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Non-Technical Summary 
 
 
Following the classical work by Merton (1969, 1971), most papers that study consumption-
portfolio decisions disregard money. However, as for instance pointed out by Obstfeld and Rogo 
(1996), p. 513, “many of the most intriguing and important questions in international finance 
involve money". Now, there are several ways to take money into account. One approach 
assumes that money enters the utility function. This idea of modeling preferences for liquidity is 
well established. Starting with Sidrauski (1967) and Brock (1974), a strand of macroeconomic 
literature uses “money in the utility function" to address economic problems involving monetary 
issues. Intuitively, this approach could be justified by the implicit assumption that the agent has 
utility from both consumption and leisure. Real money balance thus enters the utility function 
indirectly since agents save time in conducting their transactions when holding cash. 
Despite its widespread use in the theory of monetary policy, a rigorous treatment of 
consumption-portfolio decisions with preferences for cash is missing. Our paper fills this gap and 
studies a canonical consumption-portfolio problem of a household with these preferences. We 
provide closed-form solutions in both the finite- and infinite-horizon case and also prove formal 
verification theorems showing that these solutions are indeed optimal.  
We find that in the finite-horizon setting preferences for cash lead to time-dependent risky 
portfolio shares that are decreasing in age for reasonable calibrations. Such a pattern is 
qualitatively in line with rules of thumb that the risky share should decrease in age. It is also 
supported by recent empirical evidence showing that households who participate in the stock 
market have high and fairly constant risky shares during young ages, while investors reduce 
their risky share at a steady pace from about age 45 until they reach retirement (see Fagereng, 
Gottlieb, and Guiso (2017)). 
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Consumption-Portfolio Choice with Preferences for Cash

Abstract: This paper studies a consumption-portfolio problem where money en-

ters the agent’s utility function. We solve the corresponding Hamilton-Jacobi-

Bellman equation and provide closed-form solutions for the optimal consump-

tion and portfolio strategy both in an infinite- and finite-horizon setting. For

the infinite-horizon problem, the optimal stock demand is one particular root

of a polynomial. In the finite-horizon case, the optimal stock demand is given

by the inverse of the solution to an ordinary differential equation that can be

solved explicitly. We also prove verification results showing that the solution

to the Bellman equation is indeed the value function of the problem. From an

economic point of view, we find that in the finite-horizon case the optimal stock

demand is typically decreasing in age, which is in line with rules of thumb given

by financial advisers and also with recent empirical evidence.

Keywords: consumption-portfolio choice, money in the utility function, stock

demand, stochastic control

JEL-Classification: G11, C61



1 Introduction

Following the classical work by Merton (1969, 1971), most papers that study consumption-

portfolio decisions disregard money. However, as for instance pointed out by Obstfeld and

Rogoff (1996), p. 513, “many of the most intriguing and important questions in international

finance involve money”. Now, there are several ways to take money into account. One approach

assumes that money enters the utility function. This idea of modeling preferences for liquidity

is well established. Starting with Sidrauski (1967) and Brock (1974), a strand of macroeconomic

literature uses “money in the utility function” to address economic problems involving monetary

issues.1 Recent papers in financial economics applying this approach involve Balvers and Huang

(2009) and Gu and Huang (2013), among others. Intuitively, this approach could be justified

by the implicit assumption that the agent has utility from both consumption and leisure. Real

money balance thus enters the utility function indirectly since agents save time in conducting

their transactions when holding cash.

Despite its widespread use in the theory of monetary policy, a rigorous treatment of consumption-

portfolio decisions with preferences for cash is missing. Our paper fills this gap and studies

a canonical consumption-portfolio problem of a household with these preferences. We provide

closed-form solutions in both the finite- and infinite-horizon case and also prove formal verifi-

cation theorems showing that these solutions are indeed optimal. For the infinite-horizon case,

the optimal stock demand is characterized by a polynomial. More precisely, it is one particular

root of this polynomial. For the finite-horizon case, we show that the optimal stock demand

is given by the inverse of the solution to an ordinary differential equation. The solution to

the differential equation can be calculated explicitly. We also find that the relative location

of the terminal condition for this differential equation and the solution to the infinite-horizon

case determines whether the optimal stock demand is increasing or decreasing over time. Since

individual optimality of household decisions is part of every general equilibrium analysis, our

analysis also contributes to this field.

From an economic point of view, we find that in the finite-horizon setting preferences for cash

lead to time-dependent risky portfolio shares that are decreasing in age for reasonable calibra-

tions. Such a pattern is qualitatively in line with rules of thumb that the risky share should

decrease in age. It is also supported by recent empirical evidence showing that households who

participate in the stock market have high and fairly constant risky shares during young ages,

1See, e.g., Obstfeld and Rogoff (1996), p. 530, for more details and references. Google Scholar reports more

than 1,600 citations for Sidrauski (1967) and more than 600 for Brock (1974).
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while investors reduce their risky share at a steady pace from about age 45 until they reach

retirement (see Fagereng, Gottlieb, and Guiso (2017)).

Our paper is related to Dixit and Goldman (1970) who also assume that money enters the

agent’s utility. However, they consider a discrete-time setup and analyze first-order conditions

only. In contrast to our paper, they cannot solve the model further and do not provide closed-

form solutions or a verification theorem. Other related papers that assume that money provides

utility are Fama and Farber (1979) and LeRoy (1984a,b). Fama and Farber (1979) study an

economy where the government provides money supply in a partial equilibrium model while

LeRoy (1984a) and LeRoy (1984b) consider a similar general equilibrium setup. An alternative

way to derive a demand for money is the cash-in-advance approach. In this approach, money is

necessary to make transactions and does not directly affects the utility (see, e.g., Lucas (1982)

and Svensson (1985)).

The remainder of the paper is structured as follows: Section 2 describes our framework. Sec-

tion 3 provides and solves the Hamilton-Jacobi-Bellman equation of the agent’s consumption-

portfolio problem. It also studies some properties of the first-order conditions. Sections 4 and 5

analyze the infinite- and finite-horizon case in detail and derive the candidates for the optimal

controls. Section 6 shows that these candidates are indeed optimal and proves the correspond-

ing verification results. Section 7 provides numerical examples. Section 8 concludes. The proofs

of the verification results can be found in the Appendix.

2 Framework

We consider a canonical portfolio problem where the agent can hold cash or invest in a stock

index (short: stock). The dynamics are given by2

dM = Mrdt,

dS = S[µdt+ σdW ].

