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Abstract

The differentiated demand model of Berry, Levinsohn and Pakes (1995) is widely
used in empirical economic research. Previous literature has demonstrated numerical
instabilities of the corresponding GMM estimator that give a wide range of parameter
estimates and economic implications depending on technical details such as the choice
of optimization algorithm, starting values, and convergence criteria. We show that
these instabilities are mainly driven by numerical approximation errors of the moment
function which is not analytically available. With accurate approximation, the estima-
tor is well-behaved. We also discuss approaches to mitigate the computational burden

of accurate approximation and provide code for download.
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1 Introduction

The seminal contribution of Berry, Levinsohn and Pakes (1995; henceforth BLP) has pro-
vided economists with an oligopoly model of differentiated product markets that is capable
of producing realistic substitution patterns. The BLP model allows for partially or fully
unobserved preference heterogeneity among economic agents and explicitly deals with the
endogeneity of product attributes, typically price, and makes it possible to investigate coun-
terfactual market outcomes. Apart from being applied to markets and questions that lie at
the heart of Industrial Organization, the model’s use has spread to the areas of environmental
economics, insurance, voting preferences, and housing markets among others (see Table 1 in
Berry and Haile (2014)). The BLP model is parsimonious - compared to the standard logit
model only a limited number of additional coefficients must be estimated - and its flexible
functional form allows for arbitrary correlations between prices and markups. Products with
similar attributes can be closer substitutes than products with very different characteristics.!

Consistent identification of the preference parameters depends on the sample moments,
which are the product of relevant and valid instrumental variables (IVs) and the BLP model’s
structural error term. To obtain estimates of the structural error, the observed aggregate
market shares have to be inverted. In contrast to the standard logit or nested logit model,
where this inversion can be performed analytically (Berry, 1994), in the BLP model it must
be computed numerically.

Using the U.S. automobile market data from BLP, Knittel and Metaxoglou (2014; hence-
forth KM) re-examine the nested fixed point estimator’s behavior and find a very wide set
of parameter estimates and economic implications. The particular choice of starting guess,
optimization algorithm and inner convergence threshold has a substantial effect on the es-
timation outcomes. Given the large spread of the estimates, the credibility of the approach
is drawn into question. This Knittel-Metaxoglou critique has urged researchers to more
carefully implement the BLP estimation framework and to more transparently report imple-
mentation details and estimation results (see the supplemental appendix of Goldberg and
Hellerstein (2013) for an example).

KM use the same set of 50 standard Monte Carlo draws throughout all of their esti-
mations and thereby ignore the impact of simulation error. With the exact same data,

instruments and starting guesses we show that their findings are fully explained by the low

'In the standard logit model prices and markups are negatively related: high-priced products have lower
markups than their low-priced rivals. Moreover, it is highly likely that the best substitute for any other
product is the product with the largest market share.



number of Monte Carlo draws used, which causes substantial simulation error.? Our main
findings are twofold. First, with a crude numerical integration approach the estimate of the
structural error term is overwhelmed by simulation error. The biased structural error esti-
mates enter the GMM-IV objective function, which causes many local minima with widely
varying parameter estimates and model-implied economic predictions. With a large number
of simulation draws we obtain tightly clustered model estimates and economic predictions.
Second, inaccurate numerical integration gives biased parameter estimates and economic im-
plications. With a relatively low number of simulation draws we find that the magnitude of
own-price elasticities is systematically estimated to be too high. In a simulation of a merger
between GM and Chrysler this leads to a substantial underestimation of the merger’s effect
on prices. The estimated demand model therefore systematically and erroneously predicts
the merger to cause less harm to consumers than when a large number of draws is used. Our
findings should therefore also be relevant for competition policy practitioners.

Broadly, our results contribute to the body of literature that shows how accurate compu-
tational methods can be crucial for obtaining reliable results from the estimation of nonlinear
econometric models. Such models pose two major difficulties. First, a highly nonlinear objec-
tive function can produce many candidate extreme points. Depending on the identification
approach, the econometrician must identify either the global maximum or minimum. Sec-
ond, it can be numerically challenging to compute the estimator’s objective function or the
economic model’s moments with sufficient accuracy to reliably pin down the sought after co-
efficients. McCullough and Vinod (2003) illustrate the importance of carefully verifying the
candidate extreme points from a nonlinear solver. Petrosky-Nadeau and Zhang (2017) show
how inaccurate computation of the Diamond-Mortensen-Pissarides model, the workhorse ap-
proach for general equilibrium labor market models, produces biased moments. The results
of KM suggest that both issues are relevant for the estimation of BLP models, while we show
that the number and spread of the estimator’s minima fall into an increasingly narrowing
interval when the objective function is computed accurately.

In this sense, our findings are related to weak identification in nonlinear GMM-IV esti-
mation as described in Stock, Wright, and Yogo (2002). Here, the weak identification is not
caused by weak instruments, however, but by random simulation error in the estimates of
the structural error terms, which introduces many local minima in the estimator’s GMM-IV
objective function. Moreover, our findings are in line with the results from Berry, Linton,

and Pakes (2004), who derive the properties of the BLP nested fixed point estimator when

2The replication files of KM are exemplary.



the number of products becomes large. Simulation error in the estimates is bounded if and
only if the number of simulation draws grows proportionally with the square of the number
of products. The impact of simulation error is therefore more pronounced in samples with
many products, which applies to the U.S. automobile data with markets having between 72
and 150 products. For the U.S. automobile data, we find the estimator no longer fails to
converge to a local minimum for any of the random starting guesses if we use at least 5,000
Monte Carlo simulation draws to compute the aggregate market share inversion. With our
least precise numerical integration approach, which as in KM uses 50 Monte Carlo draws,
we obtain convergence to a local minimum in less than 63 percent of the estimations and
a coefficient of variation among the objective values of the identified minima of more than
30 percent. In contrast, with our most accurate integration approach, which uses 10,000
modified latin hypercube sampling draws (MLHS draws, Hess et al. (2006)) we obtain con-
vergence to a local minimum for 100 percent of the estimations and a coefficient of variation
of less than 3 percent. This tight clustering of the identified minima also carries over to
the parameter estimates and the model-implied economic predictions. To illustrate, with
50 Monte Carlo simulation draws the 95 percent confidence interval for the average own-
price elasticity across all observations in the automobile data ranges from roughly -24 to -3.
When 10,000 MLHS draws are used instead, the confidence interval tightens to the range
from roughly -9 to -8. Our results are based on a total of 40,000 BLP model estimations,
where we use two numerical integration techniques, standard Monte Carlo and MLHS draws.
For each of these approaches we consider eight different numbers of simulation draws that
range from 50 to 10,000. For each number of draws, 50 independently sampled sets are
generated and for each of these sets the BLP model is estimated 50 times using the same
specification and random starting guesses as in KM.

The importance of simulation error has largely been abstracted from in the existing
literature. Dubé, Fox, and Su (2012) also identify the contraction mapping as the major
source of numerical instabilities, but focus on the convergence threshold of the contraction
that is set by the researcher and explicitly shut down the effect of simulation error.® A loose
threshold speeds up the estimation, but also introduces approximation error in the objective
function. In qualitative terms, we can confirm their findings, but in our setting with real

world data we find the impact of the convergence threshold to be of second order (see the

3See p. 2263 in Appendix A of Dubé, Fox, and Su (2012): “...Because our focus is not on numerical
integration error, we use the same sample of 1000 draws to compute the market shares in the data-generation
and estimation phases.”



bottom panel of Table 5).* Reynaert and Verboven (2014) show that approximately optimal
instruments can substantially reduce weak identification in BLP model estimation that is
caused by weak instruments. Again, the impact of simulation error is shut down, because
highly accurate numerical integration approaches are used throughout the simulations and
only markets with at most 20 products are considered.

A brute-force reduction of the approximation errors by increasing the number of sim-
ulation draws can be computationally costly up to a point where it seems infeasible to
implement. We therefore also discuss how to increase the approximation accuracy in a com-
putationally efficient way and provide an implementations in the form of an R package and
Matlab code that offer substantial speedups over KM’s Matlab implementation of the nested
fixed point estimator.

The remainder of the paper is organized as follows. Section 2 briefly reviews the BLP
model and its identification using the nested fixed point algorithm. It also theoretically shows
how simulation error propagates in the GMM-IV sample moment and objective function
using results from Berry, Linton, and Pakes (2004). Section 3 presents the setup for our
large-scale study of the BLP estimator using the U.S. automobile data. We trace out the
effects of simulation error in our 40,000 BLP model estimations in Section 4 and discuss the
trade-off between the computational burden and the accuracy of the estimation and suggest
ways to improve the computational efficiency in Section 5. There we also benchmark our R
and Matlab programs and show that they are several times faster than the routine in KM’s

replication files. Finally, we conclude.

2 The BLP model

This section briefly presents the BLP model and its estimation using the nested fixed point
algorithm. We also discuss the propagation of the simulation error in the estimator’s moment

function.

