising way of estimating the parameters of mod-

els that are not probabilistically complete but nevertheless enables practitioners to do

exercises that have been only possible with full information methods.
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7. Appendix A

7.1. Analytical derivations for Example 1. Suppressing λ, the perturbation, exp(µ′m(x, ϑ)+

λ) is proportional to

exp

−1
2


 ct+1 − ρcct

Rt+1 − ρRRt


′  0 −µt

−µt 0


 ct+1 − ρcct

Rt+1 − ρRRt


− µt ctβ (1−RtρcρRβ)


The trick here is that we can get the representation by rearranging terms, and droop-

ing terms that do not depend on µ, and then do the minimization. Therefore, for ε1,t+1

ε2,t+1

 ≡
 ct+1 − ρcct

Rt+1 − ρRRt

 the problem becomes

min
µ

ˆ
exp(−1

2


 ε1,t+1

ε2,t+1


′  1 −µt

−µt 1


 ε1,t+1

ε2,t+1

+ 2µt
ct
β

(1−RtρcρRβ)

)d(R,C)

= min
µ

ˆ
exp−1

2


 ε1,t+1

ε2,t+1


′  1

(1−µ2
t )

µt
(1−µ2

t )

µ
(1−µ2

t )
1

(1−µ2
t )


−1 ε1,t+1

ε2,t+1

+ 2µt
ct
β

(1−RtρcρRβ)

d(R,C)

We therefore have that the F.O.C

ˆ
exp−1

2


 ε1,t+1

ε2,t+1


′  1

(1−µ2
t )

µt
(1−µ2

t )

µ
(1−µ2

t )
1

(1−µ2
t )


−1 ε1,t+1

ε2,t+1

− 2µt
ct
β

(1−RtρcρRβ)

× ...
...× (−(ε1,t+1ε2,t+1 + ct

β
(1−RtρcρRβ))d(R,C) = 0

Then, for the Normal scaling constant C,

C

ˆ
N(

 ε1,t+1

ε2,t+1

 ,
 1

(1−µ2
t )

µt
(1−µ2

t )

µ
(1−µ2

t )
1

(1−µ2
t )

)(ε1,t+1)(ε2,t+1)− ct
β

(1−RtρcρRβ))d(R,C) = 0

µt
(1− µ2

t )
− ct
β

(1−RtρcρRβ) = 0

µt is the solution of the latter equation.
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7.2. Computational Considerations. This section comments on the computational

aspects of using information projections to estimate models defined by moment restric-

tions. This is important in terms of practice, and is indeed crucial when the number of

moments conditions is higher. This makes it more costly to compute the projection with

high precision. Moreover, in the case of conditional moment restrictions, the projection

involves computing Lagrange multipliers which are both functions defined on Θ×Z. The

dimension of this space can be formidably high.

To begin with, it is instructive to notice that the problem we are solving is a min-max

problem, of a particular nature. In traditional empirical likelihood (GEL) computation,

it is often advocated that the dual approach (min-max) can be computationally easier

in the sense that it is lower dimensional. More particularly, in that case, if there are

M constraints, N data points, and K parameters, then the dimension of the constrained

optimization is K+N withM+1 restrictions, while the min-max problem is of dimension

K+M . Nevertheless, there is a potential cost to this dimension reduction, and this is the

issue that the whole problem is not convex. While the inner loop (the one to obtain the

multipliers) has a nice quadratic objective function, and can be handled with a typical

Gauss-Newton procedure, the outer loop is often hard to handle.

In this paper, computation of the inner loop is much smoother than the one typically

faced in the GEL. This is for the reason that the constraints are imposed on the pop-

ulation density, from which we can sample as much as we can. Furthermore, the issue

of dimensionality reduction is more subtle as µ(z) and λ(z) are still functions, and we

therefore operate in an infinite dimensional space. The outer loop can nevertheless still

be an issue. We use Markov Chain Monte Carlo (MCMC) as in Chernozhukov and Hong

(2003) with a partially adaptive variance covariance matrix for the proposal distribution

in the Metropolis - Hastings algorithm.

As already mentioned, µ is a vector of functions of the information set and the parameter

vector. Therefore, in the estimation algorithm, the projection has to be implemented at

all the points of zi and at every proposal for the vector φ. In a high dimensional setting
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due to large samples, instead of computing the projection it might be more efficient to

estimate the unknown functions µ(X,Z) and λ(X,Z) by simulating at different points

of the support of the function and use function approximation methods i.e. splines. In

case the model admits a Markov structure, the information set is substantially reduced,

making computation much easier.

The general algorithm for the inner loop is therefore as follows:

(1) Given proposal for (ϕ, ϑ), simulate Ns observations from F (x; z, ϕ)

(2) For a finite set {z1, z2, ..zk..zK} compute :

• µ(xj; zkϑ) = arg min 1
ns

∑
j exp(µ(xj; z, ϑ)′m(xj; zk, ϑ)) and

• λ(xj; zk, ϑ) = 1− log( 1
ns

∑
j exp(µ(xj; z, ϑ)′m(xj; zk, ϑ)))

(3) Evaluate log-likelihood: L(x|z, ψ) = 1
N0

∑
i (log h(xi, zi)ϑ))

Inner loop. In order to facilitate the quick convergence for the inner minimization and

avoid indefinite solutions, we transform the objective function with a one to one mapping,

and add a penalizing quadratic function, More particularly, let the objective function

be F (µ) = 1
ns

∑
j=..Ns exp(∑jmj(xi, ϑ)). The transformed objective function is F̃ (µ) =

log(F (µ) + 1) + τ ||µ||2 where τ is the regularization parameter. We have tried many

different examples, and in all the cases, with large enough simulation (ns = 5000), the

objective function has a nice quadratic form, something that makes the regularization

trivial. Regularization becomes important when the simulation size is smaller, something

that makes sense only if we want to reduce computational time. This introduces a bias

to the value of µwhich is in the order of τ . The results reported are with Ns = 5000, as

it has been checked that the objective function converges.

