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Abstract

We show that continuous models of stimulus-driven attention can account for
skewness-related puzzles in decisionmaking under risk. First, we delineate that these
models provide a well-defined theory of choice under risk. Therefore, we prove that
in continuous—in contrast to discrete—models of stimulus-driven attention each lot-
tery has a unique certainty equivalent that is monotonic in proabilities (i.e., it mono-
tonically increases if probability mass is shifted to more favorable outcomes). Second,
we show that it depends on the skewness of the underlying probability distribution
whether an agent seeks or avoids a specific risk. As unlikely, but outstanding payoffs
attract attention, an agent exhibits a preference for right-skewed and an aversion to-
ward left-skewed risks. While cumulative prospect theory can also account for such
skewness preferences, it yields implausible predictions on their magnitude. We show
that these extreme implications can be ruled out for continuous models of stimulus-
driven attention.
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1 Introduction

Few individuals are globally risk-averse or risk seeking. Instead, many individuals buy
insurance (i.e., behave risk averse) and gamble in casinos (i.e., behave risk seeking) at the
same time. Whether an agent seeks or avoids a specific risk depends on the skewness of
the underlying probability distribution. Typically, agents insure against large potential
losses that occur rarely (e.g., Sydnor, 2010; Barseghyan et al., 2013). For example natural
desasters belong to this group of left-skewed risks. At the same time, individuals seek
right-skewed risks such as casino gambles according towhich a large gain is realizedwith
a very small probability (e.g., Golec and Tamarkin, 1998; Garrett and Sobel, 1999; Forrest
et al., 2002). The observation that agents tend to seek right-skewed and avoid left-skewed
risks (e.g., Ebert and Wiesen, 2011; Ebert, 2015) is denoted as skewness preferences.

A compelling explanation for skewness preferences is still missing. Expected utility
theory (EUT) predicts either risk averse or risk seeking behavior as it implies a valuation
for risky options that is linear in probabilities. Thus, it cannot account for risk attitudes
that depend on the skewness of a given probability distribution. In order to match exper-
imental and empirical evidence, cumulative prospect theory (CPT; Tversky and Kahne-
man, 1992) has proposed non-linear probability weighting. As a CPT agent overweights
small probabilities, she exhibits a preference for right-skewed and an aversion toward left-
skewed risks. This mechanism, however, does not offer any psychologically sound expla-
nation why skewness matters. In addition, cumulative prospect theory makes implausi-
ble predictions on the magnitude of skewness preferences (e.g., Rieger and Wang, 2006;
Azevedo and Gottlieb, 2012; Ebert and Strack, 2015, 2016). Altogether, neither expected
utility theory nor cumulative prospect theory conclusively explain the role of skewness
in choice under risk.

Models of stimulus-driven attention offer a more intuitive explanation for skewness
preferences. According to these models, individuals are local thinkers whose attention is
automatically directed toward certain outstanding choice features while less attention-
grabbing aspects tend to be neglected.1 Similar to cumulative prospect theory, these ap-
proaches incorporate probability weighting, but the distortion of a probability weight is
endogenously determined by the relative size of the corresponding payoff. Probabilities
of outstanding outcomes are inflated, while probabilities of less attention-grabbing out-
comes are underweighted. In a typical lottery game, for instance, the large jackpot stands
out relative to the rather low price of the lottery ticket, thereby attracting much attention.
Overweighting the probability of winning the (salient) jackpot, a local thinker behaves
risk seeking. In contrast, an agent typically demands insurance against unlikely, but po-
tentially large losses. Compared to the rather small insurance premium the large loss
stands out, its probability is inflated and a local thinker behaves risk averse. Importantly,
this line of argumentation holds for different models of stimulus-driven attention, that
are, salience theory of choice under risk (Bordalo et al., 2012, henceforth: BGS) and a model

1We have borrowed the notion of local thinking from a related model by Gennaioli and Shleifer (2010).
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of focusing (Kőszegi and Szeidl, 2013, henceforth: KS). Accordingly, models of stimulus-
driven attention can account for both a preference for right-skewed and an aversion to-
ward left-skewed risks.

Our contributions in this paper are threefold. First, we show that continuousmodels of
stimulus-driven attention satisfy basic axioms of choice under risk. In particular, for any
lotterywith finitelymany outcomes, there exists awell-defined certainty equivalent that is
monotonic in outcomes and probabilities. Kontek (2016) has shown that in discretemodel
variants (i) certainty equivalents may not exist and (ii) monotonicity in probabilities may
be violated. These results hinge on the assumption that in the discrete salience model, for
instance, the objective probability of the ith most salient outcome is discounted via a factor
δi+1 for some parameter δ < 1. Then, monotonicity in probabilities may be violated if
probabilitymass is shifted from a low, salient outcome to a larger, but less salient outcome
which is strongly discounted. BGS use the simplified, discrete version of their model for
analytical ease as long as the use of the underlying continuousmodel is not necessary. We
show that all problems raised byKontek (2016) are resolved in the continuous salience and
focusing models.

Second, we show that models of stimulus-driven attention predict skewness prefer-
ences. For the discrete salience model, Bordalo et al. (2013a) have argued that salient
thinkers like right-skewed and dislike left-skewed assets, but they have not precisely dis-
entangled a salient thinker’s preferences for risk and skewness. In contrast, we derive
skewness preferences formally that is, we show that a salient thinker is more likely to
choose a binary risk if it is ceteris paribus (i.e., for given expected value and variance)
skewed further to the right. In addition, we single out the channel (contrast effects) through
which the salience model predicts skewness preferences. The contrast effect means that,
when comparing a risky and a safe option, a risky outcome receives themore attention the
more it differs from the safe option’s payoff. As the models of salience (BGS) and focusing
(KS) share the assumption of contrast effects, both predict skewness preferences.

Third, we show that unrealistic predictions of cumulative prospect theory on themag-
nitude of skewness preferences (e.g., Rieger andWang, 2006; Azevedo and Gottlieb, 2012;
Ebert and Strack, 2015, 2016) can be resolved in the continuous salience and focusingmod-
els. For CPT agents, there always exists a sufficiently skewed, small binary risk with neg-
ative expected value that is attractive. As a consequence, a CPT agent either gambles until
bankruptcy or, if she anticipates her behavior, never starts to gamble (Ebert and Strack,
2015, 2016). In addition, gambles with an arbitrarily large expected loss may attract CPT
agents (Rieger and Wang, 2006; Azevedo and Gottlieb, 2012). Models of stimulus-driven
attention do not necessarily share these extreme predictions.

Skewness preferences are relevant in several important economic, especially financial,
decision situations. Barberis (2013), for instance, argues that skewness preferences can
account for the puzzle that the average return of stocks conducting an initial public of-
fering is below that of comparable stocks. This can be explained by the fact that stocks
that conduct an initial public offering are typically right-skewed and therefore overpriced
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(Boyer et al., 2010; Bali et al., 2011; Conrad et al., 2013). In this line, Green andHwang (2012)
find that the more skewed the distribution of expected returns is, the lower is the long-
term average return of an initial public offering stock. This also relates to the well-known
growth puzzle (Fama and French, 1992) according to which value stocks, which are un-
derpriced relative to financial indicators, yield higher average returns than (overpriced)
growth stocks. Bordalo et al. (2013a) suggest that this discrepancy arises as value stocks
are typically left-skewed while growth stocks are usually right-skewed. Relatedly, skew-
ness preferences play an important role for portfolio selection (Chunhachinda et al., 1997;
Prakash et al., 2003; Mitton and Vorkink, 2007). They further allow to understand the
prevalent use of technical analysis for asset trades, even though it is futile in light of the
efficient market hypothesis (Ebert and Hilpert, 2016). Finally, a preference for skewness
also matters in labour economics as workers reveal skewness affection in wages (Hartog
and Vijverberg, 2007; Berkhout et al., 2010). Altogether, skewness preferences help to un-
derstand various puzzles of economic decision making.

We proceed as follows. Throughout the paper, we restrict our analysis to the model
of salience (BGS) while we provide the analogous results for the focusing model (KS)
in Appendix B. In Section 2, we present the continuous salience model. Subsequently,
we prove that in this model a lottery has a well-defined certainty equivalent that satisfies
monotonicity (Section 3). In Section 4, we show that the salience model predicts skewness
preferences. In Section 5, we delineate that puzzles on the magnitude of skewness pref-
erences emerging for CPT agents can be resolved in the salience model. Finally, Section 6
discusses our findings and concludes. All proofs are relegated to Appendix A.

2 Model

According to salience theory of choice under risk, a choice problem is defined by some
choice set C, which contains a finite number of lotteries yielding risky monetary payoffs,
and the corresponding space of states of the world S. Each state of the world corresponds
to a payoff-combination of the available lotteries. Suppose an agent chooses a lottery from
the set C := {Lx, Ly} where Lx := (x1, p1; . . . ;xn, pn) and Ly := (y1, q1; . . . ; ym, qm) with
n,m ∈ N and

∑n
i=1 pi =

∑m
i=1 qi = 1. Thereby the payoffs xi denote pairwisely distinct

monetary outcomes, which occur with strictly positive probabilities pi > 0 for 1 ≤ i ≤ n

(we impose analogous conventions for lottery Ly’s outcomes). The decision maker evalu-
ates monetary outcomes via a strictly increasing value function u(·) with u(0) = 0. Each
state of the world sij := (xi, yj) occurs with some objective probability piqj .2 According
to standard theory, lottery Lx’s expected utility U(·) equals

U(Lx) =
∑
sij∈S

piqju(xi).

