

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Helfrich, Magdalena; Herweg, Fabian

Conference Paper Salience in Retailing: Vertical Restraints on Internet Sales

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2017: Alternative Geld- und Finanzarchitekturen - Session: Marketing, No. G12-V1

Provided in Cooperation with:

Verein für Socialpolitik / German Economic Association

Suggested Citation: Helfrich, Magdalena; Herweg, Fabian (2017) : Salience in Retailing: Vertical Restraints on Internet Sales, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2017: Alternative Geld- und Finanzarchitekturen - Session: Marketing, No. G12-V1, ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft, Kiel, Hamburg

This Version is available at: https://hdl.handle.net/10419/168276

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

Salience in Retailing: Vertical Restraints on Internet Sales

Magdalena Helfrich

University of Bayreuth Faculty of Law, Business and Economics Universitätsstraße 30, 95440 Bayreuth, Germany, magdalena.helfrich@uni-bayreuth.de

Fabian Herweg University of Bayreuth, CESifo, and CEPR Faculty of Law, Business and Economics Universitätsstraße 30, 95440 Bayreuth, Germany, fabian.herweg@uni-bayreuth.de

This version: March 1, 2017

Abstract: We provide an explanation for a frequently observed vertical restraint in ecommerce, namely that brand manufacturers partially or completely prohibit that retailers distribute their high-quality products over the internet. Our analysis is based on the assumption that a consumer's purchasing decision is distorted by salient thinking, i.e. by the fact that he overvalues a product attribute – quality or price – that stands out in a particular choice situation. In a highly competitive low-price environment like on an online platform, consumers focus more on price rather than quality. Especially if the market power of local (physical) retailers is low, price tends to be salient also in the local store, which is unfavourable for the high-quality product and limits the wholesale price a brand manufacturer can charge. If, however, the branded product is not available online, a retailer can charge a significant markup on the high-quality good. As the markup is higher if quality rather than price is salient in the store, this aligns the retailer's incentives with the brand manufacturer's interest to make quality the salient attribute and allows the manufacturer to charge a higher wholesale price. We also show that, the weaker are consumers' preferences for purchasing in the physical store and the stronger their salience bias, the more likely it is that a brand manufacturer wants to restrict online sales. Moreover, we find that a ban on distribution systems that prohibit internet sales increases consumer welfare and total welfare, because it leads to lower prices for final consumers and prevents inefficient online sales.

Keywords: Internet competition, Relative thinking, Retailing, Salience, Selective distribution

JEL classification: D43, K21, L42

Acknowledgments: We thank Daniel Müller and conference participants at the BGPE workshop (Würzburg) for helpful comments and suggestions.

1. Introduction

Internet sales are becoming more and more important in retailing. In the European Union, the share of enterprises that made e-sales increased from 13% in 2008 to 20% in 2015.¹ Nowadays, retailers often engage in 'click & brick', i.e. they offer goods not only at a brick-and-mortar store but also on the internet – either via an own online shop or an internet platform like *ebay* or *Amazon Marketplace*. Manufacturers, however – in particular brand producers of status and luxury products –, very often feel uneasy when retailers who distribute their goods engage in e-commerce in order to extend the customer base, and try to limit retailers' online sales activities. Correspondingly, brand manufacturers' distribution agreements quite frequently include a complete or partial ban on online sales (Haucap and Stühmeier, 2016). However, in the European Union, antitrust authorities take a tough stance on vertical restraints that limit online sales. E-commerce is believed to have pro-competitive effects, and to foster it is also in line with the political goal of the Internal Market. "An outright ban of on-line sales [...] is considered a hard-core restriction which amounts to an infringement by object of Article 101(1) TFEU, unless it is justified by 'objective reasons'."(OECD, 2013, p. 26)

A landmark case regarding restrictions on online sales is the ruling of the European Court of Justice (ECJ) against *Pierre Fabre Dermo-Cosmétique* in 2009.² *Pierre Fabre* produces cosmetics and personal care products and sells these via a selective distribution network. It required from its retailers that a pharmacist has to assist the sales of its products. The ECJ considered this requirement as a de facto ban on online sales and thus an infringement of Article 101(1) TFEU. Not only at the European, but also at the national level, courts and competition authorities have ruled against manufacturers that tried to impose a ban on sales over the internet. See for instance the ruling of French authorities in the Hi-Fi and home cinema products case, in particular the decision regarding the strategies of *Bang & Olufsen, France*,³ or the fine levied on CIBA Vision, a wholesaler of contact lenses, by the *Bundeskartellamt*.⁴

