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Abstract
This study uses Monte Carlo experiments to produce new evidence on the performance of
a wide range of panel data estimators. It focuses on estimators that are readily available in
statistical software packages such as Stata and Eviews, and for which the number of cross-
sectional units (N) and time periods (T) are small to moderate in size. The goal is to develop
practical guidelines that will enable researchers to select the best estimator for a given
type of data. It extends a previous study on the subject (Reed and Ye, Which panel data
estimator should I use? Applied Economics, 2011), and modifies their recommendations.
The new recommendations provide a (virtually) complete decision tree: When it comes
to choosing an estimator for efficiency, it uses the size of the panel dataset (N and T)
to guide the researcher to the best estimator. When it comes to choosing an estimator
for hypothesis testing, it identifies one estimator as superior across all the data scenarios
included in the study. An unusual finding is that researchers should use different estimators
for estimating coefficients and testing hypotheses. The authors present evidence that
bootstrapping allows one to use the same estimator for both.
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I.  INTRODUCTION 

For applied researchers using panel data, there is an abundance of possible estimators one can 

choose.  A key issue is how one decides to handle cross-sectional dependence.  There are three 

general approaches.  One approach is to model the error-variance covariance matrix in the 

framework of Seemingly Unrelated Regression (SUR).  Here the common estimator is Feasible 

Generalized Least Squares (FGLS), where the cross-sectional covariances are typically 

modelled parametrically.  The classic reference is Parks (1967) and the corresponding data-

generating process (DGP) is commonly called the Parks model.   

An alternative approach is to model the cross-sectional dependencies “spatially” 

(Anselin, 2013; Baltagi et al., 2013; Elhorst, 2014; Bivand and Piras, 2015).  This typically 

involves modelling the dependencies across units as a function of distance, in either a 

continuous or binary fashion.  While this has the advantage of greatly reducing the number of 

parameters to be estimated, it comes at the cost of possible misspecification.  Misspecification 

occurs if the nature of the respective cross-sectional dependencies cannot be effectively 

reduced to a function of distance (Corrado and Fingleton, 2012). 

Another alternative is to model cross-sectional correlation as a function of time-specific 

common factors (Pesaran and Smith, 1995; Bai, 2003; Coakley et al., 2006; Pesaran, 2006; 

Eberhardt et al., 2013; Kapetanios et al., 2011).  This approach has proven particularly popular 

in the macro panel literature (Eberhardt and Teal, 2011).  While the multi-factor framework for 

cross-sectional correlation allows one to incorporate a number of other important issues, it also 

comes at the cost of possible misspecification, because it greatly reduces the number of 

parameters to be estimated. 

Despite the existence of more recent alternatives, the Parks model continues to be 

relevant for applied researchers. It is the underlying statistical model for Stata’s xtgls 

procedure, as well as similar procedures in other software packages such SAS, Eviews, 



2 
 

GAUSS, RATS, Shazam, and others.  However, a major problem with this model is the large 

number of parameters that need to be estimated. In its general form, with groupwise 

heteroskedasticity, group-wise specific AR(1) autocorrelation, and time-invariant cross-

sectional correlation, the classic Parks model has a total of 
!"#$!

%
 unique parameters in 

the error variance-covariance matrix (EVCM), where N is the number of cross-sectional units.  

This causes two problems.  First, the FGLS estimator cannot be estimated when the 

number of time periods, T, is less than N, because the associated EVCM cannot be inverted 

(Beck and Katz, 1995).  Second, even when T ≥ N, there may be relatively few observations 

per EVCM parameter, causing the associated elements of the EVCM to be estimated with great 

imprecision.  As demonstrated by Beck and Katz (1995), henceforth BK, this can cause severe 

underestimation of coefficient standard errors, rendering hypothesis testing useless.   

To address these problems, BK proposed a modification of the full GLS-Parks estimator 

called Panel-Corrected Standard Errors (PCSE).  PCSE preserves the weighting of observations 

for autocorrelation, but uses a sandwich estimator to incorporate cross-sectional dependence 

when calculating standard errors.  The PCSE estimator has proven very popular, as evidenced 

by approximately 2000 citations on Web of Science.  All of this has opened up a myriad of 

choices for applied researchers when it comes to choosing a panel data estimator. 

It is in this context that Reed and Ye (2011), henceforth RY, conducted Monte Carlo 

experiments to test a large number of OLS and FGLS-type panel data estimators, including the 

estimators studied by BK.  They studied panel datasets for which the number of cross-sectional 

units (N) and time periods (T) were small to moderate in size.  Cross-sectional units ranged in 

size from 5 to 77; and time periods ranged from 5 to 25.  RY presented three recommendations 

to guide researchers facing the decision of which panel data estimator to use. RY has been 

reasonably well-cited.  At the time of this writing, RY has 24 Web of Science citations and 



3 
 

approximately 75 Google Scholar cites, indicating interest in guidance about how to choose a 

panel data estimtor.  

There are two reasons for writing this follow-up study to RY.  First, there is a mistake 

in the design of their experiments.  In attempting to construct explanatory variables that have 

the properties of “real world” data, they introduced additional autocorrelation that was not 

present in the source datasets.  As autocorrelation in the explanatory variables exacerbates the 

effect of autocorrelation in the error term, this should affect their analysis.   

Second, in their conclusion, RY called for additional experiments to confirm their 

recommendations.  In the Parks-type error structures used by BK and RY, there are often more 

than a thousand unique elements in the respective EVCM.  Rather than attempting to set 

“plausible” values for all these parameters, RY estimate these from actual datasets, and then 

set these estimated values as population values for the subsequent experiments.  However, 

because RY’s experiments were based on a relatively small number of datasets, there is concern 

that their recommendations may not apply to other datasets.  A replication of RY that extended 

their analysis with different datasets provides an opportunity to test the validity of their 

recommendations.  

Our study proceeds as follows.  Section 2 summarizes the experimental design and 

datasets used for our experiments.  Section 3 presents the experimental findings.  Section 4 

concludes. 

 
2.  Experimental Design 

The data generating process (DGP).  The experimental design for our analysis is taken from 

RY.  Given N cross-sectional units and T time periods, we model the following DGP, 

(1) & = ()* + ,)- + ., 

where &, (, ,, are each (NT×1) vectors, )* and )- are scalars, and . is an (NT×1) vector of 

error terms such that 
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(2) .~0(2,456), 
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756 incorporates groupwise heteroskedasticity, time-invariant cross-sectional dependence, 

and first-order, common autocorrelation.1  To get realistic values for the respective EVCM 

elements, ij,es and ρ , we estimate these parameters from actual datasets, using the same 

procedures that Stata and Eviews use in calculating their respective FGLS estimators. 

 Creation of simulated panel datasets.   TABLE 1 lists the datasets that were employed 

in obtaining population parameter values for the DGPs in the Monte Carlo experiments.  In 

order to evaluate the recommendations provided by RY, albeit with a corrected experimental 

design, we start with the same datasets they used.  These are listed in the top panel of TABLE 

1.  However, we also use additional datasets that were not considered by RY.  These are listed 

in the bottom panel of TABLE 1 (“new datasets”).    

The first set of experiments draw data from the Penn World Table.  For a given sized 

panel dataset, say N=5 and T=5, we take the first N cross-sectional units and regress the log of 

real GDP on the ratio of government expenditures to GDP and a set of country fixed effects for 

                                                
1 Following BK and RY, we set the AR(1), autocorrelation parameter, <, to be the same for all cross-sectional 
units.  
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the first T available time periods.  We save the residuals from that regression.  We then use 

those residuals to obtain estimates of the individual elements of the EVCM, ij,ˆes , i,j = 

1,2,…,N, and ρ̂ .  We then repeat that procedure for all possible samples of T contiguous years.  

