Dobrescu, Emilian

Article
A Hybrid Forecasting Approach

Amfiteatru Economic Journal

Provided in Cooperation with:
The Bucharest University of Economic Studies

Suggested Citation: Dobrescu, Emilian (2014): A Hybrid Forecasting Approach, Amfiteatru Economic Journal, ISSN 2247-9104, The Bucharest University of Economic Studies, Bucharest, Vol. 16, Iss. 35, pp. 390-402

This Version is available at:
http://hdl.handle.net/10419/168831

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

http://creativecommons.org/licenses/by/4.0/
A HYBRID FORECASTING APPROACH

Emilian Dobrescu*
Center of Macroeconomic Modelling, Romanian Academy, Bucharest, Romania

Abstract
The objective of the paper is to establish the appropriateness of integrating in predictive simulation an econometric estimation of a given variable into a standard moving average process (a linear algorithm with constant positive weights of distributed lags). The empirical search relates to the Romanian input-output tables collapsed into ten sectors. The database concerning the final output during 1989-2009 years is herein analyzed.

Keywords: final output extrapolation, hybrid approach.

JEL Classification: C53, C67

Introduction
The last decades are characterized by an increasing research interest for modelling simulations based on joint use of several technical methods. An extended literature reveals the potential advantages and general principles of combining prognoses (Armstrong, 2001; Elliott, 2011; Simionescu, 2013), and also the possible procedures applicable in pursuing such a goal (Winkler and Clemen, 1992; Armstrong, 2001; Ravazzolo et al., 2007; Pilatowska, 2009; Koop and Korobilis, 2010; Bruno and Stevenson, 2012). The so-called consensus forecasting (Gregory et al., 2001; Schirm, 2003; Gregory and Yetman, 2004; Ager et al., 2007) relates to the same methodological mainstream.

Our intention is to empirically establish the appropriateness of integrating in predictive simulation an econometric estimation of a given variable (EE) into a standard moving average process (MA). By „standard” we mean a linear algorithm with constant positive weights of distributed lags, the sum of these weights being equal to unity. Conventionally, the moving average is called ‘simple’ when the corresponding weights are identical.

1. Two developments of the practical modelling post-sample simulations have inspired the present attempt.

On one hand, the moving average extrapolations tend quickly enough to stabilize the forecasted outcomes around a „frozen” level, or trend. Such a „robustness” frequently contrasts with the usual instability intrinsic to original statistical series.

* Corresponding author, Emilian Dobrescu - emiliand@clicknet.ro
On the other hand, the econometric relationships (independently on chosen specification or adopted computational technique) often provide relatively volatile outcomes for the future. In this way, the dynamic pattern of the primary database would be reflected more faithfully, but the resulting fluctuations could exceed reliable limits. Such a risk remains significant even under the simplified procedure of using fixed estimators (ignoring, therefore, the intervals induced by their standard deviations).

Starting from these somehow symmetrical features of standard moving average and econometric estimations, we are trying to joint them into a hybrid algorithm. Since its unique goal relates the post-sample extrapolations, the colinearities which can consequently appear do not seem to have „unbearable” disturbing effects.

2. According to such an approach, the last term included into moving average is represented by the corresponding econometric estimation for t. An elementary formalization can be obtained using (as a general notation for any series z) the symbols:

\[z_t^* - \text{the extrapolated value for } t \text{ resulted from a moving average of } m \text{ consecutive terms}, \]

\[e_zt \text{ - the econometric estimation for } t, \]

\[w_k (i=1, ..., m) - \text{the apriori established weights, in which } m \text{ corresponds to the first term included into moving average and } 1 \text{ to the last one; it is assumed that } 0 \leq w_k \leq 1, \text{ respectively } \sum w_k = 1. \]

Our proposal, therefore, reduces to the relationship:

\[z_t^* = \sum w_k z_{t-k+1}^* + w_1 e_zt, \text{ in which } j=2, \ldots, m \quad (1) \]

Normally, the first m post-sample extrapolated values involve mixed – statistical and estimated – data.

3. The empirical search relates to the Romanian input-output tables collapsed into ten sectors (the codes used hereafter are mentioned within parenthesis), namely: i) agriculture, forestry, hunting and fishing (1); ii) mining and quarrying (2); iii) production and distribution of electric and thermal power (3); iv) food, beverages and tobacco (4); v) textiles, leather, pulp and paper, and furniture (5); vi) machinery and equipment, transport means and other metal products (6); vii) other manufacturing industries (7); viii) constructions (8); ix) transports and post and telecommunications (9); and x) trade, business and public services (10). Such a classification was described by Dobrescu and Gaftea (2012).

