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Abstract

DSGE models are typically estimated using Bayesian methods, but a researcher may

want to estimate a DSGE model with full information maximum likelihood (FIML) so

as to avoid the use of prior distributions. A very robust algorithm is needed to find

the global maximum within the relevant parameter space. I suggest such an algorithm

and show that it is possible to estimate the model of Smets and Wouters (2007) using

FIML. Inference is carried out using stochastic bootstrapping techniques. Several FIML

estimates turn out to be significantly different from the Bayesian estimates and the

reasons behind those differences are analyzed.
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1 Introduction

Since the seminal papers by Smets and Wouters (2003) and Christiano et al. (2005) it

has been popular to use Bayesian methods when estimating dynamic stochastic general

equilibrium (DSGE) models. Typically, Bayesian methods are implemented by postulating

prior distributions of the parameters and estimating the model with maximum likelihood1.

Still, there may be situations when estimation of a DSGE model using full information

maximum likelihood (FIML) is desirable. Prior information may be lacking and the author

may want to identify flaws in the model by finding the parameters that get unreasonable

estimates when the data speaks freely.

When trying to estimate the model with FIML one encounters the problem that the

likelihood function may be flat and have many local maximums. Local search algorithms are

fast but they will almost certainly get stuck in one of the local maximums and thereby make

the researcher draw the wrong conclusions. Current global search algorithms are usually time

consuming and require a lot of input information beside the minimum and maximum values

of the parameters. Examples of these additional inputs are population size and cross over

ratio for the genetic algorithm, temperature level and cooling down pace for the simulated

annealing algorithm and so forth. Usually, there are no clear guidelines for how to chose

these inputs even though they can be crucial for the outcome. This makes current global

search algorithms inconvenient when estimating big systems such as a medium scale DSGE

model.

I propose a global solution algorithm that requires no other input than maximum and

minimum values of the parameters. The algorithm is compared with other commonly used

global algorithms. The comparison is made for both tricky mathematical functions and

estimation on artificial data. On average, my algorithm outperforms the other algorithms in

both comparisons.

After the algorithm comparison I use the data from Smets and Wouters (2007) (SW)

and estimate their model using FIML. For presentation of the original model I refer to their

paper. I find that there are quite many of the parameter estimates in SW that are outside

1The likelihood function is usually constructed by the Kalman (1960) filter.
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the 99 % confidence interval that I find when I use FIML. These include the investment

adjustment cost φ, constant relative risk aversion σc, habit formation in consumption h,

wage stickiness ξw, capital utilization ψ, etc. This demonstrates that prior distributions

have substantial effects on the posterior estimates even though there is enough information

in the data to generate reasonable parameter estimates.

In an earlier study by Ireland (2004) a DSGE model was estimated with FIML as well

but his model was much smaller and only six structural parameters was estimated compared

to this study which estimates 36 structural parameters. Andreasen (2009) evaluated the

success rate when estimating larger DSGE models and also compared different algorithms.

His method assumes that the shocks are known and for that reason his method cannot be

used on real data. However, the most successful algorithm in that study is part of the

algorithm comparison in this paper.

In section 2, my proposed algorithm is explained and in Section 3 it is compared to other

global algorithms. In Section 4 the fixed parameters and the parameter space for the DSGE

estimation are presented. The results are presented in Section 5 together with diagnostic

tests and simulated distributions of the confidence intervals. Lastly in Section 6, there is

a discussion about the differences between the FIML estimates and the Bayesian estimates

in SW. I focus on the parameter estimates in SW which are outside of the 99 % confidence

interval of the FIML estimation and try to understand the reasons behind the differences.

2 A fast and robust global algorithm

In many applications, we have little prior information about parameter values but we can

delimit some range of parameter values that make economic sense. Parameter values outside

this range are not part of an economically meaningful interpretation of the data. The idea

of the proposed algorithm is that it should be fast and robust, not rely on derivatives and

not require any other input than maximum and minimum for the parameter values.

Specifically, the algorithm should not depend on starting values that are chosen by the

researcher. The suggested algorithm makes its own choice of starting values that are spread

out in the pre-specified, finite parameter space. In this way it differs from simulated an-
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nealing, the genetic algorithm and the evolutionary algorithm since they all require the user

to give inputs such as temperature, the population size, number of generations, a starting

vector and so forth.

It should be emphasized that estimation by FIML with bounds on the parameters is

not the same thing as Bayesian estimation with uniform priors. Any prior will push the

estimate towards the mean of the prior distribution which in the uniform case is the mean

of the interval. With FIML estimation, the exact values of the boundaries matter only if the

parameter ends up on the boundary of the interval. As we will see, this happens in relatively

few cases in the economic application that is presented below.

This section describes how the algorithm works and the procedure is illustrated with a two

parameter example. A general and mathematical description is available in the Appendix.

The two parameters are denoted p1, p2 ∈ [−10, 10], thus min = −10 and max = 10 for both

p1 and p2. The number of parameters is denoted P and is equal to two in this example.

First, ceil(1.1 × P ) = 3 vectors are created2. The three vectors are equally spread out

over (min+(max−min)∗0.15,max− (max−min)∗0.15). The resulting vectors are shown

in matrix A:

A =

−7 0 7

−7 0 7

 . (1)

Then two more vectors are added that are closer to the minimum and maximum values.

(min+ (max−min) ∗ 0.05,max− (max−min) ∗ 0.05). Those are shown in matrix B:

B =

−9 9

−9 9

 . (2)

All of these vectors are summarized in matrix C for convenience:

C =

−9 −7 0 7 9

−9 −7 0 7 9

 . (3)

The dots in Figure 1 show the vectors in matrix C.

2ceil means round up to the nearest integer
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Figure 1: ceil(1.1× P ) + 2 = 5 vectors that cover the parameter space (Matrix C)

2.1 Step 1 - Repeated three times

Around each vector in Figure 1 another vector is stochastically chosen within the circle radius

(−(max −min) ∗ 0.1, (max −min) ∗ 0.1) from the vectors closest to origo and (−(max −

min)∗0.05, (max−min)∗0.05) for the remaining vectors. This is demonstrated with vectors

1 to 5 in Figure 2 where the circles represents the maximum and minimum just mentioned.

The reason for the stochastic part is that it is impossible to find a pattern which works for

all kinds of problems. A stochastic part is therefore needed in order make up for the huge

variation in target functions and their shapes.
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Figure 2: Vectors 1 to 5 are stochastically chosen within their respective stochastic space

and those are the ones that will be part of the estimation

Next, around vectors 1 to 5, 2 × P = 4 vectors are created where each vector element is

replaced by its minimum and maximum parameter space value one at the time (see Figure

3). To demonstrate this we start by doing it for vector 1, (−8.2, 7.8). In matrix D we see

vector 1 together with the four additional vectors.

