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Abstract

This paper proposes a way of using observational pretest data for the
design of experiments. In particular, this paper trains a random forest on
the pretest data and stratifies the allocation of treatments to experimental
units on the predicted dependent variables. This approach reduces much
of the arbitrariness involved in defining strata directly on the basis of co-
variates. A simulation on 300 random samples drawn from six data sets
shows that this algorithm is extremely effective in reducing the variance
of the estimation compared to random allocation and to traditional ways
of stratification. On average, this stratification approach requires half the
sample size to estimate the treatment effect with the same precision as
complete randomization. In more than 80% of all samples the estimated
variance of the treatment estimator is lower and the estimated statistical
power is higher than for standard designs such as complete randomization,
conventional stratification or Mahalanobis matching.
JEL Classification: C14, C15, C90
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1 Introduction

In recent years the precision of data-driven prediction increased tremendously
due modern-day machine-learning algorithms. This paper uses predictions de-
rived from observational pretest data for treatment allocation in experiments.
The goal of an experiment is to investigate whether a certain treatment causally
affects a particular dependent variable or outcome of interest. The purpose of the
treatment allocation is to divide the experimental subjects into two comparable
groups.1 If the treatment has no influence on the dependent variable, the average
dependent variable in the treatment group should ideally be identical to the av-
erage dependent variable in the control group. I assume a situation in which the
researcher has access to an observational data set including the untreated depen-
dent variable as well as several covariates.2 In addition, the researcher seeks to
run an experiment to estimate the causal relationship between the treatment and
the dependent variable. For this situation, I train a machine learning algorithm,
in particular a random forest, on the observational data to build a predictive
model. After sampling the experimental units, I predict the untreated dependent
variable of all experimental units from their covariates and stratify on these pre-
dictions. I denote this approach machine learning stratification (MLS).

Stratified randomization or blocking is one of the most frequently applied meth-
ods for systematic treatment allocation in economics as well as in other fields of
research (Kernan et al., 1999; Bruhn and McKenzie, 2009; Berry, 2011). A huge
argument in favor of stratification is that it ensures balanced groups while still in-
cluding a large degree of randomness. This randomness allows for randomization-
based inference, which requires hardly any assumptions apart from a random al-
location of treatments (Imbens and Rubin, 2015). Athey and Imbens (2017) show
that the variance of the treatment estimator under stratification is always lower
than or equal to the variance under complete randomization. Apart from random
sampling out of a large pool, this theorem does not require any assumptions on
the relation between the covariates and the dependent variable.

Although the idea of stratification and the randomization inference thereof has
a long history (Fisher, 1926; Wilk, 1955; Kempthorne, 1955), there still exists
little advice on how to select strata in practice. Researchers agree that strata
should be built based on those covariates that most strongly influence the de-
pendent variable (Bruhn and McKenzie, 2009; Moore, 2012). However, classical
stratification, i.e., building strata directly out of covariates, quickly results in
too many strata. For example, stratifying on income (discretized into 8 cate-
gories), gender (2 categories), race (5 categories), and age (8 categories), already
results in 8 · 2 · 5 · 8 = 640 different strata, which will be far too many for a
small experiment of 30-100 individuals. High-dimensional stratification allows to
simultaneously account for arbitrarily many covariates. Current approaches to
high-dimensional stratification usually compose of non-bipartite matching based

1In this paper I concentrate on experiments with one treatment and one control group. Yet,
the approach of this paper could easily be extended to multiple treatments.

2I.e., the observational dataset should contain units that did not receive any treatment.
Possible extensions to other types of pretest data are discussed in Section 4.
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on a multivariate measure of distance between the covariates of the experimental
units (Greevy et al., 2004; Moore, 2012). Typical distance measures are Maha-
lanobis or Euclidean distances. Yet, since these distance measures do not assign
weights on the covariates, depending on the size of the effect on the dependent
variable, high-dimensional stratification nevertheless requires the researcher to
select the most important covariates. For example, once one uses this approach
on one covariate that highly affects the dependent variable, and ten covariates
that do not or only weakly affect the dependent variable, the resulting treatment
allocation will be much worse than if one only stratifies on the one important
variable. This paper uses random forests as well as observational pre-test data to
transform the covariates into an index that has the highest possible correlation
with the dependent variable. In the same example with one highly important
variable and ten unimportant variables, the random forest will identify the im-
portant variable and the index will be based almost exclusively on this variable.

Using pre-test data in the design of experiments can foster efficient estimation
of treatment effects. This insight comes from a broad literature on adaptive
experimentation (see Robbins (1952) and the references therein for some initial
contributions to this literature and Berry (2011) for some benefits of adaptive
experimentation). For a sequence of experiments, these approaches use data
from the previous experiments to determine the allocation of treatments in the
next experiment.3 One major focus of adaptive experimentation is to balance
two different goals: First, the experimental design should for each experimen-
tal unit identify the best out of a set of multiple treatments depending on the
covariates of the experimental unit. Second, the design should treat the exper-
imental units as effectively as possible, i.e., for each unit apply the treatment
with the highest expected personalized treatment effect. For example in medical
research, researchers often aim at applying treatments primarily to those subjects
for whom the risk of side effects is low, while still being able to efficiently estimate
personalized treatment effects (Sverdlov, 2015; Villar et al., 2015). In online ad-
vertisements, companies seek to use the ad that works best as soon as possible,
while still being able to efficiently estimate which out of a set of potential ads
works best (Bubeck and Cesa-Bianchi, 2012; Tang et al., 2013). A mathematical
formulation of this problem goes under the name of the multi-armed bandit prob-
lem (Thompson, 1933; Mahajan and Teneketzis, 2008) or contextual multi-armed
bandit problem (Wang et al., 2005; Lu et al., 2010).4

While this paper is closely related to adaptive experimentation in the sense that
it uses pre-collected data in the design of experiments, there are some differences.
First, whereas adaptive experimentation usually considers - arbitrarily long - se-
quences of experiments (Bubeck and Cesa-Bianchi, 2012), this paper assumes
only two stages. The first stage is the collection of observational data; the second
stage is conducting the experiment. Second, adaptive experimentation usually

3Experiments in this case mean a sample of one or more experimental units, in which the
experimenter can freely allocate treatments. Before allocating the treatments, the researcher
observes the covariates of the experimental units, after applying the treatment the researcher
observes the dependent variable of all units.

4Depending on whether there is covariate information (context) available or not.
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aims at assigning different propensity scores, i.e., different probabilities of re-
ceiving the treatment, to different experimental units (Hahn et al., 2011). The
approach of this paper leaves the propensity score constant at 0.5 for each unit.
Lastly, in contrast to adaptive experimentation, the approach of this paper does
not require experimental pre-test data. Rather, I require an observational data
set that contains only the untreated dependent variable (the status quo) as well
as the covariates.

