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A HAWKES MODEL OF THE TRANSMISSION OF EUROPEAN SOVEREIGN

DEFAULT RISK

Ana-Maria H. Dumitru a and Tom D. Holden a

The run-up to the Greek default featured marked increases in the cost of insuring

sovereign debt from almost all European countries. One explanation is that market

participants believed a default in one country might increase the risk of a future

default in another, and so news about one country could impact all others. To test

for such dynamic contagion between credit related events in different countries, we

develop a procedure for tractably estimating high-dimensional Hawkes models using

credit default swap prices. Unlike the prior literature, we are able to perform this

estimation via maximum likelihood, even without observing events. We escape the

curse of dimensionality by modelling a market portfolio of risk across countries. We

find significant spillovers in credit risk between countries, with Spain, Portugal and

Greece driving events in the other countries considered.

Keywords: sovereign CDS spreads, credit risk, multivariate self-exciting point

process, systemic risk.

1. INTRODUCTION

Credit default swap (CDS) data reveals that most European countries experienced a steady in-

crease in the cost of insuring their debt against default from January 2010 until the restructuring

of Greek debt in February 2012. While many countries faced few internal risks, all were exposed to

the risk of contagion following a default in a country such as Greece or Portugal. By studying the

transmission of default risk between European countries in the run up to the Greek crisis, we can

hopefully learn lessons about present and future frailties.

In this paper, we build and estimate a model to explore the dynamic transmission of shocks to

credit risk across several European Union countries during the months preceding Greece’s default.

Our model of credit risk is based on a high-dimensional Hawkes (1971) point process, which we

estimate from sovereign CDS prices at multiple maturities. By modelling the international portfolio

of country risk, we are able to allow for a rich structure of instantaneous and dynamic spillovers,

even with seven countries. We estimate the model via conditional maximum likelihood.1 We do not

impose stationarity in order to match the explosive path of Greece’s CDS prices. Thanks to the

maximum likelihood approach, we are also able to incorporate the information concerning the non-

occurrence of defaults. Our paper is the first in the literature to successfully surmount the substantial

computational and econometric challenges involved in estimating high-dimensional Hawkes processes

from price data.

We find that the build-up in risk in most European countries was driven by Portuguese and

Spanish risk rather than Greek. Our estimates suggest that Greek default risk was on an explosive

path, meaning that default was inevitable, sooner or later. Given this, other European countries

had no choice but to insulate themselves from the risk of a Greek default,2 and so changes in the

aSchool of Economics, FASS, University of Surrey, Guildford, GU2 7XH, UK
1Conditioning on the initial observation.
2This insulation chiefly occurred through the pooling of risk that accompanied the movement of Greek debt away

from particular banks and nations, towards large multi-national institutions, such as the IMF, the EU and the ECB.
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2 A.H. DUMITRU AND T.D. HOLDEN

riskiness of Greek debt only had a small impact on risk in other countries. For Portugal however,

default was not inevitable according to our estimates, reducing these incentives for insulation. With

Portugal having high debt to GDP, and being perceived as a substantial risk by the ratings agencies,3

it naturally then became the key driver of the upward trend in sovereign risk amongst European

countries. We also provide evidence that Portugal was the most systemically important debtor in

the network of European debt holdings over the period, giving an additional explanation for its role

in driving systemic risk.

After Portugal, Spain was probably the next most at risk of default. Indeed, due to its large size,

such a default would have had major repercussions for the rest of the EU. Thus, while default in

Spain might have always been quite a remote risk, it is unsurprising that other EU nations were

still very sensitive to changes in Spanish sovereign risk over our estimation period. Furthermore, our

network analysis reveals that Spain was the most systemically important creditor over the period,

providing further explanation of its prominence in our estimates.

Our model is a reduced-form credit risk model. Background on such models is contained in Duffie

and Singleton (2003). These models assume that CDS spreads are a function of the risk neutral

default intensity (event arrival rate), usually taken as a doubly stochastic Poisson process (Pan

and Singleton, 2008; Longstaff et al., 2005; Ang and Longstaff, 2013). A more recent paper by Aı̈t-

Sahalia et al. (2014) points out that credit events4 and other jumps in risk should have a feedback

effect on the probabilities of default of all other countries. To incorporate this feedback, the authors

model the intensity of jumps as self-exciting (Hawkes, 1971) processes. They further price the CDS

spreads based on this new class of models and estimate bivariate self-exciting models for some pairs

of Eurozone countries, by non-linear least squares.

To capture the full breadth of information that might affect default risk, we will build a model

of the arrival of credit related events. These will group together all events that could have an effect

on credit risk, including not only official credit events, but also changes in sovereign credit ratings,

or the arrival of news on macroeconomic conditions. We do not assume that credit related events

are observed, though we will assume that defaults are observable. We model the intensity of credit

related events as a multivariate marked Hawkes (1971) point process. For a marked point process,

the intensity is not only a function of the events themselves, but also of the variably sized jumps

that occur at event times.

In our model, the intensity of credit related events for each country has two components. The first

is country-specific, and would be the sole determinant of dynamics were the cross-country spillovers

switched off. The second component captures the effects of the market portfolio of country risk.

It is modelled as a weighted sum of the default intensities of individual countries. As a result,

the aggregate risk in our model is endogenous, and reflects the systemic forces that may cause a

default in one country to trigger further defaults elsewhere. The weights in the market component

are estimated and confer information about the relative systemic importance of each country. Much

as in classical finance theory, we also allow for each country to have a different sensitivity to the

3See Table I.
4In accordance to the 2003 International Swaps and Derivatives Association, Inc. (ISDA hereafter) Credit Deriva-

tives Definitions, the term “credit event” for sovereign debt covers the following categories: failure to make payments,
restructuring, repudiation and moratorium.
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market component. By reducing the dimensionality of the parameter space, this set-up greatly eases

the econometric and computational burden of estimation.

We estimate the model via maximum likelihood on a three dimensional panel of weekly CDS

spreads for seven EU countries and seven maturities. The likelihood is derived from the implied

shocks to the intensities of credit related events, where intensities are derived by inverting the

pricing formula. This is a novel approach to estimating this complex type of point process, made

necessary by the fact that we only observe CDS spreads and not intensities, event times or jumps.

Following Pan and Singleton (2008), we assume that the 5-year maturity spread is observed with

no measurement error, while the spreads for the rest of the maturities contain normally distributed

measurement error. To faithfully mimic the observed CDS spreads, we do not impose a stationarity

restriction on the intensity of credit related events.

Our modelling and estimation choices, accompanied by the use of a global optimisation algorithm,

enable the estimation of a very complex model, with a huge parameter space (132 parameters,

of which 84 are profiled out), while using a large three-dimensional data set. To the best of our

knowledge, this is the richest estimation problem that has been tackled in the credit risk literature.

The literature on sovereign credit risk has had various contributions, with a lot of the earlier work

focusing on emerging economies. Edwards (1984) estimate the perceived probabilities of default for

different countries relying on the spread between the interest rate charged to a particular country

and the LIBOR5 and find that some aspects are overlooked by banks when pricing sovereign debt for

developing countries. Kamin and von Kleist (1999) develop credit spreads measurements for emergent

economies for the 1990ś and find significant regional differences in spreads across these economies

after controlling for risk and maturity. Eichengreen and Mody (2000) use data on 1000 developing-

country bonds and find that higher credit quality is related to a higher probability of bond issue

and lower spreads. As CDS spread data started to become available, several empirical developments

followed. Remolona et al. (2008) use CDS data on emerging markets to show that country-specific

fundamentals are the prime drivers of sovereign risk, while changes in the risk premia are driven by

changes in risk aversion. Longstaff et al. (2011) identify the principal components in sovereign CDS

data and find that a single principal component accounts for 64% of the variation in spreads.

Duffie and Singleton (2003) describe the use of the doubly stochastic Poisson processes to model

default intensities, as a base for pricing debt and debt related instruments. Several further contri-

butions to the literature modelled default intensities using these processes. Duffie et al. (2003) build

a new model to price sovereign debt, which they further estimate using Russian dollar-denominated

bonds. Later contributions involving the pricing of CDS spreads include Pan and Singleton (2008);

Longstaff et al. (2005); Ang and Longstaff (2013). From the existing literature using reduced form de-

fault models to explain the dynamics of CDS spreads, two more recent contributions are particularly

relevant to the present paper.

Ang and Longstaff (2013) consider an international set-up and incorporate in their model two

default intensities, a non-systemic one and a systemic one. In their set-up, the above intensities are

modelled as square root processes driven by separate Brownian motions, without spillovers between

the systemic and non-systemic component.

5London Interbank Borrowing Rate
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As previously mentioned, Aı̈t-Sahalia et al. (2014) were the first to use self-exciting point processes

in the context of reduced form models. While building upon their contribution for pricing CDS

spreads when intensities are Hawkes (1971) processes, our work substantially differs from theirs in

all aspects: modelling, estimation and data. Firstly, we consider a marked point process, as opposed

to an unmarked one. In this sense, our model is closer to the uni-variate model in Eymen Errais and

Goldberg (2010), who consider a loss point process that jumps at the same time as a default counting

process and is further used to price index and tranche market prices. Secondly, we impose a particular

parameter structure on the multivariate point process used, integrating a market component and a

country specific component. Thirdly, we do not impose stationarity on the Hawkes (1971) process we

use. Fourthly, we develop a novel procedure for tractably estimating high-dimensional Hawkes models

using CDS prices. This enables us to simultaneously work with 7 EU countries, while Aı̈t-Sahalia

et al. (2014) are constrained to estimate only bivariate models. Moreover, instead of nonlinear least

squares (NLLS), we rely on maximum likelihood estimation (MLE), both for its greater efficiency,

and since the dimensionality of the parameter space under NLLS would be impossibly large. Finally,

our data set covers many countries and maturities.