D =

−8.2 −10 10 −8.2 −8.2

−7.8 −7.8 −7.8 −10 10

 (4)
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Figure 3: 2×P vectors created around vector 1 where vector 1’s elements are replaced with

the maximum and minimum value of the parameter space [−10, 10] one at the time.

Vectors 1 to 5 will be run through the simplex Nelder and Mead (1965) algorithm. Roughly

speaking, the idea of the Nelder and Mead (1965) method is to move the vectors according

to a schedule that is supposed to approach the optimum (minimum). After every 5 × P th

turn four new vectors will be created in the same manner as in Figure 3 only this time it

will be around the best vector (vector with the lowest value) thus far. This entire procedure

continues until the absolute logarithmic change of the best value is smaller than one; see

equation (5). When the algorithm has stopped it saves that vector and continues with vector

2 in Figure 2.
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| ln |Xbest
j+1 | − ln |Xbest

j || < 1 (5)

When this is done there are five vectors which are supposed to be one step closer to the

optimum. All of these five vectors are run through the Nelder and Mead (1965) method until

the absolute logarithmic change of the best value is smaller than 10−3. The resulting vector

is saved and step 1 is repeated two more times. This will eventually give us vectors, V1, V2

and V3.

2.2 Step 2

When Step 1 is finished there are three vectors in total, V1, V2 and V3. These three vectors

are run through the Nelder and Mead (1965) method until the absolute logarithmic change

of the best value is smaller than 10−9. This vector is then run through the same procedure

as in Figure 3 only this time the process is restarted every 360×P th turn. The vector with

the lowest value when the improvement is lower than 10−9 is the final one!

3 Algorithm comparisons

This section compares the algorithm of this paper with some other algorithms that are

popular in the global optimization literature.

3.1 Algorithms

Two alternative algorithms are popular global optimization algorithms in Matlab. Those are

the genetic algorithm (GA) by Holland (1975) which mimics the evolution of organisms akin

to Charles Darwin’s ”natural selection” principle. The other one is the simulated annealing

algorithm (SA) by Kirkpatrick (1984) which was used in an econometric study by Goffe et al.

(1994). SA mimics the process of hardening metal where the degree is high in the beginning

and gets lower and lower until the process is stopped. Additionally there is another branch

of global algorithms which build on the idea of a swarm, such as an ant colony or a bee
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swarm. This branch is called particle swarm optimization (PSO). Among those there is

one interesting algorithm, namely the artificial bee colony (ABC) algorithm by Karaboga

and Basturk (2007) which will also be used for comparison. The evolutionary algorithm

(CMA-ES) in Andreasen (2009) is also part of the the comparison.

3.2 Minimizing tricky functions

To test the algorithms we need some complicated functions where the true minimum is

known. Below, some functional forms, their optimum values and their bounds are presented.

Additionally, a two dimensional plot is shown in order to get a visual idea of the difficulty

of the optimization problem. The first five benchmark functions of the comparison are

the same as those used by Karaboga and Basturk (2007). The number of parameters in

this comparison are the same as in SWs model, P = 36, where P is the total number of

parameters to be estimated.
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Figure 4: Functions f1, f2 and f3

Note: f1 is the Griewank function, f2 is the Rastrigin function and f3 is the Rosenbrock

function

10



Figure 5: Functions f4, f5 and f6

Note: f4 is the Ackley function, f5 is the Schwefel function and f6 is the Eggholder function

The first function is the Griewank function:

f1(~p) =

(
1

4000

P∑
i=1

p2
i

)
−

P∏
i=1

cos
(
pi√
i

)
+ 1

f1(~0) = 0 p ∈ [−600, 600]

(6)

At distance the Griewank function looks like a Sphere function but when zooming in it

becomes evident that it consists of many small local optimums.

The next function is the Rastrigin function where there instead of small local minimums

are bigger local minimums which are visible already at first sight:
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f2(~p) =
P∑
i=1

(p2
i − 10 cos(2πpi) + 10)

f2(~0) = 0 p ∈ [−15, 15]

(7)

Next we have the Rosenbrock function which looks simpler than the former ones but it

has a big flat area around its global minimum which makes it harder for the algorithms to

converge:

f3(~x) =
P∑
i=1

100(p2
i − pi+1)2 + (1− pi)2

f3(~1) = 0 p ∈ [−15, 15]

(8)

Ackley is the 4th function:

f4(~p) = 20 + e− 20e

(
−0.2

√
1
P

P∑
i=1

p2
i

)
− e

1
P

P∑
i=1

cos(2πpi)

f4(~0) = 0 p ∈ [−32.768, 32.768]

(9)

Schwefel is the 5th function and now we have a much harder function with no clear

bowl-shaped pattern where it is even hard to see the minimum in a two dimensional plot:

f5(~p) = P × 420.9687 +
P∑
i=1

−pisin |pi|

f5(420.9687, 420.9687...P ) = 0 p ∈ [−500, 500]

(10)

The 6th function, the eggholder function, is also hard to optimize since it has many

local minimums and no clear bowl-shaped pattern. The basic eggholder function is two-

dimensional but since all the tests will be based on a problem with the same dimensions

as when we estimate a medium sized DSGE model by maxmimum likelihood estimation we

must have 36 dimensions. To accomplish this the two dimensional eggholder is multiplied

by itself until the number of dimensions is equal to 36. Its functional form is displayed in

equation (11)

g(pi, pi+1) = −(pi+1 + 47) sin
(√∣∣pi+1 + pi

2
+ 47

∣∣)− pi sin(√|pi − (pi+1 + 47)|
)

f6(~p) =
P−1∏
i=1

(1 + 959.64066 + g(pi, pi+1))

f6(512, 404.2319...P ) = 1 p ∈ [−512, 512]

(11)
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Last but not least. In order to construct a very challenging problem for the algorithms, a

multiplicative combination of the Eggholder and the Griewank function is created according

to equation (12):

f7(~p) = f1(~p)f6(~p)

f7(512, 404.2319, 0, 0...P ) = 1 p ∈ [−512, 512, 600,−600]
(12)

3.3 Results

The comparison was carried out with 36 parameters for each function. Each function in turn

was estimated ten times and the average value is presented in Table 1. The reason for repeat-

ing the estimation ten times per algorithm is because they all have a stochastic component.

The computing time in Table 2 is the total computing time for the ten repetitions.