Most closely related to this paper is the work of Barrios (2013). For a similar sit-
uation, he proposes to fit a linear model on the observational pretest data and to
match on linear model predictions in the experiment. Compared to the method
of Barrios, the MLS approach has four advantages. First, MLS can be applied
to to all kinds of strata sizes. Matching is a special case for a strata size of two.
Strata sizes of at least four have the advantage of a straight forward estimation
of standard errors (see Athey and Imbens, 2017). Second, contrary to match-
ing, stratification is easily generalizable to multiple treatments (see Wilk (1955)
for randomization inference on stratified experiments with multiple treatments).
Third, whereas Barrios uses linear models for prediction and analysis of the data,
this paper uses a random forest for prediction and an analysis via randomization
inference. This makes the MLS approach, in contrast to the approach of Barrios,
completely non-parametric. Fourth, the precision of random forest predictions
in most real applications is much better than for linear model based predictions
(see Fernández-Delgado et al. (2014) and also Appendix C), making MLS more
powerful.

The major advantage of MLS compared to classical stratification is that it reduces
much of the arbitrariness concerning the choice on which variables to stratify on.
Using this approach, the researcher can simply take all available covariates into
account without repeatedly thinking about which of the covariates are most im-
portant. In simulations on 300 random samples drawn from six different data
sets, I show that MLS leads to more precise estimates and a higher power of
the experiment compared to complete randomization, classical stratification, and
Euclidean or Mahalanobis matching. On average, this approach cuts the variance
of the treatment estimator in half compared to complete randomization. In terms
of sample sizes, this means that the approach of this paper requires on average
around half the sample size to estimate the treatment effect with the same vari-
ance as complete randomization. In addition, MLS increases statistical power
on each of the six data sets. On one of the data sets, power on average even
increases from around 75% for complete randomization, classical stratification,
and matching, to 98%. In this case, the risk of a type II error (i.e., failing to
estimate a significant effect, even though the true treatment effect is positive)
consequently reduces from one out of four to one out of 50.

This paper is structured as follows: Section 2 presents the MLS approach as well
as a theoretical motivation. Section 3 compares MLS to complete randomization,
classical stratification and matching in a simulation. Section 4 discusses possible
extensions of the MLS approach. Section 5 concludes.
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2 Experimental Design

2.1 Preliminaries

As a model for inference, I use the potential outcomes model (e.g Rubin, 1974;
Imbens and Rubin, 2015, Chapter 1). I assume a large population of Np units.
Those units could be people, schools, municipalities, or any other unit of interest.
Each unit is characterized by a vector Ui = (Yi(0), Yi(1), Xi), with i = 1, ..., Np.
Yi(0) is the potential outcome, if unit i does not receive the treatment, Yi(1) is
the potential outcome, if unit i receives the treatment. Xi = (Xi1, ..., Xiz) is a
vector of covariates. Lastly, I denote the sample distribution of U by P.

For unit i, Yi(1) − Yi(0) is the causal effect of the treatment. The goal of this
paper is to estimate average treatment effects τ = E[Y (1) − Y (0)], taking the
expectation over P. For estimating the average treatment effect, the researcher
draws a sample of size Ns out of the population. For each unit in this sample,
the researcher observes a vector U obs = (Yi(Ti), Xi, Ti), where Ti ∈ {0, 1} is a
dummy variables, indicating whether unit i received the treatment (Ti = 1), or
not (Ti = 0). From the definition of U obs, we see what Holland (1986) calls the
fundamental problem of causal inference: Each unit can only be observed in one
state (either treated or untreated) and therefore the causal effect of the treatment
cannot be observed for any unit.

In order to estimate the average treatment effect, the researcher thus has to rely
on an experimental design. The experimental design is the sum of all decisions the
researcher has to make while designing an experiment. In practice, many decisions
certainly concern the definition and measurement of the dependent variable as
well as the design of the treatment. In this paper, I take those things as given
and define an experimental design as follows:

Definition 2.1. (Experimental Design)
For a given population of units, an experimental design composes of:

1. A strategy for sampling experimental units from the population.

2. A strategy for allocating treatments to experimental units.

3. A strategy for analyzing the experimental data.

2.2 Motivation

I assume, that the researcher knows the potential outcomes of the entire popula-
tion. Given this knowledge, I analyze how strata should be defined optimally to
minimize the variance of the treatment estimator. Of course this is not a realistic
scenario. If the researcher knows the potential outcomes of every unit in the
population, there is no reason for conducting an experiment anymore. Rather,
this subsection should show how ideal strata should look like.

Consider the following experimental design (stratification):
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1. Divide the population into m strata of equal size.5 Randomly sample n
experimental units out of each stratum, resulting in a sample size of Ns =
n ·m.

2. Allocate treatments randomly under the condition that exactly half of the
units in each stratum are allocated to the treatment group and the other
half to the control group.

3. Analyze the data via randomization inference on the difference in means of
the dependent variable between treatment and control group:

τ̂ = Ȳt − Ȳc =
2

Ns

Ns∑
i=1

TiYi(1)− 2

Ns

Ns∑
i=1

(1− Ti)Yi(0).

Under the assumption that Np is sufficiently large, and thus the experimental
units Ui, i = 1, ..., Ns are approximately independent, the variance of the estima-
tor for this design is given by:6

V[τ̂ ]st =
2

mNs

m∑
j=1

(σ2
tj + σ2

cj) = V[τ̂ ]cs −
2

mNs

m∑
j=1

(µtj − µt)2 + (µcj − µc)2. (1)

Here, I used the following notations: V[τ̂ ]st is the variance of the difference in
means estimator under the stratification design and V[τ̂ ]cs under complete ran-
domization. As complete randomization, I denote the special case of stratification
with only one stratum. Lastly, µt and µc denote the mean over P of the treated
and untreated potential outcomes, respectively. Similarly, µtj and µcj are the
means and σ2

tj and σ2
cj the variances of treated and untreated outcomes inside

stratum j.7

Equation 1 shows that the variance of the treatment estimator is always lower
or equal under stratification than under complete randomization. The variances
under the two designs are only equal, if the variables to stratify on do not affect
the (treated and untreated) dependent variable at all (i.e., only if µtj = µt and
µcj = µc for all j = 1, ...,m). This consideration leads Athey and Imbens (2017)
to recommend that one should always stratify. Note that whereas the assumption
of random sampling is necessary to show that stratification always results in a
lower variance of the estimator than complete randomization, this assumption is
not necessary for inference from stratification. In this motivation, I will however
stick to the random sampling assumption.

So how should strata in this situation ideally be selected? Let Sj contain all

5As a technical assumption, I require that Np is divisible by m.
6Appendix D presents a derivation of Equation 1.
7Precisely:

σ2
tj := V[Y (1)|U ∈ Sj ], σ

2
cj := V[Y (0)|U ∈ Sj ]

µtj := E[Y (1)|U ∈ Sj ], µcj := E[Y (0)|U ∈ Sj ],

where Sj contains all units of stratum j.
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units of stratum j in the population (j = 1, ...,m). Then to minimize the vari-
ance V[τ̂ ]strat, the strata should satisfy the following condition:

(S1, ..., Sm) = argmin
S1,...,Sm

Np

m

m∑
j=1

(σ2
tj + σ2

cj), s.t. |S1| = ... = |Sm| =
Np

m
. (2)

Reformulation of the right hand side yields:

(S1, ..., Sm) = argmin
S1,...,Sm

m∑
j=1

∑
Ui∈Sj

‖Yi − µi‖, s.t. |S1| = ... = |Sm| =
Np

m
, (3)

with Yi = (Yi(1), Yi(0))′ and µj = (µtj, µcj)
′. This is a k-means problem with the

condition, that all strata have the same size.