2.1 Setup and model-implied market shares

Each consumer in a market for differentiated products faces the discrete choice between
the alternatives labeled by 7 = 0, ..., J, where j = 0 indicates the outside good. Typically,

we model several markets jointly. For notational simplicity, we suppress an index for the

4We consider convergence thresholds of 10716, 107 and 10~%. Only the latter, extremely lax criterion,
yields a noticeably wider spread in the model estimates.



market on all relevant variables. Since the level of utility is not separately identified, the
indirect utility each consumer attaches to the outside option is normalized to zero. Consumer
s indirect utility from purchasing product j is specified as a function of its price p;, K
observed product characteristics collected in the vector x;, and the valuation of unobserved

characteristics ;. The average utility over consumers is specified as
0 = 0;(§;) = 28 — ap; + & (1)

The BLP model also allows for preference heterogeneity over the K characteristics in the
population. It is captured by the vector v; = [V, ..., vk]|. For the model’s exposition and
to offer a meaningful comparison with the results in Knittel and Metaxoglou (2014), we
assume that the K dimensions of v; are independently distributed. This assumption can be
relaxed and preference correlations between the K characteristics can be modeled to achieve
more flexible substitution patterns. In our simpler case, the only parameters that capture
heterogeneity are the standard deviations of the preference parameters § = [oy,...,0x].”

The consumer-specific deviation from mean utility is defined as

K
pij = pi (6, i) = pioprip + Z TjkVik Ok (2)
k=1
The overall utility also includes consumer-product specific utility residuals ¢;; and can
be written as

uij = 0j + pij + €ij- (3)

Making the typical assumption that the ¢;; are independent and follow a Type I extreme value
distribution gives the closed form expressions for the consumer-specific choice probabilities

for product j
exp(6; + p;(0,v4))
L4 320, exp(e + jue(8,4))

where 0 = [dy,...,0;]. The model-implied aggregate market share function integrates over

PT]‘((S,Q,VZ‘) =

(4)

the consumer-specific choice probabilities, where we let F'(v) denote the population distri-

bution of consumer heterogeneity.

5.0 = [ Pri(s5.0. V\dF(v) = exp(9; + (0, v)) ,
s3(9,0) —/P (0,0, v)dF (v) /1+ZZ:1€XP<5€+M(07 V))dF( ) (5)

5Note that in practice, often one or more of the preference parameters are restricted to be constant across
the population which can be implemented in this notation by restricting the respective oj parameters to
zero.




This integral does not have an analytic solution, but can be approximated numerically. We
have to deal with the fact that the population distribution of consumer preferences is not
directly observed by the econometrician.® We therefore have to assume a joint distribution of
preferences over the K characteristics. A common assumption is a joint normal distribution.
The most straightforward algorithm for this approximation is Monte Carlo simulation. We
draw a sample 7 = iy, ..., Dg] of size R from the joint distribution of v. The approximated

version of s7(d,0) is

exp(d; + (0, 7,))
1(6,0,0) (5,0, 7,) _RZ ’ : (6)

1 +Z£ leXp((Sg—‘r,Mg(@ ))

||M:v

2.2 Instrumental variables and identification

The unobserved characteristics or structural error terms §; are vertical product attributes.
Consumer utility for product j is increasing in ¢;, so that consumers always prefer more of
it. Contrary to the econometrician, both firms and consumers observe all £ = [&,...,&;],
which yields positive correlations between the error term and price. We obtain consistent
estimates of the preference parameters by imposing a standard GMM-IV moment restriction.
Let z; denote a row vector of L > K relevant and valid instrumental variables. The moment

restriction is

EG(0)] =

3 zj@-(e)] -0 )

In the typical case where we model several markets jointly, we average over all available
products in all markets. Note that the {; are by definition unobserved in the data. Here,
€;(6) denotes the implied values as detailed in the next section.

Cost shifters that vary at the product level would be ideal candidates for the excluded
instruments. The required data, however, is often not available. To construct suitable
instruments we make the assumption that the £’s are mean independent of the observed

product characteristics.
E(£lr) =0 (8)

If this assumption holds, any function of the observed product characteristics qualifies as a
potentially valid instrument for price. Such functions also give relevant instruments, because

the observed characteristics enter each product’s equilibrium pricing function. BLP use this

SDepending on data availability, consumer heterogeneity can be partially directly observed by using
(relevant) consumer demographics. This introduces an additional term that enters utility additively separably
and that interacts the observable product attributes and consumer demographics.



insight to derive a set of instruments that can be viewed as a first-order approximation
of a pricing game played between firms: for each product j sold by firm f the observable
characteristics of all products sold by the same firm are summed over and the observable
characteristics of all products sold by rival firms are summed over, ;o = Y LikeF; Tk
Zj other = Zk,ké 7 Tk This gives 2K; > K5 + 1 excluded instruments to identify the price
coefficient «, and the standard deviations of the random coefficients 6.

Let 6* denote the true population preference parameters. Given a suitable weighting
matrix W, we obtain a consistent and, as Berry, Linton, and Pakes (2004) prove, asymptot-
ically normally distributed estimator of 6* by minimizing the GMM-IV objective function,

which is a norm of the sample moment 5 37 . 2;¢;(6).”
0, = arg min J (¢) = arg min€(6) =W '€ (9) (9)

Here, £(6) and z are the vertically stacked market-specific structural error terms and instru-

ment matrices, respectively.

2.3 The fixed-point algorithm for obtaining &£(0)

The objective function (9) involves the vector of unobserved product characteristics £(6)
which need to be evaluated numerically for a given set of parameters. To simplify the
notation in this section, we abstract from any sampling errors and assume throughout that
market shares are observed without error.

For each candidate vector of the nonlinearly entering preference parameters 6, the BLP
model chooses the values of the product-specific mean utility 6 = [dy,...,d,] such that for
each product j, the model-implied approximated market share matches the observed share
in the data S;.8

S; =5(0,6,0) forall j (10)

We cannot solve these equations for ¢ analytically but have to resort to numerical methods.
BLP prove the existence of a fixed point that gives the unique solution d,,4¢, to this system
of equations for any candidate vector ¢ and set of simulation draws 7. We iterate over the
equation

Ojiter+1 = Ojiter +10g(S;) — log(s;(0iter, 7, 0)) (11)

"Without loss of generality, we assume that the weighting matrix is homoscedastic, W = (z'z) .
8The magnitude of the relative approximation error, |(S; — s;)/S;l, is bounded from above by the inner
convergence threshold, v;nner-




until the distance between successive iterates falls below the chosen convergence threshold,
|0 iter+1—0jiter| < Yinner for all j. If this inequality holds, the current update for the vector of
mean utilities is accepted as the solution .4t (6, 7) to (10). We obtain the corresponding
vector of structural error terms (0, 7) as the residuals of a two-stage least squares
regression of 0,401 (6, 7) on the observed product characteristics. This step also delivers the

estimates of the linearly entering parameters a and f3.
5j,match(gy D) = ij - dpj + gj,match(ea ﬁ) (12>

2.4 Simulation errors and their propagation

At each iteration of the contraction mapping, (11), the model-implied aggregate market
shares must be computed using (6). Simulation error is introduced because of differences
between the consumer population and the simulated sample of consumer preferences using
R simulation draws.’

In order to define the simulation errors similar to Berry, Linton, and Pakes (2004), let
Omaten(0) and & .., (0) denote the solutions to S; = s7(d,0) in the absence of simulation

errors in the market shares. Simulation error is defined as
e(0,7) = (67010 (0),0) — 5(Omaten(6,7),0,7). (13)

By construction, the simulation errors would vanish for any candidate parameter vector
6 if we were able to solve the market share integral (5) exactly. Berry, Linton, and Pakes

(2004), show that &,aien(f, 7) can approximately be written as

b 0,9) % Enncn8) - [%ﬁ“g] (0.7, 14

exact inversion _

Vv
effect of simulation error

where 0* and &* denote the true population values of # and &, respectively. The expression
[0s*/0¢'] is the J x J matrix of market share derivatives with respect to the unobservable
product characteristics.

The first term on the right-hand side is the estimate of the structural errors that we would

obtain if we could match the population distribution of preference heterogeneity exactly in

9We ignore an additional potential error here. We impose that consumer preference heterogeneity follows
a normal distribution. The true preference distribution could be non-normal, which would potentially lead
to biased parameter estimates.



the numerical integration of the aggregate shares. We only use a sample of R simulation
draws, however, which causes deviations of the model-implied shares from their observed
sample counterparts at £*. How these deviations affect our computations of &,,q¢cn depends
on how sensitive &,,4scn 1S With respect to changes in the entries of the model-implied aggregate
market share vector s*. This sensitivity is measured by the inverse of the matrix [0s*/0¢'].
The smaller the derivatives, the larger is the distortion of &,,4:n that is caused by simulation
error. Thus, the inversion of aggregate market shares magnifies simulation error in the
estimates of the structural error term.

By distorting the estimates of £, simulation error propagates in the sample moments and

thereby in the GMM-IV objective function. Plugging (14) into the sample moment gives

~l=

G0~ 5% %mw)—[%ﬁmg] (0.9, (15

which stresses that the computed sample moment depends explicitly on the simulation error
that is caused by the specific set of draws ©. There is an analogy to the definition of weak
identification in Stock, Wright, and Yogo (2002) for nonlinear GMM estimation. Given that
ef! is random and propagates into the GMM-IV objective function, the shape and location
of the objective function (9), are affected. There can be several values for 6 # 6* for which
the objective function attains a local minimum. This explains how many local minima
with widely varying parameter estimates and economic implications are found with a crude
numerical integration approach.