The agent’s wealth satisfies the dynamic budget constraint

dX = X[(r + πη)dt+ σπdW ]− cdt (2.1)

where η = µ − r and σ > 0 are the stock’s excess return and volatility, π is the proportion

invested in stock, and c denotes consumption. The agent maximizes expected utility from

2For notational convenience, we omit time indices whenever it is not necessary for clarity.
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consumption and terminal wealth, but has also preferences for holding cash. This is because

cash balances, by virtue of their liquidity, provide services (see, e.g., Obstfeld and Rogoff (1996)

and the references therein). Therefore, the agent maximizes

sup
π,c

∫ T

0

e−δtE[u(ct, Xt(1− πt))] dt+ e−δTE[U(XT , XT (1− πT ))].

Notice that Xt(1−πt) equals the amount invested in cash at time t. We assume that the agent’s

utility functions are given by

u(c, `) =
1

1− γ
(cβ`1−β)1−γ, U(x, `) =

1

1− γ
(xα`1−α)1−γ,

i.e. he has a power utility function where the trade-off between consumption c or wealth x and

liquid funds ` is measured by a Cobb-Douglas function. The constants α, β ∈ (0, 1] can be

interpreted as weights. For α = 1, we obtain standard bequest U(x) = x1−γ/(1−γ) as a special

case. Throughout, we make the standing assumption that the risk aversion coefficient satisfies

γ > 1. (2.2)

This requirement is imposed since risk aversions below one are not reasonable from an economic

point of view.3 Besides, we assume that the agent’s optimal stock demand in an ordinary Merton

(1969, 1971) problem were positive, i.e.4

m ≡ η

γσ2
> 0. (2.3)

From an economic point of view, this assumption is not restrictive. The condition m ≥ 0 is

only violated if the expected excess return is negative, which is unrealistic and not in line with

empirical estimates for major stock markets (e.g. US stock market). The case m = 0 is trivial

in our setting since even without preferences for cash the agent invests all his funds in the

money market account. Therefore, preferences for cash have no effect on his portfolio decisions

in this case. Finally, for simplicity we assume that

r ≥ − δ

γ − 1
, (2.4)

which is always satisfied for positive interest rates and can only be violated if the interest rate

is sufficiently negative.5

3See, e.g., Munk (2013), pp. 175ff.
4Table 1 summarizes all relevant constants that are defined in this paper.
5Actually, condition (2.4) could be relaxed further. This condition is sufficient to ensure that D > 0 (see

equation (4.31)). Instead we could also impose the condition that D is positive.
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3 Bellman Equation

The Hamilton-Jacobi-Bellman equation (short: Bellman equation) for our problem is given by

0 = sup
π,c

{
Gt + xrGx + xπηGx − cGx + 0.5x2σ2π2Gxx − δG+ u(c, x(1− π))

}
(3.5)

with terminal condition G(T, x) = U(x, x(1− π(T ))). The first-order conditions become

Gx = (cβ(x(1− π))1−β)−γβcβ−1(x(1− π))1−β, (3.6)

xηGx + x2σ2πGxx = (cβ(x(1− π))1−β)−γ(1− β)cβ(x(1− π))−βx. (3.7)

Rewriting (3.6) as

Gx = βcβ(1−γ)−1(x(1− π))(1−β)(1−γ)

the first-order condition (3.7) becomes

xηGx + x2σ2πGxx =
1− β
β

1

1− π
cGx (3.8)

or

π =

(
η

σ2
− 1− β

β

1

1− π
c

x

)
−Gx

xGxx

or, alternatively,

c =
β

1− β

(
x(1− π)η + σ2π(1− π)

x2Gxx

Gx

)
. (3.9)

Besides, solving (3.6) for optimal consumption yields

c = β
1

1−β(1−γ) (x(1− π))
(β−1)(1−γ)
β(1−γ)−1 G

1
β(1−γ)−1
x

= β
1
κ (x(1− π))

(β−1)(γ−1)
κ G

− 1
κ

x , (3.10)

where κ ≡ 1 + β(γ − 1) > 0. Notice that by setting β = 1 we can recover the standard results

of models without preferences for cash. Using the above relations, we can calculate some terms

in the Bellman equation more explicitly

cGx = β
1
κ (x(1− π))

(β−1)(γ−1)
κ G

β(γ−1)
κ

x , (3.11)

u(c, x(1− π)) = 1
1−γβ

β(1−γ)
κ (x(1− π))

(β−1)(γ−1)
κ G

β(γ−1)
κ

x .

Using these results we can eliminate c in the Bellman equation:

0 = sup
π

{
Gt + xrGx + xπηGx + 0.5x2σ2π2Gxx − δG+K(x(1− π))

(β−1)(γ−1)
κ G

β(γ−1)
κ

x

}
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with

K ≡ 1
1−γβ

β(1−γ)
κ − β 1

κ = β
1
κ
−1
(

1
1−γ − β

)
= β

1
κ
−1 κ

1−γ < 0.

By (3.11), the first-order condition for the optimal stock demand (3.8) becomes

xηGx + x2σ2πGxx =
1− β
β

1

1− π
β

1
κ (x(1− π))

(β−1)(γ−1)
κ G

β(γ−1)
κ

x

or

η + σ2π
xGxx

Gx

=
1− β
β

β
1
κ

(
(1− π)γxγGx

)− 1
κ
. (3.12)

We now conjecture

G(t, x) =
1

1− γ
x1−γf(t)k (3.13)

with a constant k that will be chosen later on. The terminal condition on f is given by

f(T )k = (1− π(T ))(1−α)(1−γ). (3.14)

Then the first-order condition (3.6) for consumption becomes

c

x
= β

1
κ

(
(1− π)(1−β)(γ−1)fk

)− 1
κ

(3.15)

and the first-order condition (3.12) for stock

η − γσ2π =
1− β
β

β
1
κ

(
(1− π)γfk

)− 1
κ
. (3.16)

For the moment we make the assumption that the following conditions hold. A formal verifi-

cation proof that these assumptions are actually satisfied can be found in Section 6.

(i) The consumption-portfolio problem has a smooth value function with f ∈ C1, f > 0, and

k ∈ IR.

(ii) The FOCs (3.15) and (3.16) determine the optimal consumption and stock demand.

(iii) If the horizon is infinite, then a suitable transversality condition holds.6

Under these assumptions, the optimal stock demand characterized by (3.16) is deterministic

and independent of the agent’s wealth. Notice that (3.16) is of the form

η − γσ2π(t) = h(t) (3.17)

with a strictly positive deterministic function h(t).