Next, let us suppose that the researcher only observes the potential untreated out-
comes in the population, but not the treated outcomes. In this case, the selection
of strata cannot minimize the sum of variances of the treated outcomes (

∑m
j=1 σ

2
tj).

Intuitively, in this case one would simply minimize the sum of variances of the
untreated outcomes (

∑m
j=1 σ

2
cj) and not care about the treated outcomes. I will

show that this intuition is correct. Calculation reveals:

V[τ̂ ]st =
2

mNs

m∑
j=1

σ2
tj + σ2

cj = V [τ̂ ]cs −
2

mNs

m∑
j=1

(µtj − µt)2 + (µcj − µc)2 (4)

≤ V[τ̂ ]cs −
2

mNs

m∑
j=1

(µcj − µc)2 = k +
2

mNs

m∑
j=1

σ2
cj (5)

for k = 2
mNs

∑m
j=1(σ

2
tj + (µtj − µt)2). This is a sharp upper bound in the sense

that if strata are built on basis of the untreated outcomes, V[τ̂ ]st will be equal to
this bound if treated and untreated outcomes are independent, and lower if there
is some kind of dependence (not necessarily linear dependence). Consequently,
minimizing

∑m
j=1 σ

2
cj always reduces V[τ̂ ]st compared to V[τ̂ ]cs and the reduction

is higher, the higher the dependence of the treated and untreated outcomes is.
Finally, what does minimizing

∑m
j=1 σ

2
cj mean? Reformulating the minimization

problem into a k-means problem yields:

min
S1,...,Sm

m∑
j=1

∑
Ui∈Sj

‖Yi(0)− µcj‖, s.t. |S1| = ... = |Sm| =
Np

m
. (6)

This problem has a simple solution: Rank all units according to their untreated
outcome. W.l.o.g., let Y1(0) ≤ Y2(0) ≤ ... ≤ YNp(0). Now put the first Np

m
units

into stratum S1, the second Np

m
units in stratum S2, and so on.

2.3 Stratification on Predicted Outcomes

Certainly, the cases in the last section are not very realistic. In this section, I
propose an experimental design for a more realistic case. In particular, I assume
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that the researcher observes the untreated outcomes as well as the covariates
only for a randomly drawn sample (observational data set) of the population.
The experimental sample is then drawn out of the same population.

This setting involves all experiments that test a treatment on a population that
previously did not receive the treatment. Examples are the effect of an education
program on future income of people that previously did not receive the program;
the effect of a certain incentive scheme on working performance among workers
that previously faced another incentive scheme; or the effect of a certain diet on
future health of consumers that did not try this diet before. Section 4 discusses
possible extensions to other settings.

For this case, I suggest the following experimental design which I call machine
learning stratification (MLS):

1. Randomly sample Ns = n · m experimental units out of the population,
where n,m ∈ N.

2. • Use the observational data set to derive a predictive model Ŷ (0) =
f(X) that predicts the untreated potential outcome from the vector
of covariates.

• Rank the experimental units with respect to the predicted untreated
outcomes, i.e., such that f(X1) ≤ f(X2) ≤ ... ≤ f(XNs).

• Define m strata such that the first n units are put in stratum one, the
second n units are put in stratum two, and so on.

• Allocate treatments randomly under the condition that exactly half of
the units in each stratum are allocated to the treatment group and the
other half to the control group.

3. Analyze the data via randomization inference on the difference in means of
the dependent variable between treatment and control group.8

In principle f(X) could be a linear model Y (0) = β0 + X ′βx + ε that is fitted
on the observational data set. However, this turns the initial problem of stratifi-
cation into a fairly similar problem. Which covariates should be included in the
linear model? Are there nonlinear effects or interaction effects? All of this has
to be specified by the researcher and will in the end be kind of arbitrary. This is
where machine learning algorithms come into play. These algorithms search for
good predictive models in a structured way.

In this paper, I use a random forest for building the predictive model. Random
forests, as introduced by Breiman (2001), have proven to be very effective on pre-
diction problems. In a comparison of 179 methods on 121 data sets, Fernández-
Delgado et al. (2014) find that this machine learning algorithm is best suited for
prediction. Féraud et al. (2016) use the random forest for compressing the covari-
ate information in contextual bandit problems with great success. The random

8For an introduction to randomization inference on stratified experiments see Athey and
Imbens (2017).
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forest is a non-parametric machine learning algorithm, meaning that it catches
all kinds of nonlinear and interaction effects in the data without requiring the
researcher to specify a particular model (Wager and Walther, 2016). Since this
algorithm is very robust to noise (Wyner et al., 2017), I use all available covari-
ates for building the predictive model.

The idea of the random forest is to fit several decision trees on random subsets
of the observations and the covariates, and average the predictions of the trees.
Decision trees work as follows:9 Consider a case of a single, ordinal covariate X.
Then in a first step, the tree will determine a cutoff value X̄ and cuts the sample
in two leafs. One contains all units with X < X̄, the other contains all units
with X ≥ X̄. The prediction of each leaf is the average dependent variable in the
leaf. The selection of X̄ minimizes the mean square error in the sample (i.e., the
average squared differences between the predicted dependent variables and the
true variables). In the next step, each leaf is split again, and so on, until the leafs
reach a predefined minimum size. In case of multiple ordinal covariates, each spit
of the tree selects the one covariate and the one cutoff level to minimize the mean
squared error. Categorical covariates are included through dummy variables. One
major issue with those trees is overfitting. Whenever leafs are too small, the out-
of-sample predictive power of the tree will be low. Take for example a tree in
which all leafs have size one. In this case the in-sample mean squared error will
be equal to zero, but out-of-sample prediction is impossible. For this reason the
minimum size of the leafs is typically quite large. By taking the average over
many decision trees on random subsets of the sample and a random selection of
the covariates, the random forest reduces the overfitting problem and allows for
a smaller leaf size. The main principle is that leaf predictions based on noise
will occur at random and will thus asymptotically cancel out by the law of large
numbers.

In combination with the random forest, the MLS design transfers many decisions
from the researcher to the observational pretest data. Typically, an important
task in classical stratification is to find the right covariates to stratify on. Even
though some researchers might take pretest data or previous literature into ac-
count for selecting these covariates, the final decision is still more or less arbitrary.
The approach of this paper presents a more structured way of selecting these co-
variates. It uses the random forest and the available data to create a new covariate
that has a high correlation with the (untreated) dependent variable, and stratifies
on this covariate. The only decision that the researcher has to take is the size of
the strata n. In the simulations of this paper, I follow Athey and Imbens (2017),
who recommend a strata size of four.10

Another benefit of this approach is that once the researcher decided for a strata
size of n, the approach ensures that all (or at least all but one) strata actually
are of size n. With classical stratification this is hardly possible. Suppose one

9See Berk (2008) for a textbook discussion of trees and forests from a regression perspective.
10The authors suggest a sample size of four, even though strata of size two will typically yield

lower variances of the treatment estimator. The reason for this suggestion is that standard
errors of the estimator can be more effectively estimated for a strata size of four or more.
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seeks to stratify on gender and race. Then random sampling can easily result in
three white females and five white males. Stratified sampling requires knowledge
of the covariates in the entire population and even then it is possible that some
subjects refuse to show up for the experiment.