2Here, it is assumed that the lotteries are independent. This assumption is for notational convenience
and without loss of generality.
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According to salience theory of choice under risk, a decision maker evaluates a lottery
by assigning a subjective probability to each state sij that depends on the state’s objective
probability piqj and on its salience. In particular, salience of state sij ∈ S is determined by
a symmetric, bounded and continuously differentiable salience function σ(·, ·) that satis-
fies the following three properties:

1. Ordering. Let µ = sgn(u(xi)− u(yj)). Then for any ε, ε′ ≥ 0 with ε+ ε′ > 0,

σ(u(xi) + µ ε, u(yj)− µ ε′) > σ(u(xi), u(yj)).

2. Diminishing sensitivity. Let u(xi), u(yj) ≥ 0. Then for any ε > 0,

σ(u(xi) + ε, u(yj) + ε) < σ(u(xi), u(yj)).

3. Reflection. For any u(xi), u(yj), u(xk), u(yl) ≥ 0, we have

σ(u(xi), u(yj)) < σ(u(xk), u(yl))

if and only if σ(−u(xi),−u(yj)) < σ(−u(xk),−u(yl)).

Following the smooth salience characterization proposed in Bordalo et al. (2012, page
1255), each state sij receives salience weight ∆−σ(u(xi),u(yj)) for some salience function
σ(·, ·) and some constant ∆ ∈ (0, 1] that captures an agent’s susceptibility to salience.
We say that a state sij is the more salient the larger the salience weight assigned to it. A
rational decision maker is captured by ∆ = 1, while the smaller ∆ is, the stronger is the
salience bias. An agent with ∆ < 1 we call a salient thinker.

Definition 1. A salient thinker’s decision utility U s(·) for Lx ∈ {Lx, Ly} is given by

U s(Lx) =
∑
sij∈S

piqj u(xi) ·
∆−σ(u(xi),u(yj))∑

sij∈S piqj ∆−σ(u(xi),u(yj))
.

This gives the decision utility according to the continuous model proposed by BGSwhere
the normalization factor in the denominator ensures that the distorted probabilities sum
up to one. Note that for safe options c ∈ R we have U s(c) = U(c) = u(c). Hence the
normalization ensures that a salient thinker’s valuation for a safe option c is undistorted,
irrespective of the composition of the choice set.

The ordering property says that a state is the more salient the more the lotteries’ pay-
offs in this state differ. In this sense ordering captures the contrast effect, according towhich
a large difference in the values assigned to the outcomes in a given state attracts a salient
thinker’s attention.3 Diminishing sensitivity reflectsWeber’s law of perception and implies
that the salience of a state decreases if the outcomes’ values uniformly increase in absolute

3If we fix one argument of the salience function, then the ordering property is equivalent to the contrast
effect, that is, the salience of a state increases if and only if the difference in values increases.
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terms. Hence diminishing sensitivity captures the level effect according to which a given
contrast in the value of outcomes ismore salient for lower outcome levels. As contrast and
level effects are more intuitive and easier to understand than the properties of ordering
and diminishing sensitivity we will refer to these notions whenever it is possible in the
following analysis.

In Appendix Bwe present the closely related focusingmodel (KS). According to focus-
ing, an agent’s attention directed to a given state is assessed by a focusing function (i.e.,
the pendant to the salience function in the preceding approach) that satisfies the contrast,
but not the level effect.

3 Certainty equivalents and monotonicity

Models of choice under risk should allow to identify certainty equivalents for all lotteries
to ensure that a lottery’s evaluation is well-defined. Certainty equivalents are typically re-
quired to satisfy the axiom of monotonicity according to which a lottery’s certainty equiv-
alent increases if either probability mass is shifted toward more favorable outcomes or if
some outcomes increase. We precisely define these properties as follows.

Definition 2. Let L := (x1, p1; . . . ;xn, pn) denote some lottery with xi ∈ R for all 1 ≤ i ≤ n.
Outcomes are ordered such that xl < xi for l < i and probabilities p1, . . . , pn sum up to one.

(a) The certainty equivalent is defined as the minimummonetary sum cwhich makes a salient
thinker indifferent between taking lottery L and getting c for sure. Formally, suppose an
agent faces some choice set {L, c} comprising a lottery L and a safe option c. Then c is the
certainty equivalent to lottery L if and only if U s(L) = U s(c) .

(b) Denote L′ := (x1, p
′
1; . . . ;xn, p

′
n) where p′i = pi + ε and p′l = pl − ε for some i > l and

some ε > 0 and p′k = pk for all k 6= i, l. Suppose that c denotes the certainty equivalent to
L and c′ denotes the certainty equivalent to L′. The certainty equivalent is monotonic in
probabilities if and only if c′ > c.

(c) Denote L′′ := (x′′1, p1; . . . ;x
′′
n, pn) where x′′l > xl for some l ∈ {1, . . . , n} and x′′k = xk for

all k 6= l. Suppose that c denotes the certainty equivalent to L and c′′ denotes the certainty
equivalent toL′′. The certainty equivalent is monotonic in outcomes if and only if c′′ > c.

According to Kontek (2016), in the discrete salience model certainty equivalents do
not satisfy monotonicity in probabilities or may not even exist. These observations are
artefacts of the simplified, discrete salience model that Kontek (2016) analyzes. Here, the
objective probability of the ith most salient outcome is discounted via a factor δi+1 for some
salience-parameter δ < 1. Therefore, a change in the salience ranking of states induces a
discontinuous jump in a salient thinker’s valuation for a given lottery. As a consequence,
for some lotteries a certainty equivalent may not exist. In addition, monotonicity in prob-
abilities may be violated if probability mass is shifted from a low, salient outcome to a
larger, but less salient outcome which is strongly discounted.
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BGS apply the simplified, discrete version of their model for analytical ease as long as
the use of the underlying continuousmodel is not necessary. We resolve the issues of non-
existing and non-monotonic certainty equivalents by investigating themore involved con-
tinuous salience model proposed in the previous section. First, we show that given con-
tinuous salience distortions each binary lottery has a well-defined certainty equivalent,
which also satisfies monotonicity in probabilities and outcomes. Second, we generalize
our findings toward lotteries with finitely many outcomes.

Binary lotteries. Suppose an agent faces a choice set {L, c}where L := (x1, p;x2, 1− p)
is a binary lottery with x2 > x1 and c denotes the option that pays an amount of c with
certainty. Then, lottery L is (weakly) preferred over the safe option c if and only if

U s(c) ≤ U s(L) =
u(x1) p ∆−σ(u(x1),u(c)) + u(x2) (1− p) ∆−σ(u(x2),u(c))

p ∆−σ(u(x1),u(c)) + (1− p) ∆−σ(u(x2),u(c))
=: f(c).

The safe option c is a salient thinker’s certainty equivalent to lottery L if and only if

c = u−1 (f(c)) .

For p = 0 the certainty equivalent is given by c = u−1(u(x2)) = x2 while for p = 1

it is equal to c = u−1(u(x1)) = x1. We conclude that the certainty equivalent—given it
exists—lies between x1 and x2 for any p ∈ (0, 1) as u−1(·) is strictly increasing and U s(L)

is a convex combination of u(x1) and u(x2). Then,

u−1 ◦ f : [x1, x2]→ [x1, x2], c 7→ u−1(f(c))

is a well-defined continuous function on a closed, convex set which has—by Brouwer’s
fixed point theorem—a fixed point. By the ordering property, σ(u(x1), u(c)) strictly in-
creases in c, while σ(u(x2), u(c)) strictly decreases in c. It follows that f(c) strictly de-
creases in c so that the certainty equivalent is unique. Thus, for any p ∈ [0, 1] a well-
defined certainty equivalent c exists.

In order to verify monotonicity in probabilities and outcomes, we define

h(x1, x2, p, c) := u−1(f(c))− c

where c = c(x1, x2, p) denotes the unique certainty equivalent to lottery L. As ordering
implies that σ(u(x1), u(c)) strictly decreases in x1 and σ(u(x2), u(c)) strictly increases in
x2, we obtain that f(c) strictly increases in xk for k ∈ {1, 2}. Remembering that f(c) strictly
decreases in c, we have

∂h(x1, x2, p, c)

∂c
< 0 and ∂h(x1, x2, p, c)

∂xk
> 0, k ∈ {1, 2}.
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In addition we get

∂h(x1, x2, p, c)

∂p
= u′ (f(c))−1︸ ︷︷ ︸

>0

·
(
−∆1∆2(u(x2)− u(x1))

(p∆1 + (1− p)∆2)2

)
︸ ︷︷ ︸

<0

< 0,

where ∆k := ∆−σ(u(xk),u(c)) for k ∈ {1, 2}. The implicit function theorem then yields

∂c

∂p
= −

∂h(x1,x2,p,c)
∂p

∂h(x1,x2,p,c)
∂c

< 0 and ∂c

∂xk
= −

∂h(x1,x2,p,c)
∂xk

∂h(x1,x2,p,c)
∂c

> 0, k ∈ {1, 2}.

Hence a salient thinker’s certainty equivalent to any binary lottery is well-defined and
monotonic in probabilities and outcomes.

Lotteries with finitely many outcomes. We extend our preceding analysis and show
that also for amore general, discrete lotteryL := (x1, p1; . . . ;xn, pn) with n ≥ 2 pairwisely
distinct outcomes a certainty equivalent exists and is well-defined. Suppose again some
choice set {L, c}where option c gives outcome cwith certainty. A salient thinker (weakly)
prefers lottery L to the safe option c if and only if

U s(c) ≤ U s(L) =

∑n
i=1 pi u(xi)∆

−σ(u(xi),u(c))∑n
i=1 pi ∆−σ(u(xi),u(c))

=: f(c).

Without loss of generality we assume x1 < . . . < xn. Then a salient thinker’s certainty
equivalent to L is implicitly given by c = u−1(f(c)). Analogously to the case of a binary
lottery, u−1◦f : [x1, xn]→ [x1, xn] has at least one fixed point due to Brouwer’s fixed point
theorem and we obtain the following proposition.

Proposition 1 (Certainty equivalent to a discrete lottery). A salient thinker’s certainty equiv-
alent to a lottery with n ≥ 2 outcomes is unique and monotonic in outcomes and probabilities.