Berry, Linton, and Pakes (2004) also show that the extent of the magnification depends
on the number of products in the market. In equilibrium, as more and more products enter a
market, it must be the case that product-level market shares fall. This is because in the BLP
model, each product is substitutable with every other product to some extent. Specifically,
it is assumed that all shares move inversely proportional with J (Condition S/equation (20)
in Berry, Linton, and Pakes (2004)). The derivatives of the shares with respect to ¢ are
proportional to market shares and therefore also decline with J. As simulation errors are
scaled by the inverse of [0s*/0¢], the magnification of simulation errors is greater in samples
with many products. To bound the simulation errors as the number of products becomes
large, the number of simulation draws must grow proportionally with the square of the

number of products in the market.

10



3 Computational experiments: Setup

We study how numerical integration accuracy affects the behavior and outcomes of the BLP
nested fixed point estimation algorithm using the original automobile market data from
BLP. This data set covers 20 years of annually aggregated car model-level sales for the
United States starting in 1971.1° We think this choice presents two advantages. First, this is
a real world data set where the number of products ranges from 72 to 150 and that is based
on a large sample of individual consumer purchases. Sampling error, therefore, is likely to
be negligible, while simulation error should play a substantial role in this setting. Second,
the same data set has been used by KM to carefully document several numerical instabili-
ties in the BLP estimation algorithm. The study is exemplary in terms of its replicability
and transparency and has motivated researchers to more carefully implement and report
the outcomes of their BLP model estimations (e.g. Goldberg and Hellerstein (2013)). We
therefore base our large-scale study of the BLP estimation algorithm on KM’s replication
files to demonstrate that the reported numerical instabilities are tackled once the numeri-
cal integration of the model-implied aggregate shares is performed accurately. Specifically,
we estimate exactly the same specification using the same set of instruments and random

starting guesses for 6.

3.1 Model specification

In the automobile market application, we follow the literature and interpret the yearly data
as separate markets ¢ = 1,...,20. The indirect utility of consumer ¢ in year ¢ for car j is

specified as
wije = Bio + hpwt B + spacej By + aircon;fis + mpgifia — cuprices + & + €ije, - (16)

where hpwt is the horsepower-weight ratio, space is the length times the width of the car,
aircon is a dummy indicating whether the car has air conditioning built in and mpg measures
the car’s miles per gallon. Except for space, all observable characteristics, including price and
the constant term, have a random coefficient. The specification therefore involves 5 random
coefficients in total. We assume that the random coefficients are distributed normally and
independently. Thus, a; = a + 0,14, and B = Bi + opvip with v, v, ~ N(0,1) for
k=1,..., Ky =05.

0For a detailed description of the data set, see Berry, Levinsohn, and Pakes (1995).

11



3.2 Instruments

We use the instruments from the Knittel and Metaxoglou (2014) replication files. These are
the standard characteristics-based or BLP-type instruments. Using all five non-price product
characteristics including the constant, these instruments sum over the characteristics of all
other cars produced by the same firm, and sum over the characteristics of all cars produced
by rival firms. We therefore have 10 instruments for price and the 5 nonlinearly entering
parameters. Given that the literature on approximately optimal instruments shows that these
standard characteristics-based instruments can be weak and thereby yield weak identification
of the random coefficients, it is important to show that for specification (16) this is not the
case so that we are dealing with a sensible model.

We simply run the first-stage regression of price on the instruments for two cases. First,
we only explain the variation in price using the excluded (BLP-type) instruments. This re-
gression gives an F-statistic of 43.9. Second, we use the full instrumental variable matrix that
also contains the observed non-price characteristics, which given their assumed exogeneity
instrument for themselves. Not surprisingly, this gives a higher F-statistic, namely roughly
248. To assess whether the observed characteristics drive out the excluded instruments, we
compute the F-statistic for the null that only the coefficients of the excluded instruments are
zero. This F-statistic has a value of 43.7, almost unchanged from the first-stage regression
without the observed characteristics. In both cases, we comfortably pass the rule of thumb
that the F-statistic should be greater than 10. The excluded instruments also comfortably
pass the critical values reported in table 1 of Stock, Wright, and Yogo (2002). We conclude

that the example model is well identified and we don’t have to worry about weak instruments.

3.3 Simulation of the market shares

Different algorithms for the approximation of the integral in the market share equation (5)
have been proposed in the literature. Since this paper focuses on the effect of approximation
errors rather than on ways to avoid them, we restrict ourselves to two popular simulation
methods: the standard Monte Carlo approach and modified latin hypercube sampling draws
(MLHS draws). We come back to alternative approximation methods in Section 5.3. Hess,
Train, and Polak (2006) find that in finite samples MLLHS draws perform roughly on par with
Halton draws. For our study, MLHS draws offer the advantage that it is straightforward to
obtain measures of how the number of simulation draws affects the spread of estimation

outcomes. We can simply compute the variance of some estimation outcome for a given

12



number of simulation draws. With standard Halton draws or any quadrature method this is
no longer the case, because for these approaches the simulation draws or nodes are based on
deterministic number sequences. By construction, therefore, for a given number of draws or
nodes there is no variation across different estimations. To obtain a measure of simulation
error in the estimation outcomes, we would have to compute error bounds for these methods,
which are model-specific and cumbersome to implement.

We use 8 different numbers of draws for both simulation approaches that range from 50
to 10,000.1' To exclude the possibility that our findings are due to any specific set of draws,
we generate 50 independently sampled sets of v for each of the 8 different numbers of draws.
Therefore, with the 50 starting guesses for 6 from KM, each number of draws requires us to
estimate specification (16) 2,500 times. With 8 different numbers of simulation draws and 2

simulation approaches, we estimate the BLP model 40,000 times.

3.4 Optimization algorithms and inner convergence threshold

An important part of the Knittel-Metaxoglou critique is that the choice of optimization
algorithm can have a substantial effect on the estimation outcomes. Similarly, Dubé, Fox, and
Su (2012) caution that a loose inner convergence threshold can produce many local minima
with widely varying estimates. We investigate both of these aspects in our setting and with
an accurate numerical integration approach we find the choice of optimization algorithm to
be irrelevant (see the top panel of Table 5) and the impact of the inner convergence threshold
to be of second order (see the bottom panel of Table 5). We therefore base all of our 40,000
estimations in the main part of our study on a trust region optimizer with an analytical

gradient'? and on a stringent inner convergence threshold of 1071°.

3.5 Benchmark comparison and additional computational details

We deviate from the implementation of the nested fixed point algorithm in some aspects from
KM. The changes that we implement make the algorithm more robust and enforce a uniform
convergence threshold for the market share inversion throughout. Specifically, KM follow the
original code of Nevo (2000), which assigns very high but computable values to the objective
function and analytical gradient if a specific parameter value results in numerical overflow.

This issue can be easily avoided by rescaling price. We simply divide price by its standard

" These numbers are 50, 100, 200, 500, 1,000, 2,000, 5,000, 10,000.
128pecifically, we use Matlab’s fminunc optimizer algorithm. This corresponds to KM’s DER1-QN1 opti-
mizer.
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Table 1: Estimated Random Coefficients Using KM’s 50 Monte Carlo Draws

Minl Min2 Min3d Min4d Minb

price 0.328% 0.182 0.162  0.107~ 0.134*
constant 7480  2.720" 5.232% 2001  1.598*
hpwt 2.565  1.063  0.165  5.781** 1.481
aircon 8.800" 0.484  3.629  0.425  4.231*
mpg 0.098 0.687 0134  1.767* 1.163**
T (65) 207.7 2151  216.0 2246  226.9
s 1053 -7.782  -5.787  -4.606  -5.387
n -1.007  -1.374  -0.946 -0.945 -1.263

Wald-statistic 23.26  87.49 72.69 112.4  93.74

Note: * and ** indicate statistical significance at the 95 and 99 percent confidence levels, respectively. Only
the estimated random coefficients, 6, are shown. All inputs to the estimation, including the 50 simulated
draws for consumer preference heterogeneity, v s, are identical to those used by KM. We compute HAC
standard errors. 7;; is the average own-price elasticity and n is the aggregate demand elasticity averaged
over all 20 markets. The null hypothesis of the Wald test is § = 0.

deviation. With this rescaling we have never had to contend with overflow problems in our
40,000 BLP model estimations. Moreover, in KM’s “loose” implementation of the estimation
algorithm, the convergence tolerance in the nested fixed point is dynamically adjusted. When
successive iterates of (11) are close to each other, the convergence threshold is set to 107.
If this is not the case, the threshold is set at 107°. This dynamic adjustment was originally
implemented by Nevo (2000) to reduce the computational burden of the estimation. Given
that Dubé, Fox, and Su (2012) show that a loose convergence threshold is an additional
source of numerical error and given that computational power has increased dramatically
over the last two decades, we enforce a uniform convergence threshold of 10716 throughout.

Using the same set of 50 Monte Carlo draws as KM, we demonstrate that our changes
do not fundamentally impact the Knittel-Metaxoglou critique at this level of numerical
integration accuracy. Table 1 presents the results of estimating specification (16) for 50
different starting values.