Table 1: Function values

Function SA GA Bee swarm CMA-ES New algorithm Solution

f1(~x) 9.053 3.795e− 05 0.0007411 8.951e− 09 0.003638 0

f2(~x) 840.9 0.199 2.064e− 12 46.46 11.14 0

f3(~x) 10.74 0.03602 0.2788 9.644e− 09 33.54 0

f4(~x) 7.445 0.0001339 4.574e− 14 1.893e− 06 0.002241 0

f5(~x) 53.41 1888 13.1 6931 −9.767e− 09 0

f6(~x) 8.413e+ 24 7.93e+ 41 3.576e+ 34 1.606e+ 48 13.98 1

f7(~x) 3.985e+ 32 5.011e+ 24 2.626e+ 15 7.86e+ 34 8.839 1

Note: The lower the better. SA=Simulated Annealing, GA=Genetic Algorithm,

ABC=Artificial Bee Colony, CMA-ES=Evolutionary algorithm.
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Table 2: Total computing time in minutes

Function SA GA Bee swarm CMA-ES New algorithm

f1(~x) 4.11 1.37 0.68 0.28 2.49

f2(~x) 3.31 2.14 1.20 0.21 2.26

f3(~x) 82.15 26.64 1.81 1.44 2.50

f4(~x) 2.29 2.78 0.70 0.15 1.63

f5(~x) 3.19 1.99 1.12 0.40 2.50

f6(~x) 118.56 84.29 5.66 6.40 19.74

f7(~x) 124.36 39.96 7.92 5.00 28.26

Note: The lower value the better. SA=Simulated Annealing, GA=Genetic Algorithm,

ABC=Artificial Bee Colony, CMA-ES=Evolutionary algorithm in Andreasen (2009).

All algorithms do a decent job for the simpler functions (functions 1 to 5) except for SA

which gets 840.9 for the Rastrigin function. For the more complicated Eggholder and

Eggholder−Griewink functions only the new algorithm manages to get a reasonable values

(below 14) while the others get values above 2× 1015.

3.4 Estimation of the DSGE model

A more relevant comparison is to see how the algorithms perform when maximizing the

likelihood function for the DSGE model in Smets and Wouters (2007). In order to make the

comparison generate simulated samples as if the model was correctly specified. This implies

that we know the true vector of parameters which makes it interesting to look at the squared

deviation measure in equation (13)

100

√√√√ 1

N

N∑
i=0

(
xi,est − xi,true
xi,max − xi,min

)2

(13)

For each of the samples I let the algorithms search for the highest likelihood value. The

likelihood value of each algorithm and sample is shown in Table 3, the squared deviation of

the estimated parameter vector and the true parameter is shown in Table 4
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Table 3: Artificial samples: maximum likelihood value

Sample SA GA Bee swarm CMA-ES New algoritm

S1 -1558 -804.6 -819.2 -1e+40 −804

S2 -1790 -931 −819.3 -874.4 -860.1

S3 -2350 -765.9 -766.8 -907.9 −756.4

S4 -1457 -886.6 -827.7 -814.1 −783.8

S5 -1857 -792.9 -771.8 -1e+40 −764.2

S6 -1953 -844.8 -830.7 -1.001e+05 −803.8

S7 -1667 −835 -840.5 -959.6 -923.4

S8 -2447 -794.4 -808.4 -778.6 −777

S9 -1958 -807.1 -815.2 -816.8 −798.5

S10 -2237 -806.5 -786.4 -2.678e+04 −777

S11 -2638 -889.1 -796.7 -888 −769.2

S12 -1713 -842.8 -847.1 -806.9 −795.4

S13 -1693 -837.2 −792.5 -856.1 -835.2

S14 -1907 -939.5 -827.7 -1e+40 −793.5

S15 -2164 -806.1 −797.5 -876.2 -828.2

S16 -1810 -776.2 -788.4 -919.4 −773.4

S17 -2585 −785.2 -796.6 -824.7 -814.1

S18 -2074 −771.6 -800.8 -792.4 -796.2

S19 -1391 -803.5 -796.7 -1e+40 −786.6

S20 -1267 -791.6 -796 -1.315e+04 −789.1

Wins 0 3 3 0 14

Note: The higher the better. SA=Simulated Annealing, GA=Genetic Algorithm,

ABC=Artificial Bee Colony, CMA-ES=Evolutionary algorithm in Andreasen (2009).

The new algorithm outperforms the others since it produces the highest likelihood value in

70% of the samples and gets closest to the true parameter vector in 50% of the samples.

The algorithm that comes second (The Genetic algorithm) has an average computing time of

about 2 hours per sample compared to the new algorithm which has an average computing
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time of 40 minutes.

Table 4: Artificial samples: Sum of squared deviations

Sample SA GA Bee swarm CMA-ES New algoritm

S1 34.4 9.808 22.47 54.53 7.674

S2 33.5 23.52 8.853 30.14 22.72

S3 43.43 11.77 14.31 29.47 7.652

S4 28.94 17.61 16.11 23.42 5.286

S5 43.09 16.33 17.68 49.7 18.76

S6 38.88 17.54 15.43 47.56 6.162

S7 35.65 17.17 19.73 24.08 29.89

S8 43.73 13.81 26.26 3.745 4.308

S9 36.73 10.39 20.78 26.11 5.41

S10 43.13 22.84 9.642 40.79 19.06

S11 48.83 24.3 14.82 34.57 5.539

S12 39.05 21.04 18.04 19.06 7.968

S13 39.41 17.1 8.036 30.84 22.69

S14 35.74 28.84 25.65 42.69 6.191

S15 42.88 16.7 6.486 34.8 15.84

S16 40.37 7.542 20.03 35.92 6.894

S17 42.78 8.149 19.4 19 13.88

S18 37.38 5.503 17 26.27 25.79

S19 32.59 12.02 14.93 53.44 9.517

S20 20.32 11.11 22 44.23 20.37

Wins 0 5 4 1 10

Note: The lower the better. SA=Simulated Annealing, GA=Genetic Algorithm,

ABC=Artificial Bee Colony, CMA-ES=Evolutionary algorithm.
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4 Estimation of the Smets and Wouters (2007) model

on real data

This section presents the parameters that are calibrated, followed by the intervals for the

estimated parameters. Lastly, there is a short description of the data.

4.1 Fixed parameters

Following SW there are five parameters that are kept fixed. Capital depreciation is set to

δ = 0.025 and the government spending to GDP ratio is fixed at gy = 0.18. The steady

state mark up for wage setters λw is not identified and set to 1.5. Lastly the Kimball

(1995) aggregators in the goods and labor market, εp and εw, are both set to 10. The fixed

parameters are summarized in Table 5

Table 5: Parameters of the model that re not estimated

Description Parameter Value

Depreciation δ 0.025

Government spending-GDP ratio gy 0.18

Labor markup λw 1.5

Kimball aggregator goods market εp 10

Kimball aggregator labor market εw 10

Note: Parameters of the model that re not estimated

4.2 Intervals for estimated parameters

As discussed above, the algorithm, needs a prespecified finite parameter space so we need

to determine bounds for the parameters based on economic reasoning. These bounds are

presented in Table 6.