7.3. Counterfactual Distributions. An additional advantage of the method used in

this paper, is that although the model is not solved for the equilibrium decision rules,

we can still perform counterfactual experiments. What is more important is that this

method readily gives a counterfactual distribution, while the distribution of the endogen-

ous variables is hardly known in non-linear DSGE models. Knowing the distribution of
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outcomes is extremely important for policy analysis, especially when non linear effects

take place, and therefore the average effect is not a sufficient statistic to make a decision.

Below I present an example which is based on a modification of Example 1, where the only

difference is that the utility function is of the Constant Relative Risk Aversion form. The

counterfactual experiment consists of increasing the CRRA coefficient (σ = 1 to σ = 5).

Below I plot the contour maps of the conditional joint density of (Rt+1, ct+1) with a change

in the risk aversion coefficient. An increase in risk aversion is consistent with higher mean

interest rate, and lower mean consumption. Moreover, consumption and interest rates are

less negatively correlated. This is also consistent what the log - linearized Euler equation

implies, ct = − 1
σ
rt.:

Figure 7.1. Increase in Risk Aversion Coefficient

7.4. A Note On Non Differentiable models. A not so uncommon case in economic

theory in which first order conditions cannot be easily derived due to differentiability

issues is the case of discrete choice. Discrete choice might be relevant in a macroeconomic

framework in cases when some agents have to decide over finite actions, for example job

search, default e.t.c. Discrete choice problems have a special structure, which we can also

30



make use of. This is the case because we can in principle obtain a conditional choice

probability, (CCP), originally introduced by Hotz and Miller (1993).

Following Rust (1987), we can define the control variable sequence as {dt, dt+1, dt+2...}.

Moreover, let (x, ε) be the endogenous and exogenous state variables (with (x′, ε′) denoting

next period), v(x, d, θ) the instantaneous return function and p(.) the relevant probabil-

ity density. By a standard Bellman formulation, controls solve the following functional

equation,

V (x, ε) = max
d
{v(x, d, θ) + β

ˆ
(x′,ε′)

V ((x′, ε′)p(x′, ε′|x, ε, d, ϑ)dx′dε′)}

Under a conditional independence assumption, the Markov transition density is factor-

ized as p(x′, ε′|x, ε, d, ϑ) = p2(ε′|x′, ϑ2)p3(x′|x, d, ϑ3), and taking expectations, EV (x) =
´
ε
V (x, ε)p2(ε|x, ϑ2)dε and EV (x, d) = v(x, d, θ1) + β

´
x′
EV (x′)p3(x′|x, d, ϑ3)dx′). Then,

the log likelihood of a data point {Xi} is as follows:

log li(Xd,i, ϑ) = logP (di|xi;ϑ)p3(xi|xi−1, di−1, ϑ3)(7.1)

There are various (often tricky) ways to obtain the CPP P (di|xi;ϑ) as a function of v(.),

ϑ and EV (x, d) in the microeconometrics literature, which can in principle be applied

in the same way here, but I abstract from this and I encourage the interested reader to

refer to the papers cited. Using 7.1, we can obtain the likelihood in the following way:

Assuming that the data contain both continuous variables (Yi), discrete variables (Xd,i),

we can include the fixed point requirement EV = T (EV, ϑ) as another restriction i.e.

E(V − T (EV )) = Emd(xd,i, ϑd)9. This restriction will be satisfied for the true parameter

vector parameterizing the discrete choice problem, and will also be a function of ϕ, i.e.

9In the case of correct specification of the underlying density, imposing fixed point conditions as restric-
tions is similar to the MPEC method of Su and Judd (2012).
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ϑd = τ(ϕ). More particularly, the tilted density will be of the form:

h(xd,i, yi|zi, ϑ)

= f(yi|xd,i, zi, ϕ) exp(µ′m(yi, ϑ)× p(xd,i|yi, zi, ϑd)δ(xd = xd,i) exp(µdmd(xd,i, ϑd))

= f((yi, di|zi, τ(ϕ)) exp(µ′m(yi, di, ϑ))

where δ(.) is the Dirac delta function, used to represent the probability density function

of a discrete variable. We avoid the non smoothness problem exactly by making the

density a smooth function of ϑ and EV . Furthermore, the asymptotic theory presented

above, assumes differentiability of the moment function m(., ϑ) and this appears not to

correspond to the class of discrete choice problems. Nevertheless, looking at the fixed

point constraint, the “moment function” one can use is Ep2V (x) − T (Ep2V (x), ϑ) where

E(V (x)) ≡
´
ε′

maxxd EV (x, d)p2(ε′|x, ϑ2)dε′). If T is smooth, we can see that assuming

a continuous type of distribution for ε, overcomes the non differentiability of the ” max ”

operator. In our formulation, the moment condition is Ex[Ep2V (x)− T (Ep2V (x), ϑ)] = 0

and therefore consistent with using the "smoothed" moment function.
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8. Appendix B

Proof. of Proposition 1 :

Convergence of µi. Consider the sets Vµ,δ = {µ ∈ M : ||µ − µ0|| < δ}and V(ϑ,φ),δ =

{ϑ ∈ Θ : ||ϑ− ϑ0|| < δ, φ ∈ Φ : ||φ− φ0|| < δ} and the objective functions they optimize

respectively. By assumptions BD-1 and the definition of µ = arg inf Q(x, zi, ϑ, φ, µ)