The rest of the paper is structured as follows. Section 2 reports a few non-structural empirical

facts about the data. Section 3 presents the model and derives the pricing of CDS spreads within

it. Section 4 describes at length our estimation method. Section 5 discusses the results obtained.

Finally, section 6 concludes the paper.

2. DATA

We use weekly data for the 1-, 2-, 3-, 4-, 5-, 7-, and 10- year CDS contracts from seven EU countries

from the 11th of November 2008 to the 28th of February 2012, giving 173 observations. We stop in

February, 2012, as on the 9th of March, the ISDA announced that a “Restructuring Credit Event”

had occurred in Greece. This triggered payments in the CDS market and temporarily suspended the

trading of Greek CDS contracts. The cross-section of countries includes France, Germany, Greece,

Italy, Portugal, Spain and the United Kingdom. We include the UK in addition to the other six

Eurozone members both since previous research suggests the UK is the major non-Eurozone EU

country affected by the Euro debt crisis (Stracca, 2015), and since during the observed period, the

UK is accumulating increasing levels of public debt, leading to higher levels of sovereign default

risk.6

Table I presents key facts for the countries in our sample. France, Germany and the UK all had

perfect credit ratings within the period. Spain and Italy have the next worse credit ratings, with the

higher Italian GDP per capita partially counter-balancing its higher debt. Finally, we have the two

countries judged by the ratings agencies to have significant credit risk, Portugal and Greece. Greece

has the highest debt to GDP in our sample of countries, reaching a level of approximately 160% of

GDP in February 2012, with credit ratings suggesting that default was imminent.

Figure 1 shows Euro-denominated 5-year CDS spreads in the run up to the Greek restructuring.

The first panel, 1a, gives their dynamics both in levels, at the top of the plot, and in natural

6The UK loses its top AAA rating in February 2013, around one year after the end of our sample.
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Country GDP/ Debt Debt Gross debt Credit Ratings,

capita (%GDP, (%GDP, outstanding February

(EUR, average 2012) (bil EUR, 2012

average 2008- average (Moody’s,

2008-2012) 2012) 2008-2012) Fitch, S&P)

France 31020 80.6 89.5 1628 Aaa, AAA, AA+

Germany 32480 75.5 79.9 1975 Aaa, AAA, AAA

Greece 19880 142.8 159.6 312 Ca, CCC, CC

Italy 26960 114 123.4 1838 A3, A+, BBB+

Portugal 16640 97.8 126.2 171 Ba3, BBB-, BB

Spain 23180 61.5 85.7 659 A3, AA-, A

UK 30080 71.5 85.1 1330 Aaa, AAA, AAA

TABLE I

Macroeconomic summary figures for the seven EU countries. (Source: Eurostat)

logarithm, at the bottom, over our estimation period. This plot reveals three facts. Firstly, Greek

CDS spreads are much wider than those of other European countries. Secondly, given the very

different magnitudes of CDS spreads across countries, the driving force for each country is likely to

be its own credit risk. Finally, there are clear common patterns in CDS spreads across European

countries. For instance, during and following the 2008 financial crisis, we see spreads widening across

the board, before lowering again in 2009. Then, as the Greek debt crisis unfolded during 2010, similar

patterns again emerge for all countries’ spreads.

To get a better look at the joint dynamics in credit risk across countries, panel 1b in Figure

1 shows daily log 5-year CDS spreads for a shorter time window, from the 15th of June 2011 to

the 1st of December 2011. In this zoomed figure, the commonalities across European countries are

clearer. To illustrate this, we mark on the figure various events associated with a change in Greek

or Portuguese risk. On each of these occasions, we observe corresponding movements in spreads in

most countries. Two of the events marked on the panel represent good news. While in our model,

risk can only jump upwards, there is still a natural interpretation for good news as the absence of

bad news. With our estimates suggesting that over two hundred jumps are happening per week by

the end of the sample, there is substantial scope for this channel to generate downward movements

in risk.

Both panels in Figure 1 also show that the ranking of countries based on credit scores is preserved

for CDS spreads. Additionally, from the plots, all series appear non-stationary. To confirm this, for

every country’s log CDS price, we run (augmented) Dickey-Fuller and Philips-Perron tests with all

numbers of lags from zero to ten, both with and without a trend included.7 Of these 308 tests, not

a single one had a p-value above 5%. Thus, there is no evidence that CDS spreads are stationary in

any country over the period.

Our analysis also requires default free discount factors based on zero coupon bonds up to a 10-

year maturity. Following Longstaff et al. (2005) and Aı̈t-Sahalia et al. (2014), we use a cubic spline

interpolation algorithm and rely on LIBOR rates (maturities 1-, 2-, 3-, 6- and 12- months) and Euro

7In the case of the Philips-Perron test, the number of lags gives the number used in the Newey-West estimator of
the long-run variance.



6 A.H. DUMITRU AND T.D. HOLDEN

Jan 2009 Jul 2009 Jan 2010 Jul 2010 Jan 2011 Jul 2011 Jan 2012
Date

-7

-6

-5

-4

-3

-2

-1

0

1

2

W
ee

kl
y 

sp
re

ad
s 

an
d 

lo
g 

sp
re

ad
s

France
Germany
Greece
Italy
Portugal
Spain
UK

(a) Euro denominated 5-year CDS spreads in levels (top) and logs (bottom) from November 2008 to February 2012 for 7 EU
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Figure 1: CDS spreads.
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swap rates (maturities 2-, 3-, 5-, 7- and 10- years).

3. BUILDING A CREDIT RISK MODEL, STEP BY STEP

In this section, we describe our model of credit risk in EU countries. We begin with a more general

specification then proceed to narrow it down in light of empirical, econometric and computational

considerations.

3.1. Self-excitation to capture systemic risk

Systemic risk is the risk of collapse of an entire financial system. It is determined by the linkages

between institutions, and, in a globalized economy, the linkages between countries. In our context,

we are concerned with the systemic risk of defaults in all EU countries, triggered by one initial shock.

With EU countries holding large amounts of each other’s debt, and many sharing a currency, there

is a legitimate concern of defaults being transmitted between countries. Thus, we seek to build a

model of the impact of country specific shocks on the probability of default in nations across the

EU. We do this by modelling the rate of arrival of credit related events as a self-exciting (Hawkes,

1971) point process.

Let K be the number of countries. Let (Ω,F ,P) be a probability space on which the credit related

events are defined. Then, for country i = 1, . . . ,K, let Ni,t ∈ N be a stochastic process counting

the number of credit related events up to time t. In our model, each credit related event will be

associated with a jump in the event arrival rate. Define Ji,t ∈ R≥0 to be the sum, for country i, of all

jump sizes up to time t. If a jump occurs at time t, both Ni,t and Ji,t change: Ni,t by 1, Ji,t by some

real positive number. The vectors Nt = (Ni,t)i=1,...,K and Jt = (Ji,t)i=1,...,K group the counting and

jump processes for all countries.

Now, let Ft ⊆ F be the natural filtration for (Nt, Jt). Then, the intensity of credit related events

at time t is defined as λt := limh↓0 E
[
Nt+h−Nt

h

∣∣∣Ft

]
.

We suppose that λt follows the marked multivariate self exciting point process:

(1) dλt = α̌ (λ∞ − λt) dt+ β̌ dJt,

with solution λt = e−α̌t (λ0 − λ∞) + λ∞ +
∫ t

0
e−α̌(t−s)β̌ dJs, where α̌ and β̌ are K × K matrices.

To ensure positiveness of the intensity, it is sufficient to assume that λ0 > λ∞, β̌ > 0 and that

all off-diagonal elements of α̌ are non-positive.8 Under these assumptions, λt > λ∞ for all t. If all

eigenvalues of β̌ − α̌ are negative, then the process is stationary (Da Fonseca and Zaatour, 2015),

and λ∞ is the point to which the process would tend were there no more jumps.

The model in equation (1) shows that changes in the intensity of credit related events in one

country depend on both the intensity levels and the events in all other countries. The elements on

the main diagonal of β̌ reflect the self-excitability of the model: shocks to a country lead to an

increase in the arrival rate of further shocks to that country. This produces a clustering of shocks in

time. The off-diagonal elements of β̌ reflect the cross-excitability between countries. Events in one

8See Lemma A.1 in Appendix A.
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country influence credit risk in all other countries, giving the system potentiality for a domino effect.

As matrices α̌ and β̌ do not need to be symmetric, the cross-country responses to other countries’

intensities or shocks are not equal.

When matrices α̌ and β̌ are diagonal, the event intensities in all countries are mutually indepen-

dent. In this case, for every i = 1, . . . ,K, there exist country-specific parameters αi, βi and λi,∞

such that:

(2) dλi,t = αi (λi,∞ − λi,t) dt+ βi dJi,t.

3.2. Restricted model

Figure 1 revealed co-movement across countries. This could be generated by a common “factor”

driving all countries. There are two ways such a factor could be modelled. One would be to posit

a purely exogenous driving process common to all countries. However, this would leave unclear

the origins of this factor, and would, in any case, necessitate computationally expensive filtering

based estimation. The second approach, that we adopt here, is to model the common factor as an

endogenous object, driven purely by the shocks to individual countries.

Inspired by the use of stock exchange indices as a proxy for the market factor in the empirical

classical finance literature, we build a “market” intensity of credit related events defined as a weighted

average of the intensities of all countries considered. Let: w = [w1, · · · , wK ]> be the vector of

weights each country has within a “market” portfolio comprised of all countries, with
∑K
i=1 wi = 1.