The application targets the database for the final output \(NY = \sum_{i=1}^{10} NY_i \), during 1989-2009 years. We prompt that \(NY_i \) is the surplus of production \(Q_i \) over the deliveries of the respective sector for intermediate consumption of the entire economy. Hence, \(NY_i = Q_i - \sum a_{ij} Q_j \), \(i=\text{fixed} \); \(a_{ij} \) are the well-known technical I-O coefficients. As newly created resources, \(NY \) is estimated in basic prices (as the production itself), and under restriction of the null foreign trade balance (due to this computational convention, algebraically \(NY_i \) can be positive or negative).

Our concrete analysis concerns the sectorial weights of the final output \(w_{nyi} = NY_i / NY \), according to National Commission for Prognosis (2013) and Dobrescu (2013, Annex 1). Evidently, \(\sum w_{nyi} = 1. \)
4. Seven extrapolating procedures have been experimented.

4.1. Three of them are centered on standard moving average technique. This is applied in its simple (SMA) and Fisher (FMA) forms (see Fisher, 1937; Wit, 1998; Maddala, 2001; Jula and Jula, 2012). The Fisher distribution has been limited at 12 terms, taking into account that the assigned share - with the 13-th backward observation – becomes insignificant (lower than 1%). Consequently, the number of terms involved in the simple moving average was restrained again to 12.

In the case of the Fisher moving average, both possible variants are searched:
- as FMAc, in which the number of included terms is identic (12) for all ten series wnyi, and
- as FMAv, in which this number varies (between 2-12) for different sectors, based on the methodology described in Dobrescu (2013).

4.2. The specification adopted in this paper (system SySw) is also used for econometric estimations (wnyi,e). As such, this specification refers to the first order differences d(wnyi), from which the preliminary pwnyi are obtained (pwnyi=d(wnyi)+wnyi(-1)). The multiplier \(\omega = 1/\Sigma pwnyi \) is then introduced, as a corrective parameter. Consequently, the searched values wnyi,e=\(\omega \cdot pwnyi \) observe the compulsory restriction \(\Sigma wnyi,e = 1 \).

4.3. Three hybrid procedures additionally yield by incorporating the econometric estimations into the simple moving average (SMA-EE), the Fisher moving average with identic number of terms (FMAc-EE), and the Fisher moving average with variable number of terms (FMAv-EE).

4.4. All these procedures are synthetically described in the Table 1.

Table no. 1. Main characteristics of the computational procedures

<table>
<thead>
<tr>
<th>Computational procedure</th>
<th>Number of included terms (m)</th>
<th>Weights of included terms (w_k)</th>
<th>Symbol of extrapolated series i=1,…,10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple moving average (SMA)</td>
<td>Identic (12) for all series</td>
<td>Constant=1/m</td>
<td>wny,s</td>
</tr>
<tr>
<td>Fisher moving average with identic m (FMAc)</td>
<td>Identic (12) for all series</td>
<td>Fisher distribution</td>
<td>wny,cf</td>
</tr>
<tr>
<td>Fisher moving average with variable m (FMAv)</td>
<td>Variable (2-12) for different series</td>
<td>Fisher distribution</td>
<td>wny,vf</td>
</tr>
<tr>
<td>Econometric estimation (EE)</td>
<td></td>
<td></td>
<td>wny,e</td>
</tr>
<tr>
<td>Hybrid SMA-EE</td>
<td>Identic (12) for all series</td>
<td>Constant 1/m</td>
<td>wny,se</td>
</tr>
<tr>
<td>Hybrid FMAc-EE</td>
<td>Identic (12) for all series</td>
<td>Fisher distribution</td>
<td>wny,cf</td>
</tr>
<tr>
<td>Hybrid FMAv-EE</td>
<td>Variable (2-12) for different series</td>
<td>Fisher distribution</td>
<td>wny,vf</td>
</tr>
</tbody>
</table>

5. The post-sample extrapolations will be examined in relation with statistics for an entire computational cycle (equal to the number of sample observations, namely 21 in our
The comparison will concern main descriptive statistics, respectively mean, median, maximum, minimum, standard deviation, skewness, and kurtosis. Their values for the primary database are presented in Table 2.

