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Online Appendices for “Credit crunches from occasionally

binding bank borrowing constraints”

Tom D. Holden, Paul Levine and Jonathan M. Swarbrick∗

September 12, 2017

Abstract

This contains the online appendices for the paper: “Credit crunches from occa-

sionally binding bank borrowing constraints” by Tom D. Holden, Paul Levine and

Jonathan M. Swarbrick.

Appendix A Proofs

Proof 1 (Proof of Proposition 1) Substituting equation (14) into (13) gives

λDt = 1− λEt − (1− ι)Et [Λt,t+1 (1− κt)N1,t+1]− (1− κt) . (1)
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Suppose that λEt > 0. Then Et = 0 by complementary slackness, so, from the definition

of κt, the previous equation becomes:

λDt + λEt + (1− ι)Et [Λt,t+1N1,t+1] = 0, (2)

and so λDt = λEt = (1− ι)Et [Λt,t+1N1,t+1] = 0 giving the required contradiction. �

Proof 2 (Proof of Proposition 2) Substituting Ht = 1 into equation (11) leads to:

Mt =

(
1− λBt

)
(1− κt) (1− (1− ι) (1− θ))

(1− κt) (1− (1− ι) (1− θ))− λBt
(3)

Since 0 ≤ (1− κt) (1− (1− ι) (1− θ)) < 1, it follows that Mt = 1 if and only if λBt = 0.

Given that Mt ≥ 1 as a bank can always sell itself to another bank for V̂t, independent

of its history of dividend payments, this also implies that Mt > 1 if and only if λBt > 0.

�

Proof 3 (Proof of Proposition 3) Using equation (8), we have that the steady-state

value of λBt is given by:

λB = ι (1− κ) (1− (1− ι) (1− θ)) ∈ (0, 1), (4)

where throughout this document, values without time subscripts will refer to steady-states.

This implies that the borrowing constraint binds with positive ι but limι→0+ λ
B = 0. As

λB is the Lagrange multiplier on the borrowing constraint, the claim follows. �

Proof 4 (Proof of Corollaries 1 and 2) The results for M in Corollaries 1 and 2

follow immediately from Proposition 2. Indeed, from equation (3), we find:

M =
1− ι (1− κ) [1− (1− ι) (1− θ)]

1− ι
> 1 (5)

and so in the limit as ι→ 0+, we have M→ 1. The same is true for Ni as:

Ni = Zi
(1− ι) (1− θ)

1− (1− ι) (1− θ)
Ri, i = 1, · · · , τ − 1, (6)

where:

Zi ≡
1− (1− ι)τ−i

ι

λB

1− λB
M

1− κ
> 0, i = 1, · · · , τ − 1. (7)

So Ni > 0 for i = 1, · · · , τ − 1, but as ι→ 0, Zi → 0 and Ni → 0. �
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Proof 5 (Proof of Corollary 3) The value of the bank is given by:

V =MV̂ +

τ−1∑
i=1

NiD. (8)

Hence, the value of a bank is always greater than its book value for ι > 0, but limι→0+ V =

V̂ .

Now, banks must pay dividends in steady state, at least with ι > 0, for, suppose they

did not. Then, their steady-state value would be zero, by the definition of bank value,

and so since book value is always weakly below value, their steady-state book value would

be non-positive. However, since equity issuance is always strictly positive with ι > 0,

steady-state book-value would be infinite without dividend payments, giving the required

contradiction. Consequently:

λD = κ− (1− ι) β
Π∗
N1 (1− κ) = 0, (9)

so:

κ =
(1− ι) β

Π∗N 1

1 + (1− ι) β
Π∗N1

> 0. (10)

It follows from limι→0+ N1 = 0, that limι→0+ κ = 0 and so there is no equity issuance in

the limit. �

Proof 6 (Proof of Corollary 4) Note:

R = (1− ι (1− κ) [1− (1− ι) (1− θ)])RK , (11)

so RK > R but limι→0+ R
K = R. �

Proof 7 (Proof of Proposition 4) First suppose that κ = 0. In this case, the first

order condition with respect to dividend payments becomes:

λDt = −(1− ι)Et [Λt,t+1N1,t+1] . (12)

Now, it follows from the definition of N1,t in equations (9) to (10), that N1,t ≥ 0 for all

t, since λBt ∈ [0, 1], by equation (12). Hence, since λDt ≥ 0, equation (12) in fact implies

that λDt = N1,t = 0 for all t. Consequently, again by equations (9) to (10), we must also

have that λBt = 0 for all t, which in turn implies that Mt = 1 for all t, by Proposition

2. Using this in the definitions of the pricing kernels for bank and firm equity, we find
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that when ι = 0 as well, Λt,t+1 = Ξt,t+1 for all t, so financial intermediation is efficient.

The bank is never financially constrained as they can always raise equity finance at no

cost.

Next, suppose that θ = 0. Recall the borrowing constraint is of the form:

Bt ≤ AV̂t + F1,tDt−1 + · · ·+ Fτ−1,tDt−τ+1. (13)

If θ = 0, then as ι→ 0, it follows from the solutions of the coefficients in equations (6)

and (7), that At → ∞ and Fi,t → ∞ for i = 1, ..., τ − 1. So in the limit as ι → 0,

borrowing becomes unlimited. As in the previous case, it follows that for all t, λBt = 0,

Mt = 1 and Λt,t+1 = Ξt,t+1 if ι = 0, and so financial intermediation is efficient.