We find that 44 of the 50 random starting guesses for 0 yield a local minimum. Rounding
the objective function values of these minima to two digits, we obtain 5 minima that range
between 207.72 and 226.94. This is a more narrow range than that reported by KM. This
indicates that at least some of the lack of robustness in their estimation results could stem

from scaling issues, which we avoid.'® Overall however, the Knittel-Metaxoglou critique is

IBKM’s high cutoff of 30 for the Euclidean norm of the gradient is likely to contribute to a wider range of
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broadly reaffirmed. For each random coefficient, the ratio of its largest to smallest point
estimate across the 50 starting guesses is at least 3 (price) and reaches up to 35 (hpwt).
The model-implied average own-price elasticity and the aggregate demand elasticity vary by
factors of roughly 2.3 and 1.4, respectively. Moreover, the statistical significance of individual
random coefficients changes substantially across minima. In fact, for each coefficient, it
is possible to select a minimum where that coefficient is either statistically significant or
insignificant at the 95 percent confidence interval. Finally, the Wald statistic we obtain by
testing the estimated BLP model against the simple logit model also ranges widely from 23
to 112.

3.6 Veritying Candidate Minima of the Objective Function

We use two criteria to assess whether the output of the optimization algorithm delivers a
minimum. First, it must be the case that all the eigenvalues of the Hessian at the estimated
coefficient vector, 52, are strictly positive. Second, the gradient must be sufficiently close
to zero. The definition of sufficiently close to zero is arbitrary to some extent. We adopt a
cutoff of 0.1 for the Euclidean norm of the gradient at 52. Our qualitative results are robust
to either tightening or relaxing this cutoff. This cutoff is substantially more stringent than
the cutoff of 30 that is adopted by KM.

4 Main results

We present the outcomes of the 40,000 BLP model estimations in two parts. First, we demon-
strate how simulation error propagates in the GMM-IV sample moments and thereby in the
objective function of the estimator. This propagation explains the numerical instabilities
documented by KM. Moreover, simulation error can be reduced substantially by increasing
the number of simulation draws and thereby raising the accuracy of numerical integration.
Second, we document how the mean and spread of the estimation outcomes and the
corresponding economic predictions change with the number of simulation draws. Beyond
500 draws, the spread of the estimation outcomes is falling monotonically in the number of
simulation draws for both integration approaches. The estimated parameters and economic
implications fall into increasingly narrowing intervals. With regards to the mean of the

estimation outcomes, our findings show that simulation error biases the estimation outcomes

outcomes, too.
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Figure 1: Empirical Distribution of E for Selected Products
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Note: Both panels show the empirical relative frequency plots for the estimated structural error term across
2,500 estimations of the BLP model for a given number of simulation draws. The 2,500 estimations are based
on 50 independently sampled sets of preference heterogeneity for a given number of draws. For each of these
50 sets, we estimate the BLP model using 50 random starting guesses. With 50 MC draws, only 1,562 of the
2,500 estimation runs converge to a local minimum. For the 10,000 MLHS draws, all estimations converge.
Estimations that fail to converge are not included in the plots.

in the sample of U.S. automobile market data. Thus, as the number of simulation draws

changes, so do the means of the estimation outcomes.

4.1 Simulation error in the structural error term

Simulation error propagates in the estimates of the structural error term. Figure 1 shows how
the number of simulation draws, which is inversely related to the magnitude of simulation
error, affects the estimates of the structural error term. Both panels plot the empirical
distributions of the estimated unobservable characteristic for the products with the smallest
and largest market shares in the sample. These distributions are based on our least accurate
numerical integration approach, namely 50 Monte Carlo draws (blue), and our most accurate
approach, 10,000 MLHS draws (red). For each of these integration approaches the model is
estimated 2,500 times and each estimation that converges to a local minimum gives us one
estimate of the structural error.

The differences between the distributions are remarkable. Using only 50 Monte Carlo
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draws, the variances of the estimated structural errors are 0.843 and 0.952 for the products
with the smallest and greatest market shares in the sample, respectively. If we use 10,000
MLHS draws, instead, we obtain corresponding variances of only 0.001 and 0.004. In terms of
99 percent confidence intervals, with 50 Monte Carlo draws, the estimate of the unobservable
attribute for the products with the smallest and greatest shares are, respectively, the ranges
from -9.5 to -4.8 and -0.6 to 5.8. Using our most accurate numerical integration approach
gives the corresponding confidence intervals of -7.1 to -6.9 and 2.6 to 3.0. Adopting a
crude integration approach, therefore, produces simulation error that easily overwhelms the
estimates of the error terms. This holds across the sample. We obtain qualitatively identical
figures for the products with the mean and median market shares, for example. Thus,
simulation error randomly perturbs the estimates of each product’s unobserved characteristic

and thereby it affects the shape of the GMM-IV objective function.

4.2 The level of the simulated objective function

The structural error term is a critical ingredient of the GMM-IV objective function, so
the simulation errors in the former directly affect the latter. For a first indication of the
magnitude of the problem, we first fix the nonlinearly entering parameters at our global
minimum candidate, 0 = (1.52,5.84,3.39,0.41,0.10)". It is not essential that we pick this
specific point. We would obtain qualitatively identical results at other candidate values of
6. For each set, we therefore evaluate the objective function at exactly the same point and
only vary the set of simulation draws. Without simulation error, there would be no variation
across the objective function values that we obtain. To fix notation, let 7 (£(6s), ™) denote
the objective function value that we obtain at 52 using the particular set of simulation draws
v, where we use simulation approach m = {MC, MLHS} and generate i = 1,...,1000
independent samples. We vary the number of draws between 50 and 100,000. Table 2
presents the results.

The spread in objective function values is striking. With only 50 Monte Carlo draws, we
see a range of roughly 2,500 for the objective function values. As we hold everything else
constant, the different random samples of v are the sole driver of this effect. To assess how
the variation in objective values changes with the number of simulation draws across the
independently drawn samples, we report the coefficient of variation. For only 50 draws, we
obtain coefficients of roughly 0.5 and 0.34 for Monte Carlo and MLHS integration, respec-

tively. Given that these figures are based on evaluating the objective function at exactly

the same point, this variation is indeed substantial. As we raise the number of simulation
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Table 2: Objective Function Values Obtained Using Monte Carlo and MLHS Draws

Monte Carlo draws MLHS draws
# draws | T o7 |o7/T |rangeof J | J o7 | 07/J | range of J
50 726.7 | 360.5 | .496 2,471 381.6 | 130.8 | .343 1,002
500 286.9 | 70.6 .246 455.3 251.9 | 37.9 151 235.7
5,000 242.6 | 22.3 .092 141 238.1 | 11.1 .047 72.3
100,000 | 236.9 | 4.8 .020 30.8 236.8 | 2.2 .009 14.8

Note: J and o 7 denote the mean and standard deviation of the objective function values for each number
of simulation draws.

draws, however, we can observe a large drop in the coefficients of variation. For 10,000
draws the Monte Carlo and MLHS integration approaches deliver coefficients of around .07
and .03. Raising the number of draws further to 100,000 pushes the coefficient of variation
for the MLHS approach below 1 percent, while its counterpart for Monte Carlo integration
is 2 percent. Finally, we can see that the mean of the objective function tends towards the

same value of roughly 237 for both simulation methods.

4.3 The shape of the simulated objective function

As the GMM estimator minimizes the objective function, its level is less important for
parameter estimation than its shape. To provide an impression of the relevance of the
simulation errors, we trace the objective function in one dimension. We take the parameter
estimate from our global minimum candidate, which is based on numerical integration using
10,000 MLHS draws fs. We hold all o values constant except for opic.. Figure 2 plots
the shape of the objective function along the o,,;.-dimension for several sets of simulation
draws. The red dashed, blue dashed and solid black lines are respectively based on three
independently generated samples of 50, 500 and 5,000 MLHS draws. With 50 draws, the
shape of the objective function changes markedly across the three sets. One of the three sets
attains a local minimum at zero, which implies no preference heterogeneity along the price
dimension. This outcome is strongly rejected by our full set of estimations. A second set
produces a shape that yields two minima along the price dimension. The third set has only
one local minimum, but gives a biased estimate of 0. compared with our global minimum
candidate. For 500 MLHS draws we can already see that the shape of the objective function

stabilizes. There is only one local minimum for all sets, which is not located at zero. There
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Figure 2: Shape of the Objective Function at the Global Minimum Candidate

normalized objective value

Obprice

Note: The objective function is plotted along its oprice dimension for 9 sets of Monte Carlo simulation draws:
3 sets using 50 draws (red dashed), 3 sets using 500 draws (blue dotted), and 3 sets using 5,000 draws (black
solid). To ensure that all objective functions share the same value at oprice = 0, we subtract the objective
value at that point from each of the 9 objective function plots.

is, however, visible variation in the location of the minima. For 5,000 MLHS draws the three
sets generate objective functions that appear to be congruent. The shape of the objective
is stable, the minimum at zero is ruled out and the local minima across the three sets are

located very close to our global minimum candidate.