The following proposition establishes global concavity of our problem:

6See, e.g., Duffie (2001).
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Proposition 3.1 (Concavity and Global Optimality). Assume that (i) holds. Then the function

H(c, π) ≡ xπηGx − cGx + 0.5x2σ2π2Gxx + u(c, x(1− π))

is strictly concave, i.e. a solution to the FOCs (3.15) and (3.16) is a global maximum.

Proof. The sufficient conditions for a maximum are

Hcc < 0, Hππ < 0, det

[
Hcc Hcπ

Hπc Hππ

]
> 0

with

Hcc = ucc = β(β(1− γ)− 1)cβ(1−γ)−2(x(1− π))(1−β)(1−γ) < 0,

Hππ = −γx1−γσ2fk + (1− β)[(1− β)(1− γ)− 1]cβ(1−γ)(x(1− π))(1−β)(1−γ)−2x2 < 0,

Hcπ = Hπc = β(1− β)(1− γ)cβ(1−γ)−1(x(1− π))(1−β)(1−γ)−1(−x).

Hence,

det

[
Hcc Hcπ

Hπc Hππ

]
= −γx1−γσ2fkβ[β(1− γ)− 1]cβ(1−γ)−2(x(1− π))(1−β)(1−γ)x2

+ β(1− β)[(1− β)(1− γ)− 1][β(1− γ)− 1]c2β(1−γ)−2(x(1− π))2(1−β)(1−γ)−2x2

> 0.

2

Now, we obtain the following intuitive result.

Proposition 3.2 (Size of the Optimal Stock Demand). Under assumptions (i)-(iii) and con-

ditions (2.2)-(2.4) the agent’s stock demand is bounded from above as follows:

π∗(t) < min{m, 1}, (3.18)

where m is the stock demand in a Merton problem defined in (2.3).

Proof. For m ≤ 1 we obtain π∗(t) < m since (3.17) holds. For m > 1 the FOC (3.16) dictates

π∗(t) < 1. 2

Substituting the guess (3.13) into the Bellman equation yields

0 = k
1−γft +

(
r − δ

1−γ + πη − 0.5γσ2π2
)
f +K(1− π)−

(β−1)(1−γ)
κ f 1− k

κ , (3.19)
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where we assume that the Bellman equation is evaluated at the optimal stock demand π =

π∗. Hence, the separation (3.13) works, but the first-order condition (3.16) and the Bellman

equation (3.19) constitute a coupled system of equations for f and π∗. Since (3.16) can be

rewritten as

(1− π)
(1−β)(1−γ)

κ
−1f−

k
κ =

β

1− β
β−

1
κ (η − γσ2π),

the Bellman equation can be expressed as

0 = k
1−γft +

(
r − δ

1−γ + πη − 0.5γσ2π2 + K̃(η − γσ2π)(1− π)
)
f (3.20)

with

K̃ ≡ K
β

1− β
β−

1
κ =

κ

(1− γ)(1− β)
.

By choosing k as

k = κ = 1 + β(γ − 1),

one can isolate f in (3.16):

f =

1−β
β
β

1
κ

(η − γσ2π)(1− π)
γ
κ

. (3.21)

Notice that the optimal stock demand thus directly determines the value function and vice

versa. Furthermore, we can substitute into (3.15) and rewrite the consumption-wealth ratio

c

x
=

β

1− β
(η − γσ2π)(1− π), (3.22)

which is inversely related to the stock demand.

Taking derivatives in (3.21) w.r.t. time t and substituting back into the Bellman equation leads

to an differential equation for π: First, we differentiate (3.21) w.r.t. time t and get

df

dt
= f

dπ

dt

{γ
κ

(1− π)−1 + γσ2(η − γσ2π)−1
}
,

where we express the derivative in terms of f and the derivative of π. Substituting f and ft

into (3.20) and using the definition (2.3) yields the following ODE for π:

dπ

dt
=
γ − 1

k

P2(π)(1− π)(m− π)

(1− π) + γ
κ
(m− π)

(3.23)

where P2(π) is a second-order polynomial in π:

P2(π) = r − δ

1− γ
+ πη − 0.5γσ2π2 + K̃γσ2(m− π)(1− π). (3.24)

This leads to the following result concerning the slope of the stock demand over time:

7



Lemma 3.3 (Slope of the Stock Demand). Suppose that assumptions (i)-(iii) hold. If condi-

tions (2.2)-(2.4) are satisfied, then (3.18) holds and thus the denominator in (3.23) is always

positive, i.e.

(1− π) +
γ

κ
(m− π) > 0.

In particular, the sign of the polynomial P2 determines the sign of the slope of π over time, i.e.

P2(π) > 0 ⇐⇒ dπ

dt
> 0 and P2(π) < 0 ⇐⇒ dπ

dt
< 0.

Since f must satisfy the terminal condition (3.14), the terminal condition for π can be calculated

from (3.16) by solving for π(T ) in the following equation

η − γσ2π(T ) =
1− β
β

β
1
κ

(
(1− π(T ))γf(T )k

)− 1
κ

(3.25)

= C
(

1− π(T )
)−κα

κ

with κα ≡ 1 + α(γ − 1) and

C ≡ 1− β
β

β
1
κ . (3.26)

There are two special cases where the terminal condition becomes explicit. The following

proposition summarizes these cases.

Proposition 3.4 (Terminal Condition on π). (i) If the liquidity preferences are the same for

consumption and bequest, i.e. β = α, we obtain

π∗(T ) =
m+ 1

2
−

√
(m− 1)2

4
+

C

γσ2
< min{m, 1}. (3.27)

(ii) If η = γσ2, i.e. m = 1, then

π∗(T ) = 1−
(
C

γσ2

) κ
κ+κα

.

Proof. (i) In this case κα = κ and thus equation (3.25) becomes quadratic:

π(T )2 + aπ(T ) + b = 0 with a ≡ −(m+ 1), b ≡ m− 1−β
β
β

1
κ

1
γσ2 .

This equation has two real solutions, but one root is bigger than 0.5(m + 1) and thus violates

Proposition 3.2. Now, C > 0 and thus

π∗(T ) =
m+ 1

2
−

√
(m− 1)2

4
+

C

γσ2
<
m+ 1

2
− |m− 1|

2
= min{m, 1}

8



Therefore, (3.27) is the correct solution and (i) follows.

(ii) follows since η − γσ2π(T ) = γσ2(1− π(T )). 2

Now, we can solve the ODE (3.23) by applying separation of variables:

k

γ − 1

∫
(1− π) + γ

κ
(m− π)

P2(π)(1− π)(m− π)
dπ = t+ const, (3.28)

where const can be determined by using terminal condition (3.25) on π.