µ
M×1

(φ, ϑ) exists for all ϑ, φ and is unique . Fixing Z = zi,∀δ > 0, we have that from a

Taylor expansion of Q(µ, zi) = 1
ns

∑
1..ns e

µ′imi(xs,ϑ) with Lagrange Remainder:

Q(µ0, zi) ≥ Q(µ, zi) = Q(µ0, zi) +Q′µ(µ0, zi)(µ− µ0) + 1
2Q
′′
µ(µ̃, zi)(µ− µ0)2

−1
2Q
′′
µ(µ̃, zi)(µ− µ0)2 ≥ Q′µ(µ0, zi)(µ− µ0)⇒ |Q′µ(µ0, zi)| > C||µ− µ0|||

By assumption (BD-1b), the sequence {eµ′im(xs,ϑ)m(xs, ϑ0, zi)}s=1..ns is uniformly in-

tegrable with respect to the F−measure , and by the WLLN for U.I sequences, we have

that Q′µ(µ, zi) = op(1) as:

1
ns

∑
1..ns

eµ
′
im(xs,zi,ϑ)+λm(xs, ϑ0) p→ Eh|ϕ,zim(xs, ϑ0, zi) = 0

Therefore, µi−µi,0 = op(1). (a.s) We can actually improve on this rate, as by assumption

(BD-1a)
1
ns

∑
1..ns

eµ
′
im(xs,ϑ)m2

i (x, ϑ0) u.p→ Eh|ϕ,zim
2
i (xt, ϑ)

and by the Central Limit Theorem for Martingale Difference sequences (CLT-MDS)

Billingsley (1961), we have that

1
ns

∑
1..ns

eµ
′
im(xt,ϑ)m(xs, ϑ0) = Op(n

− 1
2

s ).

Correspondingly, for ψ = arg supG(x, ψ, µ) where

G(x, ψ, µ) = 1
n

∑
i=1..n

log (f(xi|zi, ϕ) exp(µ′im(xi, zi, ϑ))
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Given the assumption that n
ns
→ 0 then ∀(φ, ϑ), n , µ̂i = µi + op(1) and Gn(ψ, µ̂ψ) =

Gn(ψ, µψ) + Op(n
− 1

2
s ), which follows from the differentiability of Gnin µ and the delta

method.

8.1. Uniform Convergence for Qn. Despite the fact that the pair (µ̂, λ̂) is estimated

at one-step, together with (ϕ, ϑ), the existence of a simulation step necessitates the use of

general uniform convergence results. According to Theorem 1 in Andrews D.K 1992, we

need to show (i) BD (Total Boundedness) of the metric space in which (ϕ, ϑ) lie together

with (ii) PC (Pointwise consistency) and (iii) SE (Stochastic Equicontinuity).

Regarding (i). since in this section we are dealing with a finite dimensional ϕ, we rely

on assumption 1 (COMP) which implies total boundedness. For pointwise convergence

(ii),

Pr(| 1
n

∑
i(log(h(xi; zi, ψ))− E log(h(xi; zi, ψ))| > ε)

≤ Pr( 1
n

∑
i | log(h(xi; zi, ψ))− E log(h(xi; zi, ψ)|)) > ε)

MarkovIn ≤ 1
n2ε

V(∑i | log((h(xi; zi, ψ)− E log(h(xi; zi, ψ)|))

This probability goes to zero as E log(h(xi; zi, ψ)) < ∞ and the autocovariances are

summable by ergodicity.

Regarding (iii), Stochastic equicontinuity for the objective function can be verified by

the ”weak” Lipschitz condition in Andrews (1992) , as

lim supn→∞ Pr(supψ supψ′ | 1n
∑
i(log h(xi; zi, ψ)− log(h(xi; zi, ψ′))| > ε)

≤ lim supn→∞ Pr(supψ supψ′ | 1n
∑
i(log(1 + |h(xi;zi,ψ)−h(xi;zi,ψ′)|

h(xi;zi,ψ′)) ) > ε)

≤ lim supn→∞ Pr(supψ supψ′ | log(1 + 1
n

∑
i
|h(xi;zi,ψ)−h(xi;zi,ψ′))|

h(xi;zi,ψ′)) ) > ε)

by monot. ≤ lim supn→∞ Pr(supψ supψ′ | 1n
∑
i(h(xi; zi, ψ))− h(xi; zi, ψ′))| > ε)

Therefore the condition that needs to be shown is that,

|Q̃nx(ψ, µ̂ψ)− Q̃nx(ψ′, µ̂ψ)| ≤ Bng̃(d(ψ, ψ′)),∀(ψ, ψ′) ∈ Ψ
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where Bn = Op(1) and g̃:limy→0 g̃(y) = 0. To verify this condition,

|Q̃n(ψ, µ̂ψ)− Q̃n(ψ′, µ̂ψ′)| = 1
n
|
∑
i

(
fi(ϕ) exp(µ̂′i,ψmi(ϑ) + λ̂i,ψ − fi(ϕ′) exp(µ̂′imi(ϑ′) + λ̂i,ψ)

)
|

≤ 1
n

∑
i

|fi(ϕ) exp(µ̂i(ψ)′mi(ϑ) + λ̂i(ψ)− fi(ϕ′) exp(µ̂′imi(ϑ′) + λ̂i(ψ))|

sup sum<sum sup ≤ 1
n

∑
i

| exp(log fi(ϕ) + µ̂i(ψ)′mi(ϑ) + λ̂i(ψ))− exp(log fi(ϕ′) + ...

