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1 Introduction

The decision of financial investors to roll-over short term debt often inherits strategic

complementarity. When investors try to coordinate their decisions based on the

observed information and other investors’ behavior, runs can occur based on panics

in addition to fundamental information. In this paper, we show that not only the

interest rates offered on short term debt but also the yield curve matters for the

stability of a bank. Even when expected returns are equal, differences in yield

curves can establish a pecking order in investors’ roll-over decisions and thereby

significantly change the allocation of liquidity among institutions. Institutions that

promise steeper yield curves gain a liquidity base that they can use for longer-term

investments, while the liquidity base of the residual institutions is shortened. As a

consequence, the latter become more fragile to panic-based runs.

Our framework can be applied to various types of institutions which are prone to

panic-based runs. While we gain general insights on the importance of the design

of the yield curve for financial stability, our framework also offers insights in under-

standing how exogenous interventions distort the distribution of liquidity. Examples

of such interventions are subsidized funds that attract long term savings and thereby

lower the liquidity base of traditional banks, plans to ring-fence retail banks’ demand

deposits from other activities or exclusive insurances for particular institutions. In

our model, we concentrate on the example of a subsidized savings fund that lures

long term savings from the residual banks and thereby erodes the deposit base of

the residual commercial banks.1

The idea of subsidizing long term savings, thereby steepening the yield curve, is

not new. In times of low interest rate policy, households are reluctant to invest

their savings for fixed terms in long term investments. However, low interest rate

policy is usually a reaction to low levels of growth and innovation. Stimulation of

1This particular example is motivated by the European Commission’s proposal to create a

European savings fund that attracts private long term savings at a central European institution

through a guaranteed interest rate and tax benefits. Michel Barnier, Member of the EC in charge

of Internal Market and Services, presented on 27 March 2014, a package of measures to stimulate

Europe’s economic growth. Among others, he presented the idea of a subsidized European savings

account that collects long term savings at a central European institution to reallocate them towards

the needs of small and medium sized enterprises.
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growth and innovation in turn requires long term investments. A way to escape

this vicious circle may be a subsidy for private long term savings - and hence the

rationale behind the idea.2

So far, the direct and indirect effects of the allocation of liquidity among competing

banks and the stability of private banking sector is not well understood. This paper

offers a first assessment of the problem. We focus on the particularity of the banking

sector: its intrinsic fragility due to fundamental and panic-based bank runs. We raise

the question of how an asymmetry in banks’ liquidity bases affects the stability of

the overall banking sector?

Our argument is the following: households prefer demand deposit contracts because

they do not know ex-ante when they will need to consume. Demand deposits offer

a way to invest in liquid assets while still earning a decent return. Banks pool the

deposits of all households and diversify the idiosyncratic consumption shock risks. In

each period, only a small proportion of the demand deposits are actually withdrawn

to satisfy consumption needs. A considerable stock of deposits remains at the bank.

This ‘’deposit base”, the proportion of deposits that are not withdrawn in each

period, is used by the banks for long-term investments. The higher such a deposit

base of a bank is, the higher are the returns it can offer to its depositors and the

less prone a bank is to a run by its depositors. A lower deposit base decreases the

long run returns a bank can offer and, thus, increases the probability of bank runs.

This increase is disproportionately high, because there is strategic complementarity

among depositors.

In an extension, we allow for a more realistic funding structure with insured retail

depositors and uninsured wholesale short term investors. As depositors are insured,

they no longer have an incentive to run on the bank. However, we show that a change

in the deposit base provided by insured depositors uninsured wholesale investors has

spillover effects on the incentives to run. The lower the deposit base, the higher the

probability that uninsured wholesale investors run on the bank. Again, the increase

2One ancient example of such a subsidized savings account is the french Livret A. It was intro-

duced 1818, after the Napoleonic wars, to re-stimulate private savings in France. This subsidized

savings account still exists today and guarantees a fixed rent on long term savings. Moreover

no taxes need to be paid for up to e 20,000 of deposited savings. The collected private savings

from the Livret A are provided to the public Caisse des Dépôts and used for long term public

investments.
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in the run probability is disproportionally high, such that an asymmetric allocation

of liquidity in the banking system harms aggregate stability.

A simple setup to illustrate the effect of the deposit base on aggregate bank stability

is an exogenous increase in the yield curve for deposits: a tax funded subsidy for

the long term return. In the presence of such a subsidy of a certain share of the

households’ savings, the households invest the allowed share at the subsidized bank,

which pays higher rents. The residual share of households’ savings is invested at

the residual banks offering market rents. Households that are hit by a consumption

shock now have a strict preference for withdrawing their deposits first from the un-

subsidized bank account, leaving as much as possible at the subsidized account that

offers a higher long term interest rate. This pecking order in deposit withdrawals

decreases the deposit base of the unsubsidized banks and increases the liquidity of

the subsidized fund. This increases the stability of the subsidized fund. The lower

deposit base destabilizes the residual banks, making them more prone to panic-based

bank runs. We show that the total effect on the stability of the banking system is

likely to be negative.

We base our analysis on the Diamond and Dybvig (1983) model that shows that

banks provide households with an insurance against idiosyncratic consumption shocks.

As long as these shocks are not perfectly correlated, banks are able to provide better

return-revenue combinations than the market. However, demand deposits that pro-

vide liquidity insurance make banks vulnerable to bank runs where more than the

expected fraction of depositors withdraw their deposits. Instead of the Diamond and

Dybvig (1983) model we could have used other models that justify the existence of

short term lending and bank crisis. Diamond and Rajan (2001) argue that the link

between short term lending and bank fragility has a reverse causality. Banks that

want to provide liquidity and loans to risky borrowers have to borrow short-term

because the threat of a bank run from short term borrowing prevents banks from

renegotiating contracting terms. Another justification for demand deposits is given

by Gorton and Pennacchi (1990) who argue that banks optimally offer demand de-

posits to uninformed agents because they are riskless; their value does not depend

on the information known only by informed agents.

In Diamond and Dybvig (1983) style models bank run equilibria occur as self-

fulfilling beliefs that are rather unrelated to fundamentals. The model lacks an

explanation of the determinants and likelihood of each type of equilibria. In or-
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der to analyze the impact of a subsidy on the stability of the subsidized and the

competing financial institutions we use a global games approach. This approach

was developed by Carlsson and van Damme (1993) and allows a tighter analysis

of panic-based models. Our model is based on Goldstein and Pauzner (2005) who

apply the global games approach to a bank-run setting. This allows us to analyze

the relationship between the deposit base and the likelihood of inefficient bank runs.

In the model setup we focus on uninsured deposits as an extreme cause of bank

fragility. As in all run-based models, the bank fragility would disappear if a gov-

ernment could credibly guarantee to pay any liability at each point in time either

by perfect deposit insurance or with bail-out policies. Yet, our setup is based on

a Macroeconomic shock that affects the economy as a whole and, thus, also the

entire banking sector. Therefore, an interbank based liquidity insurance would not

mitigate the run incentives, since all banks suffer low expected returns and therefore

higher bank run probabilities. Likewise, a macro-shock also affects the tax income

of a government. Therefore, also the government might not be able to rescue the

entire banking sector in case of a severe recession. An anecdotical example that

governments are not able to fully bail out a banking system after a macro shock

can be found in the Bail-in in Cyprus that included senior unsecured debt and even

deposits. Therefore, even with state guarantees and deposit insurance, we would get

the same qualitative results as long as guarantees and insurance are not perfectly

covering the liabilities from depositors after a macro shock. For simplicity we fo-

cus on the extreme case without any guarantee or deposit insurance. Of course the

quantitative results change with the coverage of a state guarantee/deposit insurance.

A partly insured banking system becomes less fragile to bank runs. The impact of

an imperfect deposit insurance and state guarantees is discussed in section 5.