4 Infinite Horizon

We first study the infinite-horizon case. Then the ODE (3.23) simplifies to an algebraic equation

for the optimal stock demand:

0 =
γ − 1

k

P2(π)(1− π)(m− π)

(1− π) + γ
κ
(m− π)

. (4.29)

Notice that the optimal stock demand and in turn the function f is now simply a constant.

Under assumptions (i)-(iii) the optimal demand is a root of the polynomial. Since we impose

(2.2)-(2.4), there are two possible solutions and we have to identify the correct one. The

polynomial can be rewritten as follows

P2(π) = K̂(π2 + pπ + q)

with

K̂ ≡ γσ2(K̃ − 0.5) < 0, p ≡ η − K̃(η + γσ2)

K̂
, q ≡

r − δ
1−γ + K̃η

K̂
, (4.30)

and thus the two candidate solutions are

π01/02 = −0.5p±
√
D with D ≡ p2/4− q.

To characterize the solutions, we need some technical results that are summarized in the fol-

lowing lemma. To simplify notation, we set

χ ≡ −K̃ =
κ

(γ − 1)(1− β)
> 0.

Lemma 4.1. We get the following representations:

−0.5p =
m+ (1 +m)χ

1 + 2χ
,

D =
m2

1 + 2χ
+

(
χ(1−m)

1 + 2χ

)2

+

m
η

(r − δ
1−γ )

0.5(1 + 2χ)
, (4.31)

−0.5p−m =
χ(1−m)

1 + 2χ
. (4.32)
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Now assume that conditions (2.2)-(2.4) are satisfied. Then

−0.5p ∈
[

min{m, 1+m
2
},max{m, 1+m

2
}
]

and D > 0.

Furthermore, if m ≤ 1 we get for the distance between −0.5p and m

−0.5p−m ∈ [0,
√
D). (4.33)

If m > 1 we obtain

−0.5p−
√
D < 1. (4.34)

Proof. The representations follow from lengthy calculations. Furthermore, the function ψ(x) =
m+(1+m)χ

1+2χ
is monotonic increasing for m ≤ 1 (decreasing for m > 1), starting at m for χ = 0,

and having the limit 0.5(1 +m) for χ→∞. Besides, D > 0 since χ > 0, and r ≥ −δ/(γ − 1).

For m ≤ 1 we get −0.5p − m ≥ 0 since (4.32) and χ > 0. Furthermore, −0.5p − m <
√
D

since the middle term in the representation of D is (−0.5p−m)2 and the first term is strictly

positive. To show (4.34) for m > 1, notice that

(−0.5p− 1)2 =
(m− 1)2(1 + χ)2

(1 + 2χ)2
.

On the other hand,

D >
m2

1 + 2χ
+

(
χ(1−m)

1 + 2χ

)2

=
m2(1 + 2χ) + χ2(1−m)2

(1 + 2χ)2
.

Now, the result follows since

(m− 1)2(1 + χ)2 = (m− 1)2(1 + 2χ) + χ2(m− 1)2 < m2(1 + 2χ) + χ2(1−m)2.

2

Remark. Notice that −0.5p − m <
√
D if m ∈ (0, 1], but −0.5p − m =

√
D if m = 0.

As already pointed out, the latter case is not interesting since then the agent puts all his

wealth into the money market account in the standard portfolio problem anyway. Therefore,

liquidity preferences are irrelevant for the portfolio decision. This trivial case is ruled out by

assumption (2.3).

Now, we can characterize the optimal stock demand as follows:

Proposition 4.2 (Optimal Stock Demand for an Infinite Horizon). Under assumptions (i)-(iii)

and conditions (2.2)-(2.4) the optimal stock demand for an infinite horizon is given by

π∞ ≡ π02 = −0.5p−
√
D < min{m, 1}.

10



Proof. For the first root, we get π01 = −0.5p+
√
D > min{m, 1+m

2
}, which violates the result

of Proposition 3.2. Since (4.33) or (4.34), respectively, π02 is the only relevant solution to the

first-order condition. 2

Remark. Given our previous results the polynomial of degree four in the numerator on the

right-hand side of (3.23) has four real-valued roots:

π01 > min{m, 1+m
2
}, π∞ < min{m, 1}, π03 = 1, π04 = m, (4.35)

where the last two become a double root for m = 1. It can thus be written as

P2(π)(1− π)(m− π) = K̂(π01 − π)(π∞ − π)(1− π)(m− π).

For m = 1 the representations in (4.30) become

p = −2, q = 1 +
r − δ

1−γ + 0.5γσ2

K̂
=⇒ D =

(r̃ + 1)(γ − 1)(1− β)

γ
> 0 (4.36)

with r̃ ≡ 2(r − δ
1−γ )/(γσ2). Therefore,

π01 = 1 +
√
D, π02 = 1−

√
D.

This leads to the following result:

Corollary 4.3 (Optimal Stock Demand for an Infinite Horizon and m = 1). Under assumptions

(i)-(iii) and conditions (2.2)-(2.4) the optimal stock demand for an infinite horizon and m = 1

is given by

π∞ = π02 = 1−
√
D.

Since the optimal demand in an ordinary Merton problem is one, we now get the clean result

that the adjustment for liquidity preferences is given by
√
D.

5 Finite Horizon

We first study the finite-horizon case for m 6= 1. The case m = 1 is analyzed below. Fur-

thermore, notice that if π∗(T ) = π∞, then the optimal stock demand is constant and equal to

π∗(t) = π∞. This follows directly from (3.23). We thus impose

π∗(T ) 6= π∞ (5.37)

Throughout this section, we also assume that assumptions (i)-(iii) and conditions (2.2)-(2.4)

are satisfied.

11



5.1 The Case m 6= 1m 6= 1m 6= 1

Given our previous results we can rewrite (3.28):

G(π) ≡
∫

(1− π) + γ
κ
(m− π)

(π01 − π)(π∞ − π)(1− π)(m− π)
dπ = −Kt+ const (5.38)

with K ≡ −K̂ γ−1
k

> 0. The following lemma summarizes some relevant properties of the

function G.

Lemma 5.1 (Properties of G). (i) The mapping G is a well-defined real-valued function on

(−∞,min{m, 1})\{π∞} with the representation

G(π) ≡ −α1 ln(π01 − π)− α2 ln |π∞ − π| − α3 ln(1− π) + α4 ln(m− π), (5.39)

where

α1 ≡
1 + γ

k
m− π01(1 + γ

k
)

(π01 − π∞)(1− π01)(π01 −m)
, α2 ≡

1 + γ
k
m− π∞(1 + γ

k
)

(π01 − π∞)(1− π∞)(m− π∞)
,

α3 ≡
γ
k

(1− π01)(1− π∞)
, α4 ≡

1

(π01 −m)(m− π∞)
.