<table>
<thead>
<tr>
<th>wWny1</th>
<th>Mean</th>
<th>Median</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Std. Dev.</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.121703</td>
<td>0.122762</td>
<td>0.192613</td>
<td>0.048262</td>
<td>0.044148</td>
<td>-0.237729</td>
<td>1.839381</td>
<td></td>
</tr>
<tr>
<td>wWny2</td>
<td>-0.033544</td>
<td>-0.029894</td>
<td>-0.021618</td>
<td>-0.058376</td>
<td>0.010061</td>
<td>-1.12155</td>
<td>3.224054</td>
</tr>
<tr>
<td>wWny3</td>
<td>0.02054</td>
<td>0.021493</td>
<td>0.032751</td>
<td>0.004601</td>
<td>0.006573</td>
<td>-0.750332</td>
<td>3.379687</td>
</tr>
<tr>
<td>wWny4</td>
<td>0.099896</td>
<td>0.101425</td>
<td>0.150968</td>
<td>0.053667</td>
<td>0.030505</td>
<td>0.100558</td>
<td>1.791457</td>
</tr>
<tr>
<td>wWny5</td>
<td>0.048312</td>
<td>0.035899</td>
<td>0.147187</td>
<td>0.017935</td>
<td>0.032136</td>
<td>1.844426</td>
<td>5.718006</td>
</tr>
<tr>
<td>wWny6</td>
<td>0.066253</td>
<td>0.056554</td>
<td>0.150087</td>
<td>0.02339</td>
<td>0.032671</td>
<td>1.251806</td>
<td>3.882668</td>
</tr>
<tr>
<td>wWny7</td>
<td>-0.032371</td>
<td>-0.031657</td>
<td>-0.03051</td>
<td>-0.072506</td>
<td>0.029399</td>
<td>0.618976</td>
<td>2.449654</td>
</tr>
<tr>
<td>wWny8</td>
<td>0.132128</td>
<td>0.120787</td>
<td>0.203408</td>
<td>0.097833</td>
<td>0.029842</td>
<td>1.156884</td>
<td>3.174897</td>
</tr>
<tr>
<td>wWny9</td>
<td>0.100455</td>
<td>0.118364</td>
<td>0.127652</td>
<td>0.030189</td>
<td>0.033068</td>
<td>-1.049881</td>
<td>2.428623</td>
</tr>
<tr>
<td>wWny10</td>
<td>0.47663</td>
<td>0.521259</td>
<td>0.568862</td>
<td>0.313964</td>
<td>0.08939</td>
<td>-0.595452</td>
<td>1.87583</td>
</tr>
</tbody>
</table>

The robustness of extrapolated series and their degree of similarity to the primary database will be the main perspectives of our following analysis.

6.1. The first can be approximated by the coefficient of variation (Cv), computed as a ratio of the standard deviation to corresponding mean. This is plotted on Graph Cv (Figure 1) for the sample series wnyi.

Figure no. 1. Graph Cv

Hence, in module, the coefficient of variation oscillates between 0.3-0.4 in four cases (wny1, wny3, wny4, wny9), exceeds 0.4 in other three (wny5, wny6, wny7), and is situated bellow 0.3 in the rest (wny2, wny8, wny10).
6.2. Regarding the similarity degree of extrapolated series to the primary database, the correlation coefficient (Galtung-Pearson and Spearman rank order) will be involved, as a simple and easily interpretable measure.

7. The rest of our work is structured as follows: the second section describes the post-sample extrapolations obtained by the standard moving average and econometric estimations, when these procedures are applied as separate methods. The third extends the analysis on the results of their combination. Some concluding remarks are exposed in the final part of the paper.

Standard Moving Average and Econometric Estimation as Separate Procedures

As we have already mentioned, the attention will be focused on the first cycle of extrapolations (21 successive post-sample levels). In this case, the same statistical properties as primary database will be taken into consideration.

1. Table 3 details the results obtained by using the standard moving average, in its three variants: SMA, FMAc, and FMAv.