Habit persistence h, the calvo probabilities ξw and ξp, wage and price indexation ιw and

ιp, capital utilization ψ, interest rate smoothing in the Taylor rule ρ and the capital share

in production α are all theoretically bounded between 0 and 1. For the persistances in the
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autoregressive shock processes ρa, ρb, ρg, ρI , ρr, ρp, ρw and ρga they have to be stationary

and therefore belong to the interval [-0.999,0.999]. Steady state hours worked l̄ is defined

as the logarithmic deviation from the logarithmic average of hours worked. It is therefore

normalized to zero and is allowed to deviate 20 percent above and below its average.

Regarding the remaining parameters such as the standard deviation of the shock pro-

cesses, σa to σw, investment adjustment cost φ, the relative risk aversion σc etc. are all

positive but there are no obvious upper bound. The strategy chosen here is to specify suf-

ficiently broad intervals and then check how quickly the likelihood function worsens as the

parameter in question approaches the borders of the interval. As will be evident from Figures

6 to 8 below, the parameter intervals in Table 6 and 7 are more than enough.

Table 6: Parameter intervals

Description Parameter Interval

Investment adjustment cost φ [0.01, 100.00]

Constant relative risk aversion σc [0.25, 20.00]

Habit persistence h [0.00, 1.00]

Calvo parameter labor market ξw [0.00, 1.00]

Inverse Frisch elasticity σl [0.01, 20.00]

Calvo parameter goods market ξp [0.00, 1.00]

Indexation labor market ιw [0.00, 1.00]

Indexation goods market ιp [0.00, 1.00]

Capital utilization ψ [0.00, 1.00]

Fixed production cost Φ [0.00, 30.00]

T.R reaction to inflation rπ [1.01, 100.00]

T.R interest rate smoothing ρ [0.00, 1.00]

T.R reaction to output ry [0.00, 30.00]

T.R reaction to ∆y r∆y [0.00, 2.00]

Steady state inflation rate π̄ [−30.00, 30.00]
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Table 7: Parameter intervals continue

Description Parameter Interval

Steady state inflation rate π̄ [−30.00, 30.00]

Sub. discount rate times 100 100(β−1 − 1) [−8.00, 4.00]

Steady state hours worked l̄ [−30.00, 30.00]

Steady state growth rate γ̄ [0.00, 2.00]

Capital share in production α [0.01, 0.99]

Technology shock σa [0.00, 5.00]

Risk premium shock σb [0.00, 5.00]

Gov. expenditure shock σg [0.00, 5.00]

Investment shock σl [0.00, 5.00]

Monetary policy shock σr [0.00, 5.00]

Price shock σp [0.00, 5.00]

Wage shock σw [0.00, 5.00]

AR term technology shock ρa [−1.00, 1.00]

AR term risk premium shock ρb [−1.00, 1.00]

AR term gov. shock ρg [−1.00, 1.00]

AR term investment shock ρl [−1.00, 1.00]

AR term MP shock ρr [−1.00, 1.00]

AR term price shock ρp [−1.00, 1.00]

AR term wage shock ρw [−1.00, 1.00]

MA term price shock µp [−2.00, 2.00]

MA term wage shock µw [−2.00, 2.00]

Correlation between a and g ρga [−1.00, 1.00]

Target function value Ω [0.00, Inf ]

4.3 Data

The data are the same as in Smets and Wouters (2007), that is, US quarterly data between

1947 to 2004.
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The observables are, the logarithmic change in total real GDP (∆yt), the logarithmic

change in total real consumption (∆ct), the logarithmic change in total real investment

(∆it), the logarithmic change in the wage rate (∆wt), deviations of hours worked from an

average work week (∆lt), the logarithmic change in the GDP deflator (∆πt) and the federal

funds rate (rt). As in Smets and Wouters (2007) the first 71 observations are excluded which

results in a sample of 156 observations.

5 Results

This section starts with a diagnostic test in order to verify that the estimates are indeed at

the optimum. To check this I increase and decrease the value of one parameter at the time

while the remaining parameters are fixed at the FIML estimate. After the ”Diagnostics”

section I present the simulated distributions that I use to calculate the confidence intervals.

Lastly, the FIML estimates and their confidence intervals are presented together with the

corresponding Bayesian estimates in SW.

5.1 Diagnostics

The FIML estimates in Table 8 are evaluated by decreasing and increasing one parameter at

the time while the remaining parameters are kept constant at the FIML estimate. I multiply

the likelihood function by minus one and plot the value. If a minimum has in fact been

reached the resulting plot should have its lowest point at the estimate (solid vertical line)

and the objective function should increase as the parameter moves away from that value

in either direction. I have chosen the same vertical scale for all graphs so that one can see

whether the likelihood function is more flat in some dimensions. This can be confirmed bys

looking at Figures 6 to 8 where the vertical solid line is the estimate. The dashed vertical

lines show SW’s posterior mode estimates.

These diagnostic plots are also interesting since they indicate whether or not the prespec-

ified intervals of the parameters in Table 6 are too small or not. According to the diagnostics,

virtually all intervals have more than enough margin so that the minimum is at an interior

point in the interval. The exceptions are parameters that are bounded based on economic
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theory or for stationarity reasons. Worth mentioning here are the indices, ιw, ιp and capital

utilization, ψ, as well as the persistence for some of the AR(1) processes, ρa, ρg, ρI and

ρw. Those seem to be at or near a corner solutions and this issue is discussed in Section 6

where we analyze the differences between Bayesian and FIML estimates. Except for those,

all parameters seem to be at an optimum where the target function clearly worsens as the

parameter value moves away from its FIML estimate.

Figure 6: Diagnostics

Note: The solid line is the FIML estimate and the dashed line is the posterior mode estimate

from Smets and Wouters (2007)
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Figure 7: Diagnostics

Note: The solid line is the FIML estimate and the dashed line is the posterior mode estimate

from Smets and Wouters (2007)
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Figure 8: Diagnostics

Note: The solid line is the FIML estimate and the dashed line is the posterior mode estimate

from Smets and Wouters (2007)

5.2 Simulated distributions

I simulate the distributions in order to calculate the confidence interval of the FIML esti-

mates. In SW it is assumed that the shocks have the properties in

~εt ∼ N (0,Σ) (14)

where

~εt =
(
εat , ε

b
t , ε

g
t , ε

I
t , ε

r
t , ε

p
t , ε

w
t

)
(15)
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and where the diagonal elements of Σ consist of the variances in Table 9 and the off diagonal

elements are zero.

Thus, all stochastic shocks follow a normal distribution with zero mean and they are

identically and independently distributed. Based on SW’s assumption regarding Σ and the

estimates in Table 8 and Table 9 column ”FIML” new samples are simulated with the same

sample size (230) as the original data. Then the optimal vector is estimated for each sample.

This procedure is repeated until the distributions in Figure 9 to Figure 13 have converged.

For convergence criteria see the Appendix.