4.4 Estimation results

The results presented so far show that simulation error randomly disturbs the point estimates
of the structural error terms. These error terms directly enter the sample moment and
thereby affect the level and shape of the GMM-IV objective function. Substantial simulation
error can therefore produce ill-behaved objective functions with many local minima and

widely ranging parameter estimates. We now present three sets of estimation outcomes.
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Table 3: Range and Spread of the Identified Minima

Monte Carlo draws MLHS draws
# draws | J | 07/T | range of J | # Minima | J | o7/J | range of J | # Minima
50 198.6 | .323 283 126 179.6 | .361 254 149
100 195.5 | .311 265 129 183.9 | .302 286 136
200 199.6 | .298 278 128 188.0 | .240 222 132
500 209.3 | .201 222 123 204.4 | .154 157 111
1,000 211.5 | .146 166 99 207.5 | .123 148 102
2,000 214.7 | 135 159 93 221.7 | .078 87 65
5,000 225.1 | .090 101 80 229.3 | .038 53 38
10,000 230.1 | .065 82 Y 232.1 | .029 40 32

Note: MLHS stands for modified latin hypercube sampling. J and o; denote the mean and standard
deviation of the objective function values for each number of simulation draws. To count the number of
unique minima we take all identified minima from the 2,500 estimations that are run for each number of
draws and round the objective function values to whole numbers.

First, we trace out how an increasing number of simulation draws affects the behavior and
robustness of the BLP estimator. Second, we turn to the point estimates of the 5 random
coefficients and their statistical significance. Third, we examine the model-implied economic
predictions by computing the own-price elasticities at the product level and the predicted

price, profit, and consumer welfare effects of a counterfactual merger between Chrysler and
GM.

4.4.1 Behavior and robustness of the nested fixed point estimator

We characterize the behavior of the estimator by examining the range and number of the
identified minima. Table 3 shows that an increase in the number of simulation draws tight-
ens the range and reduces the number of the identified local minima for both integration
approaches. The pattern can be succinctly summarized using the coefficient of variation. In-
creasing the number of draws from 50 to 10,000 reduces the coefficient of variation for Monte
Carlo integration from roughly 32 percent to 6.5 percent. For MLHS draws, the decrease
is more substantial from 36.1 percent to 2.9 percent. Concomitantly, the number of unique
minima is reduced by a factor exceeding 2 and close to 5 for Monte Carlo and MLHS draws,
respectively. The 32 unique minima that are identified using our most accurate numerical
integration approach are obtained across 50 independent samples of preference draws. Thus,

there is less than one minimum per set of draws. Moreover, as we compute the model ag-

20



Table 4: Behavior of the Nested Fixed Point Estimator

Monte Carlo draws MLHS draws

fraction | objective inner fraction | objective inner
# draws | minima calls iterations | minima calls iterations
50 0.625 115.7 40.44 0.545 119.8 43.73
100 0.752 104.4 37.55 0.586 102.6 39.17
200 0.768 89.52 34.56 0.712 97.07 36.73
500 0.821 79.03 33.00 0.842 84.78 33.49
1,000 0.874 73.75 32.52 0.949 76.06 33.30
2,000 0.925 68.62 31.71 0.993 66.14 31.67
5,000 0.999 61.11 30.65 0.999 60.21 30.21
10,000 1.000 58.34 29.84 1.000 56.33 29.72

Note: MLHS stands for modified latin hypercube sampling. All statistics are computed as averages across
all estimations for a given number of draws that converge to a local minimum. The number of objective calls
is the number of GMM-IV objective function evaluations the optimization algorithm requires to converge to
a candidate minimum.

gregate shares more accurately, the reduced number of minima fall into a narrowing range
of values.

As a measure of the estimator’s robustness we use the fraction of starting guesses that
yield a local minimum. With 50 simulation draws, we see in Table 4 that for both simulation
approaches, a large fraction of estimations fails to converge to a local minimum. For Monte
Carlo simulation, this fraction is roughly 40 percent, while for MLHS draws, almost 45
percent of the attempts fail to converge to a local minimum. With 500 simulation draws, this
fraction of failed estimation runs drops below 20 percent for both approaches and beyond
5,000 Monte Carlo draws and 2,000 MLHS draws almost every estimation run identifies
a local minimum. With 10,000 draws, both approaches return a local minimum for all
estimation runs. Thus, with high integration accuracy, the particular starting guess has no
effect on whether the estimator converges to a minimum or not.

Additionally, to evaluate the computational complexity of identifying a candidate min-
imum, we trace out how the number of simulation draws affects the number of iterations
in the estimator’s inner loop, the nested contraction mapping, and the number of objec-
tive function evaluations, the outer loop, that are required for convergence. Table 4 shows
that this measure of computational complexity is roughly identical across the two simulation
approaches. In terms of the number of objective function evaluations we see a substantial

reduction when raising the number of draws from 50 to 10,000. The latter requires around
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Table 5: Choice of Optimizer and Convergence Threshold

Optimizer Effect

Nelder-Mead BFGS Simulated Annealing
draws J T price J T price J T price
50 175.1 2.466 170.3 2.662 359.8 0.919

[22.53, 251.7) | [1.337, 4.228] | [24.34, 251.7) | [1.334, 5.912] | [234.9, 628.5] | [.037, 2.466 ]
5,000 234.4 1.472 233.2 1.484 309.7 1.000

227.6, 244.4] | [1.327, 1.533] | [227.6, 242.0] | [1.428, 1.531] | [259.6, 405.7] | [.089, 1.866]
10,000 231.4 1.460 231.6 1.465 319.5 1.03

[225.4, 237.9] | [1.423, 1.485] | [225.4, 236.9] | [1.446, 1.484] | [253.2, 481.6] | [.243, 1.888]

Convergence Threshold Effect

50 MLHS draws 10,000 MLHS draws
Yinner 10~ 1079 10-16 1074 107 10716
J 241.4 175.8 170.3 245.8 231.6 231.6
[197.8, 311.2] | [43.88, 251.7] | [24.3, 251.7] | [224.6, 265.5] | [225.4, 236.9] | [225.4, 236.9]
Tprice 1.488 2.453 2.662 1.394 1.466 1.465
(859, 2.462] | [1.335, 4.089] | [1.334, 5.911] | [1.169, 1.922] | [1.446, 1.486] | [1.446, 1.484]

Note: Tprice is the average of the estimated opyce coefficients. The 2.5 and 97.5'® quantiles of the outcome
distributions for the objective function values and opyic. are shown in square brackets. To conserve space,
we only report the outcomes from the MLHS simulation approach. The results are based on running the
full 2,500 estimations each for a given number of draws. Thus, the top panel is based on a total of 22,500
estimations and the bottom panel is based on 15,000 estimations. The reported results for the simulated
annealing optimizer are based on 1,000 iterations of the optimizer. As can be seen, the simulated annealing
optimizer did not converge at this point.

57 iterations, while the former needs more than 115 evaluations to arrive at a local minimum
candidate. We also obtain a sizable reduction in the number of iterations in the contraction
mapping from more than 40 to less than 30.

Finally, we examine how sensitive the estimation outcomes are with respect to the choice
of the optimization algorithm and the choice of the inner convergence threshold for the
aggregate market share inversion. The top panel of Table 5 shows how the choice of opti-
mization algorithm affects the outcomes of the estimation. The results are based on running
the 2,500 estimations each for 50, 5,000 and 10,000 MLHS draws with different optimization
algorithms. We select one representative algorithm from three classes of optimization ap-
proaches. The Nelder-Mead algorithm falls into the category of derivative-free optimizers,
the BFGS optimizer is a quasi-Newton optimizer that is derivative-based and lastly, simu-

lated annealing belongs to the class of stochastic optimizers. For the sake of brevity, we focus
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on the average values of the objective function, o, and the estimates that are based on
MLHS draws only. We obtain qualitatively identical outcomes for the remaining coefficients
and the outcomes that we obtain using standard Monte Carlo draws. With 50 draws, we can
see differences in the average outcomes and their empirical 95 percent confidence intervals
across the optimization approaches. The estimates that we obtain with simulated annealing
stand out in particular. Similar to KM, we have found that this optimization algorithm does
not converge within a reasonable amount of time. For the Nelder-Mead and quasi-Newton
approaches, the differences in estimation outcomes turn out to be negligible for both 5,000
and 10,000 MLHS draws. Thus, with a sufficiently accurate numerical integration of the
aggregate market share function, the choice of optimization algorithm becomes irrelevant in
our setting.

In the bottom panel of Table 5, we present evidence on the role of the inner convergence
threshold, which Dubé, Fox, and Su (2012) demonstrate to have a major impact on the
behavior of the BLP estimator. We run the 2,500 estimations each using 50 and 10,000
MLHS draws with three different inner convergence thresholds: 10~*, which is the loose
threshold defined by Dubé, Fox, and Su (2012), 107 and 107'°. We impose the latter for all
of our 40,000 estimations. With only 50 MLHS draws, we indeed find that the convergence
threshold of the nested fixed point algorithm has a measurable impact on the estimation
outcomes. The estimates of 0, and the identified minima of the objective differ across the
three different thresholds. With 10,000 MLHS draws, however, only the very lax criterion
of 107* delivers results that differ markedly. The lax criterion yields a wider range for the
identified minima and o,... The more stringent criteria of 107° and 107! are virtually
identical in terms of the estimation outcomes. Thus, a sufficiently high simulation accuracy

also substantially diminishes the impact of the nested fixed point’s convergence threshold.