The “market” factor at time t will be w>λt. Unlike in exchange indices, the weights here are not

observed, but are parameters to estimate. They are designed to capture which countries’ dynamics

matter most for explaining the commonalities between countries.

When a weight in one country is close to one, the relative importance of other countries would

be poorly identified. Without loss of generality we may fix this by rescaling the weights as follows.

For each country i, we define country-specific weights Wi,j , with Wi,i = 0 and Wi,j =
wj∑
k 6=i wk

.

W := [Wi,j ]i,j=1,...,K gives a matrix representation of these weights. This leads to a country i

specific “market” intensity given by Wiλt, where Wi is the i-th row of matrix W .

In our model, we assume that changes in each country’s event intensity are driven by both country-

specific and “market” components. Let δi and φi measure country i’s sensitivity to, respectively,

changes and levels of the market intensity. The instantaneous change in the intensity for country i

is given by the following stochastic differential equation:

(3) dλi,t = αi (λi,∞ − λi,t) dt+ βi dJi,t
country-specific component

+ δiWidλt
market change component

+ φiWi (λt − λ∞)
market level component

.

The first component is identical to the right hand side of equation (2), which gave the law of motion

for λi,t assuming independence across countries. Were this the only component, then countries would

be independent. The second component captures country i’s response to changes in the “market”,

and thus ensures a response of country i to shocks in other countries. The final component determines

how country i responds to deviations in other countries’ intensities from their long-run levels, λ∞.

This component allows for spill-overs in risk across countries.
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Regrouping the terms in the above equation and stacking together all countries leads to the

following system of equations:

dλt = (α− φW ) (λ∞ − λt) dt+ β dJt + δW dλt,

where α, β, δ and φ are diagonal matrices with diagonals α1, . . . , αK , β1, . . . , βK , δ1, . . . , δK and

φ1, . . . , φK respectively. Further rearrangement of terms gives us:

dλt = α̌ (λ∞ − λt) dt+ β̌ dJt,(4)

where α̌ := (I − δW )
−1

(α− φW )

and β̌ := (I − δW )
−1
β.

While the restrictions imposed by (4) are intuitive, they also play an important role in dimensio-

nality reduction for estimation purposes. If we consider the general multivariate self-exciting process

in equation (1), matrices α̌ and β̌ will have a total of 2K2 different elements. With K = 7, this

adds up to 98 parameters to estimate, whereas under our restrictions, these matrices contribute only

34 parameters. In any case, it is likely to be difficult to identify all parameters in the unrestricted

system, as the identification must come from the non-linearity and non-Gaussianity of the system.9

Aı̈t-Sahalia et al. (2014) estimate only bivariate models and impose a diagonal structure on the α̌

matrix.

3.3. Jump specification

In order to attain a better fit of the original CDS data, we allow for variable sized jumps. With

fixed size jumps, the distribution of next week’s intensity conditional on this week’s is multi-modal,

with narrow support. By making jump sizes exponentially distributed, we ensure that the conditional

intensity has full support, and a tractable distribution.

For country i, let dJi,t = zi,tdNi,t be the jump occurring at time t, with a size equal to either 0, if no

jump occurs, or a random variable zi,t, if a jump occurs. We assume that zi,t ∼ Exp (1), independent

across time and countries. In vector form, we have dJt = zt ◦ dNt, where zt = [z1,t, . . . , zK,t]
>.

We define Xt := (Nt, Jt, λt), with dynamics given by equation (4) and the jump specification just

given. By construction, Xt follows a Markov process affine in the state variables. Thanks to these

properties, we may readily calculate the moments of Xt (see appendix B).

3.4. Pricing CDS contracts

We rely on the pricing formula derived by Aı̈t-Sahalia et al. (2014):10

(5) si,τ,t =
ri
∫ τ
t
D(t, s)E[γiλi,s(1− γi)Ni,s−Ni,t | Ft]∫ τ
t
D(t, s)E[(1− γi)Ni,s−Ni,t | Ft]

,

9In an equivalent linear-Gaussian framework, β̌ is not identified as there are K2 elements in β̌, but only
K(K+1)

2

elements in the covariance matrix from which β̌ must be inferred.
10For estimation, the CDS data is converted from the original semi-annual to continuously compounded. We apply

the formula: scontinuous = 2 log(1 + ssemi−annual/2).
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where si,τ,t denotes the CDS spread at time t, for country i and for maturity τ , measured in years,

1 − ri is the recovery rate (i.e. the fraction returned upon default), D(t, s) is the discount factor

at time t for a zero coupon bond with maturity s, and 0 < γi ≤ 1 is the probability of going into

default upon the occurrence of a credit related event. The pricing is under the risk-neutral measure,

and thus λt is also under this measure. In practical terms, this means that changes in λt could be

coming from either changes in the risk of a country’s debt, or from changes in the market’s appetite

for this risk.

Looking at Figure 1, we observe a lot of variability in all CDS spreads. If we wish to describe this

type of data using a pure jump process, which only moves when an event occurs, we will need a lot

of jumps to faithfully mimic the variability in the data. This implies a very high intensity. For this

not to generate counter-factually many defaults, this requires letting the parameter γi take a value

lower than 1. Previous work (e.g. Longstaff et al. (2005); Pan and Singleton (2008)) fixed γi = 1,

which is equivalent to assuming that all events generated by the model are proper credit events, as

defined by ISDA. Most European countries considered had a good credit history in the recent past;

the occurrence of credit events as in the ISDA definitions is very rare, and none occur in our sample.

Indeed, to reflect the observed data, γi should be very close to 0. Consider the results of Aı̈t-Sahalia

et al. (2014) for example, who estimate a bivariate model of the type specified in equations (1) with

dJt = dNt. Their estimated value of γi for Germany is 0.28, while a jump in Greece causes the

intensity in Germany to increase by 1.3, under their estimates. This means that if a jump happens

in Greece, then, per their estimates, the annual probability of default in Germany will increase by

roughly 1.3× 0.28 = 0.36, which seems somewhat improbable. To ensure reasonable estimates of γi,

we include the series of observed default events within our estimation information set.

Computing the theoretical spreads si,τ,t involves the evaluation of the two expectations present in

equation (5). Duffie et al. (2000) derive closed form expressions for expectations of this type for the

class of affine jump diffusions. Appendix C offers details on the application of Duffie et al.’s (2000)

results to our paper.

4. ESTIMATION

We estimate the model by maximum likelihood. Given that the state is not directly observed, the

likelihood will be a product of the likelihood of the state, and a Jacobian term coming from the

transformation mapping the state into the observed prices.

The recent literature estimating credit risk models using CDS data has taken a least squares (or

equivalently GMM) approach (Longstaff et al., 2005; Ang and Longstaff, 2013; Aı̈t-Sahalia et al.,

2014); it seeks to find values for the parameters and state-variables which minimise the gap between

predicted and observed prices. This approach, while liberal in terms of error specification, requires

considering the state variables (i.e. the intensities) as free parameters to estimate. This significantly

increases the dimension of the parameter space, rendering estimation of a model as large as ours

essentially impossible.11 Additionally, the least squares approach throws away substantial quantities

of information as it amounts to estimating the dynamics of market beliefs about the state variable,

without using any information about the actual evolution of that state variable, e.g. auto-covariances.

11In our case, for 7 countries, we would have had an additional of 1211 new parameters to estimate.
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We follow Pastorello et al. (2003), Pan (2002) and Pan and Singleton (2008) in assuming that, for

all countries, all but one time series from our panel of financial instruments is observed with mea-

surement error. Specifically, we assume that the 5-year CDS spread—the most liquid—is observed

without true measurement error. Thanks to this, conditional on the values of the model parameters,

the pricing formula for the 5-year CDS can be inverted to find λt at every observation, t. We perform

the inversion sequentially, starting by finding λt in the first period, then in the next, and so on. In

solving for λt+∆, where ∆ := 7
365 is the sampling frequency, for each t, we impose the constraint

that:

λt+∆ ≥ E [λt+∆|Ft, Nt+∆ = Nt] = λ∞ + e−α̌∆ (λt − λ∞) ,

as any λt+∆ violating this condition has probability 0. Imposing this constraint also helps avoid

multiple minima in the pricing error objective function. Moreover, when solving for λt+∆, we im-

pose the constraint that there exist jump times τ∗1 , . . . , τ
∗
Lt,t+∆

∈ (t, t + ∆] and jump amounts

z∗1 , . . . , z
∗
Lt,t+∆

∈ RK>0 such that:

λt+∆ = E
[
λt+∆|Ft, Nt+∆ = Nt + Lt,t+∆, ∀l ∈ {1, . . . , Lt,t+∆} dJτ∗l = z∗l

]
.12

Again, any violation of this constraint has probability 0 according to the model. Due to misspecifi-

cation, it may not always be possible to zero the error in pricing while imposing these constraints.

In these cases, we minimise the pricing error conditional on imposing the constraints. This produces

a residual pricing error for the 5-year CDS spread, a pseudo-measurement error. Since under correct

specification, this pseudo-measurement error has standard deviation 0, and thus a singular likeli-

hood, we do not attempt to estimate its standard deviation. Instead, we estimate the parameters

governing the “pseudo-measurement” error for the 5-year CDS spread via shape-preserving piecewise

cubic Hermite interpolation from the parameters governing other maturities.

To be concrete, we assume that the observed CDS spread at time t for country i and maturity τ ,

s̃i,τ,t, is given by

(6) s̃i,τ,t = si,τ,t + ςi,τe
%i,τsi,τ,tεi,τ,t,

where εi,τ,t ∼ NIID(0, 1) and where si,τ,t is the CDS price at maturity τ implied by our λt. Allowing

for this form of heteroskedasticity nests having measurement error in levels and in logs. Since ςi,5 and

%i,5 are interpolated from (ςi,1, ςi,2, ςi,3, ςi,4, ςi,7, ςi,10) and (%i,1, %i,2, %i,3, %i,4, %i,7, %i,10) respectively,

this gives 6 × 7 × 2 = 84 measurement error parameters, all of which we are able to profile out of

the likelihood.