These estimates are then averaged to obtain a “representative” EVCM, 

(3’) 756 =  
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To obtain a representative vector of , values, we randomly select one contiguous, T-year 

period.2  Let these values be given by ,.  Then for given values of )* and )-, we generate 

simulated & values from the following DGP:  

(6) & = ()* + ,)- + ., 

where . consists of simulated, normally distributed error terms having mean 0 and an EVCM 

equal to 756.  The vector of & and , values are then used to obtain estimates of )- for each of 

the estimators under study.   

 This procedure was followed for each of the N and T values listed in TABLE 1, and 

each of the respective datasets.3  Note that each N and T pair produces a unique set of  ij,ˆes , i,j 

                                                
2 RY made a mistake in their experimental design by averaging the X values.  This introduced excessive 
autocorrelation in ,. When the error terms are serially correlated, the serial correlation in the regressor affects the 
variance of its OLS coefficient estimator variance.  The following relationship connects the variance of OLS slope 
estimator characterised by first order serial correlation of both the error term and the regressor,	=>? )@A(B) , on 
the one hand, and that of the usual OLS slope estimator,	=>? )DEF , on the other (see Gujarati 2004, p 452): 
=>? )@A B = 	=>? )DEF

B#GH

BIGH
, where r and ρ denote the first order serial correlation coefficients of the 

regressor and the error term respectively.  Thus, exaggerating the serial correlation in the regressor worsens the 
bias in the estimated coefficient standard error.  We note that Beck and Katz (1995) made a related error on the 
other side in their Monte Carlo experiments by generating JKL values that were “random draws from a zero-mean 
normal distribution” (BK, page 638).  By ignoring the role of autocorrelation in the explanatory variable, they 
diminished the problems caused by autocorrelation.  This was pointed out in a replication study by Reed and 
Webb (2010). 
3 The maximum N and T values listed in TABLE 1 are often less than the size of the panel dataset in the original 
dataset.  For example, the original Dataset 1 used by RY contained data on 97 countries for 40 years (1961-2000).  
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= 1,2,…,N, and ρ̂  values (and thus unique EVCM), as well as unique , values.  Accordingly, 

each of the original sixteen datasets becomes the parent for anywhere from 15 to 25 artificial 

datasets, depending on the number of possible (N,T) combinations. These “offspring” datasets, 

besides having different sizes, also have different characteristics.  For example, a cross-country 

dataset that has level of income as its dependent variable and that includes the world’s largest 

economies such as the US, China, Germany, Japan, and the UK, will have very different 

heteroskedasticity characteristics than a dataset that omits these countries. Further, cross-

country dependencies will vary greatly depending on the specific countries that are included.   

The datasets listed in TABLE 1 are quite diverse.  In particular, the new datasets listed 

in the bottom panel are distinctly different from the original RY datasets.  The original RY 

datasets used dependent variables that were income-based, either cross-country/GDP values 

(level and growth) or US state/PCPI values (level and growth).  In contrast, the dependent 

variables for the new datasets are (i) international aid (Datasets 9 and 13), (ii) a democracy 

index (Datasets 10 and 14); (iii) crime per capita (Datasets 11 and 15), and (iv) a binary variable 

indicating conflict (Datasets 12 and 16).  And not just the dependent variables, but the 

explanatory variables are very different.  This should produce a wide variety of artificial panel 

datasets having very different EVCMs.   

Sample characteristics of simulated datasets.  TABLE 2 gives more detail regarding the 

datasets.  Reported are measures of heteroskedasticity, autocorrelation, and cross-sectional 

dependence.  These measures are calculated from the estimated elements of 756 . As before, 

the top panel reports details about the original RY datasets, while the new datasets are featured 

in the bottom panel,  Within each panel, datasets are divided depending on whether T ≥ N or T 

                                                
However, data issues, usually caused by problems with the Cholesky decomposition function in creating simulated 
error terms, forced us to limit the sizes of some of the panel datasets.  For the same reason, the actual number of 
datasets we were able to create is less than the total possible combinations from pairing all possible N and T values 
in the table. 
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< N.  Each dataset produces either ten or eleven observations of )-, one for each estimator 

(more on the estimators below).  There are fewer observations per dataset when T < N, because, 

as noted above, one of the estimators (the fully specified FGLS with heteroskedasticity, 

autocorrelation, and cross-sectional dependence; also known as the Parks estimator), cannot be 

estimated in this case.   

Heteroskedasticity is calculated from a given dataset’s group-specific variances.  We 

sort the associated standard deviations and take the ratio of the 3rd and 1st quartile values, 

ŝ
M,NOP	QRSOTUVW

ŝ
M,XYT	QRSOTUVW

.4  Larger values indicate greater heteroskedasticity. Autocorrelation is 

estimated by ρ̂ . These values should range between -1 and 1, with the expectation that most 

of the AR(1) parameters will be positive.  Cross-sectional dependence is measured by the 

absolute values of the cross-sectional correlations, averaged over all possible pairs of cross-

sectional units.  These, in turn, are calculated from the respective cross-sectional covariances, 

ijε,ŝ ,  i,j = 1,2,…,N,   i ≠ j.  These values should also range between 0 and 1.  

Both the original RY datasets and the datasets new for this study demonstrate a wide 

range of error behaviours.  Heteroskedasticity ranges from a low of 1.21 to a high of 40.21.5  

Autocorrelation ranges from -0.06 to 0.79, and cross-sectional correlation from 0.20 to 0.79.  

The new datasets are generally characterized by greater heteroskedasticity and cross-sectional 

dependence, but lesser autocorrelation.   

The estimators.  Through this gauntlet of diverse data environments we run the 

respective estimators.  These are identified in TABLE 3.  These are the same estimators studied 

                                                
4 Note that the Z[ terms are variances, and not standard deviations. 
5 The particularly high heteroskedasticity values come from Datasets 12 and 16, where the dependent variable is 
zero-one.   
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by RY.  All of the estimators correspond to a particular Stata or Eviews panel data estimator.6  

Each estimator is a special case of the following: 

(7) \ = ]′_I`] IB]′_I`& 

(8) =>? \ = ]′_I`] IB]′_I`7_I`] ]′_I`] IB 

where ] = ( , , \ = )* )- ,  _ is the “weighting” matrix, and 7 is the estimated 

EVCM.7  For example, in the case of OLS with an assumed IID error structure (Estimator 1), 

_ = a and 7 = Z%a.  In the case of Estimator 5 (FGLS-1A), _ = 7, where  7 is the diagonal 

matrix with group-specific variances on the main diagonal.  Estimator 9 (FGLS-1B) has the 

same weighting matrix _, and thus produces an identical estimate,  \, but estimates 7 using 

a robust estimator that clusters on time period, and thus produces different standard errors than 

Estimator 5.   

TABLE 3 employs the notation that estimators with the same weighting matrix _ have 

the same number index.  Estimators with different 7 matrices have different letter indices.  So 

all the FGLS-1 estimators use the same weighting matrix (based on groupwise 

heteroskedasticity), but FGLS-1A calculates different standard errors than FGLS-1B, FGLS-

1C, and FGLS-1D. 