(ii) For all m > 0, we have α2 > 0. If m ∈ (0, 1], then α4 > 0. If m > 1, then α3 < 0.

(iii) G(π)→∞ if π ↘ π∞ or π ↗ π∞.

(iv) If m ∈ (0, 1], then G(π)→ −∞ for π ↗ m. If m > 1, then G(π)→ −∞ for π ↗ 1.

(v) G ′(π) > 0 for π < π∞ and G ′(π) < 0 for π ∈ (π∞,m]. In particular, G has a well-defined

inverse G−1 for π < π∞ and for π ∈ (π∞,m].

Proof. (i) follows from integrating the partial fraction expansion. (ii) follows from (4.35).

(iii) and (iv) follow from the representation of G and (ii). Notice that for m ∈ (0, 1) the terms

involving α1 and α3 are bounded, whereas for m > 1 the terms involving α1 and α4 are bounded.

Finally, by construction, we have

G ′(π) =
(1− π) + γ

κ
(m− π)

(π01 − π)(π∞ − π)(1− π)(m− π)
.

The sign of G ′ is determined by the term (π∞ − π) since all other terms are positive and thus

(v) follows. 2

The constant in (5.38) is given by π∗(T ), which can be determined by (3.25). Therefore, we

obtain

const = G(π∗(T )) +KT =⇒ G(π∗(t)) = K(T − t) + G(π∗(T )),
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where G(π∗(T )) can be calculated by substituting π∗(T ) into (5.39). The optimal demand π∗

must be smooth since it is directly related to f , which must be a C1-function. Therefore, the

properties of G imply the following result:

Proposition 5.2 (Size and Slope of the Stock Demand). (i) If π∗(T ) < π∞, then π∗(t) <

π∞ and dπ∗(t)/dt < 0. (ii) If π∗(T ) ∈ (π∞,min{m, 1}), then π∗(t) ∈ (π∞,min{m, 1}) and

dπ∗(t)/dt > 0. In any case, if (5.37) holds, then the optimal stock demand is given by

π∗(t) = G−1(K(T − t) + G(π∗(T ))). (5.40)

In particular, π∗ is a smooth C1-function, which by (3.21) is also true for f .

Proof. Notice that
dπ∗(t)

dt
=
dG−1

dt
(. . . ) · (−K).

Since K > 0, the result follows by Lemma 5.1 (iv). Besides, π∗ is well-defined because of

Lemma 5.1 (v). 2

Remark. Figure 1 that is discussed in Section 7 shows an example of the function G for the

benchmark calibration reported in Table 2.

As we will see in our numerical examples, the first case with π∗(T ) < π∞ is the more natural

situation, whereas the second case occurs less frequently (e.g. for unrealistically high risk aver-

sions). From an economic point of view, the first case generates an interesting stock demand

that is falling over the life-cycle. So adding preferences for liquidity to a standard Merton

framework can generate a decreasing stock demand.

5.2 The Case m = 1m = 1m = 1

For the case m = 1 we have η = γσ2 and thus equation (5.38) simplifies into

−2(1− β)

γσ2

∫
1

(π01 − π)(π∞ − π)(1− π)
dπ = t+ const (5.41)

because −(1 + γ
κ
)/K = −2(1− β)/(γσ2). Since∫

1

(π01 − π)(π∞ − π)(1− π)
dπ =

2 ln(1− π)− ln |π∞ − π| − ln(π01 − π)

2D

we can rewrite (5.41) as follows

H
(
π∗(t)

)
= H

(
π∗(T )

)
e
Dγσ2

1−β (T−t), (5.42)
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where7

H(π) ≡ (1− π)2

|π∞ − π|(π01 − π)
=

(1− π)2

|1−
√
D − π|(1 +

√
D − π)

, π ∈ (−∞, π∞) ∪ (π∞, 1),

and D is given in (4.36). The constant H
(
π∗(T )

)
reads

H
(
π∗(T )

)
=

(
C
γσ2

) 2κ
κ+κα∣∣∣∣D − ( C

γσ2

) 2κ
κ+κα

∣∣∣∣ , (5.43)

where C is given by (3.26). In the special case α = β, this simplifies further

H
(
π∗(T )

)
=

C

|Dγσ2 − C|
.

Again it is not a priori clear whether π∗(T ) > π∞ or π∗(T ) < π∞. We can now invert the

function H:

Lemma 5.3 (Inverse of H). (i) If π ∈ (−∞, π∞), the inverse of H is given by

H−1(y) = 1−

√
Dy

y − 1
, y > 1. (5.44)

(ii) If π ∈ (π∞, 1), the inverse of H is given by

H−1(y) = 1−

√
Dy

y + 1
.

Proof. (i) In this case, we must invert the function

H(π) =
(1− π)2

(1−
√
D − π)(1 +

√
D − π)

.

This yields two candidates

H−1(y) = 1±

√
Dy

y − 1
, y > 1.

We must have H−1(y) ≤ 1, since π∗ ≤ 1. Therefore, (5.44) follows. Notice that y > 1 is not

a restriction since the right-hand side of (5.42) is strictly greater than one. This is because H
as a function of

√
D is one for

√
D = 0, which is excluded by our assumptions, and strictly

increasing in
√
D for

√
D > 0. The case (ii) follows analogously to (i). 2

Consequently, we get a fully explicit representation of the optimal stock demand:

7The case π = π∞ is not relevant due to assumption (5.37).
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Proposition 5.4 (Optimal Stock Demand for m = 1). (i) If π∗(T ) ∈ (−∞, π∞), the optimal

stock demand is explicitly given by

π∗(t) = 1−

√√√√ D

1− e−
Dγσ2

1−β (T−t)/H
(
π∗(T )

) .
(ii) If π∗(T ) ∈ (π∞, 1), the optimal stock demand is explicitly given by

π∗(t) = 1−

√√√√ D

1 + e−
Dγσ2

1−β (T−t)/H
(
π∗(T )

) .
In both cases, the constant H(π∗(T )) is given by (5.43).

Proof. follows from (5.42) and Lemma 5.3. 2

Remarks. a) If the horizon goes to infinity, i.e. T →∞, we recover the result of Corollary 4.3.

b) By construction of the inverse, the right-hand side in both cases becomes π∗(T ) if t = T .

c) By differentiating π∗(t) w.r.t. time t, one can check that for (i) the stock demand is increasing

over time, whereas it is decreasing for (ii), which is in line with our previous results.