Moreover, even with perfect deposit insurance, not all funds are insured. Increas-

ingly, banks fund a considerable amount of their investments with uninsured whole-

sale funding (Feldman and Schmidt (2001), Oura et al. (2013)). Since the deposit

rate affects also the yield curve of wholesale funding, a decreased deposit base would

likewise increase the run on repo or wholesale funding probability.

We proceed as follows. In section 2 we introduce our adapted version of the Diamond

and Dybvig (1983) model. In section 3 we introduce the global game framework and

show in section 4 that the biased preferences of consumers to withdraw from one

bank to satisfy their consumption needs destabilizes the banking sector considerably
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even when banks actually pay the same interest rates. Interestingly, the same re-

sults apply to a single bank that is forced to offer different conditions for separated

businesses. A ring fenced subsidized bank account that is separated from the bank’s

residual business would therefore decrease the overall stability of the bank, which we

discuss in section 5. We also analyze the impact of a deposit insurance. In section 6

we discuss the effect of a subsidy on the preferences to withdraw in more detail. To

close the model we show that the subsidy can be refunded immediately by a flatrate

tax without changing the results.

2 The Model Setup

Consider an economy with one good and three dates (t = 0, 1, 2), a continuum of

consumers of mass 1, and a continuum of banks.

Consumers. Consumers are endowed with 1 unit of the good at date 0, which

they can deposit at a bank. Consumers are risk neutral and want to consume at

date 1 or date 2; their utility function is

u(c0, c1, c2) = c1 + c2. (1)

Ex-ante, consumers are identical. Some consumers, called impatient consumers,

receive a consumption shock at t = 1. The residual consumers are called patient.

In the classic Diamond and Dybvig (1983) style framework the consumption shock is

binary: impatient consumers withdraw their entire deposits, while patient consumers

do not consume anything at t = 1 but everything at t = 2.

A more realistic assumption is that impatient consumers are heterogeneous: Some

consumers want to withdraw their complete deposit, some only consume a part

of their deposited savings. A consumer might get the opportunity to buy a rare,

expensive car that he enjoys to ride, or could become sick and spend his entire savings

on a therapy, restoring his health. Other consumers may also have immediate but

smaller consumption desires. They might need to fix their broken car or buy some

medicine to recover. Each immediate consumption gives the particular consumer an

exceptionally high utility, but only up to the level needed to satisfy the consumption
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shock. Any deposit withdrawal beyond the consumption shock would only limit

future consumption possibilities. We need this realistic assumption on heterogeneity

in consumption shocks to build up our argument that a pecking order in withdrawals

results in an asymmetric allocation of the deposit base in the banking system.

Therefore, we allow for heterogeneous consumption shocks in our model: A fraction

η of consumers has the opportunity to consume up to H > 1 units and receive

a utility of µ > 1 (we give a stricter condition on µ below).3 These are called

H-consumers. A fraction λ of consumers has the opportunity to consume up to

L < 1, which also produces a utility of µ.4 They are called L-consumers. We

assume that λL+ηH < 1. i.e., the proportion of impatient consumers is sufficiently

low such that there remains a deposit base for long term investments even if all

impatient consumers fully satisfied their consumption needs. The remaining fraction

of consumers, 1− η − λ, does not experience a consumption shock. They are called

patient consumers.5

Investment. There is a single risky investment technology. Per unit of investment

at date 0, it returns R > 1 at date 2 with probability p(ϑ), otherwise it returns zero.

The investment can be liquidated at date 1, in which case it returns 1. Partial

liquidation is possible.

The variable ϑ is uniformly distributed on the unit interval, ϑ ∼ [0, 1] and represents

the state of the economy. We assume for simplicity that p(ϑ) increases linearly in

ϑ. This allows us to get explicit results, however, the proof of our results builds on

3The divisibility of the H and L is assumed for convenience and is not crucial. It allows for a

continuous piecewise linear utility function for each type that has a kink at the maximum private

investment opportunity for impatient consumers and is therefore quasi-concave.
4This assumption is sufficient but not necessary. To generate our results it is crucial that

impatient consumers are heterogeneous in a way that some impatient consumers want to withdraw

a smaller amount than the others. Hence, the necessary assumption is L < H. However, the

somewhat stricter assumption that L < 1 generates heterogeneity in the withdrawal behavior of

consumers without bank deposits and is made for illustrative purposes.
5In our model demand deposits minimize opportunity costs from forgone consumption possibil-

ities. This is a stark simplification that is not necessary for our results but allows us to get explicit

solutions for the bank run probabilities later on. Clearly, our results hold for any more general

model version with high relative risk aversion as in the Diamond and Dybvig (1983) model.
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the more general assumption p′′(ϑ) ≤ 0 . Intuitively, this requires that good states

of the world are more likely than very bad states as we discuss in Appendix A.2.

Furthermore, we define p̄ = E[p(ϑ)] as the ex ante probability of long-term invest-

ment success. We assume that µ > p̄R > 1; the expected return at date 2 exceeds

the liquidation value but is lower than the gross return from the private investment

opportunity.

Information. The state of the economy ϑ is realized at date 1, but does not

become public information. Instead, each consumer gets a private signal

xi = ϑ+ εi, (2)

where εi is a stochastically independent private error term that is uniformly dis-

tributed over the interval [−ε, ε]. Consumers observe the signal, then decide whether

or not to withdraw their deposit from the bank.

3 The Equilibrium for Symmetric Banks

We first calculate the equilibrium for a representative bank. The bank offers a de-

posit contract that promises for a date 0 deposit at the bank some fixed r1 per unit

of investment at date 1, and a stochastic r2 per unit of non-withdrawn investment at

date 2. Banks are assumed to operate under perfect competition and therefore dis-

tribute their complete revenues at date 2. Therefore, r2 will depend on whether the

project is successful, and on the fraction of depositors that have already withdrawn

at date 1. The bank invests all collected deposits in the risky technology.

The optimal short term interest payment is r1 = H because it allows all impatient

consumers to consume H.

At date 1 consumers learn their type. In the absence of a bank run H-consumers

withdraw their entire deposit and receive r1 ·1 = H. L-consumers withdraw only the

fraction L
H

of their deposit. Patient consumers do not withdraw their endowments

and simply wait until they receive r2 as long as E(r2) > H.

Denote with n the amount of deposits that is actually withdrawn at date 1 and with

nmin the amount that is withdrawn with certainty to satisfy consumption needs. The
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minimum deposit withdrawal in the symmetric banking sector is nmin = η + λ L
H

. If

no bank run occurs, the bank liquidates a fraction (η + λ L
H

) r1 = η H + λL of its

risky investments. The deposit base of the bank is 1− nmin = (1− (ηH + λL)).

At date 2, in case of success, the bank then pays

r2 =
(1− (ηH + λL))R

1− (η + λ L
H

)
(3)

to patient and to L-consumers in proportion to their residual deposit holders.

This constitutes an equilibrium as long as the inter-temporal incentive constraint of

all consumers is satisfied i.e., the expected return for waiting to withdraw must be

higher than the immediate certain return from withdrawal: p̄ r2 ≥ r1. 6 The risk

neutral incentive constraint can be summarized in the requirement :

p̄ R ≥ H − (η H + λL)

1− (η H + λL)
. (4)

The incentive constraint is satisfied for high expected returns on the risky investment

and relatively low levels of H and L or low proportions of impatient consumers,

respectively.

3.1 Stability: Bank run probabilities

Besides the certain minimum withdrawal of depositors nmin the residual depositors

may withdraw strategically, depending on the private information they receive and

their corresponding higher order beliefs on the behavior of the other depositors.

Since the promised repayment r1 is greater than liquidation value 1, the bank is

not able to repay all depositors, if all withdraw their entire deposits at date 1.

Moreover, whenever at least 1
H

depositors withdraw their deposits the bank would

have to liquidate all their assets in order to pay H > 1. Consumers who do not

withdraw in that case receive nothing. There is strategic complementarity among

6Because patient consumers are risk-neutral, and L-households are risk neutral on any payment

above L, consumers are only interested in the expected payment at date 1 in the case of withdrawal.