µ̂′imi(ϑ′) + λ̂i(ψ))|

Let qi(ψ) = log fi(ϕ) + µ̂i(ψ)′mi(ϑ) + λ̂i(ψ). Therefore,

|Q̃n(ψ, µ̂(ψ))− Q̃n(ψ′, µ̂(ψ))| = 1
n

∑
i

| exp(qi(ψ))− exp(qi(ψ′))|

= 1
n

∑
i

| exp(qi(ψ̃))∇qi(ψ̃)(ψ)− exp(qi(ψ̃′))∇qi(ψ̃′)(ψ′))|

≤ 1
n

∑
i

| exp(qi(ψ̄))∇qi(ψ̄)||ψ − ψ′|

≤ 1
n

∑
i

| exp(qi(ψ̄))∇qi(ψ̄)||ψ − ψ′|

where ψ̄ = arg max{ψ̃,ψ̃′} | exp(qi(ψ̄))∇qi(ψ̄)|

Let Bnx = 1
n

∑
i | exp(qi(ψ̄))∇qi(ψ̄)|. Notice that

E
1
n

∑
i

| exp(qi(ψ̄))∇qi(ψ̄)| ≤ EzEx|z
1
n

∑
i

| exp(qi(ψ̄))∇qi(ψ̄)|

≤ E| exp(qi(ψ̄))||∇qi(ψ̄)|

C-S ≤
(
E(| exp(qi(ψ̄))|)2

) 1
2
(
E(|∇qi(ψ̄))|)2

) 1
2

BD-1a,BD-2 = Op(1)

Given the definition of the estimating equation i.e. the estimator of ψ̂ is an extremum

estimator, established weak uniform convergence, assumptions ID, COMP, and BD− 2(

which guarantees continuity of the population objective), we have consistency by standard

arguments (i.e. Newey and McFadden (1994) consistency results, Theorem 2.1)

�

35



Proof. of Corollary 3.1 Consistency or correct specification of f(X|Z, ϕ) imply that

there exists a ϕ0 ∈ ϕ : f(X|Z, ϕ0) = P(X|Z). By Lemma 3.2, λ(Zi) = µ(Zi) = 0∀i and

therefore h(X|Z, ψ) = f(X|Z, ϕ). By construction, the moment condition holds under

the H measure , EHm(X,Z, ϑ) =
´
P(X,Z)m(X,Z, ϑ?0)d(X,Z) = 0. But it is true that

´
P(X,Z)m(X,Z, ϑ0)d(X,Z) = 0. Since θ?0 is identified, θ0 = θ?0. �

Proof. of Proposition 2 (Asymptotic Normality): Denoting by subscript i the func-

tion evaluation with real data, and by subscript j the evaluation with simulated data, the

first order conditions characterizing the estimator are:

ϑ : 1
n

∑
i

(
µ′iMi(ϑ) + µ′θ,imi(ϑ) + λi,ϑ

)
= 0

φ : 1
n

∑
i

(
si(ϕ)
fi(ϕ) + µ′ϕ,imi(ϑ) + λi,φ

)
= 0

Define :ej,i = eµ
′
imj,i(ϑ), zj,i = ej,i(Inϑ + (µ′iMj ⊗ mj)(M ′

jMj)−1Mj),ẽj,i = ej,i
1
ns

∑
j=1..s ej,i

,

κj.i = − (eµ
′
i
mj,i(ϑ)−1)

µimj,i(ϑ)′ , sj := ∂
∂φ

log f(x|φ, z) and sj := sj
fj
, ẽj,ϑ = ẽj(m′jµϑ+µ′(Mj−

∑
j ẽjMj))

and ẽj,φ = −ẽj
∑
j ẽj s̃j. We have already established that as long as the base density is

asymptotically correctly specified, then µi →
p

0 for almost all zi. Therefore, ej,i →
p

1,

zj,i →
p

1 and κj,i →
p
−1.

The derivatives of (µ, λ) with respect to ψ are as follows,

µϑ,i = (− 1
ns

∑
j

ejmj,im
′
j,i)−1( 1

ns

∑
j

zj,iMj,i)

λϑ,i = −µ′i
∑
j

ẽjMj,i −
∑
j

ẽjm
′
j,iµϑ,i

µφ,i = (
∑
j

ejmj,im
′
j,i)−1∑

j

ejmj,i ⊗ sj,i

λφ,i = −
∑
j

ẽjsj,i −
∑
j

ẽjm
′
j,iµφ,i
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Therefore, the estimator has this final implicit form Gn
1×(nϑ+nϕ)

= 0 where

Gn =



1
n

∑
i

 1
ns

∑
j

mj,i(ϑ)′

︸ ︷︷ ︸


Ĉ1,i

 1
ns

∑
j

κj,imj,i(ϑ)mj,i(ϑ)′

︸ ︷︷ ︸


Â1,i

−1

Mi(ϑ)− 1
ns

∑
j

ẽj,iMj,i(ϑ)

︸ ︷︷ ︸
B̂1,i


1
n

∑
i
mi(ϑ)′︸ ︷︷ ︸
C2,i

 1
ns

∑
j

ej,imj.i(ϑ)mj,i(ϑ)′

︸ ︷︷ ︸

−1

Â2,i

 1
ns

∑
j

ej,imj,i(ϑ)⊗ sj,i(ψ)

︸ ︷︷ ︸


B̂2,i


+..

