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In this note, I describe different ways one can replicate a paper and illustrate these ways by 
applying them to Choi and Varian (2012).   

A replication can consists of 3 steps. 

Step one is checking whether one can replicate the results of the paper using the data and 
code provided by the authors. One would expect that with the help of the authors one can 
replicate the various estimates reported in a paper. Such exact replication could be considered 
as successful if the vast majority of coefficients in a paper can be replicated exactly, with 
typos explaining deviations. 

Second, one can try to collect the data and write the code based on the description in the 
paper one attempts to replicate. Ideally such replication would lead to the exactly the same 
numerical estimates though given the likely presence of implicit assumptions, small 
unreported data manipulations, updated data sources or misunderstandings by the person 
doing the replication, a replication could be deemed successful even if numerical estimates 
are not exactly replicated but qualitatively conclusions (i.e. statistical and economic 
significance) would be confirmed. 

The two abovementioned approaches to replication are important as knowing this kind of 
checks can happen provides an incentive to researchers to spend more efforts on avoiding 
mistakes, to double and triple check their own results and ideally, to make their code, data 
and details on how these were created, publicly available.  At the same time, these two 
approaches to replication are rather narrow:  they only check whether one get similar results 
if one does exactly the same thing for the same time period and the same country and the 
same data source. However, since most people will only read abstracts, introductions and/or 
conclusions, and since we all have the tendency (and wish) to extrapolate results of studies of 
specific situations to general laws of economics, ‘broader’ replication is also needed. 

These more comprehensive checks would be replication attempts of the overall conclusions 
of paper one wished to replicate rather than of the exact numerical estimates reported in the 
paper. That is, does one find that for many countries, or series, or time periods, the general 
conclusion still holds. Such replication attempts are important as they provide an incentive 
for researchers to avoid cherry picking results and to do various robustness checks. In 
addition, such checks should push researchers to be very careful in their conclusions and 
make it clear to the reader that their results are for a specific dataset and setting rather than 
should be seen as an illustration of an economic law that is true always and everywhere. Such 
comprehensive replication efforts are similar in nature to what meta-analyses or literature 
surveys are doing.  

Let’s now turn to the paper we will use to illustrate the above steps, the paper by Choi and 
Varian (2012)  

Choi and Varian (2012) includes 4 examples of macroeconomic statistics that can be 
forecasted more accurately if time series, reflecting the search intensity of terms related to the 
macroeconomic statistics, are included in the regression used to forecast the macroeconomic 
statistics. They show for example that if one augments an autoregressive model of U.S car 
sales, with series that reflect the evolution of search intensity for ‘Trucks and SUVs’ and 
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“Auto Insurance”1, both in-sample and out-of-sample forecast accuracy improves by about 
10%. Other examples focus on the forecasting of US unemployment benefits claims, visitor 
arrivals to Hong Kong and Consumer confidence in Australia.  

Choi and Varian (2012) has 1189 citations in Google Scholar. This is substantially more than 
Ettredge et al.(2005), the paper identified by Choi and Varian (2012) as the first to suggest 
using web search data in forecasting economic statistics, and substantially more than the early 
survey of this literature by Goel et al. (2010), also cited by Choi and Varian (2012). Ettredge 
et al.(2005) has 141 citations in Google Scholar while Goel et al. (2010) has 385 citations in 
Google Scholar. One possible explanation for the relative popularity of this paper is the fact 
that it has been written by two authors with Google as affiliation, and hence could be seen as 
some kind of ‘official’ paper connecting economic forecasting and web search intensity. An 
alternative explanation is that the Choi and Varian paper (2012) is more optimistic about how 
useful search intensity can be for prediction. Choi and Varian (2012) conclude: ‘We have 
found that simple seasonal AR models that include relevant Google Trends variables 
variables tend to outperform models that exclude these predictors by 5 per cent to 20 per 
cent.’ While Goel et al. (2010)’s conclude: ‘We conclude that in the absence of other data 
sources, or where small improvements in predictive performance are material, search queries 
provide a useful guide to the near future”.  

The Choi and Varian (2012) paper can be replicated in the various ways described above, 
each way having a different goal in mind. Table 1 compares the results reported in the paper 
with various alternative approaches, focusing on the example of forecasting US car sales. 

Table 1 about here 

Column II checks whether one can replicate the results of the paper using the data and code 
provided on Varian’s website2. In this case, using Choi and Varian (2012)’s data and code for 
the US car sales I get exactly the same results. If a further check of the other examples in the 
paper would also result in this conclusion, the first step of our replication would be deemed 
successful. 