Consequently, banks in our setting do not need a pro rata rule. Such a rule would not change

expected utility, or influence the consumers’ strategic situation.
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the withdrawal behavior of depositors that allows for self-fulfilling, panic based bank

runs.

In addition to panic based bank runs, our model allows for fundamental based bank

runs. There are realizations of the fundamental variable that are so low (high)

that no matter of what other depositors do, it is the dominant strategy of each

depositor to withdraw (not withdraw) its deposits. These regions of realizations of

the fundamental variable are called lower (upper) dominance region.

Lower dominance region. When fundamentals are bad, the expected return at

date 2 can fall below the certain return of a date 1 withdrawal. In contrast to

Goldstein and Pauzner (2005) we have two types of patient consumers to consider:

patient consumers and the L-consumers that have to decide to fully or only partially

withdraw their deposit.

Consider the patient consumers. We denote by p(ϑ) the realized success probability

that solves r1 = p(ϑ) r2. Using the equilibrium values for the repayments we get:

H = p(ϑ)
(1− (η + L

H
λ)H

1− (η + L
H
λ)

R
)
. (5)

Solving for p(ϑ) yields

p(ϑ) =
H − (η H + λL)

R (1− (η H + λL))
. (6)

In Appendix A.3 we show that this critical threshold is identical for L-consumers

that have to decide to fully or only partially withdraw their deposit.

For the lower dominance region to exist, there must be feasible values of ϑ for

which all patient and L-depositors receive signals that clearly indicate that they

are in that region. We have assumed that the noise ε of the signal xi is uniformly

distributed over the interval [−ε, ε]. Patient and L-consumers will therefore find it

always optimal to withdraw (no matter what others do) their entire deposit if they

observe a signal xi < ϑ − ε where ϑ is implicity defined (6). Consequently, if the

realization of the state variable is sufficiently bad: ϑ < ϑ− 2ε, there is a bank run

for sure.
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Upper dominance region. The upper dominance region corresponds to real-

izations of the fundamental variable for which it is never optimal for patient L-

consumers to withdraw the deposits that are not necessary for private investments

early. Following Goldstein and Pauzner (2005) we assume that such an upper domi-

nance region exists for a range (ϑ̄, 1]. Following their argument, we also assume that

the liquidation value increases in very good states. Intuitively, a very high ϑ results

in a certain return of R in future, which also affects the liquidation value at date

1. Assume that the certain return of R in future increases the liquidation value of

the asset at date 1 R1 to H ≤ R1 < R. For low and intermediate states ϑ ∈ [0, ϑ̄]

we therefore assume the liquidation value to be equal to 1 and for ϑ ∈ (ϑ̄, 1] we

assume it increases to R1 ≥ H. For extremely good states of the world not only

the long term investment returns are high but also short term returns increase. The

intuition is that for these very good states of the world outside investors would be

willing to buy the claims of the certain asset for a price close to the fundamental

value. This assumption makes sure that there are states of the economy where re-

turns are so high, that banks would always be able to repay their liabilities even if a

run occurs. Put differently, in very good states it would never be beneficial to run,

even if all other depositors withdraw their endowments. For these fundamentals it

is the dominant strategy for patient consumers to wait and withdraw only at date

2.

A similar interpretation could be that for extremely good states of the economy, the

government can collect so much taxes that it will bail out depositors at each date

making it unnecessary for depositors to run. Denote ϑ̄ the infimum of realizations

of the fundamental that result in run-proof banks. If a depositor receives a signal

that indicates that all other depositors are in the upper dominance region and know

that their investments are safe, there is no reason to run and liquidate deposits at

date 1. The upper dominance region, therefore, exists if ϑ̄ < 1 − 2ε. In that case,

for any state realization ϑ > ϑ̄ all depositors receive a signal indicating they are in

the upper dominance region and there are no bank runs.

Intermediate region: deposit base drives stability. In the intermediate re-

gion, the consumer’s private information is crucial. Consider a patient consumer

who thinks about withdrawing early. (For L-consumers, who have the choice be-

tween withdrawing partially or completely, the analysis is identical, scaled down by

a factor). There are two fundamentally different cases. If n > 1/r1 = 1/H, the
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bank must liquidate its investment completely; it is insolvent. Consequently, if the

depositor withdraws, he still gets 1/n in expected terms, leading to a utility of 1/n.

If he does not withdraw, he gets nothing, leading to an expected utility of 0. The

analysis is more interesting for the case where the bank is liquid. If the depositor

withdraws, he gets r1 = H. If he does not withdraw, he gets his share of the final

outcome. Because n depositors have already withdrawn, the bank has to liquidate

n r1 = nH, the remaining 1− nH lead to a return of (1− nH)R with probability

p(ϑ). Because there are 1−n consumers left who have not yet claimed a repayment,

the consumer gets an expected amount of 1−nH
1−n R with probability p(ϑ), leading to

an expected utility of

p(ϑ)
1− nH
1− n

R. (7)

Now in equilibrium, there is a critical level x∗ such that all consumers with private

signals xi < x∗ withdraw, those with xi ≥ x∗ leave their deposit at the bank. This x∗

is defined such that the critical consumers (that with private information xi = x∗) is

indifferent: the expected utility when withdrawing the deposit equals the expected

utility when leaving the deposit at the bank. The indifferent depositor is implicitly

defined at the point where differences in the consumers’ utility from withdrawing

are zero:

0 =

∫ 1
H

η+λ L
H

(
p(ϑ∗)

1− nH
1− n

R−H
)
dn+

∫ 1

1
H

(
0− 1

n

)
dn, (8)

The first integral describes the difference in expected utility from not withdrawing

and withdrawing at date 1 in case there is no bank run, i.e., n < 1
H

. If the depositor

does not withdraw, but n deposits are withdrawn at date 1, he receives 1−nH
1−n R with

probability p(ϑ∗). When withdrawing, he receives H. The second integral describes

the difference in expected utility from not withdrawing and withdrawing the deposit

in case that there is a bank run. If there is a (full) bank run n > 1
H

at date 1, the

patient depositor receives zero at date 2 because all assets were liquidated. If he

also runs at date 1, he receives 1
n
.

In the limit ε → 0, the ϑ∗ below which the bank becomes illiquid is approximately

identical to the critical x∗.

Proposition 1 The model has a unique equilibrium, in which patient consumers

will run (withdraw) if they observe a signal below threshold x∗, and will not run
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above. In the limit ε→ 0, x∗ is equal to ϑ∗ as defined by the equation

p(ϑ∗) =
1− (η H + λL) + logH(

1− (η H + λL) + (H − 1) log
(

H−1
H(1−(η H+λL))

)
R
. (9)

For concreteness, take a numerical example (see Appendix B.4). In that case, we

get p(ϑ∗) = 0.6838. If the probability that the investment will return R is below

68.38%, consumers will panic and run on the bank. We cannot say anything about

the probability of a run because we have not specified the function p(ϑ). In the

simplest case, p(ϑ) = ϑ, not only ϑ is uniformly distributed but also p is. In that

case, the probability of a run would be 68.38%.

4 The Equilibrium for Uneven Banks

Assume now that consumers can put a volume s into a special bank. This deposit

earns a (arbitrary small) subsidy at date 2 from the state, hence long run deposit

rates are slightly higher, the yield curve is steeper. We discuss such subsidies and

their tax-refunding in detail in Section 6. The subsidized institutions are called

subsidized funds. The remaining volume 1 − s of the endowment is deposited at

ordinary commercial banks. As before, we assume that funds and banks operate

under perfect competition, they do not make profits. Because consumers want to

be able to consume H at date 1, the short deposit rate in a symmetric equilibrium

is rf1 = rb1 = H.7

Because funds are subsidized, depositors in need for cash will withdraw first from

a bank, then from a fund. The subsidy induces a pecking order between banks. If

a consumer wants to consume, it is first the bank that must provide the consumer

with the good. Formally, patient consumers do not need to consume, they withdraw

only for strategic (panic) reasons that will be discussed below. H-consumers need to

withdraw their complete deposit, hence they withdraw everything from both funds

and bank. L-consumers need only to withdraw L.