...+



1
n

∑
imi(ϑ)′

(
1
ns

∑
j ej,imj.i(ϑ)mj,i(ϑ)′

)−1

 1
ns

∑
j

zj,iMj,i(ϑ)

︸ ︷︷ ︸


B̂3,i

−
∑
j

ẽjm
′
jµϑ︸ ︷︷ ︸

B̂4,i

1
n

∑
i

si −
1
ns

∑
j

ẽj,isj,i︸ ︷︷ ︸
B̂5,i




We proceed by decomposing N 1

2Gi,n = N
1
2Gi,0 + N

1
2 ∆i and show that n 1

2 ∆i = op(1).

Since we have effectively two different samples to handle, which are conditionally in-

dependent (conditional on zi), we have to further decompose in different factors and

make use of the pointwise convergence for almost all Z. By iid sampling and domin-

ation assumptions BD− 1 and Lemma 3.1, Â1 → A1 ≡ Vm(z), Â2 → A2 ≡ Vm(z),

Ĉ1 → C1 ≡ EF (m(ϑ)|Z) = mF , B̂2 → B2 ≡ M(Z, ϑ)− EH(M(ϑ)|Z) ≡ MH , B̂3
p→ B3 ≡

EF (M(ϑ)|Z) ≡MF , B̂4
p→ B4 ≡ m′Fµϑ, B̂5 → B5 ≡ s(ϕ,Z)−EH(s(ϕ)|Z) ≡ s(ϕ,Z)−sH .

To maximize clarity, we analyze N 1
2Gn row-wise. With regard to G1,n, we have that

N
1
2G1,n = N−

1
2
∑
i

(C1,iA
−1
1,iB1,i − (C1,i − Ĉ1,i)Â−1

1,i B̂1,i + ...

...− C1,i(A−1
1,i − Â

−1
1,i )B̂1,i + C1,iA

−1
1,i (B1,i − B̂1,i) + ...

...− C2,i(A−1
2,i − Â

−1
2,i )B̂3,i − C2,iA

−1
2,i (B3,i − B̂3,i) + C2,iA

−1
2,iB3,i − B̂4,i

= N−
1
2
∑
i

C1,iA
−1
1,iB1,i +N−

1
2
∑
i

C2,iA
−1
2,iB3,i +Op(N

− 1
2

s N
1
d

+ 1
2 )
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N
1
2G2,n = N−

1
2
∑
i

(C2,iA
−1
2,iB2,i − C2,i(A−1

2,i − Â
−1
2,i )B̂2,i − C2,iA

−1
2,i (B2,i − B̂2,i) + B̂5,i

= N−
1
2
∑
i

C2,iA
−1
2,iB2,i +N−

1
2
∑
i

B5,i +Op(N
− 1

2
s N

1
d

+ 1
2 )

A sufficient condition for the remainder to be negligible is that γ̄ > 1+ 2
d
. To understand

why these rates arise, we illustrate three cases, which are indicative for the treatment of

all other terms, which are of lower order.

|| 1
N

∑
i

C1,i
(
Â−1
i,1 − A−1

i,1

)
B̂1,i|| ≤ max

i
||C1,i||max

i
||Â−1

i,1 − A−1
i,1 ||

1
N

∑
i

||B̂1,i||

= Op(κ−1
N )×Op(N

− 1
2

s )×Op(1) = Op(κ−1
N N−1

s )

|| 1
N

∑
i

C2,i
(
Â−1
i,2 − A−1

i,2

)
B̂3,i|| ≤

1
N

∑
i

||C2,i||||Â−1
i,2 − A−1

i,2 ||||B̂3,i||

= max
i

sup
ψ
||Â−1

i,2 − A−1
i,2 ||

1
N

∑
i

||Ĉ2,i||||B̂3,i||

≤ max
i

sup
ψ
||Â−1

i,2 − A−1
i,2 ||max

i
sup
ψ
||C2,i||

1
N

∑
i

||B̂3,i||

= Op(N
− 1

2
s )Op(N

1
d )×Op(1) = Op(N

− 1
2

s N
1
d )

where κn is the rate at which C1 approaches zero i.e. the rate at which TV (Fi, Pi)

converges to zero and d as in Assumption. (See proof of Lemma 3.2)

Denoting by Ξ̂2 the terms that do not vanish faster than N− 1
2 ,

Ξ̂2 =


1
N

∑
iC1,iA

−1
i,1B1,i + 1

N

∑
iC2,iA

−1
i,2B3,i

1
N

∑
iC2,iA

−1
i,2B2,i + 1

N

∑
i B̂5,i


Under asymptotic correct specification, the second terms in each row are order Op(κ−1

n ).
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To show asymptotic normality, we make use of the Cramer-Wold device. Let ξ be a

vector of real valued numbers, normalized such that ||ξ|| = 1 then:

N
1
2 ξ′(nϑ+nϕ×1)Ξ2 = N−

1
2
∑
i

ξ′1C1,iA
−1
i,1B1,i + +N− 1

2
∑
i

ξ′2C2,iA
−1
i,2B2,i + op(1)

= Ξ̂21 + Ξ̂22 + o(1)

where ξ′p×1 =
(

ξ′1
dim(ϑ)

, ξ′2
dim(ϕ)

)
.

What needs to be shown is that the variance of the above terms is finite. Then by the

CLT-MDS we conclude. In the supplemental material we show that the variance of each

of the terms is finite, and so is the variance of the sum by appealing to the C-S inequality.

Combining the above results we can see that:

n
1
2 ξ′p×1(Gn − EGn,2) = n−

1
2 ξ′p×1(Ξn,2 − EΞn,2) + op(1)

→ N(0, ξ′Vgξ)

and therefore

n
1
2 (Gn(ψ0)− EGn,2(ψ0))→ N(0, Vg)

8.2. Efficiency: Form of Ω. : For brevity, we delegate this derivation to the Supple-

mental Material.