One could potentially estimate our model via Gaussian quasi-maximum likelihood (QMLE). Ho-

wever, since we model non-stationary data, the standard consistency results (e.g. Bollerslev and

Wooldridge (1992)) for QMLE do not apply as these require a finite unconditional variance. Con-

sequently, we seek to estimate using the true likelihood, which should also be more efficient. In

12For numerical reasons, in practice, this constraint is only imposed approximately. Further details of how it is
imposed are given in Section 4.1.2.
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practice, some small approximations to the likelihood will still be necessary, but the error intro-

duced by these approximations will disappear asymptotically as the sampling frequency goes to 0,

giving consistency under the same conditions as true MLE.

4.1. Our likelihood

At t + ∆, we observe two types of information. First, the CDS spread, which will provide in-

formation on the jumps between t and t + ∆. Second, whether there was a default between t and

t + ∆, although in our sample, there are no defaults. Consequently, we want to calculate the joint

likelihood of observing no default and a certain λt+∆, conditional on λt. This is computed as the pro-

duct between the likelihood of observing λt+∆, conditional on λt, and the probability of no default

conditional on both λt and λt+∆.

4.1.1. Likelihood of a certain jump size

For the computation of f (λt+∆|λt), we approximate the true arrival rate λt over the time interval

(t, t+ ∆] by λu
t,t+∆, where λu

t,t+∆ is constant on (t, t+ ∆]. To minimise the approximation error, we

define λu
t,t+∆ so that the expected number of jumps under the approximation (conditional on λt) is

identical to the expected number of jumps under the true process (conditional on λt). This requires

λu
t,t+∆ to be defined as the expected mean value of λt over the interval, conditional on λt, i.e.:13

λu
t,t+∆ :=

∫ t+∆

t

E (λs|λt) ds = λ∞ + ∆−1
(
β̌ − α̌

)−1
[
e(β̌−α̌)∆ − I

] (
λt − λ∞

)
,

where λ∞ := −
(
β̌ − α̌

)−1
α̌λ∞. As ∆ → 0, supτ∈(t,t+∆]

∣∣λu
t,t+∆ − λτ

∣∣ a.s.−−→ 0 and the error disap-

pears.

Let χt,t+∆ :=
∫ t+∆

t
dJs = Jt+∆−Jt. We will discuss the computation of this quantity in the next

section. In Lemma D.1 in Appendix D, we show that under our constant arrival rate approximation,

the probability distribution function (p.d.f.) for χi,t,t+∆ is given by:

(7) f (χi,t,t+∆|λt) = ∆λu
i,t,t+∆

I1

(
2
√

∆λu
i,t,t+∆χi,t,t+∆

)
e∆λu

i,t,t+∆+χi,t,t+∆

√
∆λu

i,t,t+∆χi,t,t+∆

,

where I·(·) is the modified Bessel function of the first kind. We can then compute:

(8) f (λt+∆|λt) = f (χt,t+∆|Ft)

∣∣∣∣det
dχt,t+∆

dλt+∆

∣∣∣∣ .
4.1.2. Inferred jump times and sizes

Although we observe λt and λt+∆, we do not observe Jt and Jt+∆, so we do not in fact

know χt,t+∆. A standard approach would be to take an Euler approximation. That is: χt,t+∆ ≈
β−1 [λt+∆ − E [λt+∆|Ft, Nt+∆ = Nt]] . In the limit as ∆→ 0, there would be at most a single jump

13The solution follows from the calculation of E (λs|Ft) in Lemma B.1 in Appendix B.
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in the interval (t, t + ∆], and the error in assuming it occurs at the end of the interval, as in the

Euler approximation, would be Op(∆).14

However, our sampling frequency (weekly) is relatively low compared to the estimated arrival rate

(over two hundred per week by the end of the sample); thus, the approximation error from an Euler

approximation can be substantial. This would manifest itself as upward bias in both α and β. To

ameliorate this, within each interval, (t, t+ ∆], we endeavour to find the jump times and jump sizes

which maximise the likelihood over the interval. In the limit in which there is a single jump in the

interval, we will be closer to its true arrival time, somewhat reducing error compared to the Euler

approximation, and when there are many jumps in the interval, we will substantially reduce the error

in the Euler approximation. Solving for the maximum likelihood jump times and sizes can also be

viewed as a “hard” expectation-maximization (EM) approach to dealing with the latent variables.15

Let ζs := E[ dJs | zs, λs] = zs◦λs, where we treat zs as a “noise” type process giving the jump size

that would be observed at s were there indeed a jump. If we are free to optimise the likelihood over

the number of jumps within an interval, then the maximum likelihood number of jumps is infinite

if λt > 1 at some point in the interval (since in this case we may increase the likelihood without

modifying the path by introducing a zero sized jump). In fact, solving this ill-posed optimisation

problem is not necessary, since we are only concerned with χt,t+∆, which is unaffected by zero sized

jumps. Instead, we “integrate out” the unknown path of Nt, by maximising the expected likelihood

over the interval, conditional on the entire path of λs and ζs for s ∈ (t, t+∆] (which we are optimising

over).

The expected maximum likelihood times and sizes of jumps occurring during (t, t + ∆] are the

solution to the following maximization problem:

Problem 4.1

max
λs,ζs, s∈(t,t+∆]

{E log [f(jump times in (t, t+ ∆])|λs, ζs, s ∈ (t, t+ ∆]]}

subject to:

(9) α̌ (λ∞ − λs) + β̌ζs − λ̇s = 0,

λt, λt+∆,

ζs ≥ 0 ∀s ∈ (t, t+ ∆],

where f(·) is the pdf of the jump times and equation (9) is obtained by taking expectations over

equation (4) conditional on the paths of λs and ζs in (t, t+∆]. In practice, to keep the computational

cost of solving this problem manageable, we take a first order Taylor approximation to the objective

14If the jump actually occurs at t+s∆, for s ∈ [0, 1], then the error in using the Euler approximation is proportional
to ∆(λt+∆ − λt)(1− s) plus higher order terms.

15The canonical example of the hard-EM algorithm is the k-means clustering approach to estimating Gaussian
mixture models.



14 A.H. DUMITRU AND T.D. HOLDEN

in λs, and we introduce a smoothing parameter “kappa” such that the solution to the problem with

the linearised objective is recovered as κ→ 0. Further details on defining, approximating and solving

this maximisation problem are given in appendix E. The optimal ζs for the approximated problem

is:

(10) ζs = max

{
0,

1

κ

[
β̌T
(
eα̌

T (s−t)υ + α̌−T log λt

)
− 1K×1

]}
,

where υ is an integration constant, chosen to ensure λt+∆ takes the correct value. When κ → 0,

our solution is more accurate, and ζs →∞ if the insides of the square brackets in equation (10) are

positive, giving a jump at time s. In practice, for numerical reasons, we set κ > 0, but as small as

is numerically feasible.16

Further on, we compute our estimate of the jump size over the interval (t, t+ ∆] as:

(11) χt,t+∆ =

∫ t+∆

t

ζs ds.

4.1.3. Probability of no default conditional on a certain jump size.

Let Ξi,t,t+∆ denote the event that for country i, during the interval (t, t+∆], no default occurred.

For the computation of Pr (Ξi,t,t+∆|λt, λt+∆), we approximate the true arrival rate λt over the time

interval (t, t+ ∆] by λc
t,t+∆, where λc

t,t+∆ is constant on (t, t+ ∆]. Much as before, to minimise the

approximation error, we define λc
t,t+∆ so that the expected number of jumps under the approximation

(conditional on λt and λt+∆) is identical to the expected number of jumps under the true process

(conditional on λt and λt+∆). This requires λc
t,t+∆ to be defined as the expected mean value of λt

over the interval, conditional on λt and λt+∆. The computation of this quantity is immediate from

the solution of Problem 4.1.

Under the constant λt approximation, we prove in Lemma D.2 in Appendix D that

Pr (Ξi,t,t+∆|λt, λt+∆) = E
[
(1− γi)k

∣∣∣χi,t,t+∆

]
=

√
1− γiI1

(
2
√

∆(1− γi)λc
i,t,t+∆χi,t,t+∆

)
I1

(
2
√

∆λc
i,t,t+∆χi,t,t+∆

) .(12)

4.1.4. The likelihood function

Combining the previous results, if we define the matrix of observations at t, s̃t := [s̃1,t, s̃2,t, s̃3,t, s̃4,t, s̃5,t, s̃7,t, s̃10,t],

we have that the conditional likelihood of the observation at t+ ∆ is given by:

f (s̃t+∆|s̃t) = f (λt+∆|λt) Pr (Ξi,t,t+∆|λt, λt+∆)

∣∣∣∣det
dλt+∆

ds̃5,t+∆

∣∣∣∣ f (s̃t+∆ − st+∆)

where f (λt+∆|λt) is as defined in equation (8), Pr (Ξi,t,t+∆|λt, λt+∆) is as defined in equation (12),

and f (s̃t+∆ − st+∆) is given by the error specification from equation (6).

16Estimations are obtained with κ = 10−4.
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4.2. More on estimation

The model estimated here is, to the best of our knowledge, the richest in the credit risk literature.