<table>
<thead>
<tr>
<th>Series</th>
<th>Mean</th>
<th>Median</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Std. Dev.</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>wWny1s</td>
<td>0.086574</td>
<td>0.085196</td>
<td>0.098373</td>
<td>0.080993</td>
<td>0.004702</td>
<td>1.146588</td>
<td>3.457578</td>
</tr>
<tr>
<td>wWny2s</td>
<td>-0.02936</td>
<td>-0.02952</td>
<td>-0.0283</td>
<td>-0.02978</td>
<td>0.000409</td>
<td>1.456776</td>
<td>4.248407</td>
</tr>
<tr>
<td>wWny3s</td>
<td>0.02282</td>
<td>0.022832</td>
<td>0.023235</td>
<td>0.022302</td>
<td>0.000197</td>
<td>-0.50632</td>
<td>4.187443</td>
</tr>
<tr>
<td>wWny4s</td>
<td>0.070534</td>
<td>0.069506</td>
<td>0.079142</td>
<td>0.068034</td>
<td>0.000274</td>
<td>1.945221</td>
<td>6.188191</td>
</tr>
<tr>
<td>wWny5s</td>
<td>0.031902</td>
<td>0.031833</td>
<td>0.033159</td>
<td>0.030889</td>
<td>0.000066</td>
<td>0.434681</td>
<td>2.654521</td>
</tr>
<tr>
<td>wWny6s</td>
<td>0.051871</td>
<td>0.052425</td>
<td>0.053354</td>
<td>0.047123</td>
<td>0.001604</td>
<td>-1.98515</td>
<td>6.008068</td>
</tr>
<tr>
<td>wWny7s</td>
<td>-0.05799</td>
<td>-0.05859</td>
<td>-0.05256</td>
<td>-0.05961</td>
<td>0.001602</td>
<td>2.22154</td>
<td>7.637913</td>
</tr>
<tr>
<td>wWny8s</td>
<td>0.149649</td>
<td>0.151527</td>
<td>0.157132</td>
<td>0.136057</td>
<td>0.005609</td>
<td>-1.0701</td>
<td>3.377466</td>
</tr>
<tr>
<td>wWny9s</td>
<td>0.121835</td>
<td>0.121807</td>
<td>0.122923</td>
<td>0.12119</td>
<td>0.000277</td>
<td>-0.30085</td>
<td>3.14117</td>
</tr>
<tr>
<td>wWny10s</td>
<td>0.552169</td>
<td>0.553096</td>
<td>0.55519</td>
<td>0.545123</td>
<td>0.002369</td>
<td>-1.44235</td>
<td>4.879516</td>
</tr>
<tr>
<td>wWny1cf</td>
<td>0.077871</td>
<td>0.076986</td>
<td>0.084856</td>
<td>0.076013</td>
<td>0.002281</td>
<td>2.020415</td>
<td>5.999458</td>
</tr>
<tr>
<td>wWny2cf</td>
<td>-0.03014</td>
<td>-0.03022</td>
<td>-0.02952</td>
<td>-0.03028</td>
<td>0.00002</td>
<td>2.071513</td>
<td>6.216038</td>
</tr>
<tr>
<td>wWny3cf</td>
<td>0.022856</td>
<td>0.02284</td>
<td>0.022956</td>
<td>0.02279</td>
<td>4.79E-05</td>
<td>0.974106</td>
<td>2.903264</td>
</tr>
<tr>
<td>wWny4cf</td>
<td>0.065883</td>
<td>0.065482</td>
<td>0.069628</td>
<td>0.065118</td>
<td>0.001109</td>
<td>2.407046</td>
<td>7.88214</td>
</tr>
<tr>
<td>wWny5cf</td>
<td>0.031446</td>
<td>0.03133</td>
<td>0.031999</td>
<td>0.031172</td>
<td>0.000258</td>
<td>1.088335</td>
<td>2.722804</td>
</tr>
<tr>
<td>wWny6cf</td>
<td>0.054589</td>
<td>0.054824</td>
<td>0.05504</td>
<td>0.052401</td>
<td>0.000647</td>
<td>-2.44756</td>
<td>8.019961</td>
</tr>
<tr>
<td>wWny7cf</td>
<td>-0.06065</td>
<td>-0.06088</td>
<td>-0.05851</td>
<td>-0.06108</td>
<td>0.000622</td>
<td>2.460944</td>
<td>8.25588</td>
</tr>
<tr>
<td>wWny8cf</td>
<td>0.160515</td>
<td>0.161707</td>
<td>0.162812</td>
<td>0.151816</td>
<td>0.002901</td>
<td>-1.94297</td>
<td>5.681035</td>
</tr>
<tr>
<td>wWny9cf</td>
<td>0.121426</td>
<td>0.121368</td>
<td>0.121748</td>
<td>0.121256</td>
<td>0.000141</td>
<td>1.142166</td>
<td>3.224672</td>
</tr>
<tr>
<td>wWny10cf</td>
<td>0.556203</td>
<td>0.556581</td>
<td>0.557072</td>
<td>0.552957</td>
<td>0.001024</td>
<td>-2.07766</td>
<td>6.394435</td>
</tr>
<tr>
<td>wWny1vf</td>
<td>0.066677</td>
<td>0.066351</td>
<td>0.071049</td>
<td>0.065802</td>
<td>0.001168</td>
<td>2.954083</td>
<td>10.96927</td>
</tr>
<tr>
<td>wWny2vf</td>
<td>-0.03044</td>
<td>-0.03052</td>
<td>-0.02955</td>
<td>-0.0306</td>
<td>0.000239</td>
<td>2.88314</td>
<td>10.54253</td>
</tr>
<tr>
<td>wWny3vf</td>
<td>0.022489</td>
<td>0.022491</td>
<td>0.022587</td>
<td>0.022274</td>
<td>5.75E-05</td>
<td>-2.28676</td>
<td>10.89892</td>
</tr>
<tr>
<td>wWny4vf</td>
<td>0.060307</td>
<td>0.060233</td>
<td>0.061389</td>
<td>0.059997</td>
<td>0.000297</td>
<td>2.674204</td>
<td>9.975144</td>
</tr>
</tbody>
</table>
As opposed to the recorded statistics, all the moving average schemes reduce considerably the coefficient of variation even during the first cycle of extrapolations.