�

Proof. of Proposition 3

In the parametric case within the class of smooth densities, we can rewrite dQ(x|z) ≡

dP (x|φ+ n−
1
2h, z). Therefore, using a Taylor expansion of around φ0

dP (x|φ+ n−
1
2h, z) = dP (x|φ, z) + sφ(x, z)n− 1

2h+ o(n− 1
2h)
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Evaluating
´ ´
L(x, z)dQ(x|z)P(z) gives the result:

wQn − wP ≡
ˆ
w(x, z)(sφ(x, z)n− 1

2h+ o(n− 1
2h))dP(z)

= n−
1
2h

ˆ
δw(z)dP(z)

�

Proof. of Proposition 8

Substituting the result of Proposition 1 in 4.1 we get that:

0 = N
− 1

2
0 δ′Mh

′V −1hδm + n−
1
2hδ′MV

−1N
1
2

0 mPn + ...

... +(N−
1
2

0 δ′Mh
′V −1 +M ′

PN
− 1

2
0 hδV )N

1
2

0 mPn +M ′
PnV

−1
Pn N

1
2

0 mPn + op

(
hN

− 1
2

0

)
0 = Op(hN

− 1
2

0 ) +M ′
PnV

−1
Pn N

1
2

0 mPn

Notice that for the Jacobian terms we also substituted P for Pn as the empirical distribu-

tion function converges also at the N
1
2

0 rate 10.

�

Proof. of Proposition 9

1) The first order conditions for φ under restrictions r(φ) = 0 are as follows:

φ̂− φn = −Ĝ21(ψ̃)ĝ1(ψn)− Ĝ22(ψ̃)(ĝ2(ψn) + πR(φn))

For notational convenience we drop dependence on ψ. Expanding the constraint around

φ0 and substituting for φ̂− φn,

π = −(R′G22R)−1R′(G21g1 +G22g2 + hN
− 1

2
0 )

10This can also be verified by plugging Pn in Qn in the decomposition in Lemma 4.1
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Substituting for π in φ̂−φn and plugging in the first order conditions for ϑ−ϑn the result

follows.

2) We show positive definiteness of V(S1ZS ′1)− V(Zr) by showing that

tr((V(S1Z))−1(V(Zr))) < n1

Let S̃i = SiΩ
1
2 for i = 1, 2, R̃ = [G22] 1

2R and J = G12[G22]− 1
2 R̃(R̃′R̃)−1R̃′. Recall that

Zr ≡ S1Z − JS2(Z + h). Positive definiteness of V(S1Z)− V(Zr) is equivalent to:

tr(V(S1Z)−1V(Zr)) < n1(8.1)

where n1 is the dimension of g1. Absence of restrictions implies that R = 0 and therefore

Zr = S1Z. This implies that tr(V(S1Z)−1V(Zr)) = n1. What needs to be shown therefore

is that the inequality in 8.1 holds for any R 6= 0. Towards this, we first rewrite the left

hand side of 8.1 as follows:

tr(V(S1Z)−1V(Zr)) = tr((S1ΩS ′1)−1(S1 − JS2)Ω(S1 − JS2)′)

= tr((S̃1S̃
′
1)−1(S̃1 − JS̃2)(S̃1 − JS̃2)′)

= tr((S̃1 − JS̃2)′(S̃1S̃
′
1)−1(S̃1 − JS̃2))

For V ′ ≡
(

S̃1
n1×n

J.
n1×n2

)
, B ≡

 I
n×n

0
n×n2

0
n2×n

0
n2×n2

, C ≡
(

I.
n×n

−S̃ ′2
n×n2

)′

A ≡ CC ′ =


I
n×n

−S̃ ′2
n×n2

−S̃2
n2×n

Ω22
n2×n2

 where n = n1 + n2 and S̃2 =
(

[Ω]
1
2
12 [Ω]

1
2
22

)
,

tr(V(S1Z)−1V(Zr)) = tr((V ′(J)BV (J))−1V (J)′AV (J))
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We therefore need to show the following:

max
V

tr((V ′(J)BV (J))−1V (J)′AV (J)) = n1(8.2)

The problem defined by the LHS is of 8.2 is a well defined problem in discriminant analysis

for a general matrix V , and is equivalent to:

max
V

tr(V (J)′AV (J))

s.t V ′(J)BV (J) < K

Using that A is symmetric, the first order conditions are:

AV (J) = BV (J)Λ(8.3)

where Λ is the n1× n1 matrix that contains the lagrange multipliers for the second set of

constraints. Noticing that:

tr((V ′(J)BV (J))−1V (J)′AV (J)) = tr((V ′(J)BV (J))−1V (J)′AA−1BV (J)Λ)

= tr(Λ)

max
V

tr(V (J)′AV (J)) =
∑
i≤n1

λi

Since the system of equations in 8.3 is a generalized eigenvalue problem, then in order for

the maximum to be achieved, ∑i≤n1 λi must be the sum of the n1 − th largest admissible

eigenvalues of B−1V and V the matrix containing the corresponding eigenvectors. A

complication arises here because B is non invertible, and we therefore cannot compute

the eigenvalues of B−1A directly. We proceed as follows: We compute the eigenvalues µi

of A−1B and use the fact that λi = µ−1
i .
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A−1B =

 Ξ
n×n

0
n×n2

0
n2×n

0
n2×n2



Ξ ≡

 I
n1×n1

− [Ω]
1
2
12[Ω]−

1
2

22 [Ω]
1
2
21 −[Ω]

1
2
12[Ω]−

1
2

22

−[Ω]−
1
2

22 [Ω]
1
2
21 0

n2×n2


Therefore,

det

(
A−1B − µ I

(n+n2)×(n+n2)

)
= det

 Ξ
n×n
− λ I

n×n
0

n×n2

0
n2×n

−λ I
n2×n2


= det( Ξ

n×n
− λ I

n×n
)det

(
−λ I

n2×n2

)
= det( Ξ

n×n
− λ I

n×n
)(−λ)n2

Therefore, we establish that there exist n2 zero eigenvalues.