6 Verification

We now prove that the assumptions (i)-(iii) imposed in Section 3 are satisfied for our problem,

i.e. the candidate G is indeed the value function and (π∗, c∗) is the optimal strategy. Notice

that we will sometimes use the notation Xπ,c to emphasize that the wealth dynamics depend

on the controls π and c. First, we need to define the set of admissible strategies.

Definition 6.1 (Admissible Strategy). A strategy (π, c) is said to be admissible if the following

conditions are satisfied:

(i) The processes π and c are progressively measurable w.r.t. the filtration generated by the

Brownian motion W ,

(ii) for all initial conditions (t0, x0) ∈ [0, T ]×(0,∞) the wealth equation (2.1) with Xπ,c(t0) = x0

has a pathwise unique solution {Xπ,c
t }t∈[t0,T ],

(iii) Xπ,c ≥ 0,

(iv) c ≥ 0 and π ≤ 1

(v) c ≤ cXπ,c and π ≥ π for constants c and π that can be different for different strategies.

We denote the set of admissible strategies by A.
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Remarks. a) Notice that (i)-(iii) are for instance satisfied if c and π are smooth deterministic

functions.

b) If the conditions in (iv) do not hold, then the utility functional is not well-defined.

c) The conditions in (v) are imposed to simplify matters. They could be relaxed by imposing

suitable integrability conditions on c and π. From an economic point of view, it seems however

reasonable that the stock demand is bounded from below and that the consumption-wealth

ratio is bounded from above.

First, we summarize our previous results concerning the candidates for the value function and

the optimal controls.

Theorem 6.2 (Candidates for Value Function and Controls). Assume that conditions (2.2)-

(2.4) hold. Then we obtain the following: (i) The candidate (5.40) for the optimal stock demand

π∗ is a well-defined real-valued C1-function defined on [0, T ] and mapping into (−∞, π∞) if

π∗(T ) < π∞ and mapping into (π∞,m) if π∗(T ) > π∞.

(ii) The candidates f and c∗ are well-defined real-valued C1-functions given by (3.21) and

(3.22).

(iii) The pair (π∗, c∗) is admissible in the sense of Definition 6.1.

Proof. (i) follows from Proposition 5.2. (ii) follows from (3.21) and (3.22) since for our

candidate π∗ we have π∗ < min{m, 1}. In particular, there exist a constant c such that c∗ ≤
cXπ∗,c∗ . Since π∗ is a smooth deterministic function on [0, T ], one can check that the pair

(π∗, c∗) is admissible. 2

Now, we can verify that the candidates for the optimal stock demand and consumption are

indeed optimal.

Theorem 6.3 (Verification for a Finite Horizon). The function G given by (3.13) is the value

function of the problem and π∗ and c∗ are the optimal stock demand and consumption.

Proof. See Appendix A.

If the horizon is infinite, then the value function and the optimal strategy become time-

independent. In particular, G satisfies the Bellman equation (3.5) where the time derivative Gt

is set to zero. The candidate for the optimal stock demand is the constant π∞ and satisfies the

algebraic equation (4.29) that we have analyzed in detail in Section 4. In turn, the candidates

for f and c/x that are still given by (3.21) and (3.22) are also constant. To ensure that our

verification result provided in Theorem 6.3 carries over to the infinite-horizon case, we have
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to prove a so-called transversality result.8 If this is satisfied, then loosely speaking beqeust

becomes negligible if the horizon gets larger. Formally, we obtain the following result:

Theorem 6.4 (Verification for an Infinite Horizon). Assume that the candidate for the optimal

stock demand satisfies π∞ > 0. Then π∞ is the optimal stock demand and the value function

is given by

G(x) =
1

1− γ
x1−γfk

where f is a constant that is determined by π∞ via (3.21). The optimal consumption-wealth

ratio c∞/x is also constant and given by

c∞

x
=

β

1− β
(η − γσ2π∞)(1− π∞). (6.45)

Proof. See Appendix A.

Remark. The condition π∞ > 0 excludes pathological cases where the candidate for the

optimal stock demand is negative. This can only occur if β becomes very small.

7 Numerical Examples

To illustrate the effect of preferences for cash, we now consider the stock demands for a base-

line calibration and also perform some comparative statics. Our calibration is summarized in

Table 2. The values of the real interest rate r, the equity premium η, and the stock volatility

σ are in line with US data starting in 1960. As stock market data, we use returns on the

CRSP value-weighted market portfolio inclusive of the NYSE, AMEX, and NASDAQ markets

(cum dividend). The risk-free asset is estimated from the Treasury bill yield provided by the

Risk Free File on CRSP Bond tape. To obtain real values, all time-series are deflated using

the consumer price index (CPI) taken from the website of the Bureau of Labor Statistics. We

slightly reduce the equity premium to 5% to account for survivorship bias (Brown, Goetzmann,

and Ross (1995)) as well as the decline in discount rates and the implied unexpected capital

gains over the sample period (Fama and French (2002)). The choices of the risk aversion γ = 3

and time-preference rate δ = 0.03 are in line with the literature on life-cycle portfolio choice

(see, e.g., Munk (2013) and the references therein), but we also vary the risk aversion γ and

the consumption weight β. We assume that α = 1, i.e. bequest does not involve preferences

8See, e.g., Duffie (2001), p. 213.
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for cash. However, choosing for instance α = β = 0.99 hardly changes our results. The time

horizon is 50 years (e.g. age 25 until age 75).

We first illustrate how the function G given by (5.39) looks like. Recall that it plays an important

role for the optimal stock demand. Figure 1 depicts G for our benchmark calibration. As we

have seen in Section 5, the shape of of G is crucial for the size and slope of the optimal stock

demand over time. In particular, the location of the pole of G, which is the solution π∞ to

the infinite-horizon case, relative to the terminal condition π∗(T ) determines whether the stock

demand is increasing or decreasing. In our benchmark case, we get π∗(T ) = 0.3867, which is

smaller than the optimal demand π∞ of the infinite-horizon problem. Therefore, by Proposition

5.2, the left branch of the function G must be inverted to obtain the optimal stock demand,

which is then decreasing over time. If π∗(T ) were larger than π∞, then the right branch of G
would be relevant and the stock demand would be increasing. Notice that G is increasing before

the pole π∞ and decreasing afterwards. This is the reason why the optimal stock demand is

decreasing or increasing depending on whether π∞ > π∗(T ) or π∞ < π∗(T ).