3 Simulations

In this section, I compare the performance of the MLS design to complete random-
ization, classical stratification and multivariate matching. I measure performance
with respect to the variance of the treatment estimator as well as the power, i.e.,
the probability of finding a significant treatment effect. For testing significance
of an estimator, I use Fisher’s exact test (Fisher, 1926, Chapter 20.02). For an
application to experiments involving continuous dependent variables, see Athey
and Imbens (2017). Exploiting the randomness of the treatment allocation, this
tests assesses the null hypothesis that the average treatment effect in the given
sample is zero.

Simulation Procedure

For simulation, I use the software R (R Development Core Team, 2008). The
MLS design requires the randomForest package developed by Breiman (2001).
Multivariate matching makes use of the nbpMatching package implemented by
Lu et al. (2011). The latter matches on Mahalanobis distance whenever the
variance-covariance matrix of the covariates can be estimated from the data (i.e.,
whenever the number of covariates is low compared to the sample size), and on
Euclidean distance otherwise.

To simulate the performance of the experimental designs on real data, I use a
similar approach to Bruhn and McKenzie (2009) (see also Schneider and Schlather
(2017) for simulations using the same approach on the same data). This approach
requires a data set that contains an (untreated) dependent variable Y (0) as well
as several covariates X. Treatments are simulated by adding a constant to the
dependent variable Y (1) = c+ Y (0).11

Data

Bruhn and McKenzie (2009) use this simulation approach to compare the per-
formance of several experimental designs, among others complete randomization,
classical stratification and matching, on five different data sets. These data sets
are subsets of 430 units from larger data sets, in particular: The Mexican Em-
ployment Survey (ENE), the Indonesian Family Life Survey (IFLS), data on
microenterprises in Sri Lanka and child and household data from the Learning
and Educational Achievement Project (LEAPS) project in Pakistan. From the
last data set, the authors extract two dependent variables as well as two different
sets of covariates and split it into two data sets. For all datasets, they define

11As a robustness check, I include another simulation approach in Appendix B that attempts
to take over the treatment effect heterogeneity from an experimental data set.
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one subset of the covariates as observables and one as unobservables. Further,
out of the set of observables, they select a set of four variables for stratification.
Stratifying on the first two yields 8 strata, the first three yield 24 strata, and all
four yield 48 strata. For a more detailed description of the data, see Bruhn and
McKenzie (2009) as well as the supplementary material thereof.

In this paper, I use the same five data sets as Bruhn and McKenzie (2009). Clas-
sical stratification in this paper uses the same strata as the original contribution.
I present results for experimental sample sizes of 32, and thus only include 8
strata. Appendix A regards sample sizes of 96 and uses 8, 24 as well as 48 strata.
Matching and MLS take all covariates into account, i.e., those originally labeled
as observables as well as those labeled as unobservables. Given the data sets of
430 experimental units I delete observations with missing12 and split the data
into an experimental data set of 32 units and an observational data set contain-
ing the remaining units. The observational data set is the training set for the
random forest. On the experimental data set, I allocate treatments for 1, 000
times for each experimental design and calculate the variance of the difference in
means estimator as well as the power of the Fisher exact test. To ensure that the
results are not driven by a favorable or unfavorable split, I repeat this procedure
(splitting the data and allocating treatments) for 50 times. This makes 50, 000
Monte Carlo steps for each experimental design on each of the five data sets.

In addition to those five data sets, I include an additional one. It contains data on
a novel commitment savings product called SEED (Save, Earn, Enjoy Deposits)
offered by a Philippine bank (Ashraf et al., 2006). Apart from the treatment
(the offering of the commitment savings product) and the dependent variable
(the change in the overall balance for a given time frame), this experiment re-
ports around 1,800 covariates.13 Most of the covariates have only little influence
on the dependent variable. For this simulation, I keep only the control group.
After removing variables with many missings as well as outliers, this results in
around 700 units and 1, 500 covariates. Similar to Bruhn and McKenzie (2009),
I select four variables for classical stratification: The saving balance before the
experiment, gender and age of the subject and a dummy indicating whether the
subject exhibits hyperbolic preferences.

12Out of the five data sets, only the sri lanka data contained missing values.
13The covariates comprise of responses to surveys conducted by the researchers and admin-

istrative bank data.
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Figure 1: Distribution of Difference in Means Estimator

Figure 1 shows the distribution of the difference in means estimator for a treat-
ment effect of c = 0. Since the true treatment effect is zero, distributions with
higher mass around zero have a higher probability of precisely estimating the true
effect. In line with Bruhn and McKenzie (2009) and Schneider and Schlather
(2017), the plots show that classical stratification (CS) and matching effectively
increase the precision of the estimation compared to complete randomization.
Only on the SEED data there is little increase in precision. On all data sets, the
MLS design outperforms all other designs. Especially on the SEED data MLS
very successfully increases the precision of the estimator. This shows the power
of this approach compared to conventional designs. The SEED data contains
almost 1,500 covariates, all of which have only little influence on the dependent
variable. The random forest very effectively extracts the relevant information
out of these covariates. By stratifying on the random forest predictions one can
efficiently take information on all covariates into account.14 Matching also takes
all covariates into account. However, since Euclidean distance does not carry any

14Note that the training data set of 658 units is quite small for 1, 500 covariates. For a larger
training data set, the MLS design will probably perform even better.
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information of the importance of covariates for the dependent variable, matching
performs poorly compared to MLS.

Table 1 calculates the variance of the difference in means estimator as well as the
power of the Fisher test. As ’power’ I denote the probability that the p-value of
the test is lower than 0.05. For this table, I apply a positive treatment effect.
I calibrate the effect size in a way that the power for complete randomization
is around 0.7. The column ’Variance of Estimator’ presents the variance of the
difference in means estimator for each design in terms of the variance for com-
plete randomization. On average, the MLS design cuts the variance for complete
randomization in half. It is common knowledge that twice the sample size leads
to half the variance of the treatment estimator in case of complete randomiza-
tion. Thus, the MLS design on average requires around half the sample size as
complete randomization to estimate the treatment effect with the same precision.
In addition, the power of the MLS algorithm is higher than for complete random-
ization, classical stratification, or matching on every single data set. The benefits
of MLS compared to the other designs are largest on the high-dimensional SEED
data. With the given treatment effect size, a researcher using classical designs
would obtain an insignificant result in one out of four experiments. Using the
MLS design this would happen only in one out of 50 times.