1.2. This is accompanied with a clear deviation of extrapolated series from the pattern of primary database, which is illustrated by the Galtung-Pearson correlation, presented in the Graph CorMGP (Figure 3).

The Spearman rank order correlation consolidates this statement (Graph CorMSR in Figure 4).
2. The econometric estimations generate significantly different results. The main properties of the post-sample extrapolated series (first cycle of 21 levels) are exposed in Table 4.

Table no. 4. Descriptive statistics of wny(i) extrapolated by econometric estimations

<table>
<thead>
<tr>
<th>Series</th>
<th>Mean</th>
<th>Median</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Std. Dev.</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>wWny1e</td>
<td>0.041777</td>
<td>0.035397</td>
<td>0.218204</td>
<td>-0.09451</td>
<td>0.055048</td>
<td>0.8717</td>
<td>7.612513</td>
</tr>
<tr>
<td>wWny2e</td>
<td>-0.01137</td>
<td>-0.02541</td>
<td>0.129315</td>
<td>-0.07238</td>
<td>0.039446</td>
<td>2.05624</td>
<td>8.922094</td>
</tr>
<tr>
<td>wWny3e</td>
<td>0.022718</td>
<td>0.02305</td>
<td>0.264512</td>
<td>-0.18389</td>
<td>0.088187</td>
<td>0.3982</td>
<td>5.43236</td>
</tr>
<tr>
<td>wWny4e</td>
<td>0.017308</td>
<td>0.005092</td>
<td>0.159261</td>
<td>-0.06876</td>
<td>0.056714</td>
<td>0.631828</td>
<td>3.028404</td>
</tr>
<tr>
<td>wWny5e</td>
<td>0.017894</td>
<td>0.015937</td>
<td>0.094583</td>
<td>-0.03551</td>
<td>0.023171</td>
<td>1.183999</td>
<td>7.889948</td>
</tr>
<tr>
<td>wWny6e</td>
<td>-0.08266</td>
<td>-0.09002</td>
<td>1.060575</td>
<td>-1.01673</td>
<td>0.367243</td>
<td>0.654368</td>
<td>7.237498</td>
</tr>
<tr>
<td>wWny7e</td>
<td>-0.09269</td>
<td>-0.09378</td>
<td>0.253871</td>
<td>-0.3867</td>
<td>0.139341</td>
<td>0.813978</td>
<td>4.886424</td>
</tr>
<tr>
<td>wWny8e</td>
<td>0.128886</td>
<td>0.143447</td>
<td>0.618906</td>
<td>-0.41372</td>
<td>0.17402</td>
<td>-0.44906</td>
<td>8.325712</td>
</tr>
<tr>
<td>wWny9e</td>
<td>0.085484</td>
<td>0.09415</td>
<td>0.399738</td>
<td>-0.25366</td>
<td>0.110305</td>
<td>-0.35161</td>
<td>8.221011</td>
</tr>
<tr>
<td>wWny10e</td>
<td>0.872656</td>
<td>0.89951</td>
<td>3.222083</td>
<td>-1.93719</td>
<td>0.927117</td>
<td>-0.56234</td>
<td>6.758118</td>
</tr>
</tbody>
</table>