With regard to det( Ξ
n×n
− λ I

n×n
):

det

 I
n1×n1

− [Ω]
1
2
12[Ω]−

1
2

22 [Ω]
1
2
21 − λ I

n1×n1
−[Ω]

1
2
12[Ω]

1
2
22

−[Ω]
1
2
22[Ω]

1
2
21 −λ I

n2×n2

 = 0

and therefore:

det(I − [Ω]
1
2
12[Ω]−

1
2

22 [Ω]
1
2
21 − λI + [Ω]

1
2
12[Ω]−1

22 λ
−1[Ω]

1
2
21)λn2 = 0

det(λI + (1− λ)[Ω]
1
2
12[Ω]−

1
2

22 [Ω]
1
2
21 − λ2I)λn2 = 0

det(λ(1− λ)I + (1− λ)[Ω]
1
2
12[Ω]−

1
2

22 [Ω]
1
2
21λ

n2 = 0

det(λI + [Ω]
1
2
12[Ω]−

1
2

22 [Ω]
1
2
21)(1− λ)n1λn2 = 0

Since [Ω]
1
2
12[Ω]−

1
2

22 [Ω]
1
2
21 is positive definite, det(λI+[Ω]

1
2
12[Ω]−

1
2

22 [Ω]
1
2
21) is not zero for any value

of λ. We therefore have that the eigenvalues of A−1B are 1, with multiplicity n1 and 0
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with multiplicity 2n2. Therefore, the eigenvalues that solve equation 8.3 are λi = 1 for

i ≤ n1 and λi =∞ for i = n1...n+ n2.

Notice that in the analysis above we have not constrained the set of eigenvectors we

considered beyond the bound on V ′BV . Since the vectors V we specified have a certain

structure, the maximum value attained should be less than or equal to the value implied

by the set of solutions that correspond to λi.

Since the set of potential maximum values are either ∑i≤n1 λi = n1 or ∞ it is easier

to search for the admissible vectors V ∗(in terms of R) that could possibly achieve this

maximum. The system that determines the eigenvector is the following:


I
n×n

−S̃ ′2
n×n2

−S̃2
n2×n

Ω22
n2×n2




S̃ ′1
n×n1

J ′.
n2×n1

 = λ


S̃ ′1
n×n1

J ′.
n2×n1


From the first set of equations, we have that:

G̃12R̃(R̃′R̃)−1R̃′S̃2 = S̃1(1− λ)

∴

G̃12R̃ = S̃1(1− λ)S̃ ′2(S̃2S̃
′
2)−1R̃

Solving for the second set of equations,

G̃12R̃ = ([Ω]
1
2
11[Ω]

1
2
12 + [Ω]

1
2
12[Ω]

1
2
22)(λI − Ω22)−1S̃ ′2(S̃2S̃

′
2)−1R̃

First, note that any value of R̃ satisfies both equations for λ /∈ {1,∞}. Moreover, we

discard the possibility that corresponds to λi =∞ as for R̃ to satisfy the first set, a non

differentiable r(ϑ) is required. We then turn to the only possibility left, that of λi = 1.

For λ = 1, the only admissible solution of the first set is R = 0, while the second set is
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also satisfied. R̃ = 0 is then the only admissible solution. The constrained maximum is

therefore equal to ∑i≤n1 1 = n1. Thus, for R 6= 0, tr(V(S1Z)−1V(Zr)) < n1. �

9. Appendix C

9.1. Additional Experiments.

Second MC Experiment. We first present the true data generating process (DGP) for

the vector of observables (X, Y ), which is partially unknown to the econometrician, up to

a single non linear unconditional moment condition.

Let {yi, xi}ni=1,n≥1 an iid sequence generated by the following DGP:

yi = δ1 + ui

ui = εi + δ2xi + δ3x
2
i

εi ∼ iidD1(α1, α2)

xi ∼ iidD2(γ1, γ2)

In the following simulation experiments D is a generic distribution. Different assumptions

on D will be made to investigate different cases of misspecification i.e. in the location,

scale, skewness and kurtosis. As already noted, the above model satisfies the following

(arbitrary) moment restriction:

E(y−β0 − 2β0yx) = 0

To perform the experiments, we adopt the following base model:

yi = δ1 + ui

ui ∼ iidD3(α1b, α2b)

xi ∼ iidD4(γ1b, γ2b)
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Clearly the probability model used in this exercise goes wrong in many dimensions i.e.

has omitted variables and has different distributional assumptions. We plot below the

MSE (left panel) when using the true and the misspecified density and the implied true

and misspecified densities of ut (right panel) for the following four cases:

Table 1. Distributions Used
Case D1(α1, α2), D2(γ1, γ2) D3(α1b, α2b), D4(γ1b, γ2b)
1 t(7),Γ(2, 5) N(0, 4),Γ(2, 5)
2 N(0, 4),Γ(2, 5) N(0, 4),Γ(2, 5)
3 t(7),U(0, 1) N(0, 4),U(0, 1)
4 N(0, 4),U(0, 1) N(0, 4),U(0, 1)

Figure 9.1. Monte Carlo Case 1
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Figure 9.2. Monte Carlo Case 2

Figure 9.3. Monte Carlo Cases 3
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Figure 9.4. Monte Carlo Case 4

Evidently, the biggest differences arise when density misspecification is severe i.e. in

case 2. In this case the auxiliary density assigns very little mass on the support of ut. In

the rest of cases differences are very small, especially at sample sizes comparable to the

conventional size of macroeconomic datasets. Also, note that we have not estimated any

of the parameters of the base densities11.