Figure 9: Simulated distributions

Note: The solid line is the FIML estimate and the dashed line is the posterior mode estimate

from Smets and Wouters (2007). The number of simulated samples=4400
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Figure 10: Simulated distributions

Note: The solid line is the FIML estimate and the dashed line is the posterior mode estimate

from Smets and Wouters (2007). The number of simulated samples=4400
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Figure 11: Simulated distributions

Note: The solid line is the FIML estimate and the dashed line is the posterior mode estimate

from Smets and Wouters (2007). The number of simulated samples=4400
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Figure 12: Simulated distributions

Note: The solid line is the FIML estimate and the dashed line is the posterior mode estimate

from Smets and Wouters (2007). The number of simulated samples=4400
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Figure 13: Simulated distributions

Note: The solid line is the FIML estimate and the dashed line is the posterior mode estimate

from Smets and Wouters (2007). The number of simulated samples=4400

5.3 FIML versus Bayesian estimation - Estimates

Tables 8 and 9 show the mode estimate, its confidence interval and SWs posterior estimates.

*, ** and *** indicate if SWs posterior mode estimates are outside of the 90%, 95% and

99% confidence intervals around the FIML estimates.
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Table 8: Estimation results

Description Parameter FIML 95% FIML SW 95% SW

Investment adjustment cost φ 1.28 [0.56, 2.05] 5.48*** [3.97, 7.42]

Constant relative risk aversion σc 4.24 [2.11, 6.39] 1.39*** [1.16, 1.59]

Habit persistence h 0.20 [0.10, 0.29] 0.71*** [0.64, 0.78]

Calvo parameter labor market ξw 0.90 [0.84, 0.97] 0.73*** [0.60, 0.81]

Inverse Frisch elasticity σl 1.75 [0.60, 3.43] 1.92 [0.91, 2.78]

Calvo parameter goods market ξp 0.72 [0.61, 0.81] 0.65 [0.56, 0.74]

Indexation labor market ιw 1.00 [0.71, 0.99] 0.59** [0.38, 0.78]

Indexation goods market ιp 0.00 [0.00, 0.20] 0.22** [0.10, 0.38]

Capital utilization ψ 1.00 [0.97, 0.99] 0.54*** [0.36, 0.72]

Fixed production cost Φ 1.34 [1.10, 1.52] 1.61*** [1.48, 1.73]

T.R reaction to inflation rπ 12.88 [3.21, 22.77] 2.03*** [1.74, 2.33]

T.R interest rate smoothing ρ 0.98 [0.95, 1.00] 0.81*** [0.77, 0.85]

T.R reaction to output ry 1.18 [0.14, 2.08] 0.08*** [0.05, 0.12]

T.R reaction to ∆y r∆y 0.36 [0.28, 0.44] 0.22*** [0.18, 0.27]

Steady state inflation rate π̄ 0.77 [0.24, 1.40] 0.81 [0.61, 0.96]

Sub. discount rate times 100 100(β−1 − 1) -1.29 [−2.22, 0.00] 0.16** [0.07, 0.26]

Steady state hours worked l̄ 1.38 [−3.44, 6.77] -0.10 [−1.30, 2.32]

Steady state growth rate γ̄ 0.42 [0.36, 0.47] 0.43 [0.40, 0.45]

Capital share in production α 0.14 [0.10, 0.18] 0.19** [0.16, 0.21]

Note:FIML=Full information maximum likelihood mode estimates. SW=The Bayesian

posterior estimates in Smets and Wouters (2007). SW’s estimates outside of the FIML

confidence intervals are denoted *=90%, **=95% and ***=99% respectively.
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Table 9: Estimation results

Description Parameter FIML 95% FIML SW 95% SW

Technology shock σa 0.51 [0.43, 0.60] 0.45 [0.41, 0.50]

Risk premium shock σb 0.09 [0.05, 0.12] 0.24*** [0.19, 0.27]

Gov. expenditure shock σg 0.51 [0.46, 0.57] 0.52 [0.48, 0.58]

Investment shock σl 1.30 [0.46, 2.27] 0.45*** [0.37, 0.53]

Monetary policy shock σr 0.24 [0.21, 0.27] 0.24 [0.22, 0.27]

Price shock σp 0.12 [0.09, 0.16] 0.14 [0.11, 0.16]

Wage shock σw 0.30 [0.26, 0.33] 0.24*** [0.20, 0.28]

AR term technology shock ρa 0.99 [0.97, 1.00] 0.95*** [0.94, 0.97]

AR term risk premium shock ρb 0.79 [0.63, 0.92] 0.18*** [0.07, 0.36]

AR term gov. shock ρg 0.99 [0.98, 1.00] 0.97** [0.96, 0.99]

AR term investment shock ρl 0.98 [0.92, 0.99] 0.71*** [0.61, 0.80]

AR term MP shock ρr -0.19 [−0.35,−0.05] 0.12*** [0.04, 0.24]

AR term price shock ρp 0.95 [0.86, 0.99] 0.90 [0.80, 0.96]

AR term wage shock ρw 0.98 [0.88, 0.99] 0.97 [0.94, 0.99]

MA term price shock µp 0.81 [0.60, 0.98] 0.74 [0.54, 0.85]

MA term wage shock µw 0.98 [0.88, 0.99] 0.88* [0.75, 0.93]

Correlation between a and g ρga 0.53 [0.38, 0.70] 0.52 [0.37, 0.66]

Target function value Ω -790.37 [−811.76,−715.17] -820.12** [−Inf, Inf ]

Note:FIML=Full information maximum likelihood mode estimates. SW=The Bayesian

posterior estimates in Smets and Wouters (2007). SW’s estimates outside of the FIML

confidence intervals are denoted *=90%, **=95% and ***=99% respectively.
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6 Analysis of differences between Bayesian and FIML

estimates

In this section we look more closely at the cases where SW’s parameter estimates are outside

of the 99 % confidence intervals from the FIML estimation. For each parameter we first

examine what role it plays in the model and then we try to understand why the FIML

and SW’s estimates are different. FIML and SW’s estimates are denoted pFIML and pSW

respectively for parameter p.

The purpose of this exercise is not to criticize the study by SW, but to use it as an

example of a model that has been estimated by Bayesian methods and to show that the

choice of priors had important effects on the posterior estimates. The use of priors is not

innocuous. Presumably, the same applies to many other studies that have used Bayesian

estimation.

6.1 Investment adjustment cost φ

Households own the capital and log linearizing the household’s optimality condition for

investment we get

it =
1

(1 + βγ(1−σc))γ2φ
qt +

1

1 + βγ(1−σc)
it−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etit+1 + εit (16)

where qt is the real value of the existing capital stock, defined as

qt =
1− δ

Rk
∗ + 1− δ

Etqt+1 +
Rk
∗

Rk
∗ + 1− δ

Etr
k
t+1 − (rt − Etπt+1)− εbt (17)

qt is determined by a weighted average of the expected real value of capital, Etqt+1, and

the expected future rental rate of capital, Etr
k
t+1. The weights are 1−δ

Rk
∗+1−δ and Rk

∗
Rk

∗+1−δ

respectively, where Rk
∗ is the steady state rental rate of capital and εbt is a shock to the

risk premium of investment.