Proof 8 (Proof of Proposition 5) As ν →∞, the marginal issuance cost ∂κt/∂Et →
∞, and so Et, κt = 0. τ = 0 implies that creditors cannot reclaim previous dividend pay-

ments and the terms on Dt−i in the borrowing constraint and value function, Fi,t,Ni,t
are dropped. Providing 1− σ is sufficiently high that the constraint is always binding, it

can then be shown that retained earnings are always cheaper than debt, so Dt = 0. Sub-

stituting the balance sheet of the bank, V̂t = St−Bt, and the value of the bank defined in

equation (5) into the borrowing constraint (4) yields Vt ≥ StMt/ (A+ 1). Then, using

the definition of At in equation (6) implies:

Vt ≥ [1− σ (1− θ)]St (14)

which is equivalent to the borrowing constraint in GK for appropriately chosen parame-

ters.1

Appendix B Gertler & Kiyotaki (2010) model

We describe a version of the GK model extension with equity issuance. The household

and firm sectors are identical to our model, the difference is on the intermediation of

funds between these two sectors. Every period, banks face a constant probability, 1−σB,

1GK use notation QtSt for the value of bank assets whereas we use St. In GK, Θ is in place of

[1 − σ (1 − θ)]; this difference occurs due to alternative timing assumptions. In our model with the GK

settings, the amount that can be reclaimed against excludes the proportion of assets paid as usual when

the proportion 1 − σ of bankers exit.
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of exiting and paying the household a dividend. No dividend is paid if the bank continues,

the bank decides on debt and outside equity finance and issues loans to non-financial

firms. When a bank exits, a new bank takes is place and is transferred a fraction ξB

of the exiting banks’ net worth. Bank activity is subject to financial constraints as the

inside shareholders can divert assets. In particular bank j solves

V j
t = max

St,Bt,Et

Et{ (1− σB)N j
t+1 + σBΛt,t+1V

j
t+1}

s.t. V j
t ≥ Θ

(
xjt

)
Sjt

N j
t = RKt S

j
t−1 −R

E
t Q

E
t−1E

j
t−1 −Rt−1B

j
t−1

Sjt = Bj
t +QEt E

j
t +N j

t

where Et is the stock of outside equity, rather than new issuance of inside equity as in

our model, QEt is the price of equity, and REt is the rate of return on outside equity.

Where each unit of EtQ
E
t is a claim on one unit of St, itself a claim on a unit of QtKt.

The proportion of divertable assets, θ is a quadratic function of xt ≡ QEt Et/St:

θ
(
xjt

)
= θ̄

(
1 + εxt +

κGK

2
x2
t

)
Dropping bank indices, this leads to demand equations for debt and equity finance

νbt = φt (θ (xt)− [µst + µetxt])

µet = [µst + µetxt]
θ′ (xt)

θ (xt)

with φt ≡ St
Nt

and where

Ω ≡ 1− σB + σBθ (xt)φ

µst ≡ Et
[
Λt,t+1Ωt+1

(
RKt+1 −Rt

)]
νbt ≡ Et [Λt,t+1Ωt+1Rt]

µet ≡ Et
[
Λt,t+1Ωt+1

(
Rt −REt+1

)]
Finally, the demand for outside equity must satisfy

1 = Et
[
Λt,t+1R

E
t+1

]
.
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Appendix C Additional impulse response functions

In addition to the impulse response function to an adverse capital quality shock in the

paper, here we show a positive capital quality shock that highlights the asymmetry.

Plots of the responses to a positive 5 percent capital quality shock are shown in figure

1. The same is true for shocks to total factor productivity. As a negative productivity

shock decreases the continuation value of the bank, or the value of future profits, the

constraint tightens. As there is also a decline in the value of bank assets, which acts

in the opposite direction, a large shock is required to cause the borrowing constraint to

bind sufficiently to have a large impact. There is a small financial accelerator for adverse

shocks, but as shown in figure 2, this effect is not persistent and the model converges

quickly to the RBC model. As shown in figure 3, for positive technology shock there is

little difference between our model and the RBC model.
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Figure 1: Median impulse response functions to a positive capital quality shock for our

model, and the RBC and GK models. The shock is defined as a one time 5 percent

increase in the capital stock. Plots show percent deviation from ergodic median for Y ,

I, and H and level deviation for ∆ = Et
[
RKt+1 −Rt

]
, D/N and E/N . The left axis of

the D/N plot corresponds to our model, the right to GK.
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Figure 2: Median impulse response functions to a 1-standard deviation, negative pro-

ductivity shock in our model, and the RBC and GK models. Plots show percent de-

viations from ergodic median for Y , I, and H and percentage point deviations for

∆ = Et
[
RKt+1 −Rt

]
, D/N and E/N . The left axes of the last two plots correspond

to our model, the right to GK.
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Figure 3: Median impulse response functions to a 1-standard deviation, positive pro-

ductivity shock in our model, and the RBC and GK models. Plots show percent

deviations from ergodic median for Y , I, and H and percentage point deviations for

∆ = Et
[
RKt+1 −Rt

]
, D/N and E/N . The left axis of the D/N plot corresponds to our

model, the right to GK.
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