7Note that there exists a continuum of deposit rates that could be optimal for consumers

srf1 + (1 − s)rb1 = H. We discuss those possible asymmetric equilibria further in the following

chapter.
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Focusing on L-consumers there are two cases: First, a relatively small fund, which

size s satisfies L < (1 − s) r1 = (1 − s)H. Hence, withdrawing from the bank

is sufficient to satisfy the desired consumption L. At date 1, L-consumers have

(1 − s)H at the bank and sH at the fund and withdraw L from the bank and

nothing from the fund. Second, if L > (1− s)H, withdrawing only from the bank is

not sufficient to consume L. At date 1, the consumer withdraws (1− s)H from the

bank, and the remaining L− (1− s)H from the fund. The analysis of both cases is

very similar. We concentrate on the case of a small s, i. e., the first case; the second

case is treated in Appendix A.5.

At date 1, patient consumers must decide whether they want to withdraw their

deposits.8 The same applies to L-consumers, who must decide whether they want

to withdraw the remaining deposit. Importantly, the rational decision may differ

between fund and bank. The risk in both banks is driven by the same fundamental

ϑ, hence the information on both banks is the same. However, the liquidity and

solvency situation differs, because more deposits are withdrawn from the bank than

from the fund at date 1. We need to analyze both separately, starting with funds.

Runs on Funds. Consider again a late consumer who thinks about withdrawing

early. In order to better be able to re-use former results, let us re-normalize his

deposit to 1 (although, of course, he has deposited only s at the fund). The lower

bound of withdrawals is nmin = η. H-consumers withdraw, L-consumers cover the

required amount L ≤ L(1 − s)H with withdrawing from the bank. Therefore, L-

consumers and patient consumers withdraw only for strategic reasons from the fund.

Consequently, (8) adjusts to

0 =

∫ 1
H

η

(
p(ϑ∗)

1− nH
1− n

R−H
)
dn+

∫ 1

1
H

(
0− 1

n

)
dn. (10)

Integrating and solving for p(ϑ∗) yields

p(ϑ∗) =
1− η H + logH(

1− η H + (H − 1) log H−1
H (1−η)

)
R
. (11)

8Note that also the lower dominance regions change for each type of the bank. The exact values

are discussed in Appendix A.4.
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In the numerical example, we get p(ϑ∗) = 0.5526. Because p(ϑ) is increasing in

ϑ, this implies that the probability of a run has dropped. In the simplest case of

p(ϑ) = ϑ, the probability of a run is only 55.26%, down from 68.38%.

The deposit base of the funds increases because L-consumers withdraw their target

consumption L only from the bank leaving the deposit base at the fund unaffected.

The increased deposit base allows the fund to pay a higher expected return per

unit of non-withdrawn investment at date 2. The prospect of higher expected date

2 return makes consumers with lower signals willing to leave their deposit at the

fund. The increased deposit base shifts the critical consumer’s signal down. Only

consumers that receive a lower signal than the decreased critical signal are willing

to run the fund. Therefore the probability of a bank run decreases when the deposit

base of the fund is increased.

Proposition 2 The bank run probability p(ϑ∗) is an increasing function of nmin as

long as the bank is solvent (nmin ∈ [0, 1
H

)).

The proof is in the Appendix. Remember that nmin is the amount of deposits that

is regularly withdrawn in t = 1 in order to satisfy consumption needs. An increase

in nmin reduces the long term investment of the institution, and thereby, the long

run return r2 that the institution is able to offer. A decrease in the long run return

increases the states that cause a bank run. Intuitively, an agent that observed a

signal such that he was indifferent between running and not running, will find it

optimal to run, if the long run interest rate slightly decreases. However, if nmin ≥ 1
H

such that the institution is insolvent in t = 2 because it has to liquidate all its assets

it is always optimal because any positive payment makes the consumer better off.

Runs on Banks. This case is slightly more complex. Each consumer deposits

(1−s) at a bank. The promised repayment at date 1 is (1−s)H. Now H-consumers

withdraw the complete (1 − s)H, counting fully into the nmin. Patient consumers

do not withdraw at all (only for strategic reasons), they do not enter into the nmin.

L-consumers withdraw L from the bank and nothing from the fund. Hence, they

count into the nmin with a factor L
(1−s)H . For s = 0, we get back the factor L/H

from Section 3.
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Summing up, nmin = η + L
(1−s)H λ. Consequently, (8) adjusts to

0 =

∫ 1
H

η+ L
(1−s)H

λ

(
p(ϑ∗)

1− nH
1− n

R−H
)
dn+

∫ 1

1
H

(
0− 1

n

)
dn. (12)

Integrating and solving for p(ϑ∗) yields

p(ϑ∗) =
1− (η + L

(1−s)H λ)H + logH(
1− (η + L

(1−s)H λ)H + (H − 1) log H−1
H (1−η− L

(1−s)H
λ)

)
R
. (13)

In the numerical example, we get p(ϑ∗) = 0.7062.

Again, we cannot say anything about run probabilities without making an assump-

tion about the shape of p(ϑ). Consider the simplest example p(ϑ) = ϑ for exposition.

The probability of a run is then 70.62% for this bank. Due to the introduction of

subsidized banks, the old-fashioned commercial banks become more risky. Of course,

we are interested in the aggregate effect.

The expected fraction of deposits lost in a run is 68.38% in the absence of funds.

With funds, it is

0.1 · 55.26% + (1− 0.1) · 70.62% = 69.08%,

an increase of 0.7%. This implies that the introduction of funds makes the whole

system more unstable, in the aggregate (at least, in this numerical example).

Proposition 3 An uneven banking system has a higher aggregate bank-run proba-

bility than a symmetric banking system for p′′(ϑ) ≥ 0.

p(ϑ∗) is a convex function of nmin. Therefore, any linear combination of minimum

withdrawals results in a higher aggregate bank-run probability than in the symmetric

banking sector. The detailed proof can be found in the Appendix B.3.

Corollary 1 The aggregate bank-run probability increases the difference in the de-

posit base among bank institutions.
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The corollary follows directly from the convexity of p(ϑ∗)in nmin. The higher the

gap in the deposit base, the more uneven are the banks and the greater is the loss in

the aggregate stability compared to an even banking system. We discussed before

that the probability of panic runs on each bank also depends of the relative size s of

each bank type. In particular, a subsidized bank is safest as long as s is small such

that consumers cover consumption needs fully by withdrawals from the bank (Case

1). For small values of s, the panic run probability for funds is independent of the

relative size, while the panic run probability of banks increases in its relative size

1−s. The greatest inequality between withdrawals for each type of banks is reached

when s = H−L
H

such that withdrawal from the bank just satisfies low consumption

needs. In this case, L-consumers withdraw their entire deposit from the bank but

nothing from the fund resulting in a very steep yield curve at the fund and the most

flat yield curve for banks. In this case, the panic run probability for banks reaches

its maximum. For s > H−L
H

the withdrawal decision of L-consumers is described by

Case 2 in Appendix A.5. In this case the fund loses parts of its deposit base because

withdrawing all deposit from the bank is not sufficient. Therefore, the panic run

probability of the fund increases in its relative size s while the probability of for

banks remains independent at its maximum.

Figure 1: Aggregate panic-run probabilities dependent on size of bank types

Figure 1 summarizes this result using our numerical example. The bold line depicts

the aggregate panic-run probability in the system weighted by the relative size s.