Estimators 1, 7, and 8 are particularly worth noting.  Estimator 1 is conventional 

(pooled) OLS.8  This will serve as the benchmark estimator against which the other estimators 

will be compared.  Estimator 7 is the Parks estimator.  It is asymptotically efficient, but requires 

T ≥ N.9  Estimator 8 is BK’s PCSE estimator which has become a popular substitute for the 

Parks estimator because of its claimed finite sample advantages. 

                                                
6 The Appendix lists the specific commands in Stata or Eviews that correspond to each estimator. 
7 Note that 7 ≠ 756.  756 is the population EVCM used in the DGP to generate the simulated & and , data.  7 
is the EVCM estimated from residuals generated by regressing & on , . 
8 Note that the DGP does not contain fixed effects, so we omit fixed effects estimators from the choice set. 
9 It is possible to estimate the full Parks model in Stata when T < N.  This is made possible through the use of a 
generalized inverse function in Stata that allows one to invert matrices that are not full rank.  However, our own 
investigations indicate that the resulting estimators do not perform well.    
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Performance measures.  The experiments compare the respective panel data estimators 

on two dimensions, efficiency and accuracy in hypothesis testing.  An experiment consists of 

1000 estimates derived from a 1000 panel data samples simulated from a DGP representing a 

given “offspring” dataset.  For each experiment and each estimator, we calculate an 

EFFICIENCY value defined by,  

(9) 
( )
( )å

å

=

=

-

-
×=

R

1r

2(r)
OLS

R

1r

2(r)

ˆ

ˆ
100

x

xEstimator
EstimatorEFFICIENCY

bb

bb
,  

where xb  is the true value of the slope coefficient, and (r)
OLSb̂  and (r)ˆ

Estimatorb  are the estimated 

values of xb  in a given replication r as estimated by OLS and the estimator that is being 

compared to OLS, respectively.   Smaller values indicate a more efficient estimator.  OLS is 

defined to have an EFFICIENCY value of 100.  Estimators with EFFICIENCY values less than 

100 are thus more efficient than OLS for datasets having the given characteristics. 

To measure accuracy in hypothesis testing, we calculate two measures.  The first is the 

coverage rate, Coverage, defined as the percent of 95% confidence intervals around )- that 

include the true value of )-.  We also calculate the absolute value of the difference between 

95% and the coverage rate, |95 – Coverage|.  Estimators for which |95 – Coverage| is closest 

to zero are judged to be superior with respect to accuracy in hypothesis testing.   

 As seen in TABLE 3, estimators 5, 9, 10, and 11 all share the same weighting matrix, 

_, weighting solely on (groupwise) heteroskedasticity.  As a result, these estimators will 

produce identical coefficient estimates \	when using the same data (cf. Equation 7).  Thus, in 

comparing estimators on the dimension of efficiency, we treat these estimators as one and refer 

to Estimator 5/9/10/11.  When it comes to assessing their accuracy in hypothesis testing, they 

will be treated separately because they produce different estimates of =>? \  (cf. Equation 8). 
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RY’s three recommendations.  Based on their analysis of the performances of the eleven 

estimators in TABLE 3, RY provide three recommendations.10 

1. When the primary concern is efficiency and  T/N ≥ 1.50, use Estimator 7. 
 
2. When the primary concern is efficiency, T/N < 1, and Heteroskedasticity > 1.67, use 

either Estimator 5 or Estimator 6. 
 
3. When the primary concern is constructing accurate confidence intervals and 

Autocorrelation < 0.30, use either Estimator 8 or Estimator 4. 
 

These recommendations are designed as guides for applied researchers, mapping 

observed/measurable characteristics of the data – such as the ratio of time periods to units, or 

the degree of heteroskedasticity or autocorrelation – to the choice of a “best” estimator.   

Two things are noteworthy in this regard.  First, the recommendations have “gaps.”  For 

example, when choosing estimators on the basis of efficiency, there is a recommendation for 

cases where T/N ≥ 1.50 and T/N < 1, but nothing for 1 ≤ T/N < 1.50.  And when it comes to 

selecting an estimator based on accurate confidence intervals, and hence preferred for 

hypothesis testing, there is no recommendation when Autocorrelation ≥ 0.30.  The reason for 

these gaps is that RY could not identify a consistently best estimator for these data situations. 

Also noteworthy is the fact that RY recommend different estimators depending on 

whether one’s primary interest is efficiency or accuracy in hypothesis testing.  While this is 

unusual, it is not contradictory.  The expression for =>? \  in Equation (8) does not have finite 

sample validity.  The substitution of 7 for 7 is justified on the basis of the “analogy principle” 

(Manski, 1988).  While correct asymptotically -- assuming the respective estimates of the 

EVCM elements are consistent -- it may be a better or worse substitute in finite samples for 

some estimators versus others depending on the specifics of the deviation between 7 and 7.  

Further, because 7 factors differently into Equations (7) and (8), it is possible that this deviation 

                                                
10 In order to make their recommendations easier to understand, we have replaced their terminology with the 
nomenclature from this paper.  The substituted terms are italicized. 
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affects an estimator’s relative performance in hypothesis testing more or less than its relative 

performance in efficiency. 

To summarize, RY’s recommendations provide a potentially useful guide to applied 

researchers facing a choice of panel data estimators.  However, their recommendations are 

incomplete, and they have the unusual feature of advising different estimators for coefficient 

efficiency and accuracy in hypothesis testing.  While their analysis introduced additional 

autocorrelation in the simulated values of the explanatory variables, it’s not clear to what extent 

this affected their results.  Our analysis attempts to see whether correcting this mistake alters 

their recommendations, and if it does, whether the new recommendations are robust when these 

recommendations are applied to entirely new datasets.   

 
3.  Results 

Efficiency.  This section compares the performance of the respective estimators.  All the results 

follow the procedures discussed above, and incorporate the correction to RY’s original 

experimental design.11  TABLE 4 reports average performance measures for efficiency for 

different subgroups of experiments.  The first two columns report average EFFICIENCY values 

for all experiments according to whether T/N ≤ 1.5 or T/N > 1.5, where EFFICIENCY is 

calculated using Equation (9).  We choose the cut-off of 1.5 to be consistent with RY’s first 

recommendation, and also based on our own analysis.  The next two columns provide a 

different perspective on efficiency.  They report the percent of experiments where a given 

estimator is more efficient than OLS.  The “best” estimators are indicated by yellow-

highlighting the respective cells in the table.   

The top panel reports the results for the datasets used by RY.  According to RY’s first 

recommendation, when researchers are primarily interested in efficiency and T/N is greater 

                                                
11 While we do not report the results here, we confirm that we were able to reproduce all of RY’s results when 
using their original experimental design.   
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than 1.5, they should choose Estimator 7, the Parks estimator.  Our findings confirm this 

recommendation for the Reed and Ye (2011) datasets.  When T/N > 1.5, the average 

EFFICIENCY of Estimator 7 is 45.5, substantially lower than that of the other estimators.  

Moreover, Estimator 7 is always better than OLS (100 percent).  The other estimators are more 

efficient than OLS most, but not all, of the time. 

The bottom part of the panel reports the results of experiments based on the new 

datasets.  This represents a clean “out of sample” test of RY’s recommendation, because none 

of these datasets were included in RY’s analysis.  Focussing again on the experiments where 

T/N > 1.5, we see that Estimator 7 (FGLS-Parks) has a much lower average EFFICIENCY 

value than the other estimators.  Further, it is more efficient than OLS approximately 98 percent 

of the time, tied for best most among all estimators. 

Averages can mask much variation.  Accordingly, FIGURES 1 and 2 plot the average 

EFFICIENCY values for each of the estimators as a function of T/N when T/N > 1.5. FIGURE 

1 does this for the RY datasets, and FIGURE 2 does this for the new datasets.  The dotted, 

black line at Average Efficiency = 100 represents the OLS estimator, which serves as a 

benchmark for the other estimators.   