For a given lotteryL, we can define a salient thinker’s risk premium r as the difference in
the value assigned to the lottery’s expected valueE[L] and the value of lotteryL’s certainty
equivalent c, that is r := u(E[L]) − u(c). Given Proposition 1, a salient thinker’s risk
premium for lottery L is well-defined. In the next section, we will investigate a salient
thinker’s risk preferences by determining the size and the sign of her risk premium.

4 Risk attitudes and skewness preferences

We investigate how salience shapes risk attitudes by analyzing under which conditions a
salient thinker prefers a lottery over a safe option that pays the lottery’s expected value.
In Section 4.1, we show that salient thinkers are risk averse with respect to sufficiently left-
skewed lotteries and risk-seeking with respect to sufficiently right-skewed lotteries. This
explains the simultaneous demand for insurance and casino gambles. Thereby, we extend
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findings by BGS to the continuous salience model. In Section 4.2, we precisely show that
salient thinkers reveal a preference for skewness. We restrict our analysis to binary lotter-
ies as these are uniquely characterized by their first three standardized central moments:
expected value, variance and skewness. This allows for an unambiguous definition of
skewness and a precise analysis of a salient thinker’s preferences over the skewness of
lotteries. We relate our findings to the growing literature on skewness preferences.

4.1 Stylized facts on skewness preferences

Suppose a decision maker decides whether to buy some binary lottery L at its fair price.
Formally, the decision maker faces the choice set {L,E[L]}where L := (x1, p;x2, 1− p) is
a binary lottery with outcomes x2 > x1 and expected value E[L] := p · x1 + (1 − p) · x2.
We refer to E[L] as the actuarially fair price of lottery L. In order to deal with indifference,
we say that the decision maker buys the lottery at its fair price if and only if she strictly
prefers the risky option L over the safe option E[L].

In line with BGS we assume a linear value function u(x) = x.4 Then, a salient thinker
chooses the safe option over the risky lottery if and only if

p · x1 + (1− p) · x2 ≥
p · x1 ·∆−σ(x1,E[L]) + (1− p) · x2 ·∆−σ(x2,E[L])

p ·∆−σ(x1,E[L]) + (1− p) ·∆−σ(x2,E[L])
.

Rearranging this inequality gives ∆−σ(x1,E[L]) ≥ ∆−σ(x2,E[L]), or, equivalently,

σ(x1,E[L]) ≥ σ(x2,E[L]).

Thus, whenever the lottery’s downside x1 is weakly more salient than its upside x2, the
agent behaves risk averse and prefers the safe option; otherwise the agent chooses the
risky lottery. This highlights a crucial difference in probability weighting under salience
and cumulative prospect theory. While the CPT agent overweights small probabilities
independent of the corresponding outcome’s size, the salient thinker inflates decision
weights on salient outcomes.

On the one hand, salience distortions can induce risk averse behavior. For illustrative
reasons, let x1 ≥ 0 and p ≤ 1/2. This immediately implies E[L]− x1 ≥ x2 − E[L], that is,
the contrast in downside payoff and expected value exceeds the contrast in upside payoff
and expected value. Thus, we obtain

σ(x1,E[L]) > σ(E[L],E[L] + E[L]− x1)

≥ σ(E[L],E[L] + x2 − E[L])

= σ(x2,E[L]),

4In contrast to expected utility theory, salience theory does not have to assume a curved value function
in order to generate risk-averse or risk-seeking behavior. As salience distortions suffice to generate different
risk attitudes, the use of a linear value function is justified (Bordalo et al., 2012).
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where the first inequality follows from diminishing sensitivity, the second one from or-
dering and the final equality from symmetry. We conclude that a salient thinker behaves
risk averse if a non-negative downside payoff is more likely than the upside payoff.

On the other hand, a salient thinker might be risk seeking. As before suppose x1 ≥ 0.
If the lottery’s upside is unlikely but large compared to its expected value, the salient
thinker might buy the lottery at its fair price. In fact, we can construct a binary lottery
with a salient upside so that the salient thinker goes for the risky instead of the safe option.
Note that ordering implies

lim
p→1

σ(x2,E[L]) = σ(x2, x1) > σ(x1, x1) = lim
p→1

σ(x1,E[L]).

Since the salience function is continuous, there exists some p̂ = p̂(x1, x2) ∈ (1/2, 1) such
that for any p > p̂ the lottery’s upside is salient and the salient thinker chooses the risky
option. Due to diminishing sensitivity a salient thinker behaves risk seeking only if the
lottery’s upside x2 occurs with a strictly lower probability than its non-negative downside
x1. More generally, we obtain the following proposition.

Proposition 2 (Risk attitudes). Suppose a salient thinker chooses between the binary lottery
L := (x1, p;x2, 1− p) and the safe option that pays the lottery’s expected value. Then, there exists
some p̂ = p̂(x1, x2) ∈ (0, 1) such that she prefers the safe option if and only if p ≤ p̂.

Next, we relate a salient thinker’s risk attitude to a lottery’s skewness. Ebert (2015)
defines the skewness of a binary lottery as its third, standardized central moment

S(L) := E

( L− E[L]√
V ar(L)

)3
 =

2p− 1√
p(1− p)

(1)

where V ar(L) := p(1 − p)(x2 − x1)2 denotes the variance of lottery L. Other notions of
skewness refer to “long and lean” tails of the risk’s probability distribution. There exist
several measures of skewness, which are, however, all equivalent for binary risks (Ebert,
2015, Proposition 2). Thus, only for binary risks the impact of skewness on risk attitudes
can be unambiguously assessed. In the following, we adopt the short, intuitive notion of
skewness which refers to the probability that the lottery’s downside payoff is realized.

Definition 3 (Skewness of binary risks). Consider two binary lotteries Lx := (x1, p;x2, 1−p)
and Ly := (y1, q; y2, 1 − q) with x2 > x1 and y2 > y1. We say that Lx is more (less, equally)
skewed than Ly if p > q (p < q, p = q). Lottery Lx is called right-skewed if p > 1

2 , left-skewed if
p < 1

2 and symmetric otherwise.

From equation (1) it is straightforward to see that S < 0 for any left-skewed lottery,
S > 0 for any right-skewed lottery and S = 0 for any symmteric lottery. Therefore, we
also say that a left-skewed (right-skewed) lottery is negatively (positively) skewed and that
a lottery is the more skewed the larger S is.
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The distribution of various downside risks such as car accidents or natural disasters
is typically left-skewed: these events are rare, but if they happen they are severe. In this
context, optionE[L]may reflect a fair-priced insurance contract against the downside risk.
The distribution of casino gambles, lottery games or specific investments, on the other
hand, is typically right-skewed: gains are large, but occur rarely. Here, option E[L] can be
interpreted as the fair price to bet on an upside risk.

The finding that agents seek right-skewed risks, but tend to avoid left-skewed risks is
established in the literature as skewness preferences. A tendency to choose right-skewed
risks has been observed by Golec and Tamarkin (1998) with respect to horse-race betting,
by Garrett and Sobel (1999) in the context of lottery games and in several studies on in-
vestment behavior (Boyer et al., 2010; Bali et al., 2011; Green and Hwang, 2012; Conrad
et al., 2013). At the same time, consumers insure against left-skewed risks as exhibited by
Sydnor (2010) and Barseghyan et al. (2013) who analyze deductible choices in auto and
home insurance contracts. The following stylized examples illustrate that salience theory
can account for this empirical evidence.

Example 1 (Insurance). Suppose the agent has to decide whether to pay the fair insur-
ance premium−E[L] in order to avoid a binary risk L. In a typical insurance example the
risky option yields a large loss (i.e., x1 < 0) with a small probability or zero payoff (i.e.,
x2 = 0) otherwise. Then, according to Proposition 2, a salient thinker buys the insurance
if the probability of the loss is sufficiently small.

Example 2 (Gambling). Suppose the agent decides whether to buy a lottery ticket at a
fair price E[L]. When participating in the lottery, she could either win a large amount (i.e.,
x2 > 0) or nothing (i.e., x1 = 0). Then, according to Proposition 2, the salient thinker buys
the lottery ticket if the probability of the gain is sufficiently small. Due to diminishing
sensitivity, the salient thinker prefers the gamble only if the risk is right-skewed.

Example 3 (Investments). Suppose the agent decides whether to buy an asset with pos-
itive expected value—that either pays x1 < 0 or x2 > 0 in the future—at its fair price E[L].
If the probability of the gain is sufficiently high, the downside payoff x1 stands out and
the salient thinker chooses the safe option. If the probability of the loss is high, the upside
payoff x2 is salient and the salient thinker buys the asset at its fair price. This implies a
tendency to buy right-skewed assets as Bordalo et al. (2013a) have already pointed out.5

4.2 Salience and skewness preferences

In line with the empirical evidence, salience theory suggests that the skewness of the
risk’s probability distribution affects risk attitudes. Most field studies, however, do not

5While Bordalo et al. (2013a) state that salience predicts a “taste for skewness” in the context of asset
choices, we will precisely disentangle a salient thinker’s preferences for risk and skewness. Thereby, we are
the first to derive a salient thinker’s preference for skewness formally.
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precisely test for the role of skewness in risk taking as variance and skewness of typical
casino gambles or lottery games are not independent, but highly correlated. Thus, risk
and skewness preferences cannot be disentangled. Ebert (2015) argues, for instance, that
inferring skewness preferences at the horse track from the study by Golec and Tamarkin
(1998) might be misleading. In fact, increasing the skewness of a stylized horse race bet
L = (1/p, p; 0, 1 − p), while holding the expected value and the variance (i.e., the cor-
responding risk) constant, does not yield a new horse race bet, but a lottery with very
different properties. Ebert (2015) concludes that “a choice between two horse-race bets is
never a choice between different levels of skewness only.”