Finally Table 2 presents a summary over all splits of the data. As mentioned in
the beginning of this section, I split each data set into experimental and obser-
vational sample for 50 times. For all data sets this makes a total of 300 samples.
On each of the samples, I allocate treatments 1,000 times for each design. Us-
ing these 1,000 observations, I calculate the variance of the difference in means
estimator as well as the power for each sample. Table 2 reports for each design
the number of samples in which the particular design performed best. The MLS
design leads to the lowest variance of the estimator and to the highest power in
more than 80% of all samples. In addition, complete randomization was almost
never the best design. This supports the reccommendation of Athey and Imbens
(2017) to always stratify.

Larger samples

For a larger experimental data sets of 96 units, Appendix A finds similar results
to this simulation. Especially the variance of the estimator in terms of the vari-
ance for complete randomization remains equal, or becomes slightly lower. This
is surprising, since results from a linear model inference framework propose that
the benefits of alternative designs compared to complete randomization should
decrease as the sample size increases. In particular, Aufenanger (2017) finds
that in a linear model framework, the variance of the treatment estimator for any
systematic allocation of treatments in terms of the variance for complete random-
ization converges to one as the sample size increases and the number of covariates
stays constant. Also Bruhn and McKenzie (2009) report: ”Our simulations sug-
gest that in samples of 300 or more, the different methods [i.e., designs] perform
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Table 1: Performance of Experimental Design

Variance of Estimator Power Number of Covariates Training dataset size
mexico ene:
Random 1.00 0.73 30 396

CS.8 0.83 0.79 30 396
Matching 0.94 0.75 30 396

MLS 0.65 0.86 30 396
sri lanka:
Random 1.00 0.73 34 363

CS.8 0.95 0.76 34 363
Matching 0.95 0.74 34 363

MLS 0.78 0.83 34 363
leaps height:
Random 1.00 0.69 7 398

CS.8 0.71 0.81 7 398
Matching 0.70 0.80 7 398

MLS 0.46 0.93 7 398
leaps test:
Random 1.00 0.73 7 398

CS.8 0.69 0.84 7 398
Matching 0.67 0.85 7 398

MLS 0.39 0.96 7 398
ifls expend:
Random 1.00 0.70 7 398

CS.8 0.80 0.78 7 398
Matching 0.74 0.79 7 398

MLS 0.49 0.91 7 398
seed obs:
Random 1.00 0.72 1476 658

CS.8 0.93 0.75 1476 658
Matching 0.93 0.74 1476 658

MLS 0.26 0.98 1476 658
Number of splits: 50, MC steps per split: 1000, Size of experimental dataset: 32

Table 2: Share of Splits in Which the Algorithm Performs Best

random CS.8 Matching MLS
Variance of Estimator 0.00 0.03 0.13 0.84

Power 0.02 0.05 0.16 0.86
Number of splits: 300, MC steps per split: 1000, Size of experimental dataset: 32

similarly.”. The simulations of this paper suggest that in a randomization infer-
ence framework with difference in means estimation, the benefits of alternative
designs compared to complete randomization do not decrease with the sample
size of the experimental data set. As Appendix A shows, theory supports this
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suggestion.

4 Possible Extensions

This paper provides a first approach for using observational pretest data in a
structured way for the design of experiments. This section discusses several pos-
sible extensions to this approach.

For example, the random forest yields a proximity measure between covariate
vectors, indicating in how many of the forests’ trees the two covariate vectors
would have been in the same leaf. This measure includes both information of the
difference in predicted dependent variables (the prediction of a tree is equal for all
units in the same leaf) as well as the direct difference in covariates. Take for ex-
pample two units that have been in different leafs in every tree of the forest. If the
predicted dependent variable for these two units is the same, the MLS approach
would regard those two units as identical. On the contrary, for the random forest
proximity measure, those two units are entirely different. If one believes that the
probability for the two true outcomes to be close is higher if the covariates of the
two units are close, it might be a good idea to use multivariate matching on the
forest proximity measure. However, if one doesn’t believe that this probability is
higher if covariates are closer and predictions remain the same, matching on the
proximity measure could also diminish the performance compared to MLS, since
the two units with identical predicted outcomes and different covariates will not
be matched.

Further extensions of the MLS design include applications to alternative types of
pretest data. In the case of experimental pretest data, one possibility would be
to train the forest only on the control group (or only on the treatment group).
However, this would neglect important information. Another possibility would be
to train two forests: One on the control group to predict the untreated outcomes,
one on the treatment group to predict the treated outcomes. The motivation of
Section 2.2 suggests to select strata according to the following k-means problem:

(S1, ..., Sm) = argmin
S1,...,Sm

m∑
j=1

∑
Ui∈Sj

‖Ŷi − µ̂j‖, s.t.|S1| = ... = |Sm| = n, (7)

Where Ŷi = (Ŷi(0), Ŷi(1)) is the vector of the predicted untreated and treated
outcome and µ̂j = (µ̂cj, µ̂tj) is the average predicted treated and untreated out-
come in stratum Sj.

Finally, regard the case of observational pretest data that contains both treated
and untreated outcomes. In case of observational data, subjects typically self-
select into treatment and control. In this case, the propensity score, i.e., the
probability that an experimental unit with a given vector of covariates receives
the treatment usually has little overlap. This means there exists one group with
specific values of the of covariates that receives the treatment and another group
with other covariate values that receives no treatment. One way to treat this data
is to train one random forest on all units that received the treatment and another
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on all units that received no treatment. Further, estimate the propensity score
on the observational data set (for example, using a third random forest). In the
experimental data set, calculate the propensity scores of all units. For units with
a propensity score of more than 0.5, the random forest will be better at predict-
ing the treated potential outcome than the untreated outcome, since the training
data for similar covariate values was larger. Similarly, for units with propensity
scores lower than 0.5, the random forest will be more efficient at predicting the
untreated outcome. To account for this, one could split the experimental sample
in two strata, one with propensity scores above, the other with propensity scores
below 0.5. In the first group, stratify on the predicted treated outcome, in the
second on the predicted untreated outcome.

5 Conclusion

This paper shows a great potential for using observational pretest data in the
design of experiments. Modern day machine learning algorithms, such as the
random forest, make it possible to account for all available covariates in the
design. The machine learning stratification approach introduced in this paper
provides several benefits over classical experimental designs.

First, it provides a structured approach on how to define strata in practical ap-
plications. Up to now the decision on which covariates to stratify or match was
always up to the researcher. The MLS design makes it possible to transfer the
task of selecting the most important variables to the machine learning algorithm
and the pretest data. Second, in contrast to classical designs, the approach of
this paper takes into account the importance of the covariates for the dependent
variable. For example, suppose there are two covariates, one of which has a large
effect on the dependent variable and the other one has a medium size effect. Then
for classical designs, such as classical stratification or matching, the researcher
has to decide whether to take only the first covariate or both into account. In
the latter case, the design treats both covariates equally and does not account
for the fact that the first covariate is more important than the second. In the
same example, the MLS design will account for both covariates and for the fact
that the first one is more important than the second. Third, as the main goal of
treatment allocation is to distribute potential outcomes equally across treatment
and control group, the MLS approach directly targets this goal.