If the expected future real value of capital increases the household will save more in

capital at a decreasing rate determined by φ. The reason for this is that a higher φ means

that a bigger share of investment is wasted due to the adjustment cost. The FIML estimates
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suggests a lower investment cost as φFIML = 1.28 compared to φSW = 5.48. The coefficient

in front of qt in equation (16) shows how many percentages investment goes up if the value

of real capital goes up by one percent, ceteris paribus. The answer to that question is 0.39

percent for the FIML estimate and 0.09 percent for SW. That SW get a much higher value

of φ is not surprising since they have the prior φ ∼ N(4, 1.5) which has a center far above

the FIML estimate. SW base their prior of choice on estimates from Christiano et al. (2005)

whose investment model is simpler with fewer parameters and where investment depends on

the real rental price of capital instead of the real value of capital. The analogous equation

in Christiano et al. (2005) for investment is

it = it−1 +
1

φ

∞∑
j=0

βjEt−1r
k
t+j (18)

They estimate φ by matching empirical impulse responses of their model and get the estimate

φ = 2.48 which corresponds to a value of 0.4 percent for the qt coefficient in equation (16).

From this we can conclude that SW used a somewhat higher prior value of φ than justified

by the estimate in Christiano et al. (2005).

However, neither the real rental price of capital, rkt , nor the real value of capital, qt, can

be directly observed in the data. Simply speaking, the reason for adding adjustment costs in

investment is to make the model match empirical fluctuations in investment. The standard

deviation of the change in investment, σ∆i, divided by the standard deviation of the change

in output, σ∆y, is an interesting measure of investment fluctuations since it is decreasing in

φ. In the data, σ∆i

σ∆y
= 2.60. When simulating the DSGE model using the FIML and SW

estimates we get 2.62 and 2.13 respectively. This strengthens the argument that SW used a

relatively a high prior value for φ.

6.2 The subjective discount factor β, relative risk aversion σc and

habit persistence in consumption h

In order to reduce the income effect on labor supply SW use a utility function where con-

sumption and labor are complements when relative risk aversion, σc, is greater than unity.

This makes the income effect in labor supply independent of σc; for a discussion of the role
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of the utility function see Basu and Kimball (2002).

Households maximize utility

Et

∞∑
s=0

βs
(
Cj,t+s − hC̄j,t+s−1

)1−σc

1− σc
exp

(
σc − 1

1 + σl
L1+σc
j,t+s

)
(19)

with respect to consumption Cj,t, hours worked Lj,t, investment Ij,t, bond holdings Bj,t and

capital utilization Zj,t and subject to the budget constraint

Cj,t+s + Ij,t+s +
Bj,t+s

εbtRt+sPt+s
− Tt+s ≤ Bj,t+s−1

Pt+s
+

Wh
j,t+sLj,t+s

Pt+s
+

Rk
t+sZj,t+sKj,t+s−1

Pt+s

−a (Zj,t+s)Kj,t+s−1 + Divt+s

Pt+s

(20)

and the capital accumulation equation

Kj,t = (1− δ) + εit

[
1− S Ij,t

Ij,t−1

]
Ij,t. (21)

The subjective discount factor β decides how the household values the future relative to

today. The estimated parameter that indirectly decides β is defined as

x = 100(β−1 − 1). (22)

Solving for β we get

β =
100

x+ 100
. (23)

The estimates of x imply βSW = 0.998 and βFIML = 1.013 respectively. To investigate

the plausibility of the estimates let us investigate the household’s Euler equation in steady

state

β =
γσcΠ100

100 + r
(24)

where γ is the steady state growth rate of the trend variables3 in the model, Π is the steady

state inflation rate and r is the steady state nominal interest rate. Based on values in the

3The trend variables in SWs data set are investment, consumption, real GDP and the real wage rate.
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data, the average quarterly growth rate of the trend variables gives γ = 1.0045, the quarterly

average growth rate in inflation is 1% and the quarterly average interest rate is 1.68%. Using

these averages together with the estimates of σc gives βSW = 0.9995 and βFIML = 1.012

respectively. This implies that both estimates make sense. Note however, that by restricting

β, σc is indirectly restricted since both the growth rate, γ, and the inflation rate, Π, are

decided by the data.

SW restrict β to be between 0.98 and 1 although equation (24) clearly demonstrates that

having β > 1 is possible in a model with growth and price level growth4. The assumption

made by SW restricts σc to be between -3 and 1.48. Negative values of σc are not theoretically

possible but restricting σ to be at most 1.48 on the other hand might be a bit low which will

be discussed later.

The log-linearized Euler equation is

ct =
1

1 + h
γ

[
h

γ
ct−1 + Etct+1 +

σc − 1

σc

W h
∗ L∗
C∗

(lt − Etlt+1)−
1− h

γ

σc
(rt − Etπt+1 + εbt)

]
(25)

Let us first discuss how ct relates to lagged consumption, ct−1. The effect that ct−1 has on

ct is decided by the habit parameter h. More specifically the coefficient relating ct to ct−1 is

εc ≡
dct
dct−1

=
h/γ

1 + h/γ
(26)

SW have a much higher habit formation, hSW = 0.71 compared to hFIML = 0.2, so that

εc,F IML = 0.1660 and εc,SW = 0.4141 respectively.

A key parameter that decides the elasticity of hours worked, lt, with respect to current

consumption ct is the risk aversion parameter σc. The higher the σc, given that σc > 1, the

more are consumption and hours worked complements which is evident in equation (27)

εc,l ≡
dct
dlt

=
σc − 1

σc

W h
∗ L∗
C∗

(27)

Since σc,F IML = 4.24 the FIML estimate suggests a stronger complementary effect and when

plugging in numbers we get εc,l,F IML = 0.6417 and εSW,c,l = 0.2334. Additionally, σc affects

4This means that the sum of the utility function is finite as long as equation (24) holds
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the households sensitivity to interest rate changes together with the habit parameter h. Both

σc and h weaken this sensitivity which is evident in equation (28)

εc,r ≡
dct
drt

= −γ/h− 1

γ/h+ 1

1

σc
(28)

εc,r is decreasing in both σc and h which means that a high h and a low σc can generate a

similar interest rate sensitivity as a low h and a high σc. This is the reason why the FIML

and SW estimates are similar; εc,r,F IML = −0.1575 and εc,r,SW = −0.1236 respectively. Thus,

if the risk adjusted real interest rate goes up by 1 percent, current consumption goes down

by about 0.14 percent for both estimates.

Why do the SW estimates suggest higher habit formation and lower risk aversion com-

pared to FIML?