Each line connects a series of points that report average EFFICIENCY, where the lines 

have been smoothed for the sake of readability.  There are five points underlying each line in 

FIGURE 1 (for T/N = 2.0, 2.5, 3.0, 4.0 and 5.0), and seven points in FIGURE 2 (T/N = 1.9, 

2.0, 2.5, 3.0, 3.8, 4.0 and 5.0).  The reason the lines do not change monotonically with T/N is 

that other characteristics (heteroskedasticity, autocorrelation, cross-sectional dependence) are 

changing simultaneously with T/N.  The movement from one T/N value to another is, in fact, a 

movement to a different DGP, with different population EVCM values. 

Each of the estimators are color-coded in FIGURES 1 and 2.  It is clear from both 

figures that the light blue line, corresponding to Estimator 7 (the Parks estimator), strictly 
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dominates the others.  For every T/N value included in our analysis, the average EFFICIENCY 

value for this estimator lies strictly below that of the other estimators, indicating greater 

efficiency.  This confirms RY’s first recommendation. 

We return to TABLE 4 and next examine the experiments where T/N ≤ 1.5.  While 

Estimator 7 is included in the table, its results are not directly comparable to the other 

estimators because its results are based on a much smaller number of experiments, since it 

cannot be estimated when T/N < 1.0.  Ignoring Estimator 7 for the moment, it is seen that 

Estimator 6 performs better than the other estimators both in terms of having a lower average 

EFFICIENCY value (74.7 and 48.0 for the RY and new datasets, respectively), and in terms of 

besting OLS more frequently than the other estimators (89.1 and 99.0 percent, respectively).  

Estimator 6 is essentially the Parks estimator (Estimator 7), except that it does not 

accommodate cross-sectional dependence.   

FIGURES 3 and 4 further highlight the superior performance of Estimator 6 when it 

comes to efficiency.  We first note that the lines in the figures connect a larger number of points 

than in the preceding figures.  There are 16 points underlying each line in FIGURE 3 (for T/N 

= 0.13, 0.19, 0.20, 0.21, 0.26, 0.30, 0.31, 0.32, 0.40, 0.42, 0.50, 0.52, 0.75, 1.00, 1.25, and 

1.50), and 15 points in FIGURE 4 (T/N = 0.13, 0.19, 0.20, 0.25, 0.26, 0.30, 0.32, 0.38, 0.40, 

0.50, 0.75, 0.95, 1.00, 1.25, and 1.50).  Estimator 6 is represented by the solid black line.   

With one exception, Estimator 6 strictly dominates the other estimators over all values 

of T/N reported in FIGURES 3 and 4.  The lone exception involves Estimator 7 in the Reed 

and Ye (2011) datasets for T/N = 1.50.  For smaller values of T/N (1.00 and 1.25), Estimator 6 

lies strictly below Estimator 7 (indicating superior efficiency).  When we turn to FIGURE 4 

and the new datasets, we see that Estimator 6 bests Estimator 7 even when T/N = 1.50.  Thus, 

our results indicate that T/N = 1.50 is a crossing-over point.  For values less than that, Estimator 

6 is most efficient.  For values greater than that, Estimator 7 is most efficient.  For values in 
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the immediate vicinity of 1.50, either estimator may be most efficient, depending on other 

characteristics of the dataset. 

It is interesting to note that the superior performance of Estimator 6 for 1.0 ≤ T/N < 1.5 

is an example of the “shrinkage principle.”  This principle “asserts that the imposition of 

restrictions -- even false restrictions” can improve estimator performance (Diebold, 2007, p. 

45).  Even though the population EVCM is characterized by cross-sectional dependence, the 

estimator that “falsely” omits cross-sectional dependence (Estimator 6) outperforms the 

estimator that correctly includes it (Estimator 7).  The reason this “false restriction” is effective 

in these cases is because there are insufficient observations to obtain reliable estimates of the 

cross-sectional covariances in 8 (cf. Equation 3). 

Our findings call for a modification of RY’s second recommendation, which states: 

“When the primary concern is efficiency, T/N < 1, and Heteroskedasticity > 1.67, use either 

Estimator 5 or Estimator 6.” For one, there is no need to condition the recommendation on 

heteroskedasticity.  Second, Estimator 6 dominates Estimator 5 for all values of T/N ≤ 1.5, so 

that Estimator 5 can be omitted as a “best” option.  And lastly, the superior performance of 

Estimator 6 extends for a wider range of T/N values than determined by RY. 

Taken together, the above results sketch a (virtually) complete decision tree for 

choosing the most efficient panel data estimator, provided the estimators the researcher is 

choosing from are included in Stata’s or Eviews’ standard statistical software package.  This 

can be summarized in the following two modified recommendations:  

RECOMMENDATION 1:  When the primary concern is efficiency and   
T/N > 1.50, use Estimator 7 ( = Parks estimator). 

 
RECOMMENDATION 2:  When the primary concern is efficiency and 
T/N < 1.50, use Estimator 6 (= Parks estimator without cross-sectional 
dependence). 

 
Accuracy in hypothesis testing.  TABLE 5 reports performance results with respect to 

accuracy in hypothesis testing.  The key columns are those that report the average value of the 
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absolute difference between 95 percent and the coverage rate, |95 – Coverage|.   An estimator 

should have a coverage rate close to 95 percent.  Coverage rates less than (greater than) than 

95 percent will reject the null hypothesis H*:	)- = efg	f?hi	j>khi too often (not often enough).  

Both outcomes distort hypothesis testing.  Thus the “best” estimator on the dimension of 

accuracy in hypothesis testing is one for which |95 – Coverage| is closest to zero.   

 The table has four panels.  The first two panels report performance results for the 

experiments where T/N ≥ 1 for the Reed and Ye (2011) datasets and the new datasets, 

respectively.  The next two panels report results for  T/N < 1.  T/N = 1 is selected as the cut-

off because Estimator 7 (the Parks estimator) cannot be estimated when T/N is less than this.   

The table also has four columns, with the first two columns collecting experiments 

where the associated datasets are characterized by Autocorrelation values less than 0.30, and 

the next two columns reporting results when Autocorrelation ≥ 0.30.  This cut-off is motivated 

by RY’s third recommendation.  RY reported that Estimator 8 (the PCSE estimator) performed 

best for hypothesis testing when Autocorrelation < 0.30, while no estimator performed 

acceptably for autocorrelation values larger than this.   

In the table, cells where Estimator 8 has the smallest |95 – Coverage| values are color-

coded yellow.  Cells where Estimator 8 has the second smallest |95 – Coverage| value are color-

coded green.  An inspection of the first two columns confirms RY’s third recommendation for 

both the Reed and Ye (2011) datasets and the new datasets, irrespective of the value of T/N.  

Across the four subsets of experiments (Reed and Ye, 2011, T/N < 1 and T/N ≥ 1; and New 

Datasets, T/N < 1 and T/N ≥ 1), the values of | 95 – Coverage | range from a low of 3.5 to a 

high of 5.5.   

However, the results allow one to go even further.  When Autocorrelation ≥ 0.30, 

Estimator 8 either has the smallest, or close to the smallest |95 – Coverage| value in each of the 
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four subsamples.  Further, the corresponding values of |95 – Coverage| are quite small, ranging 

from 1.8 to 3.3. 