In the simulations of this paper, the MLS design outperforms all competing de-
signs by far. Certainly, the performance of this design depends on the signal in
the data. If the joint distribution of the dependent variable and the covariates
is entirely different in the observational data than in the experimental data, the
approach will not provide any benefits at all. Yet, in this cases, also researchers
using classical designs might struggle finding the right covariates to stratify on. If
there exists a common signal in the observational and the experimental sample,
the random forest is quite effective in extracting this signal from the observational
data. However, even if there exists a signal in the data, the MLS design does
not necessarily have to outperform classical designs in any case. One could easily
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construct an example with one important covariate and 999 noise variables, in
which the best choice would be to stratify exactly on the important variable and
neglect the rest. Nevertheless, in many practical applications it is much easier
for a computer to detect this one-in-a-thousand variable than for a human.
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A Simulations for Larger Experimental Data Set
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Figure 2: Distribution of Difference in Means Estimator for Samples of 96 Units

In Section 3, I simulated the designs on experimental data sets of 32 units. In this
section I increase the sample size to 96 units. The simulation approach remains
the same. Figure 2 as well as Tables 3 and 4 show that also the performance of
the designs remains very similar.

Some theoretical thoughts on this: As in Section 2.2, I assume random sampling
from a large population. Consider a randomly drawn experimental sample U
containing Ñs = k ·Ns units. Then w.l.o.g. U can be written as U = (U1, ..., Uk),
where U j = (U j

1 , ..., U
j
Ns

) are sub samples of Ns experimental units for j = 1, ..., k.
The large population assumption ensures that U1, ..., Uk are independent and
identically distributed. Regard the difference in means estimator on the sample
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U :

τ̂ =
2

kNs

∑
Uj
i ∈U

T ji Y
j
i (1)− (1− T ji )Y j

i (0)) =
1

k

∑
Uj∈U

τ̂ j.

Here T ji ∈ {0, 1} indicates the treatment allocation of unit i out of sub sample
j. Further τ̂ j = 2

Ns

∑
Uj
i ∈Uj T

j
i Y

j
i (1) − (1 − T ji )Y j

i (0)) is the difference in means

estimator in sub sample j. Whenever the allocation of treatments in sub sample
j only depends on the units in U j and not on the remaining sample, all τ̂ j are
independent for j = 1, ..., k. In this case:

V[τ̂ ] =
1

k2

k∑
j=1

V[τ̂ j] =
1

k
V[τ̂ 1].

Therefore the variance of the estimator of the large data set is given by 1
k

times
the variance on the small data set. Take a treatment allocation algorithm A
that yields V[τ̂ 1]A = d ·V[τ̂ 1]cs, where V[τ̂ 1]cs is the variance of the estimator for
random allocation and 0 < d < 1. Then on the large data set:

V[τ̂ ]A
V[τ̂ ]cs

=
V[τ̂ 1]A
V[τ̂ 1]cs

= d.

This shows that the variance of the treatment estimator in terms of the variance
for random allocation stays constant as the sample size increases.

For this result, I assumed that the treatment allocation of the sub sample U j

only depends on the units in U j. This assumption will typically not be fulfilled.
Take for example a matching design. To generate the same fraction of variances
as in the simulation for 32 units, matching for the 96 unit sample should work as
follows: Divide the 96 unit sample in three sub samples of 32 units. Then match
units only inside the sub samples. Certainly this decreases performance of the
matching design on large data sets, since better matches outside the subgroups

are ignored. Consequently, V[τ̂1]A
V[τ̂1]cs is typically only a lower bound on the fraction

of variances on larger data sets V[τ̂ ]A
V[τ̂ ]cs .

Table 3 supports these theoretical considerations. For all data sets except for the
SEED data, the variance of the estimator for all designs in terms of the variance
for complete randomization either stay the same or slightly reduces compared to
the simulation of Section 3.
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Table 3: Performance of Experimental Designs

Variance of Estimator Power Number of Covariates Training dataset size
mexico ene:
Random 1.00 0.71 30 332

CS.8 0.80 0.77 30 332
CS.24 0.80 0.77 30 332
CS.48 0.84 0.76 30 332

Matching 0.75 0.79 30 332
MLS 0.57 0.84 30 332

sri lanka:
Random 1.00 0.69 34 299

CS.8 0.89 0.71 34 299
CS.24 0.91 0.71 34 299
CS.48 0.88 0.71 34 299

Matching 0.77 0.74 34 299
MLS 0.70 0.75 34 299

leaps height:
Random 1.00 0.62 6 334

CS.8 0.67 0.77 6 334
CS.24 0.70 0.76 6 334
CS.48 0.72 0.74 6 334

Matching 0.59 0.81 6 334
MLS 0.44 0.90 6 334

leaps test:
Random 1.00 0.65 7 334

CS.8 0.63 0.82 7 334
CS.24 0.64 0.81 7 334
CS.48 0.67 0.80 7 334

Matching 0.53 0.87 7 334
MLS 0.38 0.95 7 334

ifls expend:
Random 1.00 0.72 7 334

CS.8 0.78 0.81 7 334
CS.24 0.77 0.81 7 334
CS.48 0.80 0.79 7 334

Matching 0.68 0.84 7 334
MLS 0.52 0.92 7 334

seed obs:
Random 1.00 0.70 1476 594

CS.8 0.99 0.71 1476 594
CS.24 0.98 0.71 1476 594
CS.48 1.00 0.70 1476 594

Matching 0.96 0.71 1476 594
MLS 0.26 0.99 1476 594

Number of splits: 50, MC steps per split: 1000, Size of experimental dataset: 96
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Table 4: Share of Splits in Which the Algorithm Performs Best

random CS.8 CS.24 CS.48 Matching MLS
Variance of Estimator 0.00 0.00 0.01 0.01 0.11 0.88

Power 0.01 0.01 0.02 0.01 0.12 0.87
Number of splits: 300, MC steps per split: 1000, Size of experimental dataset: 96

B Heterogeneous Treatment Effects

In the simulations of Section 3, I assume a constant treatment effect. The mo-
tivation of Section 2.2 suggests that MLS performs particularly well in case of
constant treatment effects, since in this case treated and untreated potential out-
comes are perfectly correlated. To provide some evidence on the performance
under heterogeneous treatment effects, this section presents an additional simu-
lation that seeks to overtake the treatment effect heterogeneity from the data.

Simulation Procedure

For these simulations, I use experimental data sets. I match the experimental
data on Mahalanobis distance, such that every unit from the treatment group
has a match in the control group. Then I define the best k matches as the
experimental sample. Out of the remaining observations, I only keep the control
group and use it as the observational pretest data. In the group of the k best
matches, every unit of the control group has an (almost) exact match in the
treatment group. This means for every covariate vector Xi in this subgroup there
is an untreated observation Yi(0) (the match in the control group) and a treated
observation Yi(1) (the match in the treatment group). I simulate treatments by
regarding Yi(1) instead of Yi(0). To ensure that the average treatment effect is
equal to a given effect size c, I add a constant on the dependent variable of each
treated outcome that is equal to c minus the current average treatment effect in
the sample. This does not affect the treatment effect heterogeneity.