4.4.2 Estimated random coefficients and their statistical significance

To assess whether the estimated random coefficients are jointly statistically significant, we
compute the Wald statistic for each local minimum. The null hypothesis is that the standard
logit model is true, so that Hy : § = 0.1 We do not reject the null for one out of a total
of 33,479 identified minima. The evidence in favor of consumer preference heterogeneity is
therefore overwhelming. This is also in line with the evidence above that our findings are

not driven by weak instruments, but by the propagation of simulation error.

MThe test statistic follows a chi squared distribution with the degrees of freedom being equal to the
number of entries in §. At a 95 percent confidence level and with 5 random coefficients, the critical value for
the Wald statistic is roughly 11.07.
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Figure 3: Range of Random Coefficient Estimates and Their Joint Statistical Significance
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Note: To make changes in and around the medians of the point estimates easier, we do not plot the outliers.
Moreover, to conserve space, we only show the box plots for the estimations using MLHS draws. The Monte
Carlo counterparts are qualitatively identical. The Wald statistic is distributed chi squared with 5 degrees
of freedom. The null hypothesis is that all random coefficients are zero, 8 = 0.

The boxplots in Figure 3 clearly show, however, that we obtain a lot of uncertainty in
the random coefficient’s point estimates when low numbers of draws are used to simulate
v. The range for the point estimates tightens drastically, however, as we move to 10,000
draws for both integration approaches. The random coefficient for price, for example, lies
in a range between roughly 1.2 and 1.67 with a mean of 1.47 with 10,000 MLHS draws.
The corresponding range for 50 MLHS draws is roughly 0.2 to 7.6 with a mean of 2.6. The
random coefficient for the constant has a mean of 4.5 across all identified minima and also
lies in a tight range. For air conditioning and miles per gallon, the point estimates strongly
tend toward zero. We see a similar trend for the random coefficient that is placed on the
horsepower-weight ratio. Compared to the other four coefficients, however, the range of the

point estimates is still quite large for this random coefficient. We would need an even higher
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Table 6: Range of Own-Price Elasticities Using Monte Carlo and MLHS Integration

Monte Carlo draws

1} Njj
# Draws | Min. | Mean | Max. | Std. Dev. | Std. Dev.
50 -43.8 | -10.4 | -2.31 5.32 9.97
500 -16.5 | -9.13 | -4.25 2.25 9.55
5,000 -11.1 | -8.53 | -6.14 0.84 9.12
10,000 -10.7 | -8.49 | -6.78 0.65 9.07

MLHS draws
50 -43.7 | -13.4 | -2.36 7.47 13.0
500 -14.9 | -947 | -5.71 1.64 10.1
5,000 -9.68 | -8.54 | -7.33 0.41 9.15
10,000 -9.64 | -8.49 | -6.97 0.32 9.07

Note: MLHS stands for modified latin hypercube sampling. 7;; denotes the average own-price elasticity.
Each measure is computed across all local minima for a given number of draws. To arrive at the standard
deviation of own-price elasticities for each number of draws, we average the standard deviations across all
identified minima

number of draws to tighten this range further. This finding also illustrates that some random
coefficients can be challenging to estimate. Nevertheless, when we examine the individual
statistical significance of the random coefficients, a clear pattern emerges, which also applies
to the estimated preference heterogeneity for the horsepower-weight ratio. The t-statistic
for orice indicates that this coefficient is highly statistically significant. In fact, with 10,000
MLHS draws, there are only 8 cases, where the t-statistic drops below 2.1 For o.onstant, We
observe a similar pattern. Out of 2,500 estimations, only 207 yield a t-statistic below 1.65
and only 358 estimations produce t-statistics below 2. For each 0,,,, and o4, there is not
a single case out of 2,500 estimated minima where the t-statistic exceeds 2. For opp, there
are only 19 such instances. Thus, with sufficient integration accuracy, it turns out that only
the random coefficients on price and the constant are statistically significant. The average
value of the Wald statistic, however, increases with the number of simulation draws even
though we are left with only two statistically significant random coefficients. The range of

the Wald statistic also tightens considerably.
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4.4.3 Model-implied economic outcomes

We assess how sensitive the model-implied economic predictions are to numerical approx-
imation error by characterizing the distribution of own-price elasticities. Table 6 presents
statistics on the first and second moments of the distribution of own-price elasticities. We
summarize the first moment of the distribution by showing the range and mean of the aver-
age own-price elasticity. With only 50 draws, we obtain the widest range, which reaches from
roughly -44 to around -2.3. Moving to 10,000 draws reduces this dispersion substantially.
The mean of the average own-price elasticity increases to -8.5 and the range covers only
roughly -11 to -6.8 for Monte Carlo draws and -9.6 to -7 for MLHS draws. The reduction in
the standard deviation of the estimated average own-price elasticity is impressive. For the
Monte Carlo and MLHS integration approaches, it respectively falls from 5.3 to 0.65 and
from 7.5 to only 0.32.

To examine the second moment of the distribution, we compute the standard deviation
of the own-price elasticities for each local minimum and average the results over all minima.
Both integration approaches tend towards the same measure of the distribution’s spread.
The estimated standard deviation is roughly 9 when using 10,000 draws to integrate the
aggregate market share function. For lower numbers of draws, the spread is systematically

higher.

4.5 Merger simulation

Lastly, we perform a simulation of the equilibrium that results from a merger between GM
and Chrysler. These kind of counter-factual simulations are often the ultimate questions of
interest in applied industrial organization studies. We simulate this scenario for each of the
20 years in the sample and average the results using units sold as weights. Figure 4 shows
the distributions of the simulated change in consumer welfare following the merger for the
two simulation approaches.

With only 50 draws, the estimation can deliver outcomes that range from hardly any
detrimental effect to consumer welfare to an average annual welfare loss between 4 and 6
billion dollars. With 10,000 draws, the Monte Carlo and MLHS approaches deliver a mean
annual consumer welfare loss of close to 1.5 billion dollars. With 50 draws, this estimate
drops by roughly 40 percent to around 900 million dollars. The direction of this change

is in line with how an increase in the number of simulation draws affects the estimates of

We compute Eicker-Huber-White standard errors.
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Figure 4: Change in Consumer Welfare
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Note: The panels show the distribution of the average annual change in consumer welfare following a merger
between GM and Chrysler.

own-price elasticities. We consistently obtain own-price elasticities of lower magnitude for
a higher number of simulation draws. Thus, with fewer draws demand is estimated to be
overly elastic. This immediately implies that the welfare losses and price changes following a
merger in the market are smaller with a low integration accuracy. We surmise that this effect
is driven by having sufficiently strong IVs. These effectively bound the estimates of own-price
elasticities away from one. Simulation error produces a wider spread of the estimates. With
a bound on own-price elasticities at one, this spread is likely to lead to an over-estimation
of demand elasticities, which in turn affects the outcomes of our merger simulation.

Table 7 shows how this biases the estimates of post-merger price and profit changes. The
relatively crude approximations to aggregate market shares deliver price and profit effects
that are on average too low and yield substantially wider confidence intervals. In relative
terms, this bias is substantial. For both simulation approaches, using 10,000 draws gives
an average price effect that is roughly 45 percent greater than what we obtain with only 50
draws. For the profit effect, the bias is between 15 and 24 percent for the MLHS and Monte

Carlo approach, respectively.
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Table 7: Counterfactual Price and Profit Changes for the Merging Parties following a

Chrysler-GM Merger

Monte Carlo draws MLHS draws

draws | Ap (percent) | Am (mln 1983 dollars) | Ap (percent) | Ar (mln 1983 dollars)
20 3.53 418 3.49 454

[1.85, 6.85] [191, 640] [1.56, 6.37] 297, 683]
500 4.78 203 5.03 526

[2.61, 6.93] 301, 660] [3.21, 6.95] (384, 666]
5,000 5.14 521 5.15 524

[3.81, 6.40] 397, 620] [4.22, 5.84] 457, 568
10,000 5.09 519 5.10 521

[4.17, 6.09] 431, 604] [4.56, 5.71] (479, 568

Note: The reported figures are based on simulating the GM-Chrysler merger for each of the 20 years in the
sample and averaging the simulated outcomes by units sold. 95 percent confidence intervals are shown in
square brackets.

5 Computational costs

Dubé, Fox, and Su (2012) point out that the desire to speed up the estimation of BLP
models confronts the researcher with the temptation to introduce approximation or simula-
tion error. Our results show that giving in to this temptation will backfire by undermining
the replicability and reliability of the estimation results. On the other hand, increasing the
number of Monte Carlo simulation draws to a sufficient level can induce burdensome or even
infeasible computational costs.

In this section, we first highlight the trade-off between accuracy and speed in our sim-
ulation exercise (Section 5.1). Then we discuss different ways to achieve higher accuracy
while reducing the computational costs by (1) tweaking the algorithm for the inversion of
the market shares (Section 5.2) and (2) using different numerical integration algorithms (Sec-
tion 5.3). Section 5.4 briefly introduces an R package and Matlab code for the estimation
of BLP models that include these improvements and are a computationally more efficient
implementation of the BLP estimation algorithm than the Matlab programs of KM, which
are based on the code accompanying Nevo (2000). We attain speedups of 7 and 6 for the R

package and our Matlab code, respectively.
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Figure 5: Computational Burden versus Accuracy
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Note: The dashed lines in the left plot show the 95 percent empirical confidence intervals for the time
required to complete a BLP model estimation with the corresponding number of draws on the x-axis. In
the right panel, the solid black line shows the asymptotic convergence rate that applies to both numerical
integration approaches.