Hence, in order to disentangle a salient thinker’s preference for skewness from her
preference for risk, a lottery’s skewness needs to be varied for a fixed expected value and
variance. As for given outcomes x1 and x2 a change in the probability p also induces a
change in the lottery’s expected value E[L] and its variance V ar(L), we cannot infer from
Proposition 2 whether it is the skewness of the risk which induces the aversion toward
left-skewed and the preference for right-skewed lotteries.

Lemma 1 (Moment characterization of binary risks). For constants E ∈ R, V ∈ R+ and
S ∈ R, there exists exactly one binary lottery L = (x1, p;x2, 1 − p) with x2 > x1 such that
E[L] = E, V ar(L) = V and S(L) = S. Its parameters are given by

x1 = E −

√
V (1− p)

p
, x2 = E +

√
V p

1− p
, and p =

1

2
+

S

2
√

4 + S2
. (2)

For a proof of this Lemma see Ebert (2015). Using this characterization, we can assess the
impact of skewness on the salient thinker’s risk attitude. As before, we assume u(x) = x

such that—for the binary lottery L with expected value E, variance V and skewness S—
the salient thinker’s risk premium equals

r(E, V, S) =
√
V p(1− p) ·

(
∆−σ(x1,E) −∆−σ(x2,E)

p∆−σ(x1,E) + (1− p)∆−σ(x2,E)

)

where outcomes xk = xk(E, V, S), k ∈ {1, 2}, and probability p = p(S) are defined in
equation (2). A salient thinker strictly prefers the risky option L over the safe option E
if and only if the lottery’s risk premium is strictly negative, or, equivalently, its upside
payoff is salient. We conclude:

Proposition 3 (Skewness preferences). For given expected valueE and variance V , there exists
some Ŝ = Ŝ(E, V ) < ∞ such that r(E, V, Ŝ) = 0. A salient thinker strictly prefers the binary
lottery over its expected value if and only if S > Ŝ.

Suppose the lottery’s expected value and variance are fixed. Then, equation (2) yields
that increasing the lottery’s skewness S increases the probability that its downside payoff
is realized. If the lottery’s downside payoff becomesmore likely, the difference between its
upside payoff and the expected value increases, therebymaking the lottery’s upsidemore
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salient. At the same time, the difference between downside payoff and expected value
decreases so that the lottery’s downside becomes less salient. Hence a salient thinker is
the more likely to take a binary risk the more skewed this risk is. By continuity of the
salience function we obtain the following corollary.

Corollary 1. For any expected value E and variance V , there exists a sufficiently skewed binary
lottery for which a salient thinker is willing to pay more than its fair price E.

Intuitively, in the salience model, skewness preferences are driven by the contrast ef-
fect. The stronger the contrast effect is the more pronounced a large difference between a
lottery’s payoff and its expected value is. For a positively skewed lottery the larger differ-
ence is on the lottery’s upside, while for a negatively skewed lottery the downside payoff
differs by more from the expected value. If the contrast effect becomes stronger, a salient
thinker’s preference for positive skewness is enhanced. We formalize this idea as follows.

Definition 4. We say that the contrast effect is stronger for salience function σ than for salience
function σ̂ if for any y ∈ R the difference σ(x, y)− σ̂(x, y) is increasing in |x− y|.

The contrast between two values is typically measured by their difference. Thus, the
preceding definition captures the intuitive notion that the contrast effect is stronger for
one salience function than another if their difference (i.e., the difference in salience values)
increases in the difference of their arguments.

Proposition 4 (Contrast and skewness preferences). Let the contrast effect be stronger for
salience function σ than for salience function σ̂. Then, a salient thinker’s risk premium r is smaller
for σ than for σ̂ if and only if the lottery is right-skewed.

This implies that a stronger contrast effect enhances a salient thinker’s aversion toward
left-skewed risks and her preference for right-skewed risks. As we derive the preference
for skewness from lotteries with the same expected value, the contrast effect is equivalent
to ordering in this context and a salient thinker’s preference for skewness is the stronger
the more important ordering is relative to diminishing sensitivity.

Experimental evidence on skewness preferences. Ourpreceding results are in linewith
experimental evidence on skewness preferences. In contrast to studieswith field data, lab-
oratory experiments allow to precisely test for skewness preferences (i.e., the skewness of
a lottery can be varied certeris paribus). Ebert and Wiesen (2011) find that a majority of
subjects chooses a right-skewed over a left-skewed binary lottery with the same expected
value and variance.6 They also show that prudence (i.e., u′′′(·) < 0) does not suffice to ex-

6More precisely, subjects have to choose between two binary lotteries that form a Mao pair (Mao, 1970).
For any p ∈ (0, 1/2), two perfectly correlated, binary lotteriesLx := (x1, p;x2, 1−p) andLy := (y1, 1−p; y2, p)
form a Mao pair if both have the same expected value and variance. Lotteries of a Mao pair differ only in
their skewness (Ebert andWiesen, 2011). Lottery Lx is left-skewed (i.e., its high payoff x2 occurs with a high
probability), while lottery Ly is right-skewed (i.e., its high payoff y2 occurs with a small probability). In line
with Definition 3, Ebert and Wiesen (2011) state that “an individual is said to be skewness seeking if, for any
given Mao pair, she prefers Ly over Lx.” In Appendix C, we prove that, for any Mao pair, a salient thinker
prefers Ly over Lx.
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plain skewness preferences.7 Ebert (2015) confirms this preference for right-skewed over
left-skewed binary risks. In addition, he observes that a majority of subjects who have
to choose between a symmetric and a right-skewed lottery, which has the same expected
value and variance, opt for the more skewed alternative. If the choice is between a sym-
metric and a left-skewed lottery, subjects tend to avoid the left-skewed risk, thereby again
choosing the more skewed lottery. Further studies using binary (e.g., Brünner et al., 2011)
or more complex lotteries (e.g., Grossman and Eckel, 2015) report similar results on skew-
ness seeking choices. In line with Proposition 3, Åstebro et al. (2015) observe that subjects
tend tomake riskier decisions if the choice set includes right-skewed lotteries. Altogether,
a substantial body of research documents skewness preferences and related predictions
under controlled conditions in the laboratory.

5 Puzzles on skewness preferences

In many regards, the predictions by salience theory of choice under risk meet the predic-
tions by cumulative prospect theory (for a detailed discussion, see BGS). For instance, both
theories predict that it depends on the skewness of a riskwhether an agent buys insurance
or prefers to gamble. The skewness of a distribution may, however, induce implausible
predictions for cumulative prospect theory as shown by three more or less recent articles.
On the one hand, Ebert and Strack (2015) argue that for any value function (and any ref-
erence point) there exists a right-skewed and arbitrarily small binary risk with negative
expected value that is attractive to a CPT agent. This results in unrealistic predictions for
dymanic investment or gambling decisions. On the other hand, Rieger and Wang (2006)
aswell as Azevedo andGottlieb (2012) delineate that under additional assumptions on the
value function also arbitrarily large, unfair gambles attract agents with CPT preferences.
In the following we will compare salience and cumulative prospect theory’s predictions
on skewness preferences in the small (Ebert and Strack, 2015) and in the large (Rieger and
Wang, 2006; Azevedo and Gottlieb, 2012).

5.1 Skewness preferences in the small

Consider a dynamic setup where a decision maker gambles according to the following
strategy: she decides to start gambling, but to stop as soon as she either has realized a
rather small loss x1 or a large gain x2. This stopping strategy with two absorbing end-
points can be represented as a binary lottery which gives a small loss with a large proba-
bility, and a large gain with a small probability. According to Corollary 1, a salient thinker
is willing to pay more than the fair price to enter the corresponding gamble if this binary
risk is sufficiently skewed. If the decision maker cannot commit to a long-run stopping

7Prudence can explain a preference for positive skewness given a fixed expected value and variance.
While subjects making prudent choices also tend to choose right-skewed lotteries in the experiment by Ebert
and Wiesen (2011), prudence is not sufficient to explain the number of skewness-seeking choices.
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strategy, but can revise her strategy after every single gain or loss, she never stops gam-
bling as she can always construct a sufficiently skewed stopping strategy that attracts her.
Independent of previous gains or losses, a salient thinker decides to gamble in every pe-
riod anew and therefore continues until bankruptcy.

Likewise, CPT agents that cannot commit to a certain gambling strategy will gam-
ble “until the bitter end” (Ebert and Strack, 2015). Ebert and Strack show that without
commitment a naive CPT agent that uses the preceding stopping strategy will never stop
gambling irrespective of her value function’s curvature.8 In particular, Ebert and Strack
(2015) verify that CPT agents reveal skewness preferences in the small: that is, sufficiently
right-skewed binary lotteries with outcomes x1 and x2 that are sufficiently small in abso-
lute terms are attractive even if the lottery’s expected value is negative. For these lotteries
probability weighting may predominate loss aversion so that the CPT agent participates
in an unfair gamble.

While also salient thinkers might gamble until the bitter end, the lotteries which are
attractive to a salient thinker are fundamentally different. An attractive lottery’s down-
side payoff should be close to the lottery’s expected value, therefore being non-salient. At
the same time, the upside payoff should be very large, thereby exceeding the expected
value by much in order to stand out and attract the decision maker’s attention. Thus, it
is not a preference for skewness in the small which induces a salient thinker to gamble
until bankruptcy. It is a preference for lotteries with a large, outstanding upside payoff,
which we regard as the more plausible driver of taking up unfair gambles. Forrest et al.
(2002) precisely capture this intuition by stating that the purchase of a lottery ticket corre-
sponds to “buying a dream.” A decision maker might dream of winning the large jackpot
which allows to quit her tedious job or to buy an expensive car, thereby overweighting
the probability that her dream will become true.