In contrast to the simulation of Section 3, this simulation does not draw the
experimental sample randomly from the same population as the observational
sample anymore. In order for the random forest predictions to be precise, the
experimental data should contain the same signal as the observational data. If
the experimental sample is entirely different regarding the connection between the
covariates and the dependent variable, the MLS approach will not work anymore.
This as well as the fact that I include treatment effect heterogeneity in this
simulation should diminish the performance of the MLS design. As this section
shows, the design nevertheless performs very well.

Data

I run this simulation on two data sets. The first data set is the SEED data already
discussed in Section 3. For this simulation, I regard only a small subset of all
covariates. The reason is that matches on 1,500 covariates in a data set of 1,700
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units are necessarily very poor. In order to use the matched observation of treat-
ment and control group as the potential outcomes of the same observation, those
two units should look basically identical from the perspective of the experimental
design. This means the covariates of the two units should be almost identical,
such that any covariate-based allocation of treatments can not distinguish be-
tween the the treated and the untreated units of a match. In order to reduce
the number of covariates, I run machine learning algorithms on the experimental
data set to select the most important covariates with respect to the dependent
variable. In particular, I run a lasso regression to select the 18 most important
categorical variables and a random forest to select the 31 most important ordinal
variables. I neglect all covariates apart from those 49.

The second data set is the Tennessee STAR (Student/Teacher Achievement Ra-
tio) experiment (see Krueger (1999) or Graham (2008) for some related publica-
tions and Kasy (2016) for a comparison of experimental designs on this data).
In 80 schools in Tennessee, the STAR experiment exogenously varies class sizes
in from kindergarten to fourth grade and regards the effect on test performance
in these as well as in later years. Out of this experiment, I regard the sample
of subjects that have been in the first grade in the 1986-1987 school year. Af-
ter deleting observations with many missings as well as outliers, this sub sample
of the STAR experiment consist of around 5, 600 observations. The dependent
variable in the simulated experiment is the average Stanford Achievement Test
(SAT) score at the end of grade 1, and the treatment variable is an assignment
to a small class (13-17 students per teacher). Subjects that do not receive the
treatment are either assigned to a regular class (22-25 students per teacher) or
a regular class with special aid (see Finn et al. (2007) for more details). Unfor-
tunately, the STAR experiment does not report many demographic variables on
the subjects. I use seven covariates in the design: The age, gender and race of
the subject, whether the subject has attended kindergarten, whether the subject
received a free lunch in grade 1 (an indicator of a poor parenthood), and the
school id as well as an urban/rural indicator for the school.

Results

On the STAR data, the 32 matches are perfect, i.e., subjects of each match are
identical in every covariate. For the SEED data there are no perfect matches,
but I pick the best out of more than 800 matches.

Figure 4 shows the treatment effect heterogeneity in the experimental samples.
The figure plots the treatment effect for each match, i.e., the treated outcome
minus the untreated outcome. Especially the STAR data involves a considerable
amount of heterogeneity in the treatment effects.
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Figure 3: Treatment Effect by Match Number: SEED
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Figure 4: Treatment Effect by Match Number: STAR

Table 5 presents the variance of the difference in means estimator as well as
the power. As in Section 3, the MLS design performs better in both measures.
Surprisingly, the matching design in the SEED data performs far worse than
complete randomization. At the first glance, this appears to contradict Section
2.2, which showed that stratification always results in a lower variance of the
estimator than complete randomization. Note however, that this result holds
only on average over a large number of experiments sampled randomly from a
large population. In contrast to Section 3, in this section I regard only one (not
random but selected) sample. The results should therefore be treated with care.

Table 5: Performance of Experimental Designs for Heterogeneous Treatment Ef-
fects

Variance of Estimator Power Number of Covariates Training dataset size
star 32:

Random 1.00 0.63 7 3948
CS.8 0.90 0.66 7 3948

Matching 0.89 0.68 7 3948
MLS 0.57 0.76 7 3948

seed 32:
Random1 1.00 0.60 49 711

CS.81 0.89 0.63 49 711
Matching1 1.46 0.43 49 711

MLS1 0.21 1.00 49 711
Number of MC steps: 50000, Size of experimental dataset: 32
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C Alternatives to Random Forests for Predic-

tion

In the paper, I use a random forest for predicting untreated dependent variables
from covariates. This section compares the random forest to alternative ways of
predicting the dependent variable in the MLS approach.

Barrios (2013) suggests linear model based algorithms for a similar task. In
his analysis, regularized regression algorithms were among those that performed
best. In contrast to plain linear regression, regularized regression penalizes for
high values of the coefficients to avoid overfitting. Consider a training dataset
(yi, xi)i=1,...,N and assume all covariates to be standardized, i.e.,

∑N
i=1 xij = 0,

1
N

∑N
i=1 x

2
ij = 1, j = 1, ...,m. The coefficients of a regularized regression should

solve the following problem:

min
(β0,β)∈Rm+1

(
1

2N

N∑
i=1

(yi − β0 − x′iβ)2 + λPα(β)

)
. (8)

with Pα(β) =
∑m

j=1
1
2
(1 − α)β2

j + α|βj|. The intuition behind this kind of re-
gression is similar to model selection in plain linear models. To avoid fitting the
model on noise, in plain linear models, one includes additional covariates only
if the benefits in terms of a better model fit are larger than some threshold. In
regularized regression, the optimization algorithm solving equation 8 increases
the coefficient βj only if the benefits in terms of a better model fit are higher
than a threshold given by the penalty function. For α = 0 regularized regression
is called lasso (Tibshirani, 2011), for α = 1 ridge (Hoerl and Kennard, 1970) and
for 0 < α < 1 elastic net (Zou and Hastie, 2005).

Contrary to the random forest, regularized regression only partly reduces the
arbitrariness in selecting the most important covariates. While this regression
approach can cope with many covariates and automatically puts more emphasis
on more important covariates than on less important covariates, the researcher
still has to decide which variables to include in the regularized regression. In
particular, if the researcher assumes quadratic, cubic or interaction effects, she
has to include the corresponding transformations of the covariates in the regres-
sion. Simply including all covariates and interactions up to a very high order is
no solution to this problem, since the total number of coefficients increases expo-
nentially with each higher order. For example in case of 100 covariates, including
all interactions up to a order of two, results in 10, 000 coefficients. For an order
of three this makes already 1, 000, 000 coefficients and the model will be almost
impossible to estimate on small data sets.

I compare the MLS design in combination with the random forest to MLS with
the lasso, the ridge and the elastic net (α = 0.5). For implementing these algo-
rithms, I use the R package glmnet (Friedman et al., 2010). For all but the seed
data set, I include all covariates and interactions up to an order of two in the
regression. For the seed data, I only include the covariates without interactions
or higher order effects.
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Table 6 presents the precision of the predictions, measured by the mean squared
error. Suppose the experimental data set consists of n units, then the mean
squared error is defined by 1

n

∑n
i=1(ŷ1− yi)2, where yi is the true dependent vari-

able and ŷi is the prediction thereof. The column “Prediction by Mean” denotes
the case that ŷi = µ i = 1, ..., n, where µ is the average dependent variable in the
training data set. Stratifying on this simple prediction is the same as allocationg
treatment randomly. I standardize the results such that the algorithm with the
largest mean squared error has a value of one. This table shows that the random
forest predicts the untreated dependent variable much more precisely than all the
other algorithms for each of the data sets.