Why do manufacturers want to restrict the distribution channels of their retailers? E-

¹The e-sales turnover increased from 12% in 2008 to 16% in 2015 (share of e-sales to total sales). There is a lot of heterogeneity in the EU. The share of enterprises that makes e-sales ranges from 7% (Romania) to 30% (Ireland). The numbers are for the EU-28. Source: Eurostat, December 2016.

²Case C-439/09, Pierre Fabre Dermo-Cosmétique SAS v Président de l'Autorité de la concurrence and Ministre de l'Économie, de l'Industrie et de l'Emploi.[2011] O.J. C 355/04.

³Conseil de la concurrence, 5th October 2006, Decision n°06-D-28, Bose et al. ; Autorité de la concurrence, 12th December 2012, Decision n°12-D-23, Bang et Olufsen.

⁴Bundeskartellamt press release, 25th September 2009, 'Bundeskartellamt imposes fine on CIBA Vision'.

sales enhance intra-brand competition leading to lower retail prices, and thus increase the amount sold. A manufacturer is interested in the wholesale and not in the retail price and thus, all else equal, benefits from enhanced intra-brand competition. According to standard Industrial Organization theory, a manufacturer wants to limit intra-brand competition if it has negative effects on the amount sold. A low markup may lead to underinvestments by retailers in inventories (Krishnan and Winter, 2007), service qualities, or reduced efforts to advice consumers (Telser, 1960). Next to hold-up problems, also freeriding issues – consumers physically inspect goods at brick-and-mortar stores but then purchase online – can reduce retailers' investment incentives. In such cases, a restraint that limits intra-brand competition is not only in manufacturer's but also in consumers' interest. Not surprisingly, if the nature of a product is such that it requires methods of sale that cannot be replicated over the internet, a ban of internet sales is legally considered to be justified and does not constitute an infringement of Article 101(1) TFEU. For instance, in 2002 the Liège Cour d'appel considered the internet ban of Makro in the market for luxury perfumes and cosmetics as legal.⁵ The restriction of internet sales was assessed as justified because it protected demand enhancing investments by retailers.

From these considerations, two questions arise: (i) Absent any hold-up and free rider problems, why do manufacturers want to impose bans on internet sales, and (ii) why do European courts worry that such a restraint is detrimental for competition and thus ultimately for consumers? We provide an answer to these questions based on the presumption that consumers' decisions are distorted by salient thinking according to Bordalo, Gennaioli, and Shleifer (2013).

The typical manufacturer that wants to restrict online sales produces an expensive branded product, a luxury or status good, such as watches, cosmetics, perfumes, and so on. Consumers may purchase such a product for its expensive brand image. Online sales – in particular on platforms that are known for their low prices – can be detrimental for this brand image, which in turn is harmful to the manufacturer (Haucap and Stühmeier, 2016). The idea that, depending on the sales environment, consumers put a higher or lower relative weight on quality compared to price when making their purchasing decision is formalized by the theory of salient thinking (Bordalo, Gennaioli, and Shleifer, 2013). A key assumption on the salience function – which, in their model, determines whether quality or price is salient, i.e. stands out – is diminishing sensitivity: This implies that

 $^{^5 \}mathrm{Cour}$ de cassation Belgique, 10 October 2002, N° C.01.0300. F, Makro v Beauté Prestige International AO.

a consumer focuses more on quality in a high-price than in a low-price environment. For instance, a consumer is more likely to accept a markup of say $\in 10$ for a high-quality bottle of wine compared to a bottle of mediocre quality in a restaurant where prices are high than at a grocery store where prices are low. Due to this effect, a brand manufacturer has an incentive to forbid online sales in order to ensure that its products are sold only in a high-price environment where consumers focus more on quality and thus have a higher willingness to pay for the branded product.