Referring to the discussion about β in the beginning of this section. When β is restricted

to be at most 1, σc is implicitly restricted to be at most 1.48. Using the value for εc,r, which

is around -0.14, implicitly restricts h to be at least 0.66; see equation (29).

h = γ
1 + σcεc,r
1− σcεc,r

(29)

Furthermore, SW’s priors for risk aversion and habit formation are σc ∼ N (1.4, 0.37) and

h ∼ β (0.7, 0.1) respectively which also steers the results towards a strong habit formation

and low risk aversion. SW justify their prior choice of h with the fact that the data suggests

a high autocorrelation in consumption and to habit formation studies such as Fuhrer (2000)

and McCallum and Nelson (1999).

6.3 Wage stickiness (ξw) and labor and goods market indexation

(ιw and ιp)

Unions set wages according to a sticky price mechanism a la Calvo (1983). The wage rate

Wt+s depends on W̃t(l), the wage rate of members belonging to union l that are allowed to

change their wage in period t, and an index which is a weighted sum of past price inflation

Πs
i=1γπ

ιw
t+i−1 and steady state price inflation π∗ according to (30)
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Wt+s(l) = W̃t(l)Π
s
i=1γπ

ιw
t+i−1π

1−ιw
∗ (30)

The FIML estimate ιw = 1 means that past price inflation gets all the weight and steady

state inflation none. The union, which is allowed to change its wage decides an optimum

wage, W̃t(l), that will last until they are allowed to change it again. The probability of a

wage change each period is 1− ξw so the duration of the wage contract is 1
1−ξw periods.

Firms set their prices according to a Calvo (1983) mechanism where the price evolves

according to.

Pt+s = P̃t(i)Π
s
j=1γπ

ιp
t+j−1π

1−ιp
∗ (31)

The FIML estimate ιp = 0 means that past inflation plays no role and the economy ends up

with a regular forward looking Phillips curve; see for instance Gali (2009).

The most important parameter for wage-price dynamics is wage stickiness ξw. The esti-

mates are ξw,SW = 0.74 and ξw,FIML = 0.9 which correspond to wage contract durations of

3.8 and 10 quarters respectively. The estimate by SW is significantly lower than the FIML

estimate and this is most likely due to the prior used by SW: ξw ∼ β (0.5, 0.1). SW assume

that price stickiness is similar to wage stickiness and base their prior on the micro evidence

on price stickiness from Bils and Klenow (2002). There are not that many studies of wage

stickiness but one is Barattieri et al. (2010) where they look at wage surveys and find that

ξw is between 0.82 and 0.95 which corresponds to a duration between 5.6 and 20 quarters.

This is in line with the FIML estimate and suggests that SWs estimate, ξw = 0.74, is too

low because of an inappropriately chosen prior.

Higher wage stickiness implies a much slower pass-through of the marginal rate of sub-

stitution into wages which in turn decreases the variance of the wage. This is the most

dominant effect on the wage dynamics. The indexation parameter ιw has only a small effect

in comparison.
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6.4 Capital utilization ψ

Capital utilization ψ makes it possible to change production in the short run without hir-

ing/firing nor changing the capital stock. The role of capital utilization can be explained by

the log linearized production function

yt = φp (αkst + (1− α)lt + εat ) (32)

where kst is the capital stock that is actually used in production and can be temporary

increased/decreased when the household orders a higher/lower utilization rate of current

installed capital kt−1. Utilized capital relative to stock in excess of installed capital, kst−kt−1,

is determined by

kst − kt−1 =

(
1

ψ
− 1

)
rkt (33)

The utilization rate is positively correlated with the real rental rate of capital rkt since a

higher rkt makes it more profitable to increase utilization. ψ determines the cost of utilizing

capital and is normalized to be between 0 and 1. If ψ = 1 capital is infinitely expensive

to utilize and the utilization channel is completely shut down so that kst = kt−1. This is

what the FIML estimation suggests since ψFIML = 1. On the contrary, SW have capital

utilization as an important feature with ψSW = 0.54. SW’s estimate is significantly lower

than the FIML estimate, so let us figure out why this is the case.

A low ψ dampens the effect that output has on the real rental rate of capital which in

turn dampens the effect on marginal cost. This is the main reason why Christiano et al.

(2005) introduced capital utilization of capital in the first place. How can we explain the

difference between the FIML and SW results?

Since wage stickiness is higher for the FIML estimate, ξw,FIML = 0.9, compared to

ξw,SW = 0.73, wage pass-through is low which makes the reaction in marginal cost to pro-

duction low as well despite a big effect of production on the rental rate of capital. This effect

can be seen in equation (34)

mct = αrkt + (1− α)wt (34)

The reason why changes in wages have a dominant influence on marginal cost is because the

income share of capital is much smaller than the income share of labor, αFIML = 0.14 and
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αSW = 0.19. Since SW use the sticky wage prior ξw ∼ β (0.5, 0.1) the real wage response is

relatively strong and the model is therefore forced to use utilization of capital in order to

dampen the total effect of production on marginal cost and prices. Additionally, SW use

the prior ψ ∼ β (0.5, 0.15) for capital utilization which also steers the estimate towards more

variation in capital utilization and lower wage stickiness.

6.5 Fixed production cost Φ

The fixed production cost enters in the production function

yt = Ztk
α
t−1L

(1−α)
t − Φ (35)

Rewriting the production function in terms of logarithmic deviations from steady state gives

ŷt =

(
1 +

Φ

y∗

)(
αk̂st + (1− α)l̂t + εat

)
(36)

where ŷt = yt − y∗ and ∗ means the variable in steady state.

The reason why ŷt is increasing in Φ is because a higher fixed production cost decreases

yt which in turn increases the dynamic response measured in percent. This is demonstrated

in Figure 14 below when subjecting the economy to the risk shock εbt .
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Figure 14: Impulse response of the risk shock

Note: Impulse response of a the risk shock εbt where the solid line is the FIML estimate and

the dashed line is the mode estimate from Smets and Wouters (2007)

6.6 Taylor rule parameters rπ, ρ, ry and r∆y

The FIML estimates of all the Taylor rule parameters are much higher than SW’s estimates.

Still, the central bank’s reaction to shocks in the model is weaker compared to the estimates

of SW due to a much higher interest rate smoothing, ρFIML = 0.98 and ρSW = 0.81.

6.7 The stochastic processes

The FIML estimates have larger shock variances and few of the AR(1) processes get re-

ally high persistences where ρa,FIML, ρg,FIML, ρI,F IML and ρw,FIML get values close to one.
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This indicates that detrending the model assuming that the nonstationary variables fluctu-

ate around a linear trend in logs might not be correct. Other detrending methods should

therefore be considered such as detrending relative to technological progress Ŷt = Yt
At

. This

is done by for instance Christiano et al. (2011). This way the trend is allowed to change

dynamically over the business cycle.

Figure 15: Variance decomposition

Note: The bar to the left is the maximum likelihood estimate and the bar to the right is the

posterior mode estimate in Smets and Wouters (2007)
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The relatively high persistence of the technology shock, according to the FIML estimate, is

probably the reason why this shock explains a bigger share of this variance of output and

consumption.