Estimating a prototypical DSGE. The prototypical DSGE model estimated is the

standard stochastic growth model with full depreciation, see for example Ireland (2004).

Let xt ≡ (yt, ct, ht, kt) be output, consumption, hours, capital. The first order equilibrium

conditions of the model are the following:

11 Given that estimation involves also the finite dimensional nuisance parameter ϕ0, it is instructive to
notice that since ϕ0

p→ arg minΦ
´
p(x|z) log

(
p(x|z)

h(x|z,ϕ0,ϑ)

)
dx ≡ KL(P,H) for any ϑ ∈ Θ, and by Pinsker

inequality, we know that TV (P,H) ≤ KL(P,H). Therefore, minimizing KL(P,H) implies minimizing
also

´
|M(x, ϑ)||p(x)− h(x, ϕ, ϑ)|dx.
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Yt = AtK
θ
tH

1−θ
t(9.1)

Kt+1 = Yt − Ct(9.2)

γCtHt = (1− θ)YtIt(9.3)
1
Ct

= βEt
{

1
Ct+1

(
θ

(
Yt+1

Kt+1

))}
(9.4)

log(It+1) = ρI log(It) + logN(0, σ2
I )(9.5)

log(At+1) = ρI log(At) + logN(0, σ2
A)(9.6)

where 3.11 is the typical Cobb Douglas production function, 3.12 is capital accumulation

equation, 3.13 the distorted (by a marginal efficiency shock It) intra-temporal efficiency

condition and 3.14 the inter-temporal efficiency condition (consumption Euler equation).

In this case, we know much more information about the conditional predictive density,

h(xt+1|xt;ϕ), since the only equation that is not immediately solved is the Euler equation

. The rest of the equations of the system can be readily reduced to a single equation, and

then plugged in the Euler equation. This leads to great efficiency gains as the mapping

of a subset of φ to ϑ is now known. The only mapping that is still unknown is that

of the reduced form of consumption, since we do not solve for consumption. Moreover,

uncertainty about the consumption function translates to uncertainty about the exact

solution for hours Ht and output Yt.

For simplicity we assume that we in principle observe all the variables of the system.

Different sets of observables would lead to a different form for 3.18 that would be used for

estimation. Future work could look at the accommodation of unobserved variables. Our

conjecture is that exogenous unobserved components can be easily accommodated while

endogenous unobserved variables are much more challenging 12.

12For recent advances towards this direction, see Gallant, Giacomini, and Ragusa (2016)
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With regard to the solution of the model, the true solution vector for Ct+1, Ht+1, Kt+1

is the following:

Ct+1 = (1− βθ)Yt+1

Ht+1 = 1− θ
γ(1− βθ)It+1

Kt+1 = θβYt

log(It+1) = ρI log(It) + logN(0, σ2
I )

log(At+1) = ρI log(At) + logN(0, σ2
A)

which is essentially log-linear. In the following experiment, we will simulate 200 observa-

tions for Xt ≡ (At, It, Ct, Ht, Kt)′ and (β, θ, γ, ρA, ρI , σA, σI) := (0.96, 0.3, 0.5, 0.9, 0.9, 1, 1)

and then use this as a pseudo-dataset. As a base conditional density , h(Xt+1|Xt) we use

the log-Normal distribution, logN(B(ψ)Xt, C(ψ)ΣC ′(ψ)) where ψ includes both (β, γ, θ),

(ρI , ρA, σA, σI) and nuisance parameters φ
nψ×1

. At the end of this section we show the

explicit form of B and C when solution is partially unknown and observations on Xt are

used. The corresponding moment condition used as a constraint in the projection is the

following:

1
Ct

= βθEt

 1
Ct+1

At+1

(
Ht+1

Kt+1

)1−θ
(9.7)

Due to identification issues, we set β = 0.96 and γ = 0.5, and we therefore estimate θ

together with the rest of the nuisance parameters. We also set σA = 1, σI = 1. Due to the

fact that we use 5 observables and we only have two independent sources of variation, we

add measurement error to (Ct, Ht, Kt), with variance σme = 0.25. We report below the

point estimates and confidence bands from a chain of 30000 draws :
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Table 2. Parameter Estimates
Parameter q2.5% Point q97.5%
θ 0.19 0.35 0.49
b31 0.75 1.11 1.54
b32 -0.21 0.32 0.71
b34 0.12 0.45 0.72
b35 0.19 0.45 0.81
c31 -0.05 0.74 1.67
c32 0.19 0.84 1.63
c41 -1.05 -0.20 0.46
c42 0.03 0.77 1.55

We also performed the estimation in the case of knowing the full likelihood function

of the model. The corresponding point estimate for θ is 0.3173 and the two sided 95%

confidence interval is (0.10, 0.49). The results are therefore similar.

Reduced form coefficients.

B ≡



ρA 0 0 0 0

0 ρI 0 0 0

b31 b32 0 b34 b35

1+θ
θ
ρA − 1

θ
b31

1
θ
(ρI − b32) 0 1− θ − 1

θ
b34 1− 1

θ
b35

ρA 0 0 1− θ θ



C ≡



1 0

0 1

c31 c32

c41 c42

1 0


where φ ≡ (vec(b), vec(c)′)
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