5.1 The tradeoff between speed and reliability

How much precision is gained by an increase in the number of simulation draws and how
much does this raise the computational burden of a single model estimation? The left panel
of Figure (5) plots the average time it takes to estimate specification (16) for each number
of simulation draws. Note that all axes are on a log-scale for the sake of readability. The
computational burden increases linearly with the number of draws. In fact, we obtain an
elasticity of close to one for the runtime of an estimation with respect to the number of
simulation draws. Moreover, we also find that using MLHS draws requires a roughly 15
percent longer compute time on average.'® MLH-sampling ensures that a uniform number
of draws is generated for each quantile of the assumed distribution of v. We therefore obtain
more simulation draws in the tails of the distribution with this sampling scheme than with
standard Monte Carlo sampling. This causes the market share inversion using MLHS draws
to take a longer time to converge for values of #; that are far away from 6*.

The right panel shows how the variance of the identified minima from the 40,000 BLP

model estimations decreases with the log-number of simulation draws. With only 50 simu-

16With 10,000 draws, the average BLP estimation that uses Monte Carlo draws takes 700 seconds, while
estimation with MLHS draws takes roughly 800 seconds.
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lation draws, we obtain a variance of roughly 4,000 for both integration approaches. With
10,000 draws the variance falls to 44 for MLHS integration and to 225 for Monte Carlo
integration. Thus, roughly 5 times as many Monte Carlo draws are needed to attain the
same integration accuracy of a given number of MLHS draws. We therefore find estimation
using MLHS draws to be computationally more efficient even when each estimation run on
average takes 15 percent longer than when using Monte Carlo draws. The solid black line
plots the asymptotic convergence rate that applies to both integration approaches. We can
see that the actual reduction in the variance of the identified local minima closely follows
the asymptotic convergence rate.

Putting both panels together, we can state that doubling the number of simulation draws
roughly reduces the variance of the objective function by half. This fits the behavior of the
estimator well for a sufficiently large number of draws; in our case from roughly 500 draws
onwards. The same convergence rate applies to MLHS draws. This sampling method can
match the variance of the objective function obtained with standard Monte Carlo simulation
with only a fifth of the number of Monte Carlo draws, however. The increase in accuracy
requires a roughly one-for-one increase in compute times. It takes roughly 200 times longer
to estimate specification (16) with 10,000 draws than with 50 draws. Even though this
might sound dramatic, keep in mind that we are moving to 800 seconds or 13 minutes and
20 seconds on average for MLHS integration.

As our results above stress, performing relatively few estimations with many simulation
draws that produce precise and reliable results are useful for answering economic questions of
interest. Running many more estimations with few numbers of draws gives highly unstable
and on average biased results. Following the implications of the Knittel-Metaxoglou critique
in this situation requires re-estimating the model for different optimizers and convergence
criteria, for example, and makes the transparent communication of the estimation results
more difficult. A direct comparison of the compute times for a single estimation of (16) is
therefore lopsided.

Accurate numerical integration comes at the price of a higher computational burden,
but rewards the researcher with reliability and therefore a substantially lessened need for
extensive robustness checks. The researcher’s main concern should therefore be the reliability
of the estimates and not the manageable computational burden of running the estimations.
Having said that, we provide two approaches for decreasing the computational burden of
BLP model estimations. First, the 40,000 BLP estimations are in fact an “embarrassingly

parallel” computational task: each estimation is independent of all other estimations. The
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speedup from parallelization therefore moves almost one-for-one with the number of compute
cores that are used.!” Second, we provide a simple reformulation of the BLP contraction
mapping that gives a speedup of roughly 2. The nitty gritty of this reformulation is discussed

next.

5.2 Speeding up the inversion of market shares

Iterating on the BLP contraction mapping, (11), until convergence is the most compute-
intensive part of the estimation. We can speed up the inversion by a factor of roughly
2 by avoiding a large number of numerical divisions. Nevo (2000) notes in his Appendix
that taking logs is a computationally costly operation and that the computational burden of
repeatedly solving the fixed point during the estimation can be reduced by exponentiating

the equation.

Jx1
S
w;ter—l—l — ;ter - J - (17)
— iter
R E S (W v, 0)
N r
Jx1

Here, w = exp(d,) is the exponential of the mean utility vector. This reformulation gives
a substantial speedup in computing the contraction mapping by avoiding the need to re-
compute the log shares during the iteration. In the denominator of the expression, the
model-implied aggregate market share for each of the J products is computed. To do so, the

full matrix of consumer-level choice probabilities must be computed.

JXR

-~

exp(0 % Uy + [11;(v, 602)))
[05(0,v,02)],_y  Rijer g = - j (18)
Bl =1, Ly * (1+Zexp(5k*LIR+ (11 (v, 02)]))

(.

-~

JXR

LR is a vector of ones with R elements. It has the effect of stacking the vector of mean utilities
horizontally R times. In the numerator ¢; stacks the denominator vertically J times. This
makes the numerator and denominator conformable and the s,;’s for a whole market can
be computed in one matrix operation. We are dividing a J x R matrix by another J x R

matrix, which requires J * R divisions.

1"The Matlab code that we have used will be made available online and we have made available the R
package BLPestimatoR on the CRAN repository that uses the same speedup of the contraction mapping.
Both programs implement a parallelization scheme that runs each estimation independently.

31



We can avoid a large number of these divisions by noting that the contraction mapping

can be formulated in terms of consumer-specific choice probabilities for the outside option.

Let v,.; = exp(fir;)-

Jx1
~
S; S;

— J
wi'twvrj o - iter
R™! Zr W R ! Z Urj5r0<w t , UV, 92) (19)

kW, Urk

iter+1 __ iter
wj = wj

J

-~

Jx1

In the denominator on the rhs only the R choice probabilities for the outside option must

be computed instead of the full matrix of choice probabilities for the inside products.

[500(0,0,02)],21 g = 1/[(1+ > exp (B # g + (v, 62)))] (20)
k
The alternative fixed point iteration (19) only requires a total of J + R instead of J + J * R
numerical divisions. Unless there is only one inside product in the market, the computa-
tional burden for our reformulation in terms of the consumer-specific outside good choice
probabilities has a strictly lower computational burden.

Figure 6 illustrates this. For the BLP automobile data, we solve the nested fixed point for
each of KM’s 50 starting guesses. We do this for numbers of draws between 50 and 100,000.
The solid blue line plots the time to convergence required by the Nevo version of the fixed
point, while the dashed red line corresponds to our version of the same fixed point problem.
We want to emphasize that both versions need exactly the same number of iterations to
reach the convergence threshold and give exactly the same 6* for all of the starting guesses.
Formulating the contraction mapping in terms of the outside good shares yields a speedup
of at least 2. This matches the speedup of the approximate BLP estimator of Lee and Seo
(2015), which uses a linear approximation of the market share equation to solve the fixed
point problem analytically. We attain roughly the same speedup, but solve the fixed point
problem exactly and thereby retain all the properties of the original BLP estimator without
introducing an additional source of approximation error that propagates in the estimator’s

objective function.!®

18The precision with which the fixed point is solved is of course limited by the convergence threshold.
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Figure 6: Computational Burden of Solving the Fixed Point
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Note: The left panel shows the average time to reach the convergence threshold 10~* in the contraction
mapping over KM’s 50 random starting guesses for the random coefficients. The black line shows the
outcomes for the original BLP contraction mapping, while the solid blue line corresponds to the fixed point
formulation of Nevo (2000) and the dashed red line shows our reformulation. We evaluate 50, 100, 200, 500,
1,000, 2,000, 5,000, 10,000, 50,000 and 100,000 draws using 10 independently generated samples and average
the time until convergence across these 10 sets. The right panel plots the ratio of the time to convergence
for the Nevo and our fixed point formulation.

5.3 Numerical integration algorithms

The critical integral in the market share equation, (5), can be approximated with different
numerical algorithms. The choice of the algorithm can have large effects on the accuracy
at a given computational cost (or on the required computational burden to attain a given
accuracy). In our main analyses, we have seen that plain-vanilla Monte Carlo simulation
requires roughly 4 to 5 times as many draws as MLHS-based approximation to attain the
same integration accuracy. Given that the computational burden increases roughly one-for-
one with the number of simulation draws, it follows that Monte Carlo draws present 4 to 5
times the computational burden of MLHS draws.

There are a number of other alternative approaches that may be more efficient than
MLHS. For example, Nevo (2001) uses Halton draws, which Hess, Train, and Polak (2006)
find to perform roughly on par with MLHS draws. Sovinsky Goeree (2008) applies antithetic
sampling to increase simulation efficiency. This simulation approach has the additional

advantage that it yields an objective function that is symmetric around the origin.
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In low dimensions, Gaussian quadrature can be very efficient. In higher dimensions,
sparse-grids quadrature is a potentially powerful approach, see Heiss and Winschel (2008). It
has been successfully applied for the estimation of BLP models for example by Bjornerstedt
and Verboven (2016). In our own experience with our setup for this paper, sparse grids
quadrature works very well in the majority of cases.”