In column III of table I, I make an attempt to collect the data and write the code based on the 
description in the Choi and Varian’s paper, rather than using the code and data they provide 
on Varian’s website. For papers based on Google’s search intensity, this kind of replication is 
unlikely to lead to exactly the same numerical estimates. As Choi and Varian (2012) note in 
their paper: “Note that Google Trends data is computed using a sampling method, and the 
results therefore vary a few per cent from day to day.” Hence, it’s unlikely that 6 or so years 
after Choi and Varian created their search intensity series, T get exactly the same series as 
they got. For the same reason, this replication will not be replicable as on different days I get 
slightly different numbers when downloading the search intensity series. Similarly, the US 
Sales series data available from the link provided in the paper are slightly different from the 
data provided on Varian’s website3. Column III shows that when I use the data I downloaded 
                                                           
1 These are categories of searches rather than specific search terms, hence this is the evolution  of  the 
intensity for search terms that fall into the category ‘Trucks and SUVs’ and “Auto Insurance”. 
2 http://www.sims.berkeley.edu/~hal/Papers/2011/Data.zip 
 
3 The link to the data provided in footnote 2 of Choi and Varian (2012) refers to 
https://www.census.gov/retail/marts/www/timeseries.html 

http://www.sims.berkeley.edu/~hal/Papers/2011/Data.zip
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from Google Trends I get slightly different estimates but the coefficients are sufficiently 
similar, both in the statistical and economic sense, suggesting that the Choi and Varian (2012) 
paper would also pass this second replication step.  

Somebody reading only the conclusion of Choi and Varian (2012) that “We have found that 
simple seasonal AR models that include relevant Google Trends variables tend to outperform 
models that exclude these predictors by 5 per cent to 20 per cent” might well be convinced 
that Google Search helps to predict everything and everywhere. Hence, the third step in our 
replication plan tries to check whether Choi and Varian (2012)’s conclusion survives when 
applied to other settings than those checked in the paper. 

In column IV, I extend the dataset from 2011 to 2017, and find that the predictive impact of 
adding search intensity terms gets weaker. While the coefficients of the search intensity 
variables are significant, the adjusted R2 increases by less than 5%. Similarly, using Choi and 
Varian’s model and time period on NZ car sales data shows insignificant coefficients for both 
search intensity variables, though the increase in adjusted R2 is still more than 5% (column 
V). Extending the data up to 2017 for NZ further shows only a negligible increase in adjusted 
R2 (column VI).  Of course these are just some counterexamples4. Varying the countries or 
time periods further, one might find that differences due to the longer period or the NZ data 
are the exception rather than the rule. Hence, a replication should check systematically, 
varying one aspect of the original study, whether adding Google search intensity series adds 
predictive power. 

For example, one could start by collecting data for a given series for many countries and 
estimate for all countries the same model suggested by Choi and Varian (2012), i.e. add 
search intensity data for ‘Trucks and Suvs’ and for ‘Auto Insurance’ to an AR(1,12) model5. 
This would allow to investigate to what extent there is heterogeneity in the contribution of 
these two search intensity series. And if such heterogeneity is found, one could try to explain 
this heterogeneity. For example, in countries where there is a greater number of searches (like 
the US) the predictive contribution of search intensity series could be bigger than in countries 
with a smaller number of searches (like New Zealand).  

Similarly, one could vary other aspects of the Choi-Varian (2012) paper. One could continue 
to focus just on the US but check how changing the model affects the contribution of the 
search intensity series. One could for example, include additional autoregressive terms or lags 

                                                                                                                                                                                     
which gives the “Adjusted Monthly Sales for Retail and Food Services” and the adjustment coefficients which 
are rounded at 3 digits. Multiplying these two quantities gives what should be the unadjusted series used by 
Choi and Varian (2012). The unadjusted time series of the estimates can also be obtained from the Census 
bureau 
https://www.census.gov/econ/currentdata/dbsearch?program=MARTS&startYear=1992&endYear=2017&cate
gories%5B%5D=441&dataType=SM&geoLevel=US&notAdjusted=1&submit=GET+DATA&releaseScheduleId=] 
These two ‘unadjusted’ series are not exactly the same but very similar, differences could be related to 
rounding. Both series are slightly different from the data provided on Varian’s website. The search intensity 
data on Varian’s website are also standardized in a different way than the one’s available from Google Trends. 
4 These counterexamples are only based on in-sample forecasting performance. Choi and Varian (2012) also 
check out-of-sample forecast performance. 
5 One example of a step in this direction is Tuhkuri (2016) who studies not only how Google Search can help 
predict unemployment at the US level but also at the level of the various different US states. 