7 Conclusion

It is popular to estimate DSGE models using Bayesian methods. This allows incorporation

of prior information but in many cases there is little prior information available which makes

full information maximum likelihood (FIML) an attractive alternative. FIML allows the

researcher to easier find flaws in the model and generates estimates in cases where prior

distributions are missing. However, estimating a DSGE model using FIML is much more

challenging computationally.

In this paper I suggest an algorithm that makes it possible to estimate a medium size

DSGE model using (FIML) without the need for priors. The method is applied to the model

by Smets and Wouters (2007) and stochastic bootstrapping techniques are used to make

inference. The algorithm outperforms other commonly used global algorithms.

I find that several of the FIML estimates are significantly different from those of Smets

and Wouters (2007). I discuss these differences and find that some of the priors can be

questionable. One example is the assumption that the discount factor has to be smaller

than one. In a model with consumption growth and risk aversion it is possible to get a

stationary solution even if the discount rate is larger than one which is what I get when I

estimate the model by FIML.

In this analysis I have used the model by Smets and Wouters (2007) as an example of a

medium size DSGE model, but the general insight should apply also to other studies. Priors

are not innocuous and can have a big impact on the results even in cases where there is a lot

of information in the data. When we have a weak basis for our priors, it may be interesting

to let the data speak freely.
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A Algorithm description

A.1 Global part

Each parameter p has its min and max value, pmin and pmax. First let us introduce the new

min and max definitions

pminc = pmin + (pmax − pmin)c (37)

and

pmaxc = pmax − (pmax − pmin)c (38)

where c is a small number and the idea is to have bounds that are a little bit apart from the

bounds than pmin and pmax.

The next step is to create N vectors where each vector has the dimension Px1 where P

is the number of parameters. Each element of every vector is generated with the following

function

xip = pminc + (pmaxc − pminc)
i

N
(39)
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All the resulting N vectors are stored in a matrix


x1

1 x2
1 · · · xN1

x1
2 x2

2 · · · xN2
...

...
. . .

...

x1
P x2

P · · · xNP

 (40)

Each element is multiplied with the stochastic process

εip ∼ uniform(1− δ, 1 + δ) (41)

where δ is a small number and the idea is to get a small stochastic variance around all

parameters.

Xε =


ε1

1x
1
1 ε2

1x
2
1 · · · εN1 x

N
1

ε1
2x

1
2 ε2

2x
2
2 · · · εN2 x

N
2

...
...

. . .
...

ε1
Px

1
P ε2

Px
2
P · · · εNP x

N
P

 (42)

Additionally two more vectors are added with the first one very close to origo and the second

one very close to the maximum value of all parameters. This in order to catch the minimum

and maximum parts of the space as well.

~Xmin =


εmin1

εmin2

...

εminP

 , εminp ∼ uniform (pmin, pmin + (pmax − pmin)δ) (43)

and

~Xmax =


εmax1

εmax2

...

εmaxP

 , εmaxp ∼ uniform (pmax − (pmax − pmin)δ, pmax) (44)

X =
[
~Xmin ~Xmax Xε

]
Px2+N

(45)
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Each vector in matrix 45 are evaluated the following way. First matrix A is created around

vector Xi

A =
[
~X ~Amin ~Amax

]
=


x1 xmin1 x1 · · · x1 xmax1 x1 · · · x1

x2 x2 xmin2 · · · x2 x2 xmax2 · · · x2

...
...

...
. . .

...
...

...
. . .

...

xP xP xP · · · xminP xP xP · · · xmaxP


(P,1+2P )

Matrix A is then run through the Nelder and Mead (1965) simplex method until

∆ logX∗ < 1

where X∗ is the vector with the best function value. Additionally, the process is restarted

every 5 × P th time around the vector with the best function value thus far in order not to

get stuck in a local minimum.

This step is repeated for each one of the vectors which result in 2 + N vectors. These

vectors are then sorted in order of the best value. The P + 1 vectors that have the best

value are saved in a a new matrix and are run through the Nelder and Mead (1965) simplex

method. The resulting vector is then saved.

This entire process is repeated three times.

A.2 Local part

Three vectors are saved as a result of the global part, these three vectors are in turn run

through the Nelder and Mead (1965) simplex method. This creates an output vector which

in turn is used to create matrix A as in the local part and is run trough the Nelder and Mead

(1965) simplex method. That resulting vector is the final vector!

A.3 The Nelder and Mead (1965) algorithm - applied to this ex-

ample

The algorithm consists of the following steps.

Step 1. Order all vectors in Matrix D (equation (??)) in the order of their target values.

Calculate the center of the P-1 best vectors. From the center walk approximately in the
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opposite direction from the worst vector. If this reflection vector is better than the best

vector investigate this direction further by going further in the same direction (extend). If

the extended vector is not better than the reflection vector replace the worst vector with the

reflection vector. If the extended vector is better than the reflection vector replace the worst

vector with that one instead. Then repeat step 1.

If the reflection vector is not better than the second worst vector but better than the

worst vector make an outside contraction. That is, use the same idea as reflection but make

a smaller step. Replace the worst vector if it is better than the reflection point and repeat

step 1.

If the outside contraction vector is not better than the reflection vector create a weighted

average with the center and the worst vector. If this vector is better than the worst vector

replace it and repeat step 1.

If it is not better than the worst vector perform a shrink where all vectors take one step

closer to the best vector. Repeat step 1.

B Convergence diagnostics of the histograms

The thick horizontal lines in Figure 16 to 19 below show P 95%
min (i) and P 95%

max (i) for each

variable. P 95%
min (i) and P 95%

max (i) is the lower and upper bound of the 95 % confidence interval

respectively for parameter P based on i simulations. i is the value of the x-axis and i ∈

1 . . . 4400. The more simulations (higher i) the more certain should the interval become.
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Figure 16: Convergence of the distributions in Section 5.2

Note: The solid horizontal line is the FIML estimate, the dashed line the SW estimate and

the thick horizontal lines show P 95%
min (i) and P 95%

max (i) of parameter i respectively.
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Figure 17: Convergence of the distributions in Section 5.2

Note: The solid horizontal line is the FIML estimate, the dashed line the SW estimate and

the thick horizontal lines show P 95%
min (i) and P 95%

max (i) of parameter i respectively.
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Figure 18: Convergence of the distributions in Section 5.2

Note: The solid horizontal line is the FIML estimate, the dashed line the SW estimate and

the thick horizontal lines show P 95%
min (i) and P 95%

max (i) of parameter i respectively.
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Figure 19: Convergence of the distributions in Section 5.2

Note: The solid horizontal line is the FIML estimate, the dashed line the SW estimate and

the thick horizontal lines show P 95%
min (i) and P 95%

max (i) of parameter i respectively.
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