FIGURES 5 to 8 provide more detail about the relative performances of the estimators 

with respect to hypothesis testing.  Unlike the previous tables, there are a great many unique 

points on the horizontal axis, which causes the lines to be far less regular.   For example, each 

estimator line in FIGURE 5 connects 80 individual points.  And because each estimator has a 

unique estimate of the estimated coefficient’s standard error, there are now either 11 lines 

(FIGURES 5 and 7) or 10 (FIGURES 6 and 8), to include in each figure. 

In order to maintain readability, FIGURES 5 and 6 highlight just three estimators:  

Estimator 8 (solid black line, PCSE estimator), Estimator 6 (solid red line), and Estimator 7 

(solid blue line).  The other estimators are represented by identical dotted lines.  We focus on 

Estimator 8 because TABLE 5 identified this estimator as “best” on the dimension of accuracy 

in hypothesis testing.  We also highlight Estimator 6 because TABLE 5 indicates that this 

estimator also does relatively well.  And we draw attention to Estimator 7 – the Parks estimator 

and the estimator chosen as best for efficiency when T/N > 1.5 – to show just how poorly this 

estimator performs when it comes to hypothesis testing.  FIGURES 7 and 8 omit Estimator 7 

because it cannot be estimated when T/N < 1. 

FIGURES 5 and 6 illustrate the general point that hypothesis testing can be very 

unreliable when using standard panel data estimators.  While the performance of Estimator 7 

is uniquely dismal, many of the other estimators also perform unacceptably poorly.  Even the 

“best” estimator, Estimator 8, has instances where its performance is less than stellar.   

Looking across all four figures, it is clear that Estimator 8 (PCSE) generally dominates 

the other estimators across the diverse collection of experiments represented in FIGURES 5 

through 8.  While there are instances where one or more of the other estimators perform better 

than Estimator 8 in a given experiment, it is difficult to know whether this is anything more 
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than sampling error.  TABLE 5, along with FIGURES 5 through 8 allow then the following 

modification to RY’s third recommendation:  

RECOMMENDATION 3: When the primary concern is hypothesis testing, 
use Estimator 8 (PCSE). 
 

 Together, Recommendations 1 through 3 allow an applied researcher choosing panel 

data estimators from Stata or Eviews to easily select the “best” estimator.  When it comes to 

choosing an estimator for efficiency, the researcher only needs to know the size of the panel 

dataset (N and T).  That is sufficient to determine his/her selection.  When it comes to choosing 

an estimator for hypothesis testing, the choice is even simpler: choose Estimator 8, the PCSE 

estimator.   

 Bootstrapping.  While useful to applied researchers, the recommendations above 

require one to use different estimators depending on whether the primary interest is coefficient 

efficiency or accuracy in hypothesis testing.  At the very least, this is awkward and difficult to 

motivate.  It would be better if a researcher could use the same estimator for both estimation 

and inference. 

 In a recent study, Mantobaye et al. (2016) develop bootstrap methods for SUR models 

with autocorrelated errors.  In this section, we demonstrate the feasibility of these methods by 

bootstrapping the Parks estimator.  TABLE 6 compares the accuracy of the PCSE estimator 

with the parametric bootstrap from Mantobaye et al. (2016).  A full comparison lies beyond 

the purview of this study.  However, the table provides some examples using Dataset 1 (cf. 

TABLE 1) for varying N and T values.  In every case, the bootstrapped method produces more 

accurate inference results than the PCSE estimator.  For example, when N = 5 and T = 10, 87.3 

percent of the 95% confidence intervals calculated from the PCSE estimator contain the true 

value of )-.  In contrast, 95.2 percent of confidence intervals contain the true value of )- using 

the bootstrapped method.   
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The advantage of bootstrapping is it allows one to use the same estimator for both 

estimation and inference, without the need of using an entirely different estimator for 

hypothesis testing.  The disadvantage is that these methods are not yet readily available in 

statistical software packages, making implementation difficult and time-consuming.  

 
4.  Conclusion 

This study follows up a previous analysis of panel data estimators in Reed and Ye (2011).  RY 

conducted Monte Carlo experiments to study the performance of a wide range of Parks-type 

panel data estimators.  They focused on estimators that are readily available in statistical 

software packages such as Stata and Eviews, and for which the number of cross-sectional units 

(N) and time periods (T) are small to moderate in size.  They developed three recommendations 

for applied researchers seeking guidance about which panel data estimator to use in their 

research. 

 We identify a mistake in RY that affects their recommendations.  Accordingly, we 

repeat the Monte Carlo experiments undertaken by RY, correcting their mistake.  We also 

extend their study by including more real-world panel datasets on which to base our 

simulations.  The result is a cleaner and more complete set of recommendations.  In paricular, 

we identify two estimators, a FGLS estimator that weights on heteroskedasticity and the Parks 

estimator, as being most efficient depending on whether T/N is less than or greater than 1.50, 

respectively.  And we identify the PCSE estimator as being best for hypothesis testing in all 

situations. 

 A major contribution of our study is that it maps observable characteristics of the data 

to a specific estimator choice.  The superior performance of many estimators is often based on 

unobservable characteristics.  For example, instrumental variable (IV) estimators are generally 

superior to OLS given a sufficient degree of endogeneity.  In the absence of endogeneity, OLS 

will be superior because it is more efficient.  But the degree of endogeneity is unobserved.  
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Tests for endogeneity can provide some guidance, but they do not allow one to conclude that 

IV is necessarily better/more efficient than OLS in a given situation.12  Our recommendations 

are based solely on the ratio of T/N, which is readily observable. The ability to map data 

characteristics to estimator selection is potentially very valuable for applied researchers.   

We note that while OLS with cluster robust standard errors is widely used by applied 

researchers, our experiments find that it performs relatively poorly on both efficiency and 

inference grounds for the small to moderately-sized panel datasets studied here.  Thus, another 

contribution of our study is that it alerts researchers that there are better alternatives to OLS 

when the underlying DGP is assumed to be of the Parks variety. 

 Our analysis leaves several issues unresolved.  One such issue is unbalanced data.  All 

of the experiments above assumed that the panel datasets are balanced.  It is not clear how these 

recommendations need to be modified when this is not the case.  Another issue concerns 

dynamic panel data.  All of the experiments above assumed static DGPs.  As is well known, 

dynamic panel data have a number of complications that require special attention.  Similarly, 

our analysis does not include many other panel data estimators, some of which we mention in 

the introduction above. 

While we acknowledge the limitations of our study, it is still the case that the panel data 

estimators that come packaged in Stata and Eviews are widely used by many researchers.  The 

fact that the best estimators separate out so clearly, across a wide variety of data environments, 

is striking.  While additional work needs to be done, the findings of this study provide a useful 

start for researchers deciding which panel data estimator they should use. 

 

  

                                                
12 So, for example, tests and measures such as are found in Stock and Yogo (2005) and Baum et al. (2015) can 
identify the degree of bias in estimates, but they do not allow one to determine whether IV is more efficient than 
OLS. 



20 
 

REFERENCES 

Anselin, L. 2013.  Spatial econometrics: methods and models (Vol. 4). Springer Science & 
Business Media. 
 
Bai, J., 2003. Inferential theory for factor models of large dimensions. Econometrica, 71, pp. 
135–173. 
 
Baltagi, B. H., Egger, P., and Pfaffermayr, M. 2013. A generalized spatial panel data model 
with random effects. Econometric Reviews, 32(5-6), pp. 650-685. 
 
Beck, N. and Katz, J. N.  1995.  What to do (and not to do) with time series cross-section data.  
American Political Science Review, 89, pp. 634-647. 
 