2.1. The extrapolations derived from econometric relationships increase (in module) the coefficients of variation specific to primary database (Graph CvE in Figure 5).
2.2. In comparison with the standard moving average procedures however, both coefficients of correlation (Galtung-Pearson and Spearman rank order) indicate a greater similarity degree of extrapolations to the original statistical data (Graph CorE in Figure 6).

3. Hence, as it was expected, the moving average algorithm (in all hereby illustrated versions) induces – due to its asymptotical properties – stable enough forecasts, fact clearly confirmed by the relatively low coefficients of variation. Then again, the degree of similarity to the original series (GP and SR correlations) is also weak.

To the contrary, the extrapolations based on econometric estimations distinguish themselves by a higher degree of similarity to the primary database, but under a more accentuated volatility.

Combined Algorithms

The series wny, have been extrapolated according to formula (1), again during an entire cycle of 21 post-sample terms.

1. Table 5 presents descriptive statistics of these series, using all the modalities of mixing the standard moving average with econometric estimations.

<table>
<thead>
<tr>
<th>Series</th>
<th>Mean</th>
<th>Median</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Std. Dev.</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>wny1se</td>
<td>0.081711</td>
<td>0.079907</td>
<td>0.092222</td>
<td>0.077268</td>
<td>0.004696</td>
<td>1.324986</td>
<td>3.405632</td>
</tr>
<tr>
<td>wny2se</td>
<td>-0.0295</td>
<td>-0.02958</td>
<td>-0.02855</td>
<td>-0.02988</td>
<td>0.000333</td>
<td>1.360254</td>
<td>4.494128</td>
</tr>
<tr>
<td>wny3se</td>
<td>0.022779</td>
<td>0.022758</td>
<td>0.023208</td>
<td>0.02238</td>
<td>0.000185</td>
<td>0.27227</td>
<td>3.488382</td>
</tr>
<tr>
<td>wny4se</td>
<td>0.067808</td>
<td>0.066941</td>
<td>0.074131</td>
<td>0.065837</td>
<td>0.002235</td>
<td>1.788784</td>
<td>5.128758</td>
</tr>
<tr>
<td>wny5se</td>
<td>0.03178</td>
<td>0.03163</td>
<td>0.033163</td>
<td>0.030879</td>
<td>0.000632</td>
<td>0.841106</td>
<td>2.753884</td>
</tr>
<tr>
<td>wny6se</td>
<td>0.051135</td>
<td>0.051035</td>
<td>0.052776</td>
<td>0.047155</td>
<td>0.001206</td>
<td>-1.49599</td>
<td>6.784625</td>
</tr>
<tr>
<td>wny7se</td>
<td>-0.06007</td>
<td>-0.06053</td>
<td>-0.05572</td>
<td>-0.06144</td>
<td>0.001442</td>
<td>1.832027</td>
<td>5.688991</td>
</tr>
</tbody>
</table>
2. The coefficients of variation of extrapolated data are generally higher than the moving average algorithm, but in a relatively narrow band (Graph CvH in Figure 7).