In our model, a brand manufacturer that produces a good of high quality competes against a competitive fringe that produces low quality. The goods are sold to consumers via retailers that stock both the high-quality and the low-quality product. Without online sales, each retailer is a local monopolist with his brick-and-mortar store. Each retailer may also offer the products on an internet platform, where there is perfect competition. A consumer can either purchase a good at his local store or on the internet platform. Consumers have a (mild) preference for purchasing at a physical store.⁶ This preference could be due to the fact that they obtain the good immediately and do not have to wait till it is shipped. If both products are available online, online competition highly restricts the prices a retailer can charge at his physical store. In particular, if consumers' preference for purchasing at a physical store are similar to the low prices online. In this case, it is likely that price is salient at the local store and thus a consumer is willing to pay only a low markup for the branded product compared to the fringe product. Thus, the brand manufacturer can charge only a relatively low wholesale price on its product because otherwise it is not purchased.

If the brand manufacturer bans online sales, only the fringe product is available on the internet platform. The markup a retailer can demand for the branded product is now not limited by the prices for the branded product online. Importantly, the markup a retailer can charge is higher if quality is salient than if price is salient. Thus, a retailer now has an incentive to create a quality salient environment at his store, which is also in the brand manufacturer's interest. In other words, a ban on internet sales aligns a retailer's interests with the brand manufacturer's. Moreover, as a ban of internet sales increases the retail price of the branded product, it is harmful to consumer welfare.

⁶This assumption is also in line with the empirical observation that online prices tend to be lower than offline prices. Brynjolfsson and Smith (2000) found that prices for books and CDs are 9 to 16 % lower online than offline. In a more recent investigation, Cavallo (2017) finds lower price differences (around 4% among the products with different prices on- and offline) but reports a significant heterogeneity across different product categories.

In summary, we give an explanation why brand manufacturers dislike online sales. Furthermore, we provide a justification of the current legal practice in the EU towards vertical restraints in e-tailing.

The paper is structured as follows. Before introducing our model in Section 2, we discuss the related literature in the following paragraphs. In Section 3, as a benchmark, we discuss the case of standard rational consumers. We show that the manufacturer has no incentives to restrict online sales. Thereafter, in Section 4, we analyze the model under the assumption that consumers are salient thinkers. First, in Section 4.1, we investigate equilibrium behavior for the case of no restriction on the distribution channel, while in Section 4.2, we analyze it for the case that online sales are prohibited. In Section 4.3, we show that the brand manufacturer strictly prefers to prohibit online sales if consumers have only a mild preference for purchasing at a physical store. We discuss the welfare implications of this business practice in Section 4.4. Section 5 summarizes our results and concludes. All proofs are relegated to the Appendix A.

Related Literature

The paper contributes to two strands of literature: On the one hand to the standard literature in Industrial Organization that investigates the effects of vertical restraints on intra-brand competition, and, on the other hand, to the recent and growing literature in Behavioral Industrial Organization.

The former literature was initiated by Telser (1960) and Yamey (1954), who noted first that strong intra-brand competition can be detrimental to retailers' incentives to invest in (free-rideable) services.⁷ How resale price maintenance or exclusive territories can be used to correct for service externalities is thoroughly analyzed by Mathewson and Winter (1984) and Perry and Porter (1986).⁸ While in the above mentioned papers the vertical restraint is used to enhance service investments and thus tends to be pro-competitive, Rey and Stiglitz (1988, 1995) point out that vertical restraints that eliminate intra-brand competition can also be used to mitigate inter-brand competition and then are anti-competitive.⁹ More closely related to our paper is Hunold and Muthers (2017b), where retailers can also multi-channel, i.e. sell products at a physical store and via an online

⁷For a survey on the standard IO literature regarding vertical restraints, see Katz (1989) and Rey and Vergé (2008).

 $^{^8\}mathrm{For}$ an analysis of various vertical restraints, see also Rey and Tirole (1986).

⁹For more recent contributions investigating the effects of vertical restraints that tend to reduce intrabrand competition see Krishnan and Winter (2007); Jullien and Rey (2007); Asker and Bar-Isaac (2014); Hunold and Muthers (2017a).

platform. They derive conditions under which price restraints (RPM and dual pricing) are more desirable to achieve chain coordination than non-price restraints (restrictions on online sales). In their model, in contrast to ours, retailers can provide services and consumers are fully rational.