Cumulative prospect theory’s prediction that an agent will, irrespective of her value
function, play until bankruptcy has been regarded as implausible and therefore as aweak-
ness of the model. We will show that the prediction does not necessarily hold for salient
thinkers as soon as the assumption of a linear value function is dropped. Precisely, we
investigate conditions under which Corollary 1 breaks down so that a salient thinker will
not follow the above stopping strategy until her entire wealth is lost. In fact, if the value
function is strictly concave, a salient thinker may or may not be inclined to gamble, de-
pending on the interplay of her value function’s and her salience function’s curvature.9

8The naive agent does not anticipate that she will not stick to her initial plan in the future. At every point
in time, she constructs a new, attractive gambling strategy with negative expected value and continues until
she has lost her entire wealth. In contrast, a sophisticated agent who cannot commit to future behavior never
starts to gamble (Ebert and Strack, 2016). The sophisticated agent is aware of her time-inconsistency and
foresees that she will not stop to gamble. Hence she decides not to gamble in the first place.

9The fundamentals of the salience model, that is, the value function u, the salience function σ and the
salience parameter∆ can be estimated simultaneously from real choice data as they are not perfectly collinear.
Dertwinkel-Kalt et al. (2016a), for instance, conduct such an estimation for the focusing model, estimating
simultaneously the value and the focusing function.
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Static salience predictions. Suppose a salient thinker faces some choice set {L,E[L]}.
For simplicity and in line with the gambling example, let x2 > x1 ≥ 0. We drop our
previous assumption of a linear value function and assume that the decisionmaker’s value
from money is strictly increasing and strictly concave, that is, u′(·) > 0 and u′′(·) < 0. As
before, we normalize u(0) = 0. Then, a salient thinker strictly prefers the risky lottery L
over the safe option E[L] if and only if

u(x2)− u(E[L])

u(E[L])− u(x1)
· 1− p

p
>

∆1

∆2
,

where ∆k := ∆−σ(u(xk),u(E[L])), k ∈ {1, 2}. For any given expected value E = E[L], substi-
tuting p = (x2 − E)/(x2 − x1) yields

u(x2)−u(E)
x2−E

u(E)−u(x1)
E−x1

>
∆1

∆2
. (C.1)

The left-hand side of this inequality constitutes the ratio of the secants’ slopes through
the points (E, u(E)) and (xk, u(xk)) for k ∈ {1, 2}, which is smaller than one for any
strictly concave value function. The right-hand side of inequality (C.1) gives the ratio
of the salience weights which is below one if and only if the lottery’s upside is salient.
Analogously to the previous section, we can conclude that the lottery’s downside is salient
whenever the lottery is left-skewed or symmetric.10 While there exists a right-skewed
lottery with a salient upside for any value function, it remains uncertain whether a salient
thinker buys this lottery or not.

Intuitively, onewould expect that condition (C.1) is less likely to hold if the value func-
tion’s curvature increases as (context-independent) risk aversion becomes stronger. Com-
pared to a linear value function, the contrast between the values assigned to the upside
payoff and the expected value, respectively, is reduced. As the preference for skewness
is driven by the contrast effect, salience distortions are weaker and therefore less likely to
induce risk seeking behavior if the value function is concave. Indeed the left-hand side of
(C.1) decreases in the value function’s curvature. But the corresponding effect on the ratio
of salience weights is ambiguous as it depends on how the relative importance of order-
ing and diminishing sensitivity changeswith the level of values assigned to the outcomes.
Therefore, it is not possible to make a general statement on how the value function’s cur-
vature affects a salient thinker’s risk attitude (see Example 4 for an illustration).

More can be said about the properties of the salience function that facilitate risk seek-
ing behavior. As established in Proposition 4, a salient thinker’s preference for right-
skewed risks is driven by the contrast effect. A salient thinker is especially prone to gamble
if a large gain occurring with small probability stands in a sharp contrast to the lottery’s
expected value, thereby grabbingmuch attention. Hence a salient thinker is the more risk

10Note that u(E) − u(x1) ≥ u(x2) − u(E) for any p ≤ 1/2 due to strict concavity of the value function.
Then, diminishing sensitivity implies that the lottery’s downside is weakly more salient than its upside since
u(x2) > u(x1) ≥ 0 holds by assumption.

16



seekingwith respect to sufficiently right-skewed lotteries the stronger the contrast effect is
relative to the level effect. In order to verify this intuition also for a concave value function,
we compare salience functions which differ in the strength of the contrast effect.

Proposition 5. Let the contrast effect be stronger for salience function σ than for salience function
σ̂. If lottery L satisfies (C.1) for salience function σ̂, it satisfies (C.1) also for salience function σ.

In line with our previous argumentation, there does not always exist a fair-priced lot-
tery a salient thinker opts for. If the value function is very concave and the salience func-
tion exhibits a weak contrast effect at the same time, such a lottery does not exist (i.e.,
condition (C.1) is never satisfied). We show this by the use of two examples for which we
assume power utility u(x) = xα with α ∈ (0, 1) and salience function σ(x, y) = β(x−y)2

(|x|+|y|+θ)2

with β, θ > 0. Let θ = 0.1 and ∆ = 0.7.

Example 4 (Value function). For a linear value function, the left-hand side of (C.1) equals
one and the salient thinker chooses a lottery if its upside is salient. This lottery exists by
Proposition 3. Then due to continuity, condition (C.1) holds also for a mildly concave
value function u(x) = xα with α being close to one. Let β = 1 so that the salience function
is σ(x, y) = (x−y)2

(|x|+|y|+0.1)2
. If the value function’s curvature increases, that is, the parame-

ter α decreases, we observe that inequality (C.1) is less likely to hold. More specifically,
numerical computations show that there exists some threshold value α̂ ∈ (0, 1) such that
for any α ∈ (0, α̂) no unfair, attractive gamble exists. For α = 0.95 and α = 0.5, Figures 1
and 2 illustrate the risk premium r = u(E[L]) − U s(L) as a function of probability p and
upside payoff x2 for a given downside payoff x1 = 1.

Figure 1: Risk premium for α = 0.95. Figure 2: Risk premium for α = 0.5.

Example 5 (Salience function). Fix α = 3/4 so that the value function is u(x) = x3/4.
We observe that inequality (C.1) is more likely to hold for at least some binary lottery L
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if parameter β increases.11 In fact, numerical computations show that there exists some
β̂ > 1 such that for any β > β̂ at least one unfair, attractive gamble exists. For β = 1 and
β = 10, Figures 3 and 4 illustrate the risk premium r = u(E[L]) − U s(L) as a function of
probability p and upside payoff x2 for a given downside payoff x1 = 1.

Figure 3: Risk premium for β = 1. Figure 4: Risk premium for β = 10.

Note that for the discrete salience model there always exists an unfair, binary lottery
with a salient upside that is attractive to a salient thinker. This result is driven by the fact
that for a lottery with a salient upside the right-hand side of inequality (C.1) simplifies
to the salience-parameter δ < 1 (as introduced in the discussion of the discrete salience
model afterDefinition 2) and is therefore bounded away fromone, while the left-hand side
of (C.1) approaches one if the variance of the lottery goes to zero. Thus, it is necessary to
apply the continuous salience model in order to resolve the skewness puzzle delineated
by Ebert and Strack (2015).

Dynamic salience predictions under asset integration. Suppose an agent asset inte-
grates, that is, she evaluates a lottery’s outcomes not separately, but based on the wealth
levels the lottery potentially induces. If a salient thinker asset integrates, she may follow
thedelineated stopping strategy only until a certainwealth level is reached. Webrieflydis-
cuss for which wealth levels an unfair, but attractive binary lottery might exist. Whether
such a lottery exists for a particular wealth level depends on how the value function’s
and the salience function’s curvature change in wealth. First, suppose the value function
satisfies decreasing absolute risk aversion. For a suitable salience function, it may be the
case that a salient thinker gambles only at high wealth levels, but stops after her wealth
has sufficiently decreased. Second, if the value function satisfies increasing absolute risk
aversion the opposite may arise: if the agent’s wealth increases, her value function’s rel-
ative curvature increases as well and it becomes more likely that no binary lottery satis-

11The larger β the stronger the contrast effect is for σβ(x, y) = β(x−y)2
(|x|+|y|+0.1)2

. This, however, holds only
using the following notion of a stronger contrast effect which is weaker than that stated in Definition 4: for
any β > β̃ and x, y, z ∈ R, we have σβ(x, z)− σβ̃(x, z) > σβ(y, z)− σβ̃(y, z) if x > y ≥ z or x < y ≤ z.
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fies inequality (C.1). Then the salient thinker stops gambling if her wealth is sufficiently
large. In contrast, for lowwealth levels the curvature of the agent’s value function is weak
such that inequality (C.1) is more likely to hold for at least some lottery. This observation
relates to the disposition effect (Shefrin and Statman, 1985) according to which private in-
vestors are more inclined to sell assets that have increased in value than assets which have
decreased in value. Thus, salience theory might account for the disposition effect under
certain circumstances.

5.2 Skewness preferences in the large

Rieger and Wang (2006) and Azevedo and Gottlieb (2012) have shown that cumulative
prospect theory also yields implausible predictions for right-skewed lotteries with large
absolute payoffs. Denote L(E) as the set of all binary lotteries with some expected value
E ∈ R. Azevedo and Gottlieb (2012) argue that the expected gain that can be earned by
selling a lottery L ∈ L(E) to a CPT agent may be unbounded. This prediction arises from
the fact that probabilityweightingmight induce an unbounded valuation of a lotterywith
finite expected value (Rieger andWang, 2006). If small probabilities are overweighted, in-
creasing the upside payoff and reducing the corresponding probability canmake a lottery
more attractive. This allows a firm to realize arbitrarily large gains if it offers a binary lot-
tery with an arbitrarily large upside payoff (skewness preferences in the large).