We estimate a total of 132 parameters (profiling out the 84 parameters associated with measurement

error), where each evaluation of the likelihood function requires us to solve multi-variate non-linear

equations for each observation, both to find the cumulated jump size given the intensities, and to

invert the CDS prices into intensities. We consider 7 countries and allow for asymmetric interactions

between their credit risk. Moreover, a long time span and a relatively large panel of maturities are

used. An estimation exercise of large dimensions is also conducted by Ang and Longstaff (2013). In

their paper, they estimate jointly 33 parameters, 30 describing the dynamics for 10 countries (or US

states) and 3 corresponding to an independent market factor.

In order to maximize the log likelihood, we employ a global optimization algorithm. Specifically,

we use the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) proposed by Hansen and

Ostermeier (2001). As the algorithm employs a global search through the parameter space, the

estimation takes a considerable amount of time and computing resources.17 There are two advantages

to such a global, stochastic, search strategy. Firstly, it removes the need for computing derivatives

of the likelihood, which, due to the nested optimisation problems can be unreliable. Secondly, it

increases the chance that our final optimum truly represents a global optimum.

During estimation we impose the sufficient conditions for positivity of λ derived in Appendix A.

ri in equation (5) is set equal to 0.5, which is approximately the loss suffered by the investors in

Greek bonds due to the country’s default on its debt. Given that this parameter multiplies the CDS

pricing equation, fixing it at this level is a simple solution for any identification issues that might

otherwise emerge.

5. RESULTS

Table II reports, for each country, the estimated parameters followed by standard errors in brac-

kets.

The estimates for αi and βi are very high and statistically significant at 0.01% for all countries.

αi needs to be high to ensure that the model puts positive probability on the fastest drop in CDS

prices observed in the data, and βi needs to be broadly similar to explain the observed slow reversion

to λi,∞. The values of these parameters for Greece, Portugal and Spain are lower than for all other

countries; this is natural as problems were more persistent in these countries. Interestingly, for all

countries we have that βi > αi, which supports the conclusion of non-stationarity we reached from

our initial unit root tests.19

While the values for δi are all very low and statistically non-significant at 5%, the estimates of

the other sensitivity parameter, φi, are all higher and statistically significant at 0.01%. Thus, events

17Estimation took around two weeks on a 20 core, 40 thread, machine, starting from a point with equal parameters
across countries which had performed well in prior estimation runs.

18We calculate the standard errors using the sample Fisher information matrix. To deal with the fat tails of this
measure, we trim the 5 largest and 5 smallest values. In the absence of trimming, all coefficients are significant.
Moreover, all coefficients are significant when using the Hessian or the sandwich matrix to calculate the standards
errors, thus our trimming approach is conservative with respected to significance.

19It is also the case that all of the eigenvalues of β̌ − α̌ are positive, so the estimated model is non-stationary.
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Country(i) αi βi δi φi λi,∞ γi wi

France 39.46 39.80 2.23E-04 0.0316 0.64 2.33E-05 0.0007

(0.136) (0.101) (0.007) (0.000) (0.003) (0.002) (0.004)

Germany 47.23 47.82 4.05E-04 0.0177 0.27 1.62E-05 0.0002

(0.158) (0.156) (0.008) (0.001) (0.001) (0.008) (0.003)

Greece 18.56 18.58 9.82E-05 0.1172 0.37 3.66E-04 0.0102

(0.095) (0.084) (0.001) (0.001) (0.001) (0.003) (0.001)

Italy 28.35 28.54 6.06E-05 0.0165 1.45 3.59E-05 0.0021

(0.231) (0.152) (0.001) (0.002) (0.006) (0.004) (0.002)

Portugal 17.54 17.58 1.85E-04 0.0269 0.86 0.0001 0.5012

(0.093) (0.110) (0.014) (0.001) (0.034) (0.001) (0.015)

Spain 19.42 19.51 1.30E-04 0.0135 1.42 4.55E-05 0.4844

(0.141) (0.128) (0.007) (0.002) (0.007) (0.001) (0.002)

UK 33.59 33.70 5.19E-05 0.0374 3.37 2.31E-05 0.0011

(0.283) (0.266) (0.002) (0.001) (0.012) (0.018) (0.012)

TABLE II

Estimated parameters and standard errors18

intensities change more as a reaction to the levels of the “market” intensity rather than due to the

changes in this factor. This constitutes evidence for a lagged response to changes in the “market”

risk of default. Put another way, countries respond to the underlying risk of others, rather than

directly responding to news about others.

The highest level of φi (≈ 0.12) is encountered for Greece, suggesting a higher sensitivity of

Greece’s credit risk to the credit risk levels of all other countries. This helps explain the country’s

tumultuous dynamics in this period, and implies that Greece’s fate could have been better had other

European countries not also been in difficulty at the same time.

Apart from for Greece, the levels of φi remain relatively small. This means that the credit risk

of each European country is mostly determined by the individual circumstances of that particular

country, rather than by the circumstances in other countries. This is a natural finding, given the fact

that the analysed European countries differ considerably in terms of debt, economic development

and credit ratings, as previously shown in Table I.

The estimates for λ∞ are statistically significant at 0.01% for all countries, implying that for no

country in our sample will default risk ever hit zero. We observe the highest levels for the UK,

followed by Italy and Spain. This indicates higher levels of intensities for these countries even in

the absence of shocks, which might be related to their high levels of debt and thus, underlying risk.

However, it is difficult to interpret this parameter in a nonstationary model.

The probability of default conditional on the occurrence of a credit related event (γi) is estimated

to be near zero for all countries. Since frequent events are needed to explain all of the movements

in the observed CDS data, this is unsurprising. The events in the model correspond to the arrival

of any news relevant to the countries’ ability to repay their debt, and in times of crisis, almost any

political, financial or economic development can fulfil this criterion.
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5.1. The estimated weights

In our model, the “market” intensity represents, essentially, a portfolio of common default risk.

The estimated weights give information on the sources of this common risk. Looking at the weights

in table II, we notice that the main sources of risk are Portugal and Spain, with weights of 50%

and 48% respectively. Greece comes next with a weight of only 1%, but still statistically significant

at 0.01%. The weights for all other countries are very small and non-significant even at 5%. The

prevalence of Portugal, Spain and Greece in driving the risk during this period is natural, given

that, from our cross-section, these three nations required international financial aid. Below, we give

further intuition for the estimated values.

During the analysed period, we observe an extreme deterioration of the economic situation in

Greece, with poor economic performance and rocketing debt to GDP, leading to a consistent down-

grading of credit ratings (see Table I). In the face of an imminent default, investors sought insulation

from the risk coming from Greece, as evidenced by the gradual change in the ownership of Greek

debt to large multinational institutions, such as the IMF, the EU and the ECB. In addition, the

two bailouts received by Greece in this period via the First and Second Economic Adjustment Pro-

grammes further helped alleviate risk coming from Greece for other countries. All of the above are

reflected in the low weight estimated for Greece, as the country was perceived as a problem that was

already being dealt with. Additionally, Greece is a relatively small economy by European standards,

so it would have been surprising had its weight been much larger.

The situation is different for Portugal, as investors were still learning about its default risk over

our period. For example, as shown in panel 1b in Figure 1, Moody’s downgrading of Portuguese

sovereign debt on the 5th of July, 2011 was accompanied by reactions in all observed sovereign CDS

spreads. We believe the high weight estimated for Portugal reflects investors’ worries that Portugal

could be the next Greece, and that its collapse could take other countries with it.

Still, Portugal’s high weight might be surprising given the country’s small size. To further un-

derstand the systemic importance of Portugal, we examined the network structure of debt amongst

our seven countries. It is plausible that if a country holds some of the debt of a risky country, then

this increases the risk of the creditor nation. In this way, risk is transmitted through the network

of asset holdings. More concretely, consider a network structure on our seven countries where the

strength of the link from country A to country B is proportional to the amount that country B

has lent to country A, times the debt to GDP ratio in country A, divided by the GDP of country

B.20 This gives a rough approximation to the strength of the transmission of risk from country

A to country B.21 Using this network, we would like to assign a “debtor-importance” score and a

“creditor-importance” score to each country. Plausibly, important creditors are those who lend to

important debtors, and vice versa. This recursive definition maps onto the “hubs” and “authorities”

of Kleinberg (1999) which enables us to calculate the importance scores. From this, we learn that the

most systemically important debtor is Portugal, followed by the UK, and that the most systemically

20The debt to GDP ratio in country A proxies the risk of country A. We divide by the GDP of country B to capture
the fact that a default in a small country is unlikely to lead to the default of a large one.

21We use consolidated banking exposures from the Bank of International Settlements. The data is for quarter 4 of
2010, the only period between 2009 and 2011 for which data for Italy was available. In addition, we collect GDP and
public debt data from Eurostat.
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important creditor is Spain, followed by Germany.22

With Spain being the most systemically important creditor according to our network analysis,

this gives one explanation for its prominence in our estimates. Furthermore, while Spain did not

have large amounts of public debt, our dataset covers a period of Spanish recession, characterized

by unemployment rates of over 20%23. This recession, following the collapse of the property boom,

left the Spanish banks very fragile and led the Spanish Government to seek a bailout during the

summer of 2012 to inject capital into banks.24 At the same time, Spain was the 5th largest economy

in Europe25 and was perceived by markets as too big to fail. Given all of this, the high weight we

estimate for Spain is unsurprising.

Panel 2a in figure 2 shows the estimated default intensities for all countries, obtained by mul-

tiplying country i’s event intensity by γi. We notice an almost perfect juxtaposition between this

figure and the figure showing the original CDS spreads (figure 1). The intensity of default is extre-

mely high for Greece, reaching a maximum implying an expected 2.31 defaults per year. Greece is

followed by Portugal with a maximum intensity of default of 0.30. Italy and Spain come next rea-

ching maximums of 0.08 and 0.07 respectively. The lowest maximum default intensity was attained

by Germany (0.007).