If s = 0 no subsidized banks exist, the banking sector is symmetric banking as

16



discussed in Chapter 3. Analogically, s = 1 implies that all banks are equally

subsidized and no banks asymmetry in liquidity allocation exists. Note that in

this case, the aggregate bank-run probability equals the case with no subsidy. If

all banks receive the same subsidy, or, analogously, if a bank can use the liquidity

a subsidized fund attracts for its residual business, stability is not harmed. The

aggregate probability of bank-runs increases when the deposit base of banks becomes

unequal. The highest inequality in the deposit base is reached, when L = (1− s)H.

In this case, L-consumers withdraw their entire deposits from banks but nothing

from funds.

Acknowledging that our model focuses only on the adverse effect of an inequality in

the deposit base we are aware that we cannot fully evaluate the costs and benefits

of a subsidy on long term savings. However, our analysis implies that a subsidy to

limited savings collected at a separate institution destabilizes the banking system

while the corner solutions of no subsidy or a subsidy for all financial institutions

equally would not have this detrimental side effect.

5 Discussion

Deposit insurance. A perfect deposit insurance system that credibly assures

consumers to pay the contracted long term interest rate eliminates the bank run

equilibrium in the Diamond and Dybvig (1983) model. The same result holds for

bank runs in global games. On the one hand, one could argue that virtually every

economy with a significant banking sector provides a deposit insurance system ei-

ther in the form of a deposit insurance fund or in the form of explicit or implicit

government guarantees. However, not only the recent financial crisis illustrated that

banks are nevertheless fragile. We, therefore, argue that even with insured deposits,

depositors may have an incentive to run the bank if they get an adverse signal on

the fundamental. First, a bad signal on the fundamental can also be indicated as

information on the economic situation as a whole. If depositors expect all banks to

suffer losses they may question the ability of the deposit insurance system to cover

their losses. A deposit insurance fund per definition is not able to buffer systemic

risk but only idiosyncratic bank defaults. Even governments may be pushed towards

the border of their solvency if the whole banking system is in distress as the example

of Ireland and Spain have illustrated. Second, even if depositors trust in the deposit
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insurance system’s ability to meet financial obligations, they may foresee additional

costs in case they are repaid in case of the insolvency of the bank. Usually the

liquidation of a bank in case of insolvency is a long-term process. Even though the

payments at date 2 are guaranteed to depositors they may foresee that payments

could be delayed such that urgent consumption needs cannot be satisfied. This may

reintroduce the incentive to withdraw their deposits immediately and reestablish a

bank run equilibrium.

Assume that depositors expect to be compensated by their government at each time

with a positive probability β < 1. In other words, we assume there exists a deposit

insurance system but it is imperfect. The existence of such a system decreases both,

the probability of fundamental bank runs (the lower dominance region) and the

probability of panic-based runs.

If β is not too high (imperfect deposit insurance) our results hold.

As the deposit insurance becomes perfect, both, the fundamental and the panic-

based bank run probabilities become zero. However, in contrast to Diamond and

Dybvig (1983) type models, where deposit insurance is costless because it prevents

the self-fulfilling banking crisis ex-ante, the deposit insurance in our model is costly,

because assets are risky and the insurance has to pay depositors in the cases the

bank receives nothing from its investments.

Interestingly, when a subsidy is introduced the relative gap between the stability of

a symmetric and an asymmetric banking system is higher in deposit insured banking

systems. On the one hand, the bank-run probabilities of funds and banks are lower

in partly insured banking systems. On the other hand, a subsidy increases the

bank-run probability of banks more relative to the run probability of funds.

Public guarantees for the fund. Supposedly, the implementation of a subsi-

dized savings fund by the government would be accompanied by a public guarantee

for this fund. Especially, if the fund is small relatively to the overall banking sector

or the public income such a guarantee might be credible and shield the fund from

any bank run making it absolutely stable. In such a case our basic results hold. The

reallocation of liquidity in the banking system increases the deposit base of the fund

and reduces the deposit base of the traditional banks which increases the banks’s

fragility to panic based bank runs. However, the full guarantee of the fund reduces
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the run probability to zero and creates a safe haven for deposits. In this case, the

reduction in the stability of traditional banks may be dominated by the increase in

stability due to the guaranteed fund. Therefore, the total effect may be positive or

negative depending on the relative size of the fund and the banks.

Investment decision. The deposit base of a bank influences not only its fragility

to bank runs but also its investment decision. For simplicity we have assumed that

banks can only invest in a liquid but risky asset. We can extend our model to intro-

duce an endogenous investment choice. Assume an investment set identical to the

classical Diamond and Dybvig (1983) model. Banks can choose between a safe and

liquid investment opportunity (storage) and a risky and illiquid investment oppor-

tunity (risky investment). The risky investment is illiquid because its liquidation

value ` at date 1 is lower than unity. In contrast to our model, liquidation of the

risky asset now become costly because ` < 1. In order to avoid costly liquidation,

the banks now have to store some of their investment in order to be able to serve

impatient consumers withdrawals. The basic mechanism is that banks can invest

their deposit base into the long run productive technology and store the amount

they expect depositors to withdraw at date 1. In this framework, a reduction in

the deposit base also influences the investment decision of banks, i.e., it decreases

the bank’s ability to invest in the long run productive technology. However, the

main insights of the asymmetry among banks and the result for the stability of the

banking system remain unchanged.

Ring-fencing and subsidized saving products. Our model can also be used

to analyze uneven seniority of investment withdrawals within an individual financial

institution. Our results also hold if individual banks are forced to separate parts of

their businesses and funding sources from each other by a ring-fence. One example

are the considerations to separate deposit funded operations from the other activities

of a bank. On the one hand, households may want to invest some of their endowment

in liquid bank accounts and the residual part in less liquid investments that offer

higher long term interest rates but can be liquidated only with a penalty. As long

as the bank is able to cross-fund liquidity needs within the institution, the bank-run

probability is similar to our example of the symmetric banking sector. However, if

the bank has to ring-fence the deposit funds from its residual business, the liquidity

base of the deposit funded bank is much lower than the average liquidity base of
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the bank. Overall the bank may became less stable because of the separation of the

different liquidity sources.

A similar argument can be made for subsidized saving products. Consider a govern-

ment decides to allow all banks to offer a special bank account that is subsidized and

refinanced by taxes. The amount collected in this bank account can be distributed

to risky long-term investments by the banks. However, if the bank has liquidity

needs from its daily business, it is not or only partly allowed to use the liquidity

from the special account. In this case the same mechanisms that we discussed for

banking systems apply for a single financial institution. Households would invest

their entire savings at the one bank but distribute as much as possible in the subsi-

dized account and only the residual in a normal bank account at the bank. In case

of a consumption shock, the short depositors would first withdraw their deposits in

the normal bank account and only the residual in case of need from the subsidized

account in order to maximize subsidy payments.

This decreases the deposit base for the bank’s normal business while increasing the

deposit base of the special account. In case of ring-fencing, between the two types

of accounts, the normal bank business becomes more fragile and the special account

safer than the single unsubsidized bank. However, as shown above: in aggregate,

the bank would become more fragile to panic-based runs even as a single institution.

Save heavens and contagion. The size of a bank may have a considerable impact

on the cost of a failure on the economy. As discussed above, without such cost of

failure any s ∈ (0, 1) increases instability. However, we have shown that the fund

becomes safer because of the subsidy. If the cost of bank failure exponentially

increases in the size it may become optimal to divide the banking sector into safe

and risky banks. Such a division might increase the aggregate bank run probability

but decrease the aggregate cost associated with the bank failure. In other words, a

subsidy may lead to more bank failures but these banks would be relatively small.

In such a scenario there might be an optimal size s∗ ∈ (0, 1) of safe institutions.