Starting with DellaVigna and Malmendier (2004) and Gabaix and Laibson (2006), models of industrial organization have been extended by incorporating findings from behavioral economics.¹⁰ Recently, there is a growing literature that investigates the implications of consumers who have context-dependent preferences for industrial organization. A prominent notion of context-dependent preferences is the theory of salient thinking developed by Bordalo, Gennaioli, and Shleifer (2013).¹¹ According to this theory, an attribute of a product, say quality, stands out if this product's quality-price ratio exceeds the qualityprice ratio of the average product. The attribute that stands out is salient and thus over-weighted by the consumer when making his purchasing decision. Bordalo, Gennaioli, and Shleifer (2013) show that their theory can explain demand shifts due to uniform price increases, and it can capture the decoy and compromise effect discussed in the marketing literature.¹²

The theory of salient thinking is incorporated into a duopoly model of price and quality competition by Bordalo, Gennaioli, and Shleifer (2016). They show that, depending on the quality-cost ratio, either price or quality is salient in equilibrium. Moreover, they derive conditions so that there is over- or under-provision of quality in equilibrium. Herweg, Müller, and Weinschenk (2017) extend this model and allow one firm to offer more than one product but model the competitor as a non-strategic competitive fringe. They show that the strategic firm can always boost its sales and profits by offering an appropriate decoy good, i.e. a good that distorts consumers' valuations but is not purchased in equilibrium. That retailers can benefit from offering decoy goods is also shown by Apffelstaedt and Mechtenberg (2016). Here, like in our model, the goods available at the store the consumer entered determine a consumer's consideration set and thus whether quality or price is salient. Further contributions with consumers that are salient thinkers are Adrian (2016) in a monopolistic screening model and Inderst and Obradovits (2015) in a model of sales.¹³

¹⁰A textbook treatment of the most important contributions to Behavioral Industrial Organization is provided by Spiegler (2011).

¹¹Alternative models of context-dependent preferences are Kőszegi and Szeidl (2013) and Bushong, Rabin, and Schwarzstein (2015).

¹²Empirical support for the model of salient thinking is provided by Dertwinkel-Kalt, Köhler, Lange, and Wenzel (2016).

 $^{^{13}}$ A similar model where firms can impose hidden fees is analyzed by Inderst and Obradovits (2016).

However, none of these models investigates the role of vertical restraints in the presence of consumers that are biased by salient thinking.

Our research question is directly addressed by Pruzhansky (2014) who investigates the incentives of a monopolistic producer of a luxury good to also sell its product over the internet. In his model, a consumer's utility from the luxury good negatively depends on the number of consumers who buy it. He finds that, in most cases, the monopolist prefers to sell also over the internet but this is detrimental for consumer welfare. This is exactly the opposite from our finding. The model of Pruzhansky (2014) is fairly different to ours. He considers a monopolist who sells a luxury good directly to consumers. We consider a brand manufacturer that faces competition. Moreover, customers are reached via retailers and thus vertical restraints are important.

2. The Model

We consider a vertically related industry where, on the upstream market, a brand manufacturer (M) competes against a competitive fringe. The brand manufacturer produces a brand product of high quality q_H at per-unit cost c_H . The remaining upstream firms, which form the competitive fringe, are identical and produce a good which is an imperfect substitute to the branded product. Each fringe firm operates with constant marginal cost $c_L \leq c_H$ and produces a good of low quality q_L , with $0 < q_L < q_H$.

The products are distributed to consumers via retailers. There are $r \ge 2$ independent and identical retail markets. In each market, there is only one retailer active, i.e. retailers are local monopolists. Each retailer can stock at most the products of two brands – due to, for instance, limited shelf space. Thus, each retailer ideally offers the brand manufacturer's product next to the product of one fringe firm.

Next to selling the products in the brick-and-mortar store, retailers can also offer the products on an online platform. We abstract from any retailing cost and assume that the wholesale prices paid to the manufacturers are the only costs of a retailer, i.e. there are no commissions collected by the online platform.

The products of the fringe firm are sold at a unit wholesale price $w_L = c_L$, due to perfect competition between these firms. Moreover, a fringe firm's product can be distributed by retailers without any restraints on the distribution channel. Hence, low-quality products are always available on the online platform.