Panel 2b in figure 2 shows the evolution of the yearly “market” factor for the observed period

together with the annual intensities of credit related events for all countries. As we approach the

Greek default, we notice the “market” intensity increasing to levels similar to the intensity levels

in Spain and Portugal. This is expected, given that the highest weights in the market portfolio are

taken by these countries. For Greece, we observe a maximum intensity of 6,316, translating to an

expected 121 events per week.

5.2. Contagion

Our model enables us to explore the effects of an event in a particular country on CDS prices

in all other countries. We do this with an impulse response analysis of the estimated model. In

particular, we analyse the median effects of an event occurring at the start of the sample (the 11th

of November 2008), for each country in turn. We focus on the median response, both since the

non-stationarity of the point process implies that the mean response is likely to diverge, and since

the fat-tails of the process render accurate Monte Carlo means very computationally expensive. To

capture the potentially different responses to large and small shocks, we also report the quartiles of

the responses.

Figures 3 and 4 show the percentage quartile responses of CDS prices in all countries to events

in Portugal and Spain (first figure) and Greece (second figure). Responses to events in all other

countries are included in Appendix F. All figures are generated by taking the Monte Carlo quartiles

22For France, Germany, Greece, Italy, Portugal, Spain and the UK respectively, the debtor-importance scores are
0.048, 0.008, 0.026, 0.063, 0.606, 0.005, 0.244, and the creditor-importance scores are 0.130, 0.136, 0.017, 0.023, 0.016,
0.580, 0.098.

23Source: Eurostat.
24See, for instance, http://www.bbc.co.uk/news/world-europe-18384291.
25During 2008-2012, Spain’s total GDP (current prices) was ranked 5th after Germany, France, the UK and Italy.

Source: Eurostat.

http://www.bbc.co.uk/news/world-europe-18384291
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(a) Estimated intensities of default for all the countries in the sample.
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(b) Estimated annual event intensities and “market” event intensity during the observed period.

Figure 2: Intensities of default and credit related events.
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of the difference between simulations starting from the estimated λt at the start of the sample with

an additional event in that week, and simulations without such an additional event.26
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Figure 3: Percentage effect of one event at the start of the sample in Portugal (upper panel) and
Spain (lower panel) on the CDS spreads of all countries (bigger figure) and the rest of countries
(smaller figures)

In all figures, the bigger plots on the left are dominated by the response of each country to its

own event, but other countries’ responses are also visible. The 25% quartile and the median show a

fast, exponential decay in all cases. However, for the 75% quartile, we observe greater persistence,

26For precision, data is created at an intraday level, with 10 observations per day. To draw the next intraday
observation, we assume that the event intensity is constant over the interval, and that all events happen simultaneously
at the end of the interval. Under this approximation, stepping the simulation forward requires one draw from a Poisson
(to determine how many events occurred), and one draw from a Gamma (to determine the cumulated jump).
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Figure 4: Percentage effect of one event at the start of the sample in Greece on the CDS spreads of
all countries (bigger figure) and the rest of countries (smaller figures)

with only linear decay. Thus the non-linearities of the model’s solution ensure greater persistence to

larger shocks.

The smaller figures show the separate responses in the other countries. As with the own country

response, in all cases, the 25% and 50% quartiles show that shocks usually dissipate within the

simulated window. However, the upper quartiles are more persistent, and hump shaped in some

cases, again illustrating the effects of the solution’s non-linearity.

Given their high weights, it is unsurprising that events in Portugal and Spain have a larger impact

on the other countries than events elsewhere. Greece and Portugal appear the most sensitive to these

events, followed by France and Germany. The sensitivity of Greece and Portugal is natural given

their precarious status. The impact on France and Germany is also quite natural, given that these

nations lend most to the other countries in our sample.27 Overall, Figures 3 and 4 show evidence

that risk from the periphery countries is transmitted to non-peripheral countries, such as Germany,

France and the UK.

6. CONCLUSION

In this paper, we model the intensities of sovereign credit related events for a group of 7 EU

countries as a multi-variate selfexciting marked point process with both country-specific and market

components. Each country’s intensity adjusts to the market differently, with two parameters per

country controlling the strength of this adjustment. This structure allows for rich feedback between

risks in different countries.

Our model has substantial flexibility. We allow for random sized jumps, and we do not impose

stationarity of the intensities of credit related events. Moreover, these intensities receive asymmetric

27From the same data as was used in Footnote 21.
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feedback both from contemporaneous shocks, as well as from the intensity levels in other countries.

We use the results of Duffie et al. (2000) to obtain closed form expressions for CDS prices in terms

of the intensities. We estimate the model by maximum likelihood on data covering 7 maturities.

In estimation, we use a novel technique to back out implied cumulated shocks to the intensities of

credit-related events.

Our modelling and estimation choices, accompanied by the use of a global optimisation algorithm,

enable the estimation of a rich model, with a high number of parameters and a large data set. To the

best of our knowledge, this is the richest estimation problem dealt with in the credit risk literature.

Our results suggest substantial vulnerability of the system to events in the periphery. Notably,

Portugal and Spain have the largest weights within the “market” factor. A much smaller, but sta-

tistically significant weight is estimated for Greece. We believe this reflects investors’ views on the

sources of risk in Europe during the observation window. As the Greek crisis was already being

resolved during the period, investors’ focus was shifted toward future dangers, of which the ones

from Portugal and Spain appeared more imminent. In turn, Greece shows a higher sensitivity to the

credit risk levels of all other countries, reflecting its precarious state.
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APPENDIX A: CONDITIONS FOR POSITIVITY

We begin with a helpful Lemma, before introducing the conditions we impose throughout in order to ensure

positivity.

Lemma A.1 If α̌ is a real square matrix for which all off-diagonal elements are non-positive, then all elements of

e−α̌ are real and non-negative.

Proof: Let A := −α̌, so matrix A has non-negative off-diagonal entries. Let B := A+ cI, where c is a positive real

scalar such that the diagonal elements of B are non-negative.

From the definition of the matrix exponential, we have that eB = I +B + 1
2!
B2 + . . .. As B has only non-negative

entries, all powers of B also have only non-negative entries, and consequently eB has only non-negative entries.

Since the identity matrix commutes with anything, by the standard properties of matrix exponentials, we have that

eA = eBe−cI = e−ceB . As e−c is a positive scalar and eB has only non-negative elements, so does eA. Q.E.D.

We impose the following conditions:

Condition A.1 All off-diagonal elements of α̌ are non-positive. All elements of β̌ are positive.

This condition is sufficient for positivity of λ, by Lemma A.1, and the solution to the Hawkes process, equation (1).

APPENDIX B: CONDITIONAL AND UNCONDITIONAL MOMENTS

Xt = (Nt, Jt, λt) is a Markov process defined on the space D := NK × RK≥0 × RK≥0. Let d := 3K be the overall

dimension of Xt. Let f : D → R be a function of Xt and let ∇f be its gradient (a row vector). The infinitesimal

generator for f(x), defined as Af (x) = limt↓0
E(f(Xt))−f(x)

t
, is given by:

(13) Af (x) =

 0K×1

0K×1

α̌ (λ∞ − λ·)


>

∇>f +

K∑
i=1

λi,·

∫
Rd≥0

[f (x+ Z)− f (x)] dνi(Z),

where x := [λ>· , J
>
· , N

>
· ]>, Z := [Z1, . . . , Zd]> is the generic jump in D for the state process X, and νi(Z) is the

cumulative distribution function corresponding to the i-th jump. When a credit related event occurs in country i, Ni,·

increases by 1, Ji,· increases by zi,· ∼ Exp(1) and finally, because of the cross-excitation in the model, the intensities

of all countries will increase proportionally with zi,·. Thus, νi(Z) is given by:

dνi
([
Z1 · · ·Zi · · ·ZK ZK+1 · · ·Z2K Z2K+1 · · ·Zd

]>)
=[

δ (Z1 − 0) · · · δ (Zi − 1) · · · δ (ZK − 0) δ (ZK+1 − 0) · · · exp (−ZK+i) · · · δ (Z2K − 0)

δ
(
Z2K+1 − ZK+iβ̌1i

)
· · · δ

(
Z2k+i − ZK+iβ̌ii

)
· · · δ

(
Zd − ZK+iβ̌Ki

)]>
◦ dZ,
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where ZK+i = zi,·, δ(·) is the Dirac delta function and β̌ij , denotes the i, jth element of the β̌ matrix.

To further help understand equation (13), we note that the first term of the sum in that equation is given by:

λ1,·

∫
Rd≥0

[
f

([
N1,· + 1 · · · NK,· + 0 J1,. + z1,· · · · JK,· + 0 λ1,· + β̌11z1,· · · · λK,· + β̌K1z1

]>)
−

f

([
N1,· · · · NK,· J1,· · · · JK,· λ1,· · · · λK,·

]>)]
dν1 (Z) .

Lemma B.1 Conditional expectation. The conditional expected intensity satisfies the following ordinary

differential equation (ODE hereafter):

dEλt = α̌ (λ∞ − Eλt) dt+ β̌ Eλt dt,

with initial value λ0 and solution:

Eλt = e(β̌−α̌)tλ0 −
(
β̌ − α̌

)−1
α̌λ∞ +

(
β̌ − α̌

)−1
e(β̌−α̌)tα̌λ∞.

Proof: The proof is a simple extension to marked processes of Lemma 1 on page 818 in Da Fonseca and

Zaatour (2015). Q.E.D.

Lemma B.2 Unconditional expectation. If it exists, the long-run expected intensity is given by:

limn→∞ Eλt = λ∞ = −
(
β̌ − α̌

)−1
α̌λ∞.

Proof: Apply Lemma B.1 with t→∞. Q.E.D.