Table 6: Mean Squared Error of Predictions

Prediciton by Mean MLS Lasso MLS Ridge MLS Net MLS Forest
mexico ene 1.00 0.78 0.85 0.79 0.57

sri lanka 0.97 1.00 0.95 0.97 0.49
leaps height 1.00 0.64 0.64 0.64 0.41

leaps test 1.00 0.59 0.60 0.59 0.39
ifls expend 1.00 0.78 0.77 0.78 0.49

seed obs 1.00 0.39 0.94 0.40 0.27
total 0.99 0.70 0.79 0.70 0.44

In a similar simulation to section 3, I compare the MLS design for the case that
one of the linear model based algorithms predicts the untreated dependent vari-
able to the case of a random forest. Table 7 demonstrates that the random forest
is much more efficient in reducing the variance of the treatment estimator and
increasing statistical power. On each of the six data sets, the random forest
performs better than the other algorithms. Consequently, the huge benefits of
the MLS design compared to other experimental designs is strongly connected to
using the random forest for prediction.

D Derivation of Equation 1

In the section, I derive the variance of the treatment estimator for complete
randomization as well as for stratification, under the assumptions of Section 2.2.
As a reminder, the difference in means estimator is given by:

τ̂ = Ȳt − Ȳc =
2

Ns

Ns∑
i=1

TiYi(1)− 2

Ns

Ns∑
i=1

(1− Ti)Yi(0).

Proposition D.1. Under the assumption of Section 2.2, the following equation
holds for the variance of the treatment estimator under stratification and complete
randomization, respectively:

V[τ̂ ]st =
2

mNs

m∑
j=1

(σ2
tj + σ2

cj) = V[τ̂ ]cs −
2

mNs

m∑
j=1

(µtj − µt)2 + (µcj − µc)2. (9)
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Table 7: Performance of experimental design

Variance of Estimator Power Number of Covariates Training dataset size
mexico ene:

Random 1.00 0.72 30 396
MLS Lasso 0.81 0.77 30 396
MLS Ridge 0.78 0.78 30 396

MLS Net 0.82 0.77 30 396
MLS Forest 0.70 0.82 30 396
sri lanka:

Random 1.00 0.73 34 363
MLS Lasso 0.96 0.77 34 363
MLS Ridge 0.96 0.76 34 363

MLS Net 0.98 0.76 34 363
MLS Forest 0.78 0.83 34 363
leaps height:

Random 1.00 0.69 6 398
MLS Lasso 0.64 0.85 6 398
MLS Ridge 0.63 0.85 6 398

MLS Net 0.63 0.85 6 398
MLS Forest 0.45 0.93 6 398
leaps test:

Random 1.00 0.72 7 398
MLS Lasso 0.55 0.91 7 398
MLS Ridge 0.56 0.90 7 398

MLS Net 0.56 0.90 7 398
MLS Forest 0.41 0.95 7 398
ifls expend:

Random 1.00 0.71 7 398
MLS Lasso 0.76 0.80 7 398
MLS Ridge 0.72 0.82 7 398

MLS Net 0.77 0.79 7 398
MLS Forest 0.48 0.92 7 398
seed obs:

Random 1.00 0.72 1476 658
MLS Lasso 0.42 0.95 1476 658
MLS Ridge 0.94 0.74 1476 658

MLS Net 0.37 0.95 1476 658
MLS Forest 0.29 0.97 1476 658
Number of splits: 50, MC steps per split: 1000, Size of experimental dataset: 32
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Proof. For the average dependent variable in the treatment group, we have:

V[Ȳt] = V[EȲt|T ]] + E[V[Ȳt|T ]]

= V[E[ 2
Ns

∑Ns

i=1 TiYi(1)|T ]] + E[V[ 2
Ns

∑Ns

i=1 TiYi(1)|T ]]

=
Ti = 1 for half of subj.

V[E[ 2
Ns

∑
Ti=1 Yi(1)|T ]] + E[V[ 2

Ns

∑
Ti=1 Yi(1)|T ]]

=
all Ui are independent

4
N2

s

∑
Ti=1 V[E[Yi(1)|T ]] + 4

N2
s

∑
Ti=1 E[V[Yi(1)|T ]]

(10)

The same holds for Ȳc. Now we distinguish between complete randomization and
stratification.

Complete Randomization

Under complete randomization, all subjects are sampled randomly and are thus
equally distributed. Therefore, Equation 10 continues as follows:

=
Yi equally distributed

4
N2

s

∑
Ti=1V[E[Y (1)|T ]] + 4

N2
s

∑
Ti=1 E[V[Y (1)|T ]]

=
Yi independent of T

2
Ns

V[E[Y (1)]]︸ ︷︷ ︸
0

+ 2
Ns

E[V[Y (1)]︸ ︷︷ ︸
=V[Y (1)]

= 2
Ns
V[Y (1)]

(11)

The same holds for Y (0). In addition, independence of subjects yields V[Ȳt −
Ȳc|T ] = V[Ȳt|T ] + V[Ȳc|T ] = 2

Ns
(V[Y (1)] + V[Y (0)]). It remains to calculate and

variance of Y (1) and Y (0) over the sampling distributions. Again, I show this for
Y (1), since the procedure for Y (0) is the same. Let S1, ..., Sn denote the strata,
and S be a random variable that is equal to j if the subject belongs to stratum
Sj. Then:

V[Y (1)] = V[E[Y (1)|S]] + E[V[Y (1)|S]]

=
each stratum is equally probable

1
m

∑m
j=1(µtj − µt)2 + 1

m

∑m
j=1 σ

2
tj

(12)

Together with Equation 11 this implies:

V[τ̂ ]cs = 2
Ns

(V[Y (1)] + V[Y (0)])

= 2
mNs

∑m
j=1(σ

2
tj + σ2

cj) + 2
mNs

∑m
j=1(µtj − µt)2 + (µcj − µc)2.

(13)

Stratification

Stratification is the same as complete randomization inside each stratum Sj.
Reformulating Equation 10 thus shows:

V[Ȳt] = 4
N2

s

∑
Ti=1V[E[Yi(1)|T ]] + 4

N2
s

∑
Ti=1 E[V[Yi(1)|T ]]

= 4
N2

s

∑m
j=1

∑
{Ui∈Sj : Ti=1}V[E[Yi(1)|T ]] + 4

N2
s

∑m
j=1

∑
{Ui∈Sj : Ti=1} E[V[Yi(1)|T ]]

= 4
N2

s

∑m
j=1

∑
{Ui∈Sj : Ti=1}V[µtj] + 4

N2
s

∑m
j=1

∑
{Ui∈Sj : Ti=1} E[σ2

tj]

= 0 + 4
N2

s

∑m
i=1

Ns

2m
σ2
tj

= 2
mNs

∑m
j=1 σ

2
tj

(14)
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A similar argument to the case of complete randomization yields:

V[τ̂ ]cs =
2

mNs

m∑
j=1

(σ2
tj + σ2

cj).
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