The brand manufacturer, on the other hand, may impose restrictions on the distribution

channels for its retailers. The brand manufacturer makes a nondiscriminatory take-it-orleave-it offer (w, D) to each retailer.¹⁴ The contract offer specifies, next to a unit wholesale price w, whether retailers are allowed to sell the branded good via the online platform. More precisely, $D \in \{F, R\}$: under distribution system F, retailers are free to offer the good on the online platform, whereas under the restricted distribution system R, they are allowed to sell the branded good only in the physical store.

In each local market, there are two consumers. Each consumer purchases one unit of the good, either at the local store or on the online platform. One of the consumers, type H, purchases either the high- or the low-quality product. The other consumer, type L, always buys the low-quality product.¹⁵ For this type, the marginal willingness to pay for a quality exceeding q_L is close to zero. We assume that each consumer always purchases a good, i.e. we assume that the fringe product is sufficiently valuable so that purchasing the fringe product online is always preferred to the outside option.

Consumers have a (slight) preference for purchasing in a physical store rather than online. This preference could reflect that (i) in the local store, the consumer obtains the good immediately but has to wait till it is shipped when purchasing online, (ii) it is easier to complain about a product failure at a physical store, (iii) consumers prefer to interact with a human being rather than a computer, etc. If neither of the product's attributes are particular salient, a consumer's utility when purchasing quality q at price p is

$$u^{E}(p,q) = q - p + \delta \mathbb{I}.$$
(1)

The term $\delta \mathbb{I}$, with $\delta > 0$, captures the consumer's preference for purchasing in a brick-andmortar store; $\mathbb{I} \in \{0, 1\}$ is an indicator function that equals one if the consumer buys in the physical store and zero otherwise.¹⁶ The function u^E reflects the consumer's unbiased preferences, i.e. his experience utility.

A consumer's purchasing decision, however, is affected – distorted – by the salience of either attribute quality or attribute price. Precisely, we posit that consumers are salient thinkers according to the concept of Bordalo, Gennaioli, and Shleifer (2013). In our model, the salience of the attributes quality and price is determined by the goods available in a

¹⁴The manufacturer cannot specify different wholesale prices for online and offline sales. Next to being hard to monitor for the manufacturer, such a practice is also considered as illegal in the EU.

¹⁵Armstrong and Chen (2009) also build a model where a fraction of consumers shops on the basis of price alone without taking quality into account.

¹⁶Our findings are qualitatively robust to assuming that δ is distributed according to some c.d.f. over the support [-a, b], with a, b > 0. In this case, some consumers prefer to purchase online, while others prefer to purchase at a local store.

certain choice situation C = S, I, where C = S refers to the brick-and-mortar store and C = I to the online platform.¹⁷ Quality is salient in a given choice situation if the ratio of the branded good's high quality to the fringe product's low quality is weakly larger than the ratio of prices, i.e. if

$$\frac{q_H}{q_L} \ge \frac{p_H^C}{p_L^C}.\tag{2}$$

If, on the other hand, the price ratio is larger than the quality ratio, price is salient.¹⁸ The consumer's decision utility is given by

$$u(p,q) = \begin{cases} \frac{1}{\gamma}q - p + \delta \mathbb{I} & \text{if quality is salient} \\ \gamma q - p + \delta \mathbb{I} & \text{if price is salient} \end{cases}$$
(3)

where $\gamma \in (0, 1]$ captures the extent to which the consumer's perceived utility is distorted by salience. For $\gamma = 1$, the decision utility is not affected by salience. In order to ensure that the brand manufacturer can always make a positive profit, we assume that

$$\gamma > \frac{c_H - c_L}{q_H - q_L} \ge 0. \tag{4}$$

The sequence of events is as follows:

- 1. The manufacturer offers each retailer the same contract (w, D).
- 2. Each retailer decides whether or not to accept the manufacturer's offer. Retailers set prices for the goods they offer in the brick-and-mortar store and prices for the goods they offer on the online platform.
- 3. Each consumer enters the local brick-and-mortar store in order to figure out which quality suits him best. The consumer is aware of the prices and goods available at the online platform. His perceived utility for all goods is determined by whether quality or price is salient in the store. Based on this utility, the consumer decides whether to purchase a good in the brick-and-mortar store.
- 4. Consumers who have not purchased a good in the brick-and-mortar store may purchase a good on the online platform. The salience is now determined by the prices and qualities available on the online platform.