For our benchmark calibration, Figure 2 depicts the optimal demand m of an ordinary Merton

problem and the optimal demands π∞ and π∗(t) of the infinite-horizon as well as the finite-

horizon problem. As expected for the finite-horizon problem, we obtain a stock demand that is

decreasing over time. Since the initial time horizon is large, it starts close to the solution of the

infinite-horizon case, which is about 0.57, and decreases at an increasing rate to the terminal

condition π∗(T ) = 0.3867, i.e. the optimal stock demand is about 20% lower at the investment

horizon. From an economic point of view, the time dependence comes from the fact that the

relative price of liquidity, which is implicitly determined at the optimum, changes over time.

Figure 3 depicts the corresponding results if the stock demand in the Merton problem is 100%.

This is achieved by increasing the equity premium to 0.0867, which is of course on high side.

The case m = 1 is particularly interesting since any derivation from 100% can be interpreted

as resulting from the preferences for cash. The effect is about 7% for the infinite-horizon case,

but is much more pronounced for the finite-horizon case. In fact, the optimal stock demand

decreases from about 92% to 65% over time leading to a liquidity effect between 7% and 35%.

Figure 4 depicts a calibration where the Merton demand is 110%. It can be seen that already

in the infinite-horizon case preferences for cash bring down the optimal demand to less than

100%. This is in line with Proposition 4.2. Otherwise, the demand would not be admissible.

For the finite-horizon problem, the optimal stock demand decreases from 95% to 70%.

Figure 5 shows comparative statics if we increase the weight of the cash preferences by decreas-

ing the weight of consumption. Of course, the general effect is negative, i.e. more weight on
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cash preferences leads to less stock demand. However, it can be seen that the effect is initially

pretty small, but at the end the terminal conditions are more sensitive. In particular, the opti-

mal stock demands at the investment horizon vary between 38.7% and 6.8%. Finally, Figure 6

depicts comparative statics if we vary the risk aversion coefficient. Now, all stock demands

decrease in risk aversion, which is reasonable.

8 Conclusion

This paper studies a canonical consumption-portfolio problem with “money in the utility func-

tion”. We provide the solution to the finite-horizon setting and analyze the relation to the

problem with an infinite horizon. We show that for a finite horizon the stock demand can be

increasing or decreasing over the life cycle where the latter result typically arises for reason-

able calibrations. Therefore, adding preferences for cash to an ordinary Merton problem can

generate life-cycle stock demands that are in line with rules of thumb for stock investing and

recent empirical evidence. This could potentially be a very useful result for modeling life-cycle

consumption-portfolio decisions.
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A Proofs of Verification Results

Proof of Theorem 6.3. It is sufficient to show that for all admissible controls (π, c)∫ T

0

e−δsE[u(cs, X
π,c
s (1− πs))] ds+ e−δTE[U(Xπ,c

T , Xπ,c
T (1− πT ))] ≤ G(0, X0)

and for our candidate (c∗, π∗)∫ T

0

e−δsE[u(c∗s, X
∗
s (1− π∗s))] ds+ e−δTE[U(X∗T , X

∗
T (1− π∗T )] = G(0, X0)

where X∗ ≡ Xπ∗,c∗ .

First, notice that, by Proposition 3.1, our candidates π∗ and c∗ are the global maximizers of

the Bellman equation (3.5) for the relevant region (π, c) ∈ (−∞, 1) × (0,∞). Therefore, our

candidates satisfy the Bellman equation (without supremum) as equality, whereas all other

admissible controls satisfy the equation as inequality.

Second, we like to stress that a function G satisfies the Bellman equation (3.5) if V (t, x) ≡
G(t, x)e−δt satisfies

0 = sup
π,c

{
Vt + xrVx + xπηVx − cVx + 0.5x2σ2π2Vxx + e−δtu(c, x(1− π))

}
(A.46)

with terminal condition V (T, x) = e−δTG(T, x). Notice that the maximizers of the Bellman

equation are not affected by this transformation.

For an admissible control, we now apply Ito’s formula to V (t,Xt)

dV = [Vt + VxX(r + πη − c/X) + 0.5VxxX
2σ2π2]dt+ VxXσπdW

(A.46)
= −e−δtu(c,X(1− π))dt+ VxXσπdW

where we omit all arguments. Evaluating at t = T yields

V (T,XT ) +

∫ T

0

e−δtu(ct, Xt(1− πt))dt ≤ V (0, X0) +

∫ T

0

Vx(t,Xt)XtσπtdWt, (A.47)

where we have equality for (π∗, c∗). The integrand of the stochastic integral

Vx(t,Xt)Xtσπt = X1−γ
t fk(t)e−δtσπt

is an L2-process since f is smooth and, by (iv) and (v) of an admissible strategy, π and the

coefficients of X are bounded. Therefore, using the terminal condition and taking expectations

yields

E
[ ∫ T

0

e−δtu(ct, Xt(1− πt))dt+ e−δTU(XT , XT (1− πT ))
]
≤ V (0, X0)

with equality for (π∗, c∗), which gives the desired result. 2
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Proof of Theorem 6.4. We must show that∫ ∞
0

e−δtE[u(ct, X
π,c
t (1− πt))] dt ≤ G(X0) (A.48)

for all admissible strategies and∫ ∞
0

e−δtE[u(c∞, X∗t (1− π∞))] dt = G(X0) (A.49)

for the optimal strategy where X∗ ≡ Xπ∞,c∞ . As in the proof for the finite horizon, relation

(A.47) still holds with V (t, x) = G(x)e−δt. The integrand of the Ito integral is still an L2-

process, i.e.

E[V (T,Xπ,c
T )] + E

[ ∫ T

0

e−δtu(ct, X
π,c
t (1− πt))dt

]
≤ V (0, X0)

or in terms of G

e−δTE[G(Xπ,c
T )] + E

[ ∫ T

0

e−δtu(ct, X
π,c
t (1− πt))dt

]
≤ G(X0). (A.50)

Since the previous inequality holds for all admissible strategies (π, c), we obtain

sup
π,c

(
e−δTE[G(Xπ,c

T )]
)

+ E
[ ∫ T

0

e−δtu(ct, X
π,c
t (1− πt))dt

]
≤ G(X0).

If we multiply the term involving the integral by -1, the term becomes positive and we can

apply the monotonous convergence theorem. Therefore,

lim
T→∞

E
[ ∫ T

0

e−δtu(ct, Xt(1− πt))dt
]

= E
[ ∫ ∞

0

e−δtu(ct, Xt(1− πt))dt
]
.