Baum, C. F., Schaffer, M. E., & Stillman, S. 2015. ivreg210: Stata module for extended 
instrumental variables/2SLS, GMM and AC/HAC, LIML and k-class regression. 

 
 
Biagi, B., Brandano, M.G., and Detotto, C. 2012. The effect of tourism on crime in Italy: a 
dynamic panel approach. Economics: The Open-Access, Open-Assessment E-Journal, 6 (2012-
25), pp. 1—24. 
 
Bivand, R., and Piras, G. 2015. Comparing implementations of estimation methods for spatial 
econometrics. Journal of Statistical Software, Vol. 63(18). 
 
Casper, G. and Tufis, C.  2003.  Correlation versus Interchangeability: The limited robustness 
of empirical findings on democracy using highly correlated data sets.  Political Analysis, 11(2), 
pp. 196-203.  
 
Coakley, J., Fuertes, A.-M., and Smith, R. P.  2006. Unobserved heterogeneity in panel time 
series models. Computational Statistics & Data Analysis, 50(9), pp. 2361-2380. 
 
Corrado, L., and Fingleton, B.  2012. Where is the economics in spatial econometrics? Journal 
of Regional Science, 52(2), pp. 210-239. 
 
Diebold, F. X.  Elements of Forecasting, 4th Edition. Ohio: Thomson, South-Western, 2007. 

Eberhardt, M., Helmers, C., and Strauss, H.  2013. Do spillovers matter when estimating private 
returns to R&D? The Review of Economics and Statistics, 95(2), pp. 436-448.  
 
Eberhardt, M., and Teal, F. 2011. Econometrics for grumblers: a new look at the literature on 
cross-country growth empirics. Journal of Economic Surveys, 25(1), pp. 109-155.  
 
Elhorst, J. P. 2014. Spatial panel data models. In Spatial Econometrics (pp. 37-93). Springer:  
Berlin, Heidelberg.  
 
Gujarati, D. N. 2004. Basic Econometrics, 4th Edition.  The McGraw−Hill Companies. 
 
Heston, A., Summers, R., and Aten, R. 2002. Penn World Table Version 6.1, Center for 
International Comparisons at the University of Pennsylvania (CICUP). 

http://onlinelibrary.wiley.com/doi/10.1111/1468-0262.00392/abstract
http://www.cesifo-group.de/portal/page/portal/DocBase_Content/WP/WP-CESifo_Working_Papers/wp-cesifo-2012/wp-cesifo-2012-09/cesifo1_wp3930.pdf
http://www.cesifo-group.de/portal/page/portal/DocBase_Content/WP/WP-CESifo_Working_Papers/wp-cesifo-2012/wp-cesifo-2012-09/cesifo1_wp3930.pdf
http://www.jstor.org/stable/2082979
https://www.researchgate.net/publication/51992755_ivreg2_stata_module_for_extended_instrumental_variables2SLS_GMM_and_ACHAC_LIML_and_k-class_regression
https://www.researchgate.net/publication/51992755_ivreg2_stata_module_for_extended_instrumental_variables2SLS_GMM_and_ACHAC_LIML_and_k-class_regression
http://www.economics-ejournal.org/economics/journalarticles/2012-25
http://www.economics-ejournal.org/economics/journalarticles/2012-25
https://www.researchgate.net/publication/279323396_Comparing_Implementations_of_Estimation_Methods_for_Spatial_Econometrics
https://www.researchgate.net/publication/279323396_Comparing_Implementations_of_Estimation_Methods_for_Spatial_Econometrics
http://www.jstor.org/stable/25791723
http://www.jstor.org/stable/25791723
https://doi.org/10.1016/j.csda.2004.12.015
https://doi.org/10.1016/j.csda.2004.12.015
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9787.2011.00726.x/abstract
http://www.mitpressjournals.org/doi/abs/10.1162/REST_a_00272?journalCode=rest
http://www.mitpressjournals.org/doi/abs/10.1162/REST_a_00272?journalCode=rest
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-6419.2010.00624.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-6419.2010.00624.x/abstract
https://link.springer.com/chapter/10.1007/978-3-642-03647-7_19
http://dc1.chass.utoronto.ca/pwt61/


21 
 

 
Kapetanios, G., Pesaran, M. H., and Yamagata, T. 2011. Panels with Nonstationary Multifactor 
Error Structures. Journal of Econometrics, 160(2), pp. 326-348.  
 
Kersting, E. and Kilby, C.  2014.  Aid and democracy redux.  European Economic Review, 67, 
pp. 125-143. 
 
Manski, C.F., 1988. Analog Estimation Methods in Econometrics. New York: Chapman & 
Hall. 
 
Mantobaye, M., Messemer, C., Parks, R.W., and Reed, W.R. (2016) Bootstrap methods for 
inference in a SUR model with autocorrelated disturbances.  Working paper, Department of 
Economics and Finance, University of Canterbury. 
 
Nunn, N. and Qian, N.  2014.  US food aid and civil conflict.  American Economic Review, 
104(6), pp. 1630-1666. 
 
Parks, R. W. 1967.  Efficient estimation of a system of regression equations when disturbances 
are both serially and contemporaneously correlated.  Journal of the American Statistical 
Association, 62, pp. 500-509. 
 
Pesaran, M.H., 2006. Estimation and inference in large heterogeneous panels with a multifactor 
error structure. Econometrica, 74, pp. 967–1012. 
 
Pesaran, M. H., and Smith, R. P. 1995.  Estimating Long-Run Relationships from Dynamic 
Heterogeneous Panels.  Journal of Econometrics, 68, pp. 79–113.  
 
Reed, W.R. 2008.  The robust relationship between taxes and U.S. state economic growth. 
National Tax Journal, 61(1), pp. 57-80.  
 
Reed, W.R. and Webb, R.  2010.  The PCSE estimator is good – just not as good as you think.  
Journal of Time Series Econometrics, 2(1), Article 8. 
 
Reed, W.R. and Ye, H. 2011.  Which panel data estimator should I use?  Applied Economics, 
43(8), pp. 985-1000. 
 
Stock, J. & Yogo, M.  2005. Testing for Weak Instruments in Linear IV Regression. In 
Andrews, D.W.K., ed., Identification and Inference for Econometric Models. New York: 
Cambridge University Press, pp. 80-108. 
 
 
 
 
 
 

https://doi.org/10.1016/j.jeconom.2010.10.001
https://doi.org/10.1016/j.jeconom.2010.10.001
https://doi.org/10.1016/j.euroecorev.2014.01.016
https://pdfs.semanticscholar.org/3ac6/8deb963e61e29d5663ea6ab3af9f1a6f4df6.pdf
https://pdfs.semanticscholar.org/3ac6/8deb963e61e29d5663ea6ab3af9f1a6f4df6.pdf
https://scholar.harvard.edu/nunn/publications/us-food-aid-and-civil-conflict
http://www.jstor.org/stable/2283977
http://www.jstor.org/stable/2283977
http://www.jstor.org/stable/3805914
http://www.jstor.org/stable/3805914
https://doi.org/10.1016/0304-4076(94)01644-F
https://doi.org/10.1016/0304-4076(94)01644-F
https://www.ntanet.org/NTJ/61/1/ntj-v61n01p57-80-robust-relationship-between-taxes.html
https://www.researchgate.net/publication/46464697_The_PCSE_estimator_is_good_-_just_not_as_good_as_you_think
http://dx.doi.org/10.1080/00036840802600087
https://scholar.harvard.edu/stock/publications/testing-weak-instruments-linear-iv-regression