The equilibrium concept employed is subgame perfect Nash equilibrium in pure strategies. In order to obtain well-defined solutions, we impose the following tie-breaking rules:

¹⁷In the original approach of Bordalo, Gennaioli, and Shleifer (2013), all goods between which the consumer can choose form the choice set that determines salience. Thus, in the original theory, salience does not depend on the particular choice situation.

¹⁸For further details see Bordalo, Gennaioli, and Shleifer (2016). Note that if the consumer purchases at the online platform, he can choose between n products. n-1 of these products, however, are identical: same quality and same price.

(i) When being indifferent whether or not to offer the high-quality branded product, a retailer offers the branded product. (ii) A consumer who is indifferent between purchasing in the brick-and-mortar store or on the online platform purchases in the brick-and-mortar store. (iii) A type H consumer who is indifferent between purchasing the high- or the low-quality product purchases the high-quality product.

3. Rational Benchmark

First, as a benchmark, we consider the case of rational consumers whose purchasing decisions are not affected by the salience of a particular product feature, i.e. $\gamma = 1$.

Suppose the brand manufacturer charges unit wholesale price w and does not restrict its retailers' distribution channel. In this case, both products are available on the online platform. On the platform, retailers are not differentiated which means we have perfect Bertrand competition driving down prices to marginal costs. Thus, the internet price for the high-quality branded and the low-quality fringe product is

$$p_H^I = w \quad \text{and} \quad p_L^I = c_L, \tag{5}$$

respectively.

In each local (regional) market, there is only one retailer. Each consumer has a willingness to pay of $\delta > 0$ for purchasing at a physical store. This gives the retailer some market power and allows him to charge prices above costs. This markup, however, is restricted to δ by online offers; i.e. if, for a given quality, a retailer charges a markup of more than δ , each consumer prefers to purchase this quality online instead of at the brick-and-mortar store. A markup of δ obviously is optimal for the fringe product, so that it costs $p_L^S = c_L + \delta$ at the local store. If the retailer charges a markup of δ also for the branded product, i.e. if $p_H^S = w + \delta$, a consumer of type H purchases the high-quality product if

$$w \le (q_H - q_L) + c_L \equiv \hat{w},\tag{6}$$

i.e. as long as the wholesale price is not too high. For wholesale prices larger than \hat{w} , a type H consumer's best alternative to purchasing the branded product at the local store is no longer to purchase it online, but to purchase the fringe product, either at the store or online. In this case, it is optimal for the retailer to sell the fringe product at a markup of δ also to the type H consumer and not to stock the branded product (or to offer the

branded product at an unattractively high price such as $p_H^S = w + \delta$). Irrespective of the wholesale price, the retailer makes a profit of $\pi = 2\delta$.

The manufacturer makes positive sales and thus a positive profit only if $w \leq \hat{w}$. Thus, the optimal wholesale price under a free distribution system is $w^F = (q_H - q_L) + c_L$ and the corresponding profit per retailer is $\Pi^F = (q_H - q_L) - (c_H - c_L)$.

Now, suppose the manufacturer forbids its retailers to offer the product online so that on the internet, consumers can purchase only the fringe product, at $p_L^I = c_L$. By the same reasoning as above, a retailer charges $p_L^S = c_L + \delta$ in the physical store. A type Hconsumer prefers to buy the branded product instead of the fringe product if

$$p_H^S \le (q_H - q_L) + c_L + \delta. \tag{7}$$

If the local store offers the branded product, it will charge the highest feasible price, i.e. $p_H^S = (q_H - q_L) + c_L + \delta$. However, the retailer offers the branded product only if, at this price, he can charge a markup of at least δ . Otherwise, he prefers to sell the fringe product – for which he can always charge a markup of δ – to both consumer types. This means that a local retailer stocks the branded product if and only if $w \leq \hat{w}$. He always makes a profit of $\pi = 2\delta$. Thus, under distribution system R, the manufacturer optimally charges $w^R = \hat{w}$ and makes a profit of $\Pi^R = (q_H - q_L) - (c_H - c_L)$ per retailer that it serves.

Proposition 1 (Rational Benchmark). The brand manufacturer is indifferent between the free and the restricted distribution system, $\Pi^F = \Pi^R$.