The same arguments may apply if we consider contagion among banks and the

resulting systemic risk. If there is a risk that bank-runs spread from one bank to

another bank there are two effects. On the one hand, it would be optimal to minimize

the overall probability of bank-runs. Therefore, subsidies would be harmful. On the
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other hand, a banking system with many banks and symmetrically allocated liquidity

might be vulnerable already to small liquidity shocks that spread from one bank to

the other. Therefore, the creation of safer banks could be beneficial, if those banks

would be able to survive liquidity shock that would already trigger a bank panic in

an even banking system.

6 The Effect of Subsidies

We have shown that a pecking order in the withdrawal of bank deposits has sig-

nificant effects on the stability of the individual banks. Institutions from which

depositors withdraw are much more prone to a panic run than institutions where

depositors withdraw last. Although the latter gain stability from an increased de-

posit base, we have shown that in aggregate the banking sector becomes less stable

and more prone to panic runs compared with symmetric banking systems.

So far we have just assumed that a subsidy can establish a seniority structure. We

now analyze in more detail how a subsidy influences the decisions of depositors. To

close the model we also discuss the endogenous funding of the subsidy by taxes.

The subsidy is only paid on long term deposits that were not withdrawn in t = 1.

Therefore, a subsidy is only paid, if no bank-run occurred. If a bank experienced a

bank-run, all deposits are withdrawn at t = 1 and no subsidy is paid in t = 2.

Subsidy to long-term savings. For exogenous reasons the government decides

to introduce a subsidy on long-term savings. We model the subsidy based on the

announcements of the European Commission, i.e., we take the Livret A as a role

model. The stated intention of the European Commission is to incentivize long term

savings by supporting the long term interest payments.

In our model the short run period reflects immediate consumption while consump-

tion at date 2 reflects long term savings. We model the subsidy as a (possibly small)

mark up δ the government adds to the long run interest rate r2. Therefore, any
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deposits at the fund pay out rf1 when withdrawn at date 1 and in case of success

rf2 + δ.9

At date 0, due to perfect competition, both banks offer the same deposit contract

rf1 = rb1 and rf2 (n) = rb2(n) in case of success. Banks at date 2 must distribute

their complete revenues. Therefore, no bank can offer a higher expected return at

date 2 than the competitive rate. The short deposit rate offered by both banks is

rf1 = rb1 = H because banks are in perfect competition and depositors want to be able

to consume H at date 1. At date 1 H-consumers withdraw their complete deposits

from each bank. L-consumers need only to withdraw L and have to decide where

to withdraw from. In the case where L < (1 − s)H withdrawing from the bank is

sufficient to satisfy consumption needs L. Knowing that the contracted repayments

of each bank are equal but that for each unit he leaves at the fund the depositor

receives a mark up of δ as a subsidy, he has a strong preference to withdraw first all

deposits from the banks and only withdraws L− (1−s)H from the fund if (1−s)H
is not sufficient to cover his consumption need.

Taxes. In order to finance the subsidy δ paid at date 2, that government raises a

flatrate tax τ from each household at date 2. The tax exactly equals the subsidy

but consumers are ignorant at date 1 of their effect on the future tax and take taxes

as exogenously given. We have to distinguish the two cases for L-consumers.

First, if L ≤ (1 − s)H, withdrawing from banks is sufficient to satisfy the desired

consumption L. At date 2, in case of success, (1 − η) consumers withdraw their

deposits from the fund and receive an overall subsidy of δ times their deposit s. The

subsidy is funded by tax τ = s (1− η) δ.

Ex ante, the expected utility is

u(δ, τ) = (µ− p̄ R) (η H + λL) + p̄ R + s (1− η) δ − τ.
= (µ− p̄ R) (η H + λL) + p̄ R (14)

Second, in case the withdrawal from the bank is not sufficient for L-consumers:

L > (1 − s)H, he also withdraws the residual required y := L−(1−s)H
H

from the

9Later on we discuss the case of a guaranteed interest rate that does not change the qualitative

results. Because of the risk-neutrality of depositors the subsidy has the same effect regardless if

the probability of success or the return in case of success is increased.

22



fund. In that case, at date 2, (1 − η) consumers withdraw their residual deposits

from the fund. Patient consumers withdraw their full deposits (also from the bank).

L-consumers can only withdraw (1− y) deposits from the fund. The subsidy overall

amounts to s (1− (η + yλ) δ which is funded by tax τ = s (1− (η + yλ) δ.

Ex ante, the expected utility is

u(δ, τ) = (µ− p̄ R) (η H + λL) + p̄ R + s (1− (η + yλ) δ − τ.
= (µ− p̄ R) (η H + λL) + p̄ R (15)

In both cases, the subsidy that is fully funded by a flatrate tax paid by all con-

sumers does not change the expected utility of consumers. However, it changes the

withdrawal decisions and establishes a seniority among the banks. As shown above,

this can significantly destabilized the unsubsidized bank and it may decrease the

overall stability of the banking sector.

Guaranteed interest rate. The announcement of the European Commission also

indicated the idea to guarantee the long-term interest rate. Applied to our model,

this could be interpreted as paying r2 to the depositors in case of no success of the

fund. With probability 1 − p the government would collect τ = s(1 − η)r2 to pay

the subsidy. The expected utility remains unaffected but the prospect of a secure

payment of rf2 in comparison to a risky and therefore a lower expected payment

from the commercial bank changes the preferences of patient and L-consumers.

The prospect to receive a higher long-term interest rate introduces the incentive to

withdraw first from the bank and only in case of residual needs from the fund. This

alternative interpretation of the subsidy, therefore, does not change our qualitative

results.

7 Conclusion

In this paper we analyze the effect the liquidity base on the stability of the banks. We

show that a decrease in the liquidity base disproportionally increases the probability

of a panic based runs. Using this insight, we discuss how exogenous policies can

introduce a pecking order in the withdrawal behavior of depositors. As a result of
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this pecking order, the liquidity base is unevenly allocated in the banking system

such that the banking sector as a whole becomes more prone to panic-based bank

runs. This additional effect is special in banking because it results from the role of

commercial banks as liquidity insurers.

Using the example of a subsidy of long-term interest rates for certain special banks,

we show that the asymmetric subsidy on long-term savings at a certain institution

(or part of the institution) changes the idiosyncratic withdrawal risk into a sys-

temic withdrawal behavior. In case of liquidity needs, depositors strictly prefer to

withdraw their deposits from the unsubsidized bank to satisfy their short term con-

sumption need, leaving their savings at the subsidized bank to gain from the future

subsidy and increase overall consumption. This significantly reduces the deposit

base of the commercial banks and increases their fragility. At the same time the

deposit base of the subsidized bank increases. However, we show that on aggregate,

stability decreases.
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A Appendix

A.1 The Role of Deposit Banks

Our utility structure deviates from the classic Diamond and Dybvig (1983) model.

Therefore, we need to make the point that deposit banks are beneficial for consumers

at all. We therefore compare the expected utility of households in the absence of

financial markets and banks. We show that households are better off when they pool

their savings at a bank compared to trading their claims in a financial market. Let

us therefore first abstract from any private information, (i. e., discuss the extreme

case of ε → ∞). Households know nothing about the future performance of the

investment, and hence cannot base their decisions on this information.

Autarky. Assume that all households are isolated and can neither trade their

claims on investments in a market nor pool their endowments in a bank. At date

0, all households invest their unit endowment into the risky investment technology

that produces an expected return of p̄ R > 1 at date 2.

At date 1 consumers learn their type and observe ϑ with some noise. If the associated

expected return p(ϑ)R < 1, it is optimal for all types of consumers to liquidate their

investments and consume right away. If p(ϑ)R ≥ 1, H-consumers want to consume

H but can only liquidate their entire investment, which equals 1. L-consumers want

to consume L and liquidate a fraction L < 1 of their unit investment and retain

1− L risky asset investment. Patient consumers do not liquidate their investment.