22 
 

TABLE 1 
Description of Datasets Used to Generate Population Parameters 

 

Dataset Source Dependent Variable Independent Variables N T 

REED AND YE (2011) DATASETS 

1 Penn World Table Log of real GDP Ratio of government expenditures to GDP 
Country fixed effects 5, 10, 20, 50, 77 5, 10, 15, 20, 25 

2 Penn World Table Real GDP growth Ratio of government expenditures to GDP 
Country fixed effects 5, 10, 20, 50, 77 5, 10, 15, 20, 25 

3 Reed (2008) Log of real state PCPI Tax Burden  
State fixed effects 5, 10, 20, 48 5, 10, 15, 20, 25 

4 Reed (2008) Real state PCPI growth Tax Burden  
State fixed effects 5, 10, 20, 48 5, 10, 15, 20, 25 

5 Penn World Table Log of real GDP 
Ratio of government expenditures to GDP 
Country fixed effects 
Time fixed effects 

5, 10, 20, 50, 77 5, 10, 15, 20, 25 

6 Penn World Table Real GDP growth 
Ratio of government expenditures to GDP  
Country fixed effects 
Time fixed effects 

5, 10, 20, 50, 77 5, 10, 15, 20, 25 

7 Reed (2008) Log of real state PCPI 
Tax Burden  
State fixed effects 
Time fixed effects 

5, 10, 20, 48 5, 10, 15, 20, 25 

8 Reed (2008) Real state PCPI growth 
Tax Burden  
State fixed effects 
Time fixed effects 

5, 10, 20, 48 5, 10, 15, 20, 25 
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Dataset Source Dependent Variable Independent Variables N T 

NEW DATASETS 

9  Kersting & Kilby 
(2014) 

Gross Aid 
Disbursement as Share 
of GDP (Germany Aid 
Allocation) 

Freedom House Score 
Country fixed effects 5, 10, 20, 50, 77 10, 15, 20, 25 

10 Casper & Tufis 
(2003) 

Vanhanen's Democracy 
Index 

Primary education enrolment (share of 
population) 
Country fixed effects 

5, 10, 20, 50 10, 15, 20, 25 

11 Biagi et al. (2012) Crime per 100000 
inhabitants 

Tourists arrivals per square kilometre 
Country fixed effects 5, 10, 20, 50, 77 10, 15, 19 

12 Nunn & Qian (2014) Any Conflict US-Wheat Aid (1000 MT) 
Country fixed effects 5, 10, 20, 50, 77 10, 15, 20, 25 

13  Kersting & Kilby 
(2014) 

Gross Aid 
Disbursement as Share 
of GDP (Germany Aid 
Allocation) 

Freedom House Score 
Country fixed effects 
Year fixed effects 

5, 10, 20, 50, 77 10, 15, 20, 25 

14 Casper & Tufis 
(2003) 

Vanhanen's Democracy 
Index 

Primary education enrolment (share of 
population) 
Country fixed effects 
Year fixed effects 

5, 10, 20, 50 10, 15, 20, 25 

15 Biagi et al. (2012) Crime per 100000 
inhabitants 

Tourists arrivals per square kilometre 
Country fixed effects 
Year fixed effects 

5, 10, 20, 50, 77 10, 15, 19 

16 Nunn & Qian (2014) Any Conflict 
US-Wheat Aid (1000 MT) 
Country fixed effects 
Year fixed effects 

5, 10, 20, 50, 77 10, 15, 20, 25 
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TABLE 2 
Description of Simulated Datasets Used in the Experiments 

  Heteroskedasticity Autocorrelation Cross-sectional 
Dependence 

REED AND YE (2011) DATASETS 

N ≤ T 
(80 datasets; 

880 observations) 

Minimum 1.21 -0.06 0.20 

Mean 1.68 0.36 0.44 

Maximum 2.35 0.78 0.90 

N > T 
(64 datasets; 

640 observations) 

Minimum 1.34 -0.04 0.22 

Mean 1.76 0.34 0.43 

Maximum 2.25 0.79 0.79 

NEW DATASETS 

N ≤ T 
(72 datasets; 

792 observations) 

Minimum 1.26 0.08 0.22 

Mean 4.47 0.47 0.35 

Maximum 40.21 0.73 0.52 

N > T 
(68 datasets; 

680 observations) 

Minimum 1.47 0.16 0.23 

Mean 6.93 0.46 0.34 

Maximum 34.91 0.73 0.49 
 

NOTE: For more details on the construction of the simulated datasets, see Section 2 in the text.  
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TABLE 3 
List and Description of Panel Data Estimators to Be Studied 

 

Estimator Procedure Assumed Error Structure 

1 OLS-1A IID 

2 OLS-1B Robust heteroskedasticity 

3 OLS-1C Robust heteroskedasticity + Robust autocorrelation 

4 OLS-1D Robust heteroskedasticity + Robust cross-sectional dependence 

5 FGLS-1A Groupwise heteroskedasticity 

6 FGLS-2 Groupwise heteroskedasticity + autocorrelation 

7 FGLS-3 (Parks) Groupwise heteroskedasticity + autocorrelation + cross-sectional dependence  

8 FGLS-4 (PCSE) Groupwise heteroskedasticity + autocorrelation + cross-sectional dependence 

9 FGLS-1B Weight = Groupwise heteroskedasticity 
Var-Cov = Robust heteroskedasticity + Robust cross-sectional dependence 

10 FGLS-1C Weight = Groupwise heteroscedasticity 
Var-Cov = Robust heteroskedasticity + Robust autocorrelation 

11 FGLS-1D Weight = Groupwise heteroskedasticity 
Var-Cov = Robust heteroskedasticity 

 
NOTE: Interpretation of the numbering and lettering of the procedures is given in Section 2 in the text.  Further details about the 
estimator is given in the Appendix.
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TABLE 4 

Comparison of Estimator EFFICIENCY 
 

Estimator Average EFFICIENCY Percentage of Times the Estimator  
Is More Efficient Than OLS 

 T/N > 1.5 
 (1) 

T/N ≤ 1.5 
 (2) 

T/N > 1.5 
 (3) 

T/N ≤ 1.5 
 (4) 

REED AND YE (2011) DATASETS 

Estimator 5/9/10/11 96.6 84.2 68.8 78.9 

Estimator 6 82.8 74.7 75.0 89.1 
Estimator 7 (Parks) 45.5 66.1* 100.0 100.0* 
Estimator 8 (PCSE) 86.9 89.1 62.5 72.7 

NEW DATASETS 

Estimator 5/9/10/11 70.8 54.5 88.6 97.9 
Estimator 6 61.5 48.0 97.7 99.0 

Estimator 7 (Parks) 46.9 80.1* 97.7 96.4* 
Estimator 8 (PCSE) 85.1 92.1 95.5 80.2 

  
* The results for Estimator 7 are not comparable to the other estimators when T/N ≤ 1.5 because they are based on a subset of the 
experiments, since Estimator 7 cannot be estimated when T/N < 1.0.   
 