We show that this puzzle can be resolved for salient thinkers as long as we consider
only lotteries with a bounded expected value. Restricting our analysis to lotteries with
a bounded expected value makes sense for the following two reasons: first, Rieger and
Wang (2006) argue that it is practically not feasible for a firm to offer a lottery with a very
large expected value. Second, a consumer with a constrained budget is not able to pay a
very large price to participate in a lottery.

As before, suppose the decisionmaker has a (weakly) concave value function and faces
some choice set {L, z} where z denotes the price of lottery L. The agent buys the lottery
as long as it is strictly preferred over the monetary sum z. Since the salience function
is bounded, there exists some threshold value C < ∞ such that ∆−σ(x,y) < C for any
(x, y) ∈ R2. The following proposition states that for any expected value E, the price a
salient thinker is willing to pay for lottery L ∈ L(E) is bounded.

Proposition 6. Let L(E) denote the set of binary lotteries L with finite expected value E ∈ R. A
salient thinker’s valuation for some L ∈ L(E) is bounded by a function which is affine in E.

Suppose a firm offers a binary lottery L ∈ L(E) at some price z. Optimally, it will
set a price equal to the lottery’s certainty equivalent which is well-defined according to
Proposition 1. Therefore, the firm will, for a given E, choose to sell that lottery L ∈ L(E)

which has the largest certainty equivalent. By Proposition 6, this is bounded such that
the gain a firm can earn from selling a lottery with a fixed expected value cannot become
arbitrarily large.12

12Note, however, that the profit which can be earned from selling a lottery L ∈
⋃
E∈R L(E) is unbounded.
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6 Discussion and Conclusion

We have unravelled the contrast effect as a plausible driver of skewness preferences. Ac-
cording to the contrast effect, when comparing a risky and a safe option, a risky outcome
receives the more attention the more it differs from the safe option’s payoff. Thereby, the
contrast effect induces a focus on the large, but unlikely upside gain in the case of right-
skewed risks and a focus on the large potential loss in the case of left-skewed risks. As
a consequence, salience theory (Bordalo et al., 2012) and related approaches to stimulus-
driven attention that incorporate contrast effects, such as a model of focusing (Kőszegi
and Szeidl, 2013), predict skewness preferences. In contrast, a model of relative thinking
(Bushong et al., 2016) which assumes reverse contrast effects (i.e., the weight assigned to
a risky outcome decreases in its contrast to the safe option’s payoff) cannot account for
skewness preferences.

Beside skewness preferences, in particular the salience model explains a wide range
of decision biases such as the Allais paradox (Bordalo et al., 2012), decoy effects (Bordalo
et al., 2013b) or the newsvendor problem (Dertwinkel-Kalt and Köster, 2016) in one co-
herent framework, thereby challenging cumulative prospect theory as the major behav-
ioral model of individual decision making. Its assumptions have been supported both by
empirical (Hastings and Shapiro, 2013) and experimental (Dertwinkel-Kalt et al., 2016b)
work. In this study, we contribute to the agenda of comparing salience and cumulative
prospect theory by showing that the salience-based explanation for skewness preferences
has advantages over the CPT-based explanation.

First, a CPT agent exhibits a preference for skewness simply because she overweights
small probabilities. This explanation is less insightful than the mechanism offered by
salience theory according to which probability weights depend on the salience of the cor-
responding payoffs. Second, salience theory of choice under risk allows to rule out cu-
mulative prospect theory’s implausible predictions on the magnitude of skewness prefer-
ences (Rieger and Wang, 2006; Azevedo and Gottlieb, 2012; Ebert and Strack, 2015, 2016).
Dynamically, a naive CPT agent will never stop to gamble until bankruptcy and will buy,
but never exercise American options on assets (Ebert and Strack, 2015). Conversely, if
the CPT agent is aware of her time-inconsistent behavior, she will not even acquire an
option or start to gamble (Ebert and Strack, 2016). These predictions stand in stark con-
trast to robust empirical findings such as the disposition effect that states that options are
exercised, assets are sold and gambles are quit if gains can be realized. As we have de-
lineated, the salience-based explanation for skewness preferences does not necessarily go
along with such drastic predictions. Concludingly, the salience approach offers a more
compelling explanation for skewness preferences than cumulative prospect theory. In
this sense, salience theory of choice under risk helps to better understand the motivation
to engage in any kind of risky choices.
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Appendix A: Proofs

Proof of Proposition 1. Consider some discrete lottery L := (x1, p1; . . . ;xn, pn) with n ≥ 2.
Denote∆i := ∆−σ(u(xi),u(c)) and σi := σ(u(xi), u(c)) aswell as σix := ∂σi

∂u(xi)
and σiy := ∂σi

∂u(c) .
First we verify that the certainty equivalent is unique. For that, it is sufficient to show

∂Us(L)

∂u(c)
= − ln(∆)

((∑n
k=1 pk u(xk)∆kσ

k
y

) (∑n
k=1 pk ∆k

)
−
(∑n

k=1 pk∆kσ
k
y

) (∑n
k=1 pk u(xk)∆k

)(∑n
k=1 pk ∆k

)2
)
< 0.

It is straightforward to see that ∂U
s(L)

∂u(c) < 0 holds if and only if

∑n
k=1 pk u(xk)∆k∑n

k=1 pk ∆k︸ ︷︷ ︸
=u(c)

(
n∑
k=1

pk∆kσ
k
y

)
>

n∑
k=1

pk u(xk)∆kσ
k
y .

Denote X := {k ∈ {1, . . . , n}|u(xk) ≤ u(c)} and X := {k ∈ {1, . . . , n}|u(xk) > u(c)}.
Then, we can re-write the above inequality as∑

k∈X
pk ∆k σky︸︷︷︸

>0

(u(c)− u(xk))︸ ︷︷ ︸
≥0

+
∑
k∈X

pk ∆k σky︸︷︷︸
<0

(u(c)− u(xk))︸ ︷︷ ︸
<0

> 0.

Hence ∂Us(L)
∂u(c) < 0 always holds and the certainty equivalent is unique.

Second, we verify that the certainty equivalent is monotonic in outcomes. Denote

H(x,p, c) := u−1

(∑n
i=1 pi u(xi)∆

−σ(u(xi),u(c))∑n
i=1 pi ∆−σ(u(xi),u(c))

)
− c,

where x := (x1, . . . , xn), p := (p1, . . . , pn). Then, we observe that

∂H(x,p, c)

∂c
= (u−1)′ (U s(L))︸ ︷︷ ︸

>0

u′(c)︸︷︷︸
>0

∂U s(L)

∂u(c)︸ ︷︷ ︸
<0

−1 < 0
(C.2)

and
∂H(x,p, c)

∂xk
= (u−1)′ (U s(L))︸ ︷︷ ︸

>0

u′(xk)︸ ︷︷ ︸
>0

∂U s(L)

∂u(xk)

where

∂Us(L)

∂u(xk)
=

[pk∆k − pk∆k ln(∆)σkxu(xk)]
(∑n

i=1 pi ∆i

)
− [pk∆k(− ln(∆))σkx]

(∑n
i=1 pi u(xi)∆i

)(∑n
i=1 pi ∆i

)2 .

Thus, we have ∂Us(L)
∂u(xk)

> 0 if and only if

pk∆k[1− ln(∆)σkxu(xk)] > pk∆k(− ln(∆))σkx

(∑n
i=1 pi u(xi)∆i∑n

i=1 pi ∆i

)
︸ ︷︷ ︸

=u(c)
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or, equivalently,

1 + ln(∆)︸ ︷︷ ︸
<0

σkx (u(c)− u(xk))︸ ︷︷ ︸
≤0

> 0.

This inequality is always fulfilled as σkx ≥ 0 holds if and only if u(c) ≤ u(xk). Hence
we have ∂H(x,p, c)/∂xk > 0 and the implicit function theorem yields monotonicity in
outcomes, that is,

∂c

∂xk
= −

∂H(x,p,c)
∂xk

∂H(x,p,c)
∂c

> 0.

Third, we assess whether the certainty equivalent is also monotonic in probabilities.
Suppose that probability mass is c.p. shifted from outcome xl to outcome xi for some
i, l ∈ {1, . . . , n}, i 6= l. By definition, a salient thinker’s certainty equivalent is monotonic
in probabilities if and only if

∂c

∂pi
> 0⇔ xi > xl.

Denote pl = 1−
∑

j 6=l pj so that an increase in pi induces a corresponding decrease in pl.
The implicit function theorem yields

∂c

∂pi
= −

∂H(x,p,c)
∂pi

∂H(x,p,c)
∂c

.

Using eq. (C.2) the certainty equivalent is monotonic in probabilities if and only if

∂H(x,p, c)

∂pi
> 0⇔ xi > xl.

Suppose xi > xl. Then we observe that

∂H(x,p, c)

∂pi
= (u−1)′ (Us(L))︸ ︷︷ ︸

>0

(
[u(xi) ∆i − u(xl) ∆l]

∑n
k=1(pk ∆k)− [∆i −∆l]

∑n
k=1(pk u(xk)∆k)(∑n

k=1 pk ∆k

)2
)
> 0,

which holds if and only if

(u(xi)− u(c))∆i > (u(xl)− u(c))∆l. (C.3)

We distinguish the following three cases:

(1) xi > xl > c: In this case u(xi)−u(c) > u(xl)−u(c) > 0 and ∆i > ∆l due to ordering.
Thus, (C.3) is satisfied.

(2) xi > c > xl: The left-hand side of (C.3) is positive, while its right-hand side is
negative, so that inequality (C.3) holds.

(3) c > xi > xl: Here, 0 > u(xi) − u(c) > u(xl) − u(c) and ∆i < ∆l due to ordering
which gives (u(xi)− u(c))∆i > (u(xi)− u(c))∆l > (u(xl)− u(c))∆l.
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The case xi < xl is analogous. Altogether, we conclude

∂H(x,p, c)

∂pi
> 0 if and only if xi > xl.

This completes the proof.