At date 2 the non-liquidated investments return R if they are successfulf and house-

holds consume. The ex ante households’ expected utility under autarky is

u(c0, c1, c2) = (µ− p̄ R) (η + λL) + p̄ R. (16)

Financial Markets. Assume now, that at date 1 a market to trade claims on

investments opens, whereby P units of the good at date 1 are exchanged against the

promise to receive 1 unit of the good at date 2. Again, all households invest their

entire endowment in the risky technology. At date 2 impatient consumers sell at the

market or liquidate their investment if they can pursue their private investment.
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In an arbitrage free market the equilibrium price for a claim on the risky investment

at date 1 is P = 1
p̄ R

. By selling one claim at date 1, the household can obtain

P p̄R = 1. Again, H-consumers, cannot consume H because 1 < H. L-consumers

sell a proportion of L bonds on their risky investments. They obtain L to consume

and retain 1− L as risky asset investment.

At date 2 risky investment returns realize. All households consume. Ex ante, the

expected utility of households with a financial market is

u(c0, c1, c2) = (µ− p̄ R) (η + λL) + p̄ R. (17)

The introduction of financial markets does not affect the household’s expected utility

compared to autarky.

Deposit Banks. In analogy to the Diamond and Dybvig (1983) model, the house-

holds can increase their expected utility by pooling their endowments in a bank that

invests on their behalf. The bank offers in return a payment r1 > 1 at date 1. This

allows all impatient consumers to pursue their private investments, which increases,

ex ante, the expected utility of all households.

At date 0, the bank offers a deposit contract that promises some fixed r1 per unit

of investment at date 1, and a stochastic r2 per unit of non-withdrawn investment

at date 2. Banks are assumed to operate under perfect competition. This implies

that at date 2, the bank must distribute their complete revenues. More precisely, r2

will depend on whether the project is successful, and on the fraction of depositors

that have already withdrawn at date 1. The bank invests all collected endowment

in the risky technology. The optimal short term interest payment is r1 = H because

it allows all impatient consumers to consume H.

At date 1 consumers learn their type. H-consumers withdraw their entire deposit

and receive r1 · 1 = H. L-consumers withdraw only the fraction y of their deposits

to consume L. The optimal fraction that L-consumers withdraw is y = L
H

. Patient

consumers do not withdraw their endowments and simply wait until they receive r2

as long as E(r2) > H.

At date 1, the bank liquidates a fraction (η + λy) r1 = η H + λL of its risky invest-

ments to satisfy the liquidity needs of impatient consumers. At date 2, in case of
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success, the bank can pay

r2 =
(1− (η + λ y) r1)R

1− (η + λy)
=

(1− (ηH + λL)R

1− (η + λ L
H

)
(18)

to patient and L-consumers in proportion to their residual deposits (1− y).

Patient consumers and L-consumers withdraw only the minimum amount at date 1 if

their inter-temporal incentive constraint is satisfied. Because patient consumers are

risk-neutral, and L-households are risk neutral on any payment above L, consumers

are only interested in the expected payment at date 1 in the case of withdrawal.

Consequently, banks in our setting do not need a pro rata rule. Such a rule would

not change expected utility, or influence the consumers’ strategic situation. It is

sufficient to assume that the expected return for waiting to withdraw is higher than

the immediate certain return from withdrawal: p̄ r2 ≥ r1. The risk neutral incentive

constraint can be summarized in the requirement

p̄ R ≥ H − (η H + λL)

1− (η H + λL)
. (19)

The incentive constraint is satisfied for high expected returns on the risky investment

and relatively low levels of H and L or low proportions of impatient consumers,

respectively.

The existence of a deposit bank allows depositors to obtain an expected utility of

u(c0, c1, c2) = (µ− p̄ R) (η H + λL) + p̄ R. (20)

The net gain in expected utility from a deposit bank compared to both, autarky

and a financial market, is (µ − p̄ R) η (H − 1), which is strictly positive under our

assumptions.

As in Diamond and Dybvig (1983) deposit banks are desirable in our adapted model

because they increase social welfare. Banks allow consumers to satisfy immediate

liquidity needs. However, this comes at a cost. Banks are fragile to bank runs

because the contracted payment exceeds the liquidation value of all bank assets

r1 > 1 such that a bank will be insolvent if all depositors withdraw at the same

time.

In the following, we extent our basic model to the case of private information. In

particular, we assume as discussed above that each consumer gets a private signal
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xi = ϑ + εi, where the εi are stochastically independent private error terms that

are uniformly distributed over the interval [−ε, ε]. We then discuss the effect of

withdrawal preferences on bank stability.

A.2 Distribution of p(ϑ)

Formally, a situation where high success probabilities are relatively higher than low

success probabilities requires that p(ϑ) is a concave function in ϑ as depicted on

the left hand side in Figure (2). For such a situation, the distribution function of

p would is increasing. Accordingly, the density function F ′ is increasing and F ′′

positive. The inverse of an increasing convex function is concave. Since p(ϑ) is the

inverse of F (p), p is indeed concave in ϑ.

Figure 2: Distribution function of p(ϑ)
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A.3 Lower dominance region of L-consumers

Consider now the lower dominance region of L-consumers. The decision to withdraw

fraction L
H

is non-strategic, i.e., it is independent of the behavior of other deposi-

tors: L-consumers simply withdraw L
H
H = L for consumption at date 1. Only the

withdrawal decision on the remaining share of their deposits (1 − L
H

), depends on

the behavior of other depositors. We therefore call this fraction the strategic share.

The critical success probability for the lower dominance region is implicitly defined

by

µL+ (1− L

H
)H = µL+ p(ϑ)

(
1− L

H

)(1− (η + L
H
λ)H

1− (η + L
H
λ)

R
)
. (21)
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L consumers receive utility µL from their private investment opportunity no matter

if they withdraw their residual deposit or not. The strategic decision to withdraw

only concerns the residual deposit fraction (1− L
H

). It is straightforward to see that

this strategic decision is identical to the consideration of patient consumers except

for the scaling factor (1− L
H

). The critical success probability is again

p(ϑ) =
H − (η H + λL)

R (1− (η H + λL))
. (22)

A.4 Lower dominance regions

For uneven banks the lower dominance region changes due to the changes in the

deposit base.

Lower dominance region bank. Denote by p(ϑC) the realized success probabil-

ity that solves

(1− s)H = p(ϑ) (1− s)
(1− (η + λ)H

1− (η + λ)
R
)

(23)

p(ϑC) =
H (1− (η + λ))

R (1− (η + λ)H)
. (24)

Using numerical example (see Appendix B.4) the critical success probability for

banks is 0.375.

Lower dominance region fund. Denote by p(ϑS) the realized success probability

that solves

sH = p(ϑ) s
(1− η H

1− η
R
)

(25)

p(ϑS) =
H (1− η)

R( 1− η H)
. (26)

Using numerical example (see Appendix B.4) the critical success probability for

banks is 0.321.

A.5 Case L > (1− s)H

Consider the second case, that L > (1 − s)H. Withdrawing only from the bank

is not sufficient to consume L. At date 1, the L-consumer therefore withdraw all

deposits (1− s)H from the bank, and the remaining L− (1− s)H from the fund.
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Runs on Funds. In addition to the proportion of η H-consumers that withdraw

all deposits from the subsidized bank, now also λ L-consumers withdraw the fraction
L−(1−s)H

sH
of their deposits from the fund, such that

s

(
L− (1− s)H

sH

)
H + (1− s)H = L. (27)

per m Consequently, (8) adjusts to

0 =

∫ 1
H

η+
L−(1−s)H

sH
λ

(
p(ϑ∗)

1− nH
1− n

R−H
)
dn+

∫ 1

1
H

(
0− 1

n

)
dn. (28)

Integrating and solving for p(ϑ∗) yields

p(ϑ∗) =
1−

(
η + L−(1−s)H

sH
λ
)
H + logH(

1−
(
η + L−(1−s)H

sH
λ
)
H + (H − 1) log H−1

H (1−(η+
L−(1−s)H

sH
λ))

)
R

. (29)

Runs on Banks. In this case both impatient consumers withdraw all their de-

posits from the bank. Consequently, (8) adjusts to

0 =

∫ 1
H

η+λ

(
p(ϑ∗)

1− nH
1− n

R−H
)
dn+

∫ 1

1
H

(
0− 1

n

)
dn. (30)

Integrating and solving for p(ϑ∗) yields

p(ϑ∗) =
1− (η + λ)H + logH(

1− (η + λ)H + (H − 1) log H−1
H (1−(η+λ))

)
R
. (31)

B Proofs

B.1 Proof of Proposition 1.