NOTE: The EFFICIENCY measure is defined in Section 2 in the text. Yellow-coloured cells indicate “best” estimator for a given data-
type.
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TABLE 5 

Comparison of Estimator Coverage Rates 
 

	 Autocorrelation < 0.30 Autocorrelation ≥ 0.30 

	 Coverage 
(1) 

|95 – Coverage| 
(2) 

Coverage 
(3) 

|95 – Coverage| 
(4) 

REED AND YE (2011) DATASETS (T/N ≥ 1) 

Estimator 1 65.7 29.3 90.9 6.1 

Estimator 2 64.1 30.9 91.0 4.9 

Estimator 3 86.5 8.9 88.6 6.5 

Estimator 4 60.1 34.9 91.5 3.8 

Estimator 5 59.8 35.2 88.6 6.4 

Estimator 6 88.0 7.1 90.9 4.4 

Estimator 7 (Parks) 42.9 52.1 45.6 49.4 

Estimator 8 (PCSE) 89.5 5.5 92.7 2.3 

Estimator 9 51.9 43.1 85.6 9.4 

Estimator 10 70.5 24.5 77.3 17.7 

Estimator 11 58.5 36.5 88.2 6.8 

NEW DATASETS (T/N ≥ 1) 

Estimator 1 87.9 9.3 74.6 21.4 

Estimator 2 83.1 11.9 73.2 22.0 

Estimator 3 88.4 6.6 90.2 6.7 

Estimator 4 83.6 11.4 74.7 20.3 

Estimator 5 85.8 9.2 73.4 22.9 

Estimator 6 90.9 4.1 90.9 5.7 

Estimator 7 (Parks) 38.1 56.9 42.0 53.0 

Estimator 8 (PCSE) 91.4 3.6 92.1 3.3 

Estimator 9 75.5 19.5 64.7 30.3 

Estimator 10 68.9 26.1 72.7 22.4 

Estimator 11 80.6 14.4 68.6 26.4 
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	 Autocorrelation < 0.30 Autocorrelation ≥ 0.30 

	 Coverage 
(1) 

|95 – Coverage| 
(2) 

Coverage 
(3) 

|95 – Coverage| 
(4) 

REED AND YE (2011) DATASETS (T/N < 1) 

Estimator 1 70.4 24.6 93.8 5.8 

Estimator 2 67.1 27.9 93.7 4.0 

Estimator 3 91.7 5.3 92.4 4.8 

Estimator 4 61.9 33.1 94.1 1.3 

Estimator 5 60.3 34.7 92.6 3.7 

Estimator 6 86.9 8.2 93.2 3.4 

Estimator 7 (Parks) --- --- --- --- 

Estimator 8 (PCSE) 90.6 4.4 93.3 1.8 

Estimator 9 50.3 44.7 87.2 7.8 

Estimator 10 76.6 18.4 86.2 8.8 

Estimator 11 59.2 35.8 92.2 3.8 

NEW DATASETS (T/N < 1) 

Estimator 1 84.0 11.2 80.2 15.2 

Estimator 2 81.9 13.1 78.2 16.8 

Estimator 3 83.5 11.5 93.6 3.3 

Estimator 4 88.3 6.7 75.6 19.4 

Estimator 5 88.3 8.0 75.8 20.5 

Estimator 6 93.6 4.0 93.2 3.9 

Estimator 7 (Parks) --- --- --- --- 

Estimator 8 (PCSE) 91.5 3.5 92.3 2.7 

Estimator 9 71.8 23.2 63.6 31.4 

Estimator 10 82.7 12.3 82.9 12.1 

Estimator 11 84.4 10.6 71.2 23.8 
 
NOTE The performance measures Coverage and |95 – Coverage| are defined in Section 2 in 
the text. A yellow-coloured cell indicates that Estimator 8 performs best for a given data-type.  
A green-coloured cell indicates that this estimator is second best. 
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TABLE 6 
A Comparison of the PCSE and Bootstrapped Parks Estimators  

With Respect to Inference: An Example 
 

N T 
PCSE Estimator 7 - Bootstrapped 

Coverage 
(1) 

|95 – Coverage| 
(2) 

Coverage 
(3) 

|95 – Coverage| 
(4) 

5 10 87.3 7.7 95.2 0.2 

5 15 89.8 5.2 95.4 0.4 

5 20 90.0 5.0 95.2 0.2 

5 25 92.5 2.5 96.4 1.4 

10 10 88.3 6.7 97.3 2.3 

10 15 91.0 4.0 98.5 3.5 

10 20 92.5 2.5 96.4 1.4 

10 25 93.0 2.0 96.3 1.3 
 
NOTE:  PCSE coverage rates are taken from Monte Carlo experiments using Dataset 1 and the 
respective N and T values.  Bootstrapped coverage rates are calculated using the parametric 
bootstrap method of Mantobaye et al. (2016). 
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APPENDIX 
List and Description of Panel Data Estimators 

 

Estimator Package Command 

1 Stata command = xtreg 

2 Stata command = xtreg 
options = robust 

3 Stata command = xtreg 
options = cluster(name of cross-sectional variable) 

4 Stata command = xtreg 
options = cluster(name of time period variable) 

5 Stata command = xtgls 
options = corr(independent)  panels(heteroscedastic) 

6 Stata command = xtgls 
options = corr(ar1)  panels(heteroscedastic) 

7 (Parks) Stata command = xtgls 
options = corr(ar1)  panels(correlated) 

8 (PCSE) Stata command = xtpcse 
options = corr(ar1) 

9 EViews GLS Weights = Cross-section weights 
Coef covariance method = White cross-section 

10 EViews GLS Weights = Cross-section weights 
Coef covariance method = White period 

11 EViews GLS Weights = Cross-section weights 
Coef covariance method = White (diagonal) 

 
SOURCE: Table 1 in Reed and Ye (2011). 
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FIGURE 1 
Comparison of Estimator EFFICIENCY: Reed and Ye (2011) Datasets, T/N > 1.5 

 

 

NOTE:  The EFFICIENCY measure is defined in Section 2 in the text. Estimators are identified in TABLE 3. 
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FIGURE 2 
Comparison of Estimator EFFICIENCY: New Datasets, T/N > 1.5 

 

 

NOTE:  The EFFICIENCY measure is defined in Section 2 in the text. Estimators are identified in TABLE 3. 
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FIGURE 3 

Comparison of Estimator EFFICIENCY: Reed and Ye (2011) Datasets, T/N ≤ 1.5 
 

 

NOTE:  The EFFICIENCY measure is defined in Section 2 in the text. Estimators are identified in TABLE 3. 
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FIGURE 4 

Comparison of Estimator EFFICIENCY: New Datasets, T/N ≤ 1.5 
 

 

NOTE:  The EFFICIENCY measure is defined in Section 2 in the text. Estimators are identified in TABLE 3. 
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FIGURE 5 

Comparison of | 95 – Coverage | Values: Reed and Ye (2011) Datasets, T/N ≥ 1.0 
 

 
 

NOTE:  The performance measure | 95 – Coverage | is defined in Section 2 in the text. Estimators are identified in TABLE 3. 
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FIGURE 6 

Comparison of | 95 – Coverage | Values: New Datasets, T/N ≥ 1.0 
 

 
 
NOTE:  The performance measure | 95 – Coverage | is defined in Section 2 in the text. Estimators are identified in TABLE 3. 
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FIGURE 7 

Comparison of | 95 – Coverage | Values: Reed and Ye (2011) Datasets, T/N < 1.0 
 

 

NOTE:  The performance measure | 95 – Coverage | is defined in Section 2 in the text. Estimators are identified in TABLE 3. 
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FIGURE 8 

Comparison of | 95 – Coverage | Values: New Datasets, T/N < 1.0 
 

 

NOTE:  The performance measure | 95 – Coverage | is defined in Section 2 in the text. Estimators are identified in TABLE 3. 
 



 

 

 

 

 

 

 

Please note: 

You are most sincerely encouraged to participate in the open assessment of this 
discussion paper. You can do so by either recommending the paper or by posting your 
comments. 
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