Proof of Proposition 2. Let L := (x1, p;x2, 1− p) with x2 > x1. Ordering implies

lim
p→0

σ(x1,E[L]) = σ(x1, x2) > σ(x2, x2) = lim
p→0

σ(x2,E[L]).

Since the salience function is continuous, there exists some p̂ = p̂(x1, x2) ∈ (0, 1) such
that the lottery’s downside is weakly more salient than its upside for any p ≤ p̂. The state-
ment immediately follows from the fact that—due to ordering—the salience of the lot-
tery’s downside payoff x1 monotonically decreases in the probability p, while the salience
of its upside payoff monotonically increases in p.

Proof of Proposition 3. Consider a binary lottery L with expected value E and variance V .
For a given skewness S, its parameters x1, x2 and p are uniquely defined as delineated
in Lemma 1. Now suppose the lottery’s skewness increases. Then, we observe that the
lottery’s downside payoff becomes more likely. Formally, we have

∂p

∂S
= 2 · (S2 + 4)−3/2 > 0.

Using equation (2), this implies that both the downside payoff x1 and the upside payoff x2
increase in the skewness S. Therefore, the difference between downside (upside) payoff
and expected value decreases (increases) in the lottery’s skewness S. Formally, we have

∂(E − x1)
∂S

< 0 and ∂(x2 − E)

∂S
> 0.

Since the expected value E is fixed, an increase in contrast is equivalent to an increase in
salience due to ordering. Hence the downside payoff’s salience decreases in S, while the
upside payoff’s salience increases in S.

Since limS→∞ x2 =∞ > E, we obtain

lim
S→∞

σ(x2, w + E) > σ(E,E) = lim
S→∞

σ(x1, E)

by the ordering property. Now by continuity of the salience function we can conclude
that there exists some Ŝ < ∞ such that for any S > Ŝ the lottery’s upside is salient and
the salient thinker chooses the risky option. This completes the proof.

Proof of Proposition 4. Consider two salience functions σ and σ̂. Suppose that the contrast
effect is stronger for salience function σ than for salience function σ̂. For a binary lottery
Lwith expected valueE, variance V and skewness S, denote r(E, V, S) the risk premium
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if salience of outcomes is assessed via σ and r̂(E, V, S) the risk premium if salience of
outcomes is assessed via σ̂. Then, it holds r(E, V, S) > r̂(E, V, S) if and only if√

V p(1− p)(∆1 −∆2)

p∆1 + (1− p)∆2
>

√
V p(1− p)(∆̂1 − ∆̂2)

p∆̂1 + (1− p)∆̂2

(C.4)

where ∆k := ∆−σ(xk,E) and ∆̂k := ∆−σ̂(xk,E) for k ∈ {1, 2}. Re-writing (C.4) gives

∆1/∆2 − 1

p∆1/∆2 + (1− p)
>

∆̂1/∆̂2 − 1

p∆̂1/∆̂2 + (1− p)

or, equivalently,

∆1

∆2
>

∆̂2

∆̂2

.

Applying the definition of salience weights yields

∆−σ(x1,E)+σ(x2,E) > ∆−σ̂(x1,E)+σ̂(x2,E),

which holds if and only if

σ(x2, E)− σ(x1, E) < σ̂(x2, E)− σ̂(x1, E).

Rearranging this inequality gives

σ(x2, E)− σ̂(x2, E) < σ(x1, E)− σ̂(x1, E).

This holds if and only if√
V p

1− p
= x2 − E < E − x1 =

√
V (1− p)

p
(C.5)

since the contrast effect is stronger for σ than for σ̂. Finally, we conclude that (C.5) holds
if and only if p < 1/2, that is, if and only if the lottery is left-skewed (Definition 3).

Proof of Proposition 5. For x2 > x1 ≥ 0, let lottery L := (x1, p;x2, 1 − p) satisfy condition
(C.1) given salience function σ̂. Then, it is immediate that the upside of lottery L is salient
under salience function σ̂. As a consequence, it has to hold that

u(x2)− u(E[L]) > u(E[L])− u(x1). (C.6)
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To see this, assume the opposite. Then, since u(x2) > u(x1) ≥ 0, we have

σ̂(u(x1), u(E[L])) > σ̂(u(E[L]), u(E[L]) + u(E[L])− u(x1))

≥ σ̂(u(E[L]), u(E[L]) + u(x2)− u(E[L]))

= σ̂(u(x2), u(E[L])),

where the first inequality follows from diminishing sensitivity, the second one from or-
dering and the final equality from symmetry. This yields a contradiction to the fact that
the upside of lottery L is salient.

From condition (C.6), we conclude

σ(u(x2), u(E[L]))− σ̂(u(x2), u(E[L])) > σ(u(x1), u(E[L]))− σ̂(u(x1), u(E[L]))

by Definition 4 as the contrast effect is stronger for salience function σ than for salience
function σ̂. Rearranging the above inequality yields

σ(u(x2), u(E[L]))− σ(u(x1), u(E[L])) > σ̂(u(x2), u(E[L]))− σ̂(u(x1), u(E[L])).

As ∆ < 1 and σ̂(u(x2), u(E[L])) > σ̂(u(x1), u(E[L])) we conclude

∆σ(u(x2),u(E[L]))−σ(u(x1),u(E[L])) < ∆σ̂(u(x2),u(E[L]))−σ̂(u(x1),u(E[L])).

Thus, if lottery L satisfies condition (C.1) for salience function σ̂, then lottery L also satis-
fies condition (C.1) for salience function σ. This completes the proof.

Proof of Proposition 6. For a given expected valueE ∈ R consider a lotteryL ∈ L(E)which
is sold at some price z ∈ R. Hence the choice set comprises {L, z}. As u is concave there
exist some a, b ≥ 0 such that u(x) ≤ ax + b. Denote ∆k := ∆−σ(u(xk),u(z)) for k ∈ {1, 2}.
Using p = (x2 − E)/(x2 − x1) we get

U s(L) =
∆1(x2 − E)u(x1) + ∆2(E − x1)u(x2)

∆1(x2 − E) + ∆2(E − x1)

≤∆1(x2 − E)(ax1 + b) + ∆2(E − x1)(ax2 + b)

∆1(x2 − E) + ∆2(E − x1)

=b+ a · ∆1(x2 − E)x1 + ∆2(E − x1)x2
∆1(x2 − E) + ∆2(E − x1)

≤b+ aC · (x2 − E)x1 + (E − x1)x2
x2 − x1

=b+ aCE.

Here, the first inequality follows from the concavity of the value function, while the sec-
ond inequality follows from using the upper bound of C for the salience weights in the
numerator and the lower bound of 1 for the salience weights in the denominator. This
completes the proof.
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Appendix B: Skewness preferences according to a model of focus-
ing (Kőszegi and Szeidl, 2013)

In this section, we verify that our explanation for skewness preferences does not hinge
on the specific assumptions of salience theory of choice under risk, but also holds under
a related approach to stimulus driven attention—a model of focusing (Kőszegi and Szeidl,
2013). As Kőszegi and Szeidl analyze deterministic choice problems only, we extend their
model towards risky choices along the lines of salience theory, that is, the agent evaluates
an option according to the underlying state space.

Model. Suppose some choice set C := {Lx, Ly} where Lx := (x1, p1; . . . , xn; pn) and
Ly := (y1, q1; . . . ; ym, qm) are discrete lotteries with n,m ∈ N and

∑n
i=1 pi =

∑m
i=1 qi = 1.

We impose the same conventions for the lotteries’ outcomes as in themain text (i.e., the lot-
teries’ ouctomes are pairwisely distinct and occur with strictly positive probability). The
state spaceS comprises all feasible payoff-combinations of the available lotteries. Thereby,
each state of the world sij := (xi, yj) occurs with some objective probability piqj . Again
we assume that the decision maker evaluates monetary outcomes via a strictly increasing
value function u(·) with u(0) = 0.

According to the focusing model, a decision maker assigns a weight to each state sij
that depends on the state’s objective probability piqj and on the absolute difference in the
values of the feasible outcomes in this state, denoted as dij := |u(xi) − u(yj)|. The larger
the range of values assigned to the outcomes in a state is, the higher is the agent’s focus on
this particular state. Formally, the agent’s focus on state sij ∈ S is given by g(dij) where
the focusing function g : R+ → R+ is bounded and strictly increasing.13

For reasons of comparability, we adopt the smooth salience characterization intro-
duced in Section 2 for the focusing model. That is, each state sij receives focus weight
∆−g(dij) for some focusing function g(·) and some constant ∆ ∈ (0, 1] that captures the
agent’s susceptibility to focusing. An agent with ∆ < 1 we call a focused thinker.

Definition 5. A focused thinker’s decision utility Uf (·) for Lx ∈ {Lx, Ly} is given by

Uf (Lx) =
∑
sij∈S

piqju(xi) ·
∆−g(dij)∑

sij∈S piqj∆
−g(dij)

.

The normalization factor in the denominator ensures that the distorted probabilities sum
up to one and that the valuation for a safe option c ∈ R is undistorted; that is, irrespective
of the composition of the choice set we have Uf (c) = U(c) = u(c).

13Relatedly, Bushong et al. (2016) propose amodel of relative thinking that differs from the preceding focusing
model only in the assumption on the slope of g: while we have g′(dij) > 0 for the focusing model, we have
g′(dij) < 0 for the model of relative thinking. Thus, the probability weight on state sij decreases in the
absolute difference in values dij .
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Certainty equivalents andmonotonicity. Suppose the agent faces some choice set {L, c}
where L := (x1, p1; . . . ;xn, pn) is a lottery with n ≥ 2 pairwisely distinct ouctomes and
c denotes the option that pays an amount of c ∈ R with certainty. A focused thinker
(weakly) prefers the lottery L over the safe option c if and only if

Uf (c) ≤ Uf (L) =

∑n
i=1 piu(xi)∆

−g(|u(xi)−u(c)|)∑n
i=1 pi∆

−g(|u(xi)−u(c)|)
=: F (c).