The first part of the proposition is equivalent to Theorem 1 in Goldstein and Pauzner

(2005), modelling the differences in the consumers’ utility function. The second part
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is equivalent to Proposition 1 in Allen et al. (2013). In our special case, equation

(5) in that paper simplifies to

0 =

∫ 1
H

η+λ L
H

(
p(ϑ∗)

1− nH
1− n

R−H
)
dn+

∫ 1

1
H

(
0− 1

n

)
dn

0 = (p(ϑ∗)R− 1) (1− (η + λ)H)− logH + p(ϑ∗)R (H − 1) log
H − 1

H (1− η − λ)
.

Solving for p(ϑ∗) yields (9).

B.2 Proof of Proposition 2.

To simplify notation define x := nmin. We can then write:

p(ϑ∗) =
1−Hx+ log(H)

R
(

1−Hx+ (H − 1) log
(

H−1
H(1−x)

)) (32)

To proof Proposition 2 we have to show that ∂p(ϑ∗)
∂x

> 0 ∀ x ∈ [0, 1
H

). The closed

form is:

∂p(ϑ∗)

∂x
=

(1− xH) log(H) + (H − 1)
(
H(1− x) log

(
H(1−x)
H−1

)
− (1− xH)

)
R(1− x)

(
(H − 1) log

(
H(1−x)
H−1

)
− (1−Hx)

)2 (33)

For H > 1 and x ∈ [0, 1
H

) it must hold that 1−x > 0 and 1−xH > 0. This implies

that the denominator is unambiguously positive. The first term of the numerator is

also positive in the domain. Hence, it is sufficient to show that the second term of

the numerator is positive.

At the upper limit the second term in the numerator approaches zero:

lim
x→ 1

H

(
H(1− x) log

(
H(1− x)

H − 1

)
− (1− x)H

)
= 0. (34)

The first derivative of the term is: H log
(

H−1
H(1−x)

)
. The derivative is negative if(

H−1
H(1−x)

)
< 1, which is the case for all x ∈ [0, 1

H
). The second term in the numerator

is a decreasing function that approaches zero from above. It is therefore positive

in the domain x ∈ [0, 1
H

). All terms of the first derivative are positive, such that
∂p(ϑ∗)
∂x

> 0 ∀ x ∈ [0, 1
H

). �
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B.3 Proof of Proposition 3.

To ease the notation we write p(ϑ∗, nmin) := p∗(x), where nmin := x as defined above.

First, we have to show that p∗(x) is a convex function of x in the domain x ∈ [0, 1
H

):

∂2p∗(x)

∂x2
> 0 (35)

Because the closed form is quite complex, we consider the nominator and the de-

nominator separately.

Consider first the denominator:

R(1− x)2

(
(1−Hx)− (H − 1) log

(
H(1− x)

H − 1

))3

(36)

It approaches zero for limx→ 1
H

. Its first derivative −1−Hx
1−x is negative. Therefore, the

denominator of p∗′′(x) is positive.

The numerator of the p∗′′(x) is more complicated:

(Hx− 1)((2Hx+H − 3) log(H)− 3(H − 1)(Hx− 1))

−(H − 1)((Hx− 1)(H(2x− 3) + 1) + (H − 1) log(H)) log

(
− H − 1

H(x− 1)

)
(37)

It also approaches zero for limx→ 1
H

. We, thus, have to show that the numerator is a

decreasing function of x, i.e., that its first derivative is negative in the domain.

This first derivative is

(H(4x− 3)− 1)

(
−(Hx− 1)(H − log(H)− 1)

x− 1
− (H − 1)H log

(
− H − 1

H(x− 1)

))
.

(38)

It contains two coefficients:

The first coefficient is an increasing function of x, which approaches limx→ 1
H

(H(4x−
3)−1) = (3−3H) which is negative for H > 1. It is therefore negative in the domain

x ∈ [0, 1
H

). The second coefficient approaches zero at limx→ 1
H

.

Its derivative (H−1)(1−Hx+log(H)−1)
(1x)2

< 0 is negative in the domain x ∈ [0, 1
H

). The sec-

ond coefficient is therefore positive. The derivative of the numerator has a negative

and a positive coefficient, it is therefore negative.
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The numerator is a decreasing function of x that approaches zero at the upper limit

of the domain. It is therefore positive over the domain.

In summary, we find that the denominator and numerator of p∗′′(x) are positive for

x ∈ [0, 1
H

), which implies that ∂2p∗(x)
∂x2

> 0. The bank-run probability is a convex

function of x.

Now, consider aggregate bank-run probabilities in the different banking sectors. The

bank-run probability in a symmetric banking sector can be written as

p∗
(
η +

L

H
λ

)
. (39)

For s ≤ H−L
H

the aggregate bank-run probability of an asymmetric banking sector

can be written as

s p∗ (η) + (1− s)p∗
(
η +

L

(1− s)H
λ

)
. (40)

For s > H−L
H

(see A.5 ) the aggregate bank-run probability of an asymmetric banking

sector is

s p∗
(
η +

L− (1− s)H
sH

λ

)
+ (1− s) p∗ (η + λ) . (41)

Note that

η +
L

H
λ = s η + (1− s)

(
η +

L

(1− s)H
λ

)
= s

(
η +

L− (1− s)H
sH

λ

)
+ (1− s) (η + λ) . (42)

The withdrawals in uneven banking systems are a mean preserving spread of the

minimum withdrawals in the symmetric banking system.

The convexity of p∗(x) in x ∈ [0, 1
H

) therefore implies:

p∗
(
s η +

L

H
λ

)
< s p∗ (η) + (1− s) p∗

(
η +

L

(1− s)H
λ

)
(43)

for all small ∀ s ∈
(

0, H−L
H

]
and

p∗
(
s η +

L

H
λ

)
< s p∗

(
η +

L− (1− s)H
sH

λ

)
+ (1− s) p∗ (η + λ) (44)
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for all high s ∈
[
H−L
H
, 1
)

. The aggregate bank-run probability increases as the

spread of withdrawals increases.

By assumption p′(ϑ) > 0 and p′′(ϑ) < 0. The inverse function ϑ(p) must be convex:

If ϑ(p) is the inverse function of p(ϑ) it must hold that ϑ(p(x)) = x. Derivation with

respect to x yields ϑ′(p(x)) p′(x) = 1 or

ϑ′(p(x)) =
1

p′(x)
(45)

Taking the second derivative with respect to x yields:

p′(x)2 ϑ′′(p(x)) + ϑ′(p(x)) p′′(x) = 0 (46)

Using equation (45) we get:

p′(x)2 ϑ′′(p(x)) +
p′′(x)

p′(x)
= 0 (47)

ϑ′′(p(x)) = − p
′′(x)

p′(x)3
= 0 (48)

Which is negative for p′(x) > 0 and p′′(x) < 0. Hence, ϑ as a function of p is convex

in p. This implies that ϑ(p(x)) is convex in x. Inequalities 43 and 44 hold. �

B.4 Definition and Parametrization of Variables

Variable Value Description

η 0.25 probability of becoming an H-consumer

H 1.2 early consumption of an H-consumer

λ 0.25 probability of becoming an L-consumers

L 0.8 early consumption of an L-consumer

R 4 long project return (if successful)

s 0.1 maximum deposit at funds
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