Importance sampling and adaptive integration algorithms can greatly improve the ap-
proximation quality, see Heiss (2010). Berry, Levinsohn, and Pakes (1995) use importance
sampling to increase the accuracy of numerically integrating the model-implied aggregate
shares. Brunner (2017) shows that this is a very promising approach in the context of BLP
model estimation. Due to space constraints, we cannot go into more detail here. As our re-
sults clearly indicate that accurate approximations are critical, and since the computational
burden can be overwhelming, there is a large potential for further improving the approxi-
mation algorithms. To reduce the computational burden of BLP model estimation we also
provide software that is several times faster than the replication code of KM, which in turn
is based on the Matlab code of Nevo (2000).

5.4 The BLPestimatoR package and Matlab code for efficient es-

timation

We have implemented our suggestions to speed up the BLP estimation in the R package
BLPestimatoR, available at the Comprehensive R Archive Network.?’ In addition to the
algorithmic refinements from Section 5.2 and different approximation algorithms, the core
of the package is written in the C language. We also provide our Matlab code that we have
used for the 40,000 BLP model estimations in this paper. Both programs use parallelization
to reduce the computational time required to run several independent estimations of BLP
model specifications. To illustrate the speedups that can be expected we use a horse race
between the code provided by KM, which in turn is based on the Matlab code accompanying
Nevo (2000), the R package BLPestimatoR and our Matlab code.?!

The horse race is structured as follows. We generate 1,000 independent sets of pref-

erence draws, v, with 1,000 simulation draws each. We then fix the parameter vector

19Tn extreme cases with poor parameter starting guesses, sparse grids approximation can cause problems
with negative market shares. These cause problems if they aren’t dealt with appropriately.

20See https://cran.r-project.org/web/packages/BLPestimatoR/

21 Aviv Nevo’s code is available at http://faculty.wcas.northwestern.edu/~ane686/supplements/rc_
dc_code.htm. However, it has not been updated for a while and some references to built-in Matlab functions
are no longer valid. The code provided in the replication files of KM is directly based on Nevo’s code and
can be used as a replacement.
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Table 8: Benchmarking BLP Estimation Routines

Matlab R - BLPestimatoR Matlab
KM BHRW - pure R | Rcpp | 2 cores | BHRW - pure Matlab | 2 cores
2.57 5.20 0.36 0.18 0.43 0.22

Note: All runtimes are reported in seconds. The results use the automobile data from BLP and implement
specification (16) above. The runtimes are based on 1,000 evaluations of the BLP estimator’s GMM-IV
objective function at independently drawn sets of preference heterogeneity, v. Each set has 1,000 draws
per characteristic and resamples by market. The reported runtime is the time it took to evaluate the
objective once averaged over the 1,000 evaluations. The parameter vector at which we evaluate the objective
is 6 = (1.52,5.84,3.39,0.41,0.10). KM stands for the implementation of Knittel and Metaxoglou (2014),
while BHRW is the implementation used for the 40,000 BLP estimations in this paper. It uses the fixed
point formulation (19). The Repp entry for BLPestimtoR implements the contration mapping in C within
R using the Repp package (Eddelbuettel and Frangois (2011)). The entries “2 cores” use parallelization at
the level of each combination of starting guess and set of preference draws. The R implementation uses
mclapply, while our Matlab code uses parfor. All benchmarks were run on the same Linux workstation
with an Intel Xeon E5-2640 v3 CPU.

0, = (1.52,5.84,3.39,0.41,0.10) and evaluate the GMM-IV objective function value for each
of the 1,000 sets of draws. This requires the numerical inversion of the aggregate market
shares and therefore covers the bulk of the computational burden for a full BLP model esti-
mation. To obtain measures of the computational cost of each, we then average the runtimes
of each objective evaluation across the 1,000 sets of draws.

Table 8 presents the outcomes of this benchmarking exercise. The entry in the first col-
umn uses the replication code of KM. The code is modified to only perform the objective
function evaluation and nothing else. We also make sure that all programs use the same sets
of draws, convergence criteria and input variables. Thus, all programs perform mathemati-
cally equivalent evaluations of the objective function. Last but not least, all evaluations have
been run on the same computer. On average the Matlab code provided by KM requires 2.57
seconds per function evaluation. All entries for the BLPestimatoR package implement our
more computationally efficient reformulation of the contraction mapping, (19). An imple-
mentation in pure R requires roughly twice the runtime of KM’s Matlab routine. When we
implement the contraction mapping in the C programming language using the Rcpp package,
however, the runtime of the R package drops to a mere 0.36 seconds, which gives roughly
a 7 times speedup over the KM code. Parallelizing the objective evaluations on 2 cores is
very efficient, as it yields a speedup of almost exactly 2. The runtime drops to 0.18 seconds,
a 14 times speedup over KM’s program. Our Matlab routine is written purely in Matlab

and does not outsource the computation of the contraction mapping to an external C func-
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tion.?? Nevertheless, it performs almost on par with the BLPestimatoR package. Without
parallelization the runtime is 0.43 seconds, which is roughly 20 percent slower than our R
package and gives a 6 times speedup over KM’s Matlab routine. Parallelizing the objective
evaluations is again highly efficient and roughly halves the runtime to 0.22 seconds.??

Both our R package and Matlab code are available for researchers who want to estimate

BLP models reliably and quickly. The R package also contains a convenient interface.

6 Conclusions

The BLP model’s nested fixed point estimator is susceptible to numerical instabilities if simu-
lation error in the model’s aggregate market share function is large. By substantially raising
the number of simulation draws, however, the sample moments are computed accurately
and the estimator’s sensitivity to the specific combination of starting guess, optimization
algorithm and the convergence threshold of the nested fixed point disappears. Instead, the
estimator delivers an increasingly narrowing set of minima of its objective function, which
also brings with it tighter sets of parameter estimates and implied economic predictions.
Given a suitable set of instrumental variables, the main concern for the reliable numerical
implementation of the BLP model should therefore be to reduce the approximation error in
the market share integral.

Berry, Linton, and Pakes (2004) show that in a single cross-section the BLP model’s
nested fixed point estimator satisfies asymptotic normality if the ratio of the number of
products squared over the number of simulation draws, J?/R, is bounded as the number
of products becomes large. This asymptotic result clearly resonates with our findings and
in this sense the estimator behaves as advertised. In the automobile data the number of
products varies between 72 and 150 products per market with on average roughly 111 cars
per year. For 10,000 draws the estimator delivers a local minimum of the objective function
for every combination of starting guess and set of simulation draws.

The reduction of simulation errors simplifies the implementation, verification and com-
munication of BLP model estimates relative to the guidance offered by KM and Goldberg
and Hellerstein (2013). We find it unnecessary to re-estimate the model with multiple opti-

mization algorithms once simulation error is taken seriously. This also highlights potential

22This is possible in Matlab using a mex file.

23We have also implemented the contraction mapping in pure Fortran. The maximum speedup over pure
Matlab was around 2 and requires switching on several compiler optimizations, which make the code less
safe than Matlab. The program, for example, does no longer check whether arrays are accessed inbounds.
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gains in computational efficiency. The Simplex or Nelder-Mead optimization algorithm is
frequently used, because it is seen as particularly robust. We could not find any measur-
able difference in terms of estimation outcomes between the Nelder-Mead algorithm and
a trust-region method that uses an analytical gradient. The latter approach, however, is
computationally much more efficient. Similarly, the impact of the nested fixed point’s con-
vergence threshold is substantially reduced with an accurate approximation of the model’s
aggregate market share function. A maximum threshold of 107 seems to work well for the
automobile data. The loose threshold of 10~* should simply not be used in any setting.

We caution, however, to push our findings regarding the use of different starting guesses
too far. KM have selected these 50 starting guesses after having evaluated the objective
function for many more values. Thus, these guesses are likely to cover the potential parameter
space well. The higher the dimensionality of the estimation problem, the more difficult it
becomes to provide a good coverage of the parameter space. Therefore, all else equal, more
guesses should be used for BLP models with a larger number of random coefficients. We
therefore do not recommend a reduction in the number of starting guesses.?* Moreover, each
candidate minimum should be carefully verified. At the estimated parameter vector, the
Hessian matrix must be positive definite and the norm of the gradient must be close to zero.

We re-emphasize that consistent identification requires strong and valid IVs. Our results
show, however, that simulation error can easily overwhelm the estimates of the structural
error terms even when the IVs are not weak. The error propagates in the GMM-IV objec-
tive function and produces many local minima with a wide range of parameter estimates
and corresponding economic implications. The accurate numerical integration of the BLP
model’s aggregate market share function is therefore necessary to attain reliable identifi-
cation. A high degree of numerical integration accuracy and relevant and valid IVs are
therefore complements, not substitutes.

One way to reduce the approximation errors is to increase the number of Monte Carlo
simulation draws. As this can be challenging or prohibitive in terms of computational costs,
we finally discuss ways to improve the computational efficiency of numerically integrating
the aggregate shares and provide efficient R and Matlab code. In comparison with the
replication programs of KM, our routines provide speedups of roughly 7 and 6 for our R
package and Matlab program, respectively. We can therefore substantially alleviate the

burden of estimating BLP models reliably.

24Gelecting 50 starting guesses from thousands of evaluations, however, is likely unnecessary.
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