 

https://www.etla.fi/wp-content/uploads/ETLA-Working-Papers-35.pdf
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of other series. Or one could vary the time period of the analysis, applying the Choi-Varian 
(2012) model to shorter or longer periods of data, or to non-overlapping various sub-periods.  

It is hard to predict what the outcome of this third replication step would be though my guess 
is that Choi and Varian (2012)’s results would be true not just for the examples they tested, 
but rather would be true for some places and some time periods, rather than always and 
everywhere. Choi and Varian (2012)’s conclusion is written such that it allows for some 
uncertainty: ‘relevant Google Trends variables tend [bold added] to outperform models that 
exclude these predictors by 5 per cent to 20 per cent’6. So the result of the third step 
replication would help to quantify the ‘tend [bold added] to outperform’ from Choi and 
Varian’s conclusion. That is, once the study’s internal replication is successful (step 1 and 2), 
we know that under some circumstances, adding search intensity series improves forecasts. If 
step 3 would come to the conclusion that adding search intensity series improves forecasts 
only for the cases they describe in the paper, one could argue that step 3 of the replication 
was not successful, that their results are not externally replicable. However, just like it is 
unlikely that a single study will consider all possible circumstances, it is unlikely that any 
replication would be able to consider all possible circumstances. Hence, rather than leading to 
a binary conclusion (the external replication is successful or not successful), the replication 
would estimate how often, and in what circumstances, adding search intensity series 
improves forecasts.  

So far, I have focused on a three steps replication plan, where the first two steps focus on the 
internal validity of the paper, while the third step focuses on the external validity of the paper. 
These three steps are all focusing on ‘academic’ replication, however. But replication could 
also leave the ivory tower and check whether a paper is replicable in ‘real life’, that is, are the 
conclusions of a paper, after the paper has been made public, actually used by decision 
makers? In the case of Choi and Varian (2012), even if academic studies find Google Search 
can help forecasting, the ultimate ‘replication’ would be that there are businesses and 
government that actually use this knowledge in real life, and because of this, have a 
competitive advantage. That would be the ‘real’ proof that the predictive power of Google 
search intensity, is not just an academic gimmick but does provide an economic meaningful 
advantage to forecasters. Mui (2014) writes that ‘The Bank of Israel and the Bank of England 
incorporate Google analytics into some of their forecasts.’, suggesting adding Google Search 
intensity might even pass this advanced replication benchmark. At least, in some cases, that 
is.  

 

 

  

                                                           
6 Additionally, one can also vary several dimensions at the same time. 

https://www.theguardian.com/technology/2014/jun/14/big-data-google-economics-twitter
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Table 1: the contribution of search intensity series to the prediction of car sales under various scenarios 

 

Choi-Varian (2012) 
paper 

Replication of Choi-
Varian (2012) using  
their data and code 

Replication of Choi-
Varian (2012) using  
my data and code 

Replication of Choi-
Varian (2012) using  
my data and code 
and longer period 
(Jan 2004-July 
2017) 

Replication of Choi-
Varian (2012) using  
my data and code 
for NZ 

Replication of Choi-
Varian (2012) using  
my data and code 
for NZ, and longer 
period 
(Jan 2004-July 
2017) 

 (I) (II) (III) (IV) (V) (VI) 
Intercept -0.45798 -0.45798 -0.6818 0.4856 1.5787* -0.5113 
lag(y, 1) 0.61947*** 0.61947*** 0.5298*** 0.4955*** 0.2984*** 0.4002*** 

lag(y, 12) 0.42865*** 0.42865*** 0.3565*** 0.4027*** 0.3973*** 0.5893*** 
Trucks & SUVs 1.05721*** 1.05721*** 0.95*** 0.336*** 0.0243 0.2159* 
Auto Insurance -0.52966*** -0.52966*** -0.5098*** -0.1899*** 0.2428 -0.0647 

Adjusted R2 with 
search series 0.808 0.808 0.783 0.864 0.528 0.772 
Adjusted R2 

without search 
series 0.7111 0.7111 0.714 0.847 0.482 0.767 

*** means significant at 1% significance level, * means significant at 10% significance level. 

 

  



 

 

 

 

 

 

 

Please note: 

You are most sincerely encouraged to participate in the open assessment of this 
discussion paper. You can do so by either recommending the paper or by posting your 
comments. 

 

Please go to: 

http://www.economics-ejournal.org/economics/discussionpapers/2017-76 

       

The Editor 
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