<table>
<thead>
<tr>
<th>Series</th>
<th>Mean</th>
<th>Median</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Std. Dev.</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>wny8se</td>
<td>0.153678</td>
<td>0.155625</td>
<td>0.160596</td>
<td>0.141733</td>
<td>0.005231</td>
<td>-1.12224</td>
<td>3.350382</td>
</tr>
<tr>
<td>wny9se</td>
<td>0.121364</td>
<td>0.121271</td>
<td>0.122091</td>
<td>0.120727</td>
<td>0.000374</td>
<td>0.529374</td>
<td>2.372306</td>
</tr>
<tr>
<td>wny10se</td>
<td>0.559312</td>
<td>0.560342</td>
<td>0.56348</td>
<td>0.550183</td>
<td>0.003654</td>
<td>-1.10711</td>
<td>3.429577</td>
</tr>
<tr>
<td>wny1cfe</td>
<td>0.072298</td>
<td>0.071751</td>
<td>0.078905</td>
<td>0.069105</td>
<td>0.002853</td>
<td>1.269766</td>
<td>3.62064</td>
</tr>
<tr>
<td>wny2cfe</td>
<td>-0.02976</td>
<td>-0.02977 -0.02932</td>
<td>-0.03009</td>
<td>0.000242</td>
<td>0.263427</td>
<td>1.935196</td>
<td></td>
</tr>
<tr>
<td>wny3cfe</td>
<td>0.022552</td>
<td>0.022514</td>
<td>0.022824</td>
<td>0.02247</td>
<td>9.46E-05</td>
<td>1.720783</td>
<td>4.82216</td>
</tr>
<tr>
<td>wny4cfe</td>
<td>0.06304</td>
<td>0.062821</td>
<td>0.066225</td>
<td>0.061629</td>
<td>0.001265</td>
<td>1.36309</td>
<td>4.02052</td>
</tr>
<tr>
<td>wny5cfe</td>
<td>0.030603</td>
<td>0.030459</td>
<td>0.031631</td>
<td>0.030156</td>
<td>0.000431</td>
<td>1.176981</td>
<td>3.182274</td>
</tr>
<tr>
<td>wny6cfe</td>
<td>0.05</td>
<td>0.05013</td>
<td>0.052794</td>
<td>0.046735</td>
<td>0.00194</td>
<td>-0.17225</td>
<td>1.720111</td>
</tr>
<tr>
<td>wny7cfe</td>
<td>-0.06372</td>
<td>-0.06382 -0.06033</td>
<td>-0.06544</td>
<td>0.001331</td>
<td>0.890469</td>
<td>2.342234</td>
<td></td>
</tr>
<tr>
<td>wny8cfe</td>
<td>0.163688</td>
<td>0.164482</td>
<td>0.165777</td>
<td>0.157872</td>
<td>0.002251</td>
<td>-1.74343</td>
<td>4.729785</td>
</tr>
<tr>
<td>wny9cfe</td>
<td>0.119847</td>
<td>0.119787</td>
<td>0.121031</td>
<td>0.119074</td>
<td>0.000562</td>
<td>0.50864</td>
<td>2.264772</td>
</tr>
<tr>
<td>wny10cfe</td>
<td>0.571452</td>
<td>0.571543</td>
<td>0.581087</td>
<td>0.558841</td>
<td>0.006256</td>
<td>-0.207</td>
<td>2.084231</td>
</tr>
<tr>
<td>wny1vfe</td>
<td>0.063152</td>
<td>0.063267</td>
<td>0.066443</td>
<td>0.06048</td>
<td>0.001615</td>
<td>0.27541</td>
<td>2.659005</td>
</tr>
<tr>
<td>wny2vfe</td>
<td>-0.02941</td>
<td>-0.02947 -0.02812</td>
<td>-0.03043</td>
<td>0.000769</td>
<td>0.19863</td>
<td>1.672227</td>
<td></td>
</tr>
<tr>
<td>wny3vfe</td>
<td>0.022362</td>
<td>0.022338</td>
<td>0.022623</td>
<td>0.02203</td>
<td>0.000131</td>
<td>-0.17589</td>
<td>3.601951</td>
</tr>
<tr>
<td>wny4vfe</td>
<td>0.057518</td>
<td>0.057606</td>
<td>0.059955</td>
<td>0.055011</td>
<td>0.001468</td>
<td>-0.06382</td>
<td>1.996524</td>
</tr>
<tr>
<td>wny5vfe</td>
<td>0.030149</td>
<td>0.030045</td>
<td>0.031316</td>
<td>0.029491</td>
<td>0.000525</td>
<td>0.868016</td>
<td>2.78688</td>
</tr>
<tr>
<td>wny6vfe</td>
<td>0.047101</td>
<td>0.046943</td>
<td>0.054799</td>
<td>0.040801</td>
<td>0.004129</td>
<td>0.113528</td>
<td>1.859818</td>
</tr>
<tr>
<td>wny7vfe</td>
<td>-0.06355</td>
<td>-0.0637 -0.05978</td>
<td>-0.06529</td>
<td>0.001472</td>
<td>1.231848</td>
<td>3.976151</td>
<td></td>
</tr>
<tr>
<td>wny8vfe</td>
<td>0.176081</td>
<td>0.175746</td>
<td>0.180304</td>
<td>0.175149</td>
<td>0.001209</td>
<td>2.444874</td>
<td>8.658742</td>
</tr>
<tr>
<td>wWny9vfe</td>
<td>0.117525</td>
<td>0.117416</td>
<td>0.119366</td>
<td>0.116083</td>
<td>0.000991</td>
<td>0.316732</td>
<td>2.03228</td>
</tr>
<tr>
<td>wWny10vfe</td>
<td>0.579072</td>
<td>0.580313</td>
<td>0.59239</td>
<td>0.557283</td>
<td>0.00975</td>
<td>-0.55106</td>
<td>2.48107</td>
</tr>
</tbody>
</table>