Without loss of generality we assume x1 < . . . < xn. Then a focused thinker’s certainty
equivalent is implicitly given by c = u−1(F (c)). As for the salience model, we conclude
that u−1 ◦ F : [x1, xn] → [x1, xn] has at least one fixed point due to Brouwer’s fixed point
theorem and we obtain the following proposition.

Proposition 7 (Certainty equivalent to a discrete lottery). A focused thinker’s certainty equiv-
alent to a lottery with n ≥ 2 outcomes is unique and monotonic in outcomes and probabilities.

Proof. Note that for any salience function σ(·, ·) and any focusing function g(·) we have

sgn
(
∂σ(u(xi),u(c))

∂u(xi)

)
= sgn

(
∂g(|u(xi)−u(c)|)

∂u(xi)

)
and sgn

(
∂σ(u(xi),u(c))

∂u(c)

)
= sgn

(
∂g(|u(xi)−u(c)|)

∂u(c)

)
.

Then, the statement simply follows from replacing the salience function in the proof of
Proposition 1 by a focusing function.

Skewness preferences under a linear value function. To investigate a focused thinker’s
attitude toward skewness, suppose some choice set {L,E[L]}where L := (x1, p;x2, 1− p)
is a binary lottery with x2 > x1 and expected value E[L] := p · x1 + (1− p) · x− 2. As in
Section 4, we assume a linear value function u(x) = x.

Using Lemma 1, a focused thinker’s risk premium for the binary lottery L with ex-
pected value E, variance V and skewness S equals

r(E, V, S) =
√
V p(1− p) ·

(
∆−g(E−x1) −∆−g(x2−E)

p∆−g(E−x1) + (1− p)∆−g(x2−E)

)

where outcomes xk = xk(E, V, S), k ∈ {1, 2}, and probability p = p(S) are defined in
equation (2). A focused thinker strictly prefers the lottery L over the safe option E if and
only if the lottery’s risk premium is strictly negative, or, equivalently, the agent’s focus lies
on the lottery’s upside payoff. We conclude:

Proposition 8 (Skewness preferences). For given expected value E and variance V , a focused
thinker strictly prefers the binary lottery over its expected value if and only if S > 0.

Proof. It is straightforward to show that a focused thinker’s risk premium is strictly neg-
ative if and only if g(x2 −E) > g(E − x1). As g is a strictly increasing function, this is the
case if and only if

√
V

√
p

1− p
= x2 − E > E − x1 =

√
V

√
1− p
p

,
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or equivalently, p > 1/2. From equation (1) we conclude that a focused thinker strictly
prefers the lottery over its expected value if and only if S > 0.

Hence a focused thinker seeks right-skewed but avoids left-skewed risks.14 As for
the salience model, we observe that a focused thinker’s preference for right-skewed and
aversion toward left-skewed risks is enhanced if the contrast effect becomes stronger.

Definition 6. We say that the contrast effect is stronger for focusing function g than for focusing
function ĝ if the difference g(x)− ĝ(x) is increasing in x ∈ R+.

Note that the argument of the focusing function represents the difference in values
assigned to the outcomes that are feasible in a given state. Thus, the preceding definition
of the strength of the contrast effect is analogous to the definition given for the salience
model. We conclude:

Proposition 9 (Contrast and skewness preferences). Let the contrast effect be stronger for
focusing function g than for focusing function ĝ. Then, a focused thinker’s risk premium r is
smaller for g than for ĝ if and only if the lottery is right-skewed.

Proof. Analogous to the proof of Proposition 4.

Puzzles on skewness preferences. Similar to salience theory of choice under risk, the fo-
cusing approach yields more reasonable predictions on the magnitude of skewness pref-
erences than cumulative prospect theory. Wewill show that the puzzles on skewness pref-
erences in the small (Ebert and Strack, 2015, 2016) and in the large (Rieger andWang, 2006;
Azevedo and Gottlieb, 2012) arising for CPT agents can be resolved for focused thinkers.

First, we argue that focusingdoes not necessarily yield the sameunrealistic predictions
on skewness preferences in the small as cumulative prospect theory (Ebert and Strack,
2015). Formally, suppose that a focused thinker faces some choice set {L,E[L]}. In line
with Section 5, let x2 > x1 ≥ 0 and assume that the decision maker’s value from money
is strictly increasing and strictly concave, that is, u′(·) > 0 and u′′(·) < 0. As before, we
normalize u(0) = 0. Then, a focused thinker strictly prefers the risky lottery L over the
safe option E[L] if and only if

u(x2)− u(E[L])

u(E[L])− u(x1)
· 1− p

p
>

∆1

∆2
,

where ∆k := ∆−g(|u(xk)−u(E[L])|), k ∈ {1, 2}. For any given expected value E = E[L],
substituting p = (x2 − E)/(x2 − x1) yields

u(x2)−u(E)
x2−E

u(E)−u(x1)
E−x1

>
∆1

∆2
. (C.1–Focus)

14Note that, for any expected value E and variance V , a relative thinker (Bushong et al., 2016, see also
footnote 12) prefers the binary lottery over its expected value if and only if S < 0. It is straightforward to
show that we have g(x2 − E) > g(E − x1) if and only if p < 1/2 as g is strictly decreasing by assumption.
Hence a relative thinker seeks left-skewed but avoids right-skewed risks.
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Using the following two examples, we show that depending on the value function’s
curvature there might not exist a binary lottery satisfying condition (C.1–Focus). As in
Section 5, we assume power utility u(x) = xα for some α ∈ (0, 1). Further, we consider
the focusing function g(x) = 1− 1

1+γx for some parameter γ > 0 and x ∈ R+. Let ∆ = 0.7.

Example 6 (Value function). Let γ = 1 so that the focusing function is given by g(x) =

1 − 1
1+x . If the value function’s curvature increases, that is, the parameter α decreases,

we observe that inequality (C.1–Focus) is less likely to hold. More specifically, numerical
computations show that there exists some threshold value α̃ ∈ (0, 1) such that for any
α ∈ (0, α̃) no unfair, attractive gamble exists. For α = 0.95 and α = 0.5, Figures 5 and 6
illustrate the risk premium r = u(E[L])−Uf (L) as a function of probability p and upside
payoff x2 for a given downside payoff x1 = 1.

Figure 5: Risk premium for α = 0.95. Figure 6: Risk premium for α = 0.5.

Example 7 (Focusing function). Fix α = 1/2 so that the value function is u(x) =
√
x. We

observe that inequality (C.1–Focus) is more likely to hold for at least some binary lottery
L if parameter γ increases, that is, the contrast effect becomes stronger. In fact, numerical
computations show that there exists some γ̂ > 1 such that for any γ > γ̂ at least one
unfair, attractive gamble exists. For γ = 1 and γ = 10, Figures 7 and 8 illustrate the risk
premium r = u(E[L]) − Uf (L) as a function of probability p and upside payoff x2 for a
given downside payoff x1 = 1.

Second, we show that a focused thinker’s valuation for binary lotteries with a given
expected value E < ∞ is bounded. Hence cumulative prospect theory’s predictions on
skewness preferences in the large—as delineated by Rieger andWang (2006) andAzevedo
and Gottlieb (2012)—can be resolved in the focusing model.

Proposition 10. Let L(E) denote the set of binary lotteries L with finite expected value E ∈ R.
A focused thinker’s valuation for some L ∈ L(E) is bounded by a function which is affine in E.

Proof. Since the focusing function is bounded there exists some threshold value Ĉ < ∞
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Figure 7: Risk premium for γ = 1. Figure 8: Risk premium for γ = 10.

such that ∆−g(x) < Ĉ for any x ∈ R+. The remainder of the proof is analogous to the
proof of Proposition 6.

Appendix C: Mao’s lotteries and skewness preferences

Suppose choice set C := {Lx, Ly}where Lx := (x1, p;x2, 1− p) and Ly := (y1, q; y2, 1− q)
with outcomes x2 > x1 and y2 > y1 and probabilities p, q ∈ (0, 1). As in Section 4, we
assume a linear value function u(x) = x. Mao (1970) introduced the following class of
binary lotteries that allow to identify skewness preferences.

Definition 7. Let p ∈
(
0, 12
)
. Two perfectly correlated, binary lotteries Lx := (x1, p;x2, 1 − p)

and Ly := (y1, 1− p; y2, p) denote aMao pair if both have the same expected value and variance.

Mao lotteries differ only in their skewness: Lx is left-skewed as its high payoff x2

occurs with a high probability while lottery Ly is right-skewed as its high payoff y2 occurs
with a small probability (for a formal proof see Ebert and Wiesen, 2011). In line with
Definition 3, Ebert andWiesen (2011) state that “an individual is said to be skewness seeking
if, for any given Mao pair, she prefers Ly over Lx.”

Proposition 11. For any given Mao pair, a salient thinker prefers Ly over Lx.

Proof. Due to the perfect correlation of the lotteries, the state space S comprises only two
states, that is, S = {(x1, y2), (x2, y1)}. Hence a salient thinker prefers the right-skewed
lottery Ly over the left-skewed lottery Lx if and only if

U s(Ly)− U s(Lx) = p(y2 − x1)∆−σ(x1,y2) + (1− p)(y1 − x2)∆−σ(x2,y1) > 0.

Since p(y2 − x1) = −(1 − p)(y1 − x2) > 0 by definition—both lotteries have the same
expected values—the above inequality simplifies to σ(x1, y2) > σ(x2, y1). As p < 1/2,
Lemma 1 yields

x1 < y1 < x2 < y2.

Then, ordering implies σ(x1, y2) > σ(x2, y1), which was to be proven.
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Finally, it is straightforward to see from the prove above that also a focused thinker
prefers Ly over Lx for any given Mao pair.
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