For use in the following, we define m1 = Ezi,t = 1 and m2 = Ez2
i,t = 2 (for any t and i).

Lemma B.3 Conditional second moment. The conditional second moment of the intensity, E
(
λtλ
>
t

)
,

satisfies the following ODE:

(14)
Eλtλ>t

dt
= α̌λ∞ Eλ>t + Eλtλ>∞α̌> +

(
m1β̌ − α̌

)
E
(
λtλ
>
t

)
+ E

(
λtλ
>
t

) (
m1β̌ − α̌

)>
+

m2

{
β̌diag [Eλt] β̌>

}
.
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Proof: Let f (x) = λ2
1,·. Then:

Af (x) =

 0K×1

0K×1

α̌ (λ∞ − λ·)


>



0K×1

0K×1

2λ1,·
...

0


+ λ1,·

∫
Rd≥0

[(
λ1,· + β̌11z1,·

)2 − λ2
1,·

]
dν1 (Z) + . . .

+ λK,·

∫
Rd≥0

[(
λ1,· + β̌1KzK,·

)2 − λ2
1,·

]
dνK (Z)

= 2λ1,·α̌
>
1 (λ∞ − λ·) + 2m1λ1,·

∑
i

β̌1iλi,· +m2

∑
i

β̌2
1iλi,·.

Using the martingale property of f (Xt)− f (X0)−
∫ t

0
Af (Xs) ds, we follow Da Fonseca and Zaatour (2015)

in using the following formula to compute conditional expectations:

E [f (Xt)] = f (X0) + E
[∫ t

0

Af (Xs) ds

]
.

Let α̌i· and β̌i· denote the i-th lines of matrices α̌ and β̌. We have:

E
[
λ2

1,t

]
= λ2

1,0 + E
[∫ t

0

Af (Xs) ds

]
=⇒

dE
[
λ2

1,t

]
dt

= 2α̌>1·λ∞ E (λ1,t)− 2α̌>1· E (λ1,tλt) + 2m1β̌
>
1· E (λ1,tλt) +m2β̌

>
1· diag [Eλt] β̌1·

= 2α̌>1·λ∞ E (λ1,t) + 2
(
β̌1·m1 − α̌1·

)> E (λ1,tλt) + m2β̌
>
1· diag [Eλt] β̌1·.

Let f (x) = λ1,·λ2,·. Then:

Af (x) =

 0K×1

0K×1

α̌ (λ∞ − λ·)


>



0K×1

0K×1

λ2,·

λ1,·
...

0


+ λ1,·

∫
Rd≥0

[(
λ1,· + β̌11z1,·

) (
λ2,· + β̌21z1,·

)
− λ1,·λ2,·

]
dν1 (Z)

+ . . .+ λK,·

∫
Rd≥0

[(
λ1,· + β̌1KzK,·

) (
λ2,· + β̌2KzK,·

)
− λ1,·λ2,·

]
dνK (Z)

= λ2,·α̌
>
1· (λ∞ − λ·) + λ1,·α̌

>
2· (λ∞ − λ·) +m1λ1,·

∑
i

β̌2iλi,· +m1λ2,·
∑
i

β̌1iλi,· +m2

∑
i

β̌1iβ̌2iλi,·
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In terms of expectations, we have:

dE [λ1,tλ2,t]

dt
= α̌>1·λ∞ E (λ2,t) + α̌>2·λ∞ E (λ1,t)− α̌>1· E (λ2,tλt)− α̌>2· E (λ1,tλt)

+m1β̌
>
1· E (λ2,tλt) +m1β̌

>
2· E (λ1,tλt) +m2β̌

>
1· diag [Eλt] β̌2·

= α̌>1·λ∞ E (λ2,t) + α̌>2·λ∞ E (λ1,t) +
(
β̌1·m1 − α̌1·

)> E (λ2,tλt)

+
(
β̌2·m1 − α̌2·

)> E (λ1,tλt) +m2β̌
>
1· diag [Eλt] β̌2·.

Given the above ODEs for E (λ1,t) and E [λ1,tλ2,t], the generalizations stated in Lemma B.3 can be

obtained. Q.E.D.

Lemma B.4 Long term covariance. If it exists, the long term covariance matrix of λt, defined as Λ∞ =

limn→∞ E
(
λtλ
>
t

)
− λ∞λ

>
∞, solves the following algebraic equation:

(
m1β̌ − α̌

)
Λ∞ + Λ∞

(
m1β̌ − α̌

)>
+m2β̌diag

(
λ∞
)
β̌> = 0.

Proof: Apply Lemma B.3 with t→∞. Q.E.D.

APPENDIX C: TRANSFORMS

We maintain the set-up and definitions from Appendix B.

Proposition 1 For each i ∈ {1, · · · ,K}, and T ≥ t,

(15) E
[
(1− γi)Ni,T

∣∣∣Ft

]
= exp

(
ai(t) + bii(t)Ni,t + bi2K+1(t)λ1,t + . . .+ bi3K(t)λK,t

)
where for i ∈ {1, . . . ,K}, the coefficients ai(t) and bi(t) =

(
bi1(t), · · · , bi3K(t)

)>
are solutions to the ODEs

given below.

a.

ḃi2K+1:3K(t) = α̌>bi2K+1:3K(t) + 1K×1 − θ
(
bi(t)

)
,

and ḃi1:2K(t) = 0, where for j1 < j2, bij1:j2(t) =
(
bij1(t), . . . , bij2(t)

)>
, and where θ : Rd → RK≥0 is

defined by:

θi (c) =

∫
R≥0

d

e(c·Z) dνi(Z), i = 1, . . . ,K,

for all c ∈ Rd, i ∈ {1, . . . ,K}.

This ODE has the terminal condition bi(T ) = (0, . . . , log (1− γi) , . . . , 0, 0, . . . , 0, 0, . . . , 0)>, for all

i ∈ {1, . . . ,K}.

b.

ȧi (t) = − (α̌λ∞) · bi2K+1:3K(t),

with terminal condition αi(T ) = 0, for i ∈ {1, . . . ,K}.
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Proof: The result is obtained through a direct application of Proposition 1 and Appendix B in Duffie et al.

(2000). Using the notations in the aforementioned paper, we have the drift ofXt is given by µ(Xt) = K0+K1x

where the two matrices are defined as follows: K0 :=

0K×1

0K×1

α̌λ∞

; K1 :=

0K×K 0K×K 0K×K

0K×K 0K×K 0K×K

0K×K 0K×K −α̌

. As we

have no diffusion component in our process, H0 ≡ 0 and H1 ≡ 0. Moreover, as we assume independence

between the state vector and the discount factor: ρ0 = 0; ρ1 = 0d×1. (Discounting will drop out of the

expectation we wish to evaluate.) We have:

dXt =
[

dN1,t · · · dNK,t dJ1,t · · · dJK,t dλ1,t · · · dλK,t

]
=

[
02K×1

α̌ (λ∞ − λt)

]
dt+

[
1 · · · 0 ZK+1 · · · 0 ZK+1β̌11 · · · ZK+1β̌K1

]
dN1,t + . . .

+
[
0 · · · 1 0 · · · Z2K Z2K β̌1K · · · Z2K β̌KK

]
dNK,t

The default intensities satisfy the equations λi (x) = li0 + li1x, for i ∈ {1, . . . ,K}, where li0 = 0 for all

i ∈ {1, . . . ,K} and:

l11 = (0, · · · , 0, 0, ..., 0, 1, · · · , 0)>

...

lK1 = (0, · · · , 0, 0, · · · , 0, 0, · · · , 1)>.

We proceed by integrating terms in the jump transform one by one:

θi (c) =

∫
Rd≥0

exp

(
d∑
i=1

ciZi

)
dνi (Z)

=

∫ ∞
0

exp
(
ci + cK+izi,· + c2K+1β̌1izi,· + . . .+ c3K β̌Kizi,·

)
exp (−zi,·) dzi,·

=
exp

(
ci + cK+izi,· + c2K+1β̌1izi,· + . . .+ c3K β̌Kizi,· − zi,·

)
cK+i + c2K+1β̌1i + . . .+ c3K β̌Ki − 1

∣∣∣∣∣
∞

zi,·=0

=
exp (ci)

max
{

0, 1− cK+i − c2K+1β̌1i − . . .− c3K β̌Ki
} .

Applying Proposition 1 in Duffie et al. (2000) leads to:

ḃi(t) = −K>1 bi(t)−
K∑
j=1

lj1

[
θj
(
bi(t)

)
− 1
]
,

with bi(T ) = (0, . . . , log (1− γi) , . . . , 0, 0, . . . , 0, 0, . . . , 0)>. So:

ḃi2K+1:3K(t) = α̌>bi2K+1:3K(t) + 1K×1 − θ
(
bi(t)

)
and ḃi1:2K(t) = 0, ∀t.

To show that this ODE is well-defined despite the pole in θ, first define ψ : RK → Rk by ψ(c) =

− log (1K×1 − β̌>c), for all c ∈ RK , where the logarithm is elementwise. Now, note that θ
(
bi(t)

)
=

(1K×1 − γiei) ◦ expψ
(
bi2K+1:3K(t)

)
, and that ψ−1(d) = β̌−> (1K×1 − exp (−d)) for all d ∈ RK , where
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the exponentiation is element-wise in both cases, and where ei is the ith column of the identity matrix.

Hence:

d

dt
ψ
(
bi2K+1:3K(t)

)
= expψ

(
bi2K+1:3K(t)

)
◦ β̌>

[
α̌>β̌−>

(
1K×1 − exp

(
−ψ

(
bi2K+1:3K(t)

)))
+ 1K×1 − (1K×1 − γiei) ◦ expψ

(
bi2K+1:3K(t)

)]
.