Figure no. 7. Graph CvH
3. The correlations of extrapolations with the primary database are plotted on Graphs CorHGP and CorHSR in Figure 8 and Figure 9:

Figure no. 8. Graph CorHGP

Figure no. 9. Graph CorHSR

The combination of standard moving average with econometric estimations merges the above revealed symmetrical characteristics of their separate application.

Conclusions

1. Our comparative analysis would be facilitated by involving more aggregated indicators for the coefficient of variation (ACv), the Galtung-Pearson correlation (AGP), and the Spearman rank order correlation (ASR). These are determined by summing the values (Cv, GP, and SR) of series wny(i), weighted with the mean values of the respective series. As before, the mentioned symbols will be completed with a distinguishing suffix for the involved computational method. The results are synthetised in Table 6.

Table no. 6. Aggregated ACv, AGP, and ASR

<table>
<thead>
<tr>
<th>Series</th>
<th>ACv</th>
<th>AGP</th>
<th>ASR</th>
</tr>
</thead>
<tbody>
<tr>
<td>wWny(i)</td>
<td>0.337791</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wWny(i)s</td>
<td>0.020116</td>
<td>0.22715</td>
<td>0.170255</td>
</tr>
<tr>
<td>wWny(i)cf</td>
<td>0.009232</td>
<td>0.170081</td>
<td>0.089989</td>
</tr>
<tr>
<td>wWny(i)vf</td>
<td>0.006926</td>
<td>0.374561</td>
<td>0.069369</td>
</tr>
</tbody>
</table>
We prompt that the coefficients of correlation are calculated comparatively with the primary database (sample series \(w_{ny(i)} \)).

2. The aggregated ACv attests again the contrast between the relative stability of extrapolated data induced by the standard moving average algorithms (in all applied forms) and their high volatility in the case of econometric estimations. As a compromise, the hybrid methods are also characterized by low coefficients of variation, but these are slightly higher than MA procedures. Graph ACv in Figure 10 shows a comparison.

3. The correlations between the forecasted series and the primary database are, however, categorically in favor of the hybrid methods (Graph ACor in Figure 11).

<table>
<thead>
<tr>
<th>Series</th>
<th>ACv</th>
<th>AGP</th>
<th>ASR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_{ny(i)}e)</td>
<td>1.980591</td>
<td>0.244212</td>
<td>0.254792</td>
</tr>
<tr>
<td>(w_{ny(i)}se)</td>
<td>0.019988</td>
<td>0.365539</td>
<td>0.463928</td>
</tr>
<tr>
<td>(w_{ny(i)}cfe)</td>
<td>0.017226</td>
<td>0.459941</td>
<td>0.544496</td>
</tr>
<tr>
<td>(w_{ny(i)}vfe)</td>
<td>0.022059</td>
<td>0.608575</td>
<td>0.646955</td>
</tr>
</tbody>
</table>
4. Summarizing, a hybrid moving average/econometric estimation approach seems to be preferable comparatively with their separate application. Undoubtedly, several problems remain to be hereafter explored.

We have examined only three forms of moving average technique: simple, Fisher distribution with identical number of terms for all examined series, and Fisher distribution with variable number of terms. It would be of interest to search also another possible such variants, including new schemes of determining the weights of implied lags.

On the other hand, it is important to analytically and numerically study the possible asymptotical properties of the series resulted by using the hereby discussed hybrid moving average – econometric estimation forecasting approach.

Further research follows to explore these and other similar questions.

References