Hence, (A.48) follows if we can show that for every admissible strategy (π, c)

lim
T→∞

(
e−δT sup

π,c
E[G(XT )]

)
= 0

holds. Set θ ≡ η/σ. Then

0 ≥ sup
π,c

(
e−δTE[G(Xπ,c

T )]
)

= sup
π,c

(
E
[

1
1−γ (Xπ,c

T )1−γfk
])
e−δT

≥ sup
π

(
E
[

1
1−γ (Xπ,0

T )1−γ
])

︸ ︷︷ ︸
(∗)

e−δTfk = 1
1−γ (X0)

1−γe(1−γ)(r+
θ2

2γ
)T︸ ︷︷ ︸

(∗∗)

e−δTfk −→ 0 for T →∞,

since (2.4) holds and γ > 1. Notice that (∗) is the value function of an ordinary Merton problem

with terminal wealth maximization only. One can check that it has the representation (∗∗).
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Finally, we have to prove (A.49). Since (A.50) is satisfied as equality for the optimal strategy,

it is sufficient to prove the transversality condition

lim
T→∞

(
e−δTE[G(X∗T )]

)
= 0,

where

dX∗ = X∗[(r + ηπ∞ − ω∞)dt+ σπ∞dW ]

and ω∞ ≡ c∞/X∗ is the consumption-wealth ratio which is given by (6.45). Therefore,

e−δTE[G(X∗T )] = E
[

1
1−γ (X∗T )1−γfk

]
e−δT = 1

1−γX
1−γ
0 eφTfk

where φ ≡ (1− γ)(r + ηπ∞ − ω∞ − 0.5γσ2(π∞)2)− δ is a constant. It remains to show that

φ < 0. (A.51)

By (3.24), the optimal stock demand π∞ satisfies the equation

P2(π)

K̃
= − 1− β

1
γ−1 + β

(
r − δ

1− γ
+ (η − 0.5γσ2π)π

)
+ (η − γσ2π)(1− π) = 0

Therefore,

φ = (1− γ)

(
r − δ

1− γ
+ ηπ∞ − 0.5γσ2(π∞)2 − β

1− β
(η − γσ2π∞)(1− π∞)

)
=

(γ − 1)β

1− β

(
− 1− β

β

[
r − δ

1− γ
+ (η − 0.5γσ2π∞)π∞

]
︸ ︷︷ ︸

(×)

+(η − γσ2π∞)(1− π∞)

)

<
(γ − 1)β

1− β
P2(π

∞)

K̃
= 0,

which shows (A.51). Notice that (×) is strictly positive since we assume (2.4) and π∞ > 0. 2
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Table 1: Constants. This table summarizes relevant constants that are defined in the paper.

Name Definition On Page

m ≡ η
γσ2 3

κ ≡ 1 + β(γ − 1) 4

K ≡ β
1
κ
−1 κ

1−γ 5

K̃ ≡ K β
1−ββ

− 1
κ = κ

(1−γ)(1−β) 7

κα ≡ 1 + α(γ − 1) 8

C ≡ 1−β
β
β

1
κ 8

a ≡ −(m+ 1) 8

b ≡ m− 1−β
β
β

1
κ

1
γσ2 8

K̂ ≡ γσ2(K̃ − 0.5) 9

p ≡ η−K̃(η+γσ2)

K̂
9

q ≡ r− δ
1−γ+K̃η

K̂
9

D ≡ p2/4− q 9

χ ≡ −K̃ = κ
(γ−1)(1−β) 9

π∞ ≡ π02 = −0.5p−
√
D 10

K ≡ −K̂ γ−1
k

12

α1 ≡ 1+ γ
k
m−π01(1+ γ

k
)

(π01−π∞)(1−π01)(π01−m)
12

α2 ≡ 1+ γ
k
m−π∞(1+ γ

k
)

(π01−π∞)(1−π∞)(m−π∞)
12

α3 ≡
γ
k

(1−π01)(1−π∞)
12

α4 ≡ 1
(π01−m)(m−π∞)

12
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Table 2: Baseline parameter values. This table reports the baseline parameters.

Symbol Meaning Value

r Interest rate 0.01

η Equity premium 0.05

σ Stock volatility 0.17

γ Risk aversion 3

δ Time preference rate 0.03

β Consumption weight 0.99

α Consumption weight at death 1.00
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Figure 1: The function G(π)G(π)G(π) in the baseline case. The figure depicts the function G(π). Baseline

parameter values are used yielding a Merton result of m = 0.5767. Besides, the terminal condition for

the finite-horizon solution is π∗(T ) = 0.3867. The solution to the infinite-horizon problem π∞ = 0.5696

is the location of the pole of G.
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Figure 2: Optimal investments over the life cycle in the baseline case. The figure depicts the

optimal proportion invested in stocks for the benchmark calibration reported in Table 2. It also shows

the solution m = 0.5767 to an ordinary Merton problem and the solution π∞ = 0.5696 to the problem

with infinite horizon. The terminal condition for the finite-horizon solution is π∗(T ) = 0.3867.
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Figure 3: Optimal investments over the life cycle for m = 1m = 1m = 1. The figure depicts the optimal

proportion invested in stocks for m = 1. In this case, we increase the equity risk premium from

η = 0.05 in the benchmark case to η = 0.0867. For the remaining parameters the baseline values are

used. The solution to the infinite-horizon problem is π∞ = 0.9274. The terminal condition for the

finite-horizon solution is π∗(T ) = 0.6580.
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Figure 4: Optimal investments over the life cycle for m > 1m > 1m > 1. The figure depicts the optimal

proportion invested in stocks for m > 1. In this case, we increase the equity risk premium from

η = 0.05 in the benchmark case to η = 0.09537 so that m = 1.1. For the remaining parameters the

baseline values are used. The solution to the infinite-horizon problem is π∞ = 0.9582. The terminal

condition for the finite-horizon solution is π∗(T ) = 0.7042.
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Figure 5: Optimal investments over the life cycle for different βββ. The figure depicts the

optimal proportion invested in stocks for different values of β. For the remaining parameters the

baseline values are used. The terminal conditions for the finite-horizon solutions are π∗(T ) = 0.3867

for β = 0.99, π∗(T ) = 0.2596 for β = 0.98, π∗(T ) = 0.1566 for β = 0.97, and π∗(T ) = 0.0675 for

β = 0.96.
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Figure 6: Optimal investments over the life cycle for different γγγ. The figure depicts the

optimal proportion invested in stocks for different values of γ. For the remaining parameters the

baseline values are used. The terminal conditions for the finite-horizon solutions are π∗(T ) = 0.5888

for γ = 1.5, π∗(T ) = 0.5094 for γ = 2, π∗(T ) = 0.3867 for γ = 3, and π∗(T ) = 0.3065 for γ = 4.
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