This gives an ODE in ψ
(
bi2K+1:3K(t)

)
without poles on the right hand side. From the solution of this ODE,

we can then back-out a solution for bi(t).

Moreover, we have:

ȧi(t) = −K0 · bi(t) = − (α̌λ∞) · bi2K+1:3K(t),

where ai(T ) = 0 for i ∈ {1, . . . ,K}. Q.E.D.

Proposition 2 For each i ∈ {1, · · · ,K} and T ≥ t,

E
[
γiλi,T (1− γi)Ni,T

∣∣∣Ft

]
= exp

(
ai(t) + bii(t)Ni,t + bi2K+1(t)λ1,t + . . .+ bi3K(t)λK,t

)
(
Ai(t) +Bi2K+1(t)λ1,t + . . .+Bi3K(t)λK,t

)
where for i ∈ {1, . . . ,K}, the coefficients Ai(t) and Bi(t) =

(
Bi1(t), · · · , Bi3K(t)

)>
are solutions to the ODEs

given below.

a.

−Ḃi
2K+1:3K(t) = −α̌>Bi

2K+1:3K(t) +∇θ
(
bi(t)

)
Bi(t),

and Ḃi
1:2K(t) = 0, where for j1 < j2, Bi

j1:j2(t) =
(
Bij1(t), . . . , Bij2(t)

)>
, and where ∇θ(·) is the

Jacobian of θ(c).

This ODE has the terminal condition Bi(T ) = (0, . . . , 0, 0, . . . , 0, 0, . . . , γi, . . . , 0)>, for all i ∈
{1, . . . ,K}.

b.

−Ȧi(t) = (α̌λ∞) ·Bi
2K+1:3K(t),

with Ȧi(T ) = 0.

Proof: The result is obtained through a direct application of Proposition 3 and Appendix B in Duffie et al.

(2000). In addition to all the notation introduced in the proof of Proposition 1, we define ϕ : Rd → RK≥0 by:

ϕi(c) =
1

1− cK+i − c2K+1β̌1i − · · · − c3K β̌Ki
,

for all c ∈ Rd and i ∈ {1, . . . ,K}. Using this, we have that the Jacobian of θ is given by:

∇θ(c) =
[
diag θ(c) diag (θ(c) ◦ ϕ(c)) diag (θ(c) ◦ ϕ(c))β̌>

]
.
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Applying Proposition 3 in Duffie et al. (2000), we get:

−Ḃi(t) = K>1 Bi(t) +

K∑
j=1

lj1∇θj
(
bi(t)

)
Bi(t),

with Bi(t) = (0, . . . , 0, 0, . . . , 0, 0, . . . , γi, . . . , 0)>. So:

−Ḃi
2K+1:3K(t) = −α̌>Bi

2K+1:3K(t) +∇θ
(
bi(t)

)
Bi(t),

and Ḃi
1:2K(t) = 0. Moreover, we have: −Ȧi(t) = K0 ·Bi(t) = (α̌λ∞) ·Bi

2K+1:3K(t), with Ȧi(t) = 0. Q.E.D.

APPENDIX D: DERIVING THE LIKELIHOOD OF OBSERVING A CERTAIN JUMP SIZE AND NO DEFAULT

OVER A TIME INTERVAL

Lemma D.1 Suppose dJ̃t = z̃ dÑt where Ñt is a univariate Poisson process with constant intensity λ̃, and

where z̃ ∼ Exp (1). Assume J̃0 = 0. Then the p.d.f. of J̃∆ is given by:

f
(
J̃∆

)
= ∆λ̃

I1

(
2
√

∆λ̃J̃∆

)
e∆λ̃+J̃∆

√
∆λ̃J̃∆

.

Proof: Note that Ñ∆ is Poisson distributed with parameter ∆λ̃. Furthermore, conditional on having k

jumps, J̃∆ is Gamma distributed with shape parameter k and scale parameter 1. Therefore:

f
(
J̃∆

)
=

∞∑
k=0

Pr(Ñ∆ = k)f(J̃∆|Ñ∆ = k) =

∞∑
k=0

(∆λ̃)ke−∆λ̃

k!

J̃k−1
∆ e−J̃∆

Γ(k)

= ∆λ̃
I1

(
2
√

∆λ̃J̃∆

)
e∆λ̃+J̃∆

√
∆λ̃J̃∆

.

Q.E.D.

Lemma D.2 Suppose dJ̃t = z̃ dÑt where Ñt is a univariate Poisson process with constant intensity λ̃, and

where z̃ ∼ Exp (1). Assume J̃0 = 0. Then for all γ ∈ [0, 1]:

E
[
(1− γ)Ñ∆

∣∣∣J̃∆

]
=

√
1− γI1

(
2
√

∆(1− γ)λ̃J̃∆

)
I1

(
2
√

∆λ̃J̃∆

) .

Proof:

E
[
(1− γ)Ñ∆

∣∣∣J̃∆

]
=
∞∑
k=0

(1− γ)k Pr
(
Ñ∆ = k

∣∣∣J̃∆

)
=

∞∑
k=0

(1− γ)k f(J̃∆|Ñ∆ = k) Pr(Ñ∆ = k)

f
(
J̃∆

) ,

where we applied Bayes’s theorem.

Moreover, f(J̃∆) is given in Lemma D.1 above, J̃∆|Ñ∆ = k ∼ Γ(k, 1) and Pr(Ñ∆ = k) is Poisson with
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parameter ∆λ̃. Hence, we have:

E
[
(1− γ)k |J̃∆

]
=

∞∑
k=0

(1− γ)k
J̃k−1

∆ e−J̃∆

Γ(k)

(
∆λ̃
)k
e−∆λ̃

k!

∆λ̃I1

(
2
√

∆λ̃J̃∆

)
e∆λ̃+J̃∆

√
∆λ̃J̃∆

−1

=

√
1− γI1

(
2
√

∆(1− γ)λ̃J̃∆

)
I1

(
2
√

∆λ̃J̃∆

) .

Q.E.D.

APPENDIX E: MAXIMUM LIKELIHOOD JUMP TIMES AND SIZES

Over the time interval (t, t + ∆], the log-likelihood of observing Lt,t+∆ jumps at times t < τ∗1 ≤ · · · ≤
τ∗Lt,t+∆

≤ t+ ∆ is given by:28 f(jump times in (t, t+ ∆]) =
∫ t+∆

t

[
−1TK×1λs + Ṅs

T
(logλs − zs)

]
ds. Condi-

tioning on the paths of λs and ζs and taking expectations leads to:

E log [f(jump times in (t, t+ ∆])|λs, ζs, s ∈ (t, t+ ∆]] =

∫ t+∆

t

[
−1TK×1λs + λTs log λs − 1TK×1ζs

]
ds.

We define the following maximization problem:

Problem

(16) max
λs,ζs,ωs, s∈(t,t+∆]

{∫ t+∆

t

[
−1TK×1λs + λTs log λs − 1TK×1ζs + ωTs ζs

]
ds

}
subject to:

α̌ (λ∞ − λs) + β̌ζs − λ̇s = 0,

λt, λt+∆,

ωs ≥ 0, ζs ≥ 0, ωsζs = 0, ∀s ∈ (t, t+ ∆],

where ωs, s ∈ (t, t+ ∆] are Lagrange multipliers on the positivity constraint on ζs.

To further simplify our maximisation problem, in equation (16), we replace −1TK×1λs + λTs log λs with a

first order Taylor approximation of this function in λs around λt, its value at the lower bound of our interval.

Due to the linearity in the objective function in ζs, the solution to the problem above features jumps in

λs. To avoid the numerical difficulties deriving from this, we add a smoothing quadratic term to the terms

in (16), pre-multiplied by a smoothing constant set to −κ
2

.

This results in the following approximated maximisation problem:

Problem E.1

max
λs,ζs,ωs, s∈(t,t+∆]

{∫ t+∆

t

[
−1TK×1λt + λTs log λt − 1TK×1ζs + ωTs ζs −

κ

2
ζTs ζs

]
ds

}
28For more information on how to build the likelihood for marked point processes, see section 7.3 in Daley and

Vere-Jones (2003).
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subject to:

α̌ (λ∞ − λs) + β̌ζs − λ̇s = 0.

λt, λt+∆,

ωs ≥ 0, ζs ≥ 0, ωsζs = 0, ∀s ∈ (t, t+ ∆],

Solution. Let µs, s ∈ (t, t + ∆] be the co-state variable of the optimisation problem E.1. The first order

conditions are given in the following system of equations:
µ̇τ = α̌Tµτ − log λt

λ̇τ = α̌ (λ∞ − λτ ) + β̌ζτ

ωs + β̌Tµs − 1K×1 = κζs

⇒


µs = eα̌

T (s−t)υ +
(
α̌T
)−1

log λt

λs = λ∞ + e−α̌(s−t) (λt − λ∞) +
∫ s
t
e−α̌(s−τ)β̌ζτ dτ

ζs = max
{

0, 1
κ

[β̌Tµs − 1K×1]
}
,

with τ ∈ (t, s] and υ an integration constant that must be chosen to ensure that λt+∆ takes the correct

value. In practice, this requires solving a non-linear equation.

APPENDIX F: QUARTILE RESPONSES IN THE CDS SPREADS TO EVENTS IN ONE COUNTRY AT A

TIME
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Figure 5: Percentage effect of one event at the start of the sample in France (upper panel) and
Germany (lower panel) on the CDS spreads of all countries (bigger figure) and the rest of countries
(smaller figures)
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Figure 6: Percentage effect of one event at the start of the sample in Italy (upper panel) and the UK
(lower panel) on the CDS spreads of all countries (bigger figure) and the rest of countries (smaller
figures)
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