According to Proposition 1, there is no rationale for the brand manufacturer to restrict the distribution channels of its retailers. If anything, a distribution system under which online sales are restricted allows the retailers to charge a higher markup for the branded product because the disciplining effect of the competitive online market is absent. Hence, in a model with elastic demand and thus a double markup problem (Spengler, 1950), the brand manufacturer strictly prefers a free to a restricted distribution system.

4. Consumers are Salient Thinkers

Now, we posit that consumers are salient thinkers, i.e. $\gamma < 1$. When being at a local store, a consumer's willingness to pay for a certain product depends on the prices and quality levels available to him at this store. We separately consider the optimal behavior

of a retailer under a free and a restricted distribution system, respectively. Thereafter, we investigate the behavior of the manufacturer and show when it is optimal for it to restrict the distribution channel.

4.1. Free Distribution

Suppose the brand manufacturer does not impose restrictions on online sales. Thus, all retailers can offer, next to the fringe product, also the high-quality branded product on the internet platform. As the retailers are not differentiated there, they compete fiercely à la Bertrand. This drives down the internet prices to costs:

$$p_L^I = c_L \quad \text{and} \quad p_H^I = w.$$
 (8)

In his local market, each retailer has some market power, which allows him to charge prices above costs. The highest possible price a retailer can charge at the physical store is the online price plus δ ; otherwise consumers prefer to purchase the respective product on the online platform. Thus, a retailer can make a profit of at most $\pi = 2\delta$. It is important to note that these considerations are independent of whether quality or price is salient in the local store.

Suppose a retailer charges $p_L^S = c_L + \delta$ and $p_H^S = w + \delta$ at his brick-and-mortar store. This is an optimal pricing strategy for the retailer as the store's offers weakly dominate the online offers, inducing both consumers to purchase in the store. The type *L* consumer purchases the low-quality product; the type *H* consumer purchases the branded product only if the wholesale price *w* is not too high. For too high a wholesale price, *H* buys the fringe product in the store. In both cases, the retailer earns a markup δ from the *H* consumer.

How large the wholesale price can be, so that the type H consumer still prefers to buy the branded instead of the fringe product, depends on whether quality or price is salient in the store. If quality is salient, the type H consumer purchases the branded product if and only if

$$\frac{1}{\gamma}q_H + \delta - (w + \delta) \ge \frac{1}{\gamma}q_L + \delta - (c_L + \delta)$$
(9)

$$\iff w \le \frac{1}{\gamma} (q_H - q_L) + c_L \equiv \hat{w}_Q. \tag{10}$$

If, on the other hand, price is salient, a type H consumer purchases the branded product

if and only if

$$\gamma q_H + \delta - (w + \delta) \ge \gamma q_L + \delta - (c_L + \delta) \tag{11}$$

$$\iff w \le \gamma (q_H - q_L) + c_L \equiv \hat{w}_P. \tag{12}$$

Note that $\hat{w}_P < \hat{w}_Q$: The maximum wholesale price that can be charged is higher if quality is salient at the store. Correspondingly, the brand manufacturer cares about the salience in the store and prefers a quality salient environment. The retailer, however, does not benefit from the consumer's higher willingness to pay for q_H under quality salience. His markup is always restricted to δ . Therefore, the retailer has no interest to distort the prices so that quality is salient in the brick-and-mortar store.

If the retailer charges a markup of δ on both products, then quality is salient in the store if and only if

$$\frac{q_H}{q_L} \ge \frac{w+\delta}{c_L+\delta} \tag{13}$$

$$\iff w \le \frac{q_H}{q_L} c_L + \frac{q_H - q_L}{q_L} \delta \equiv \tilde{w}.$$
(14)

It is important to note that the salience constraint (13) is 'more likely' to be satisfied for a given w (in the sense of set inclusion), the stronger consumers' preferences are for the local store, i.e. the higher δ is. The higher δ , the larger is the price level in the local store and thus – for a given price difference – the more likely it is that quality is salient. This is a core property of the model of salient thinking developed by Bordalo, Gennaioli, and Shleifer (2013).

The manufacturer wants to charge the highest feasible wholesale price so that its product is purchased by type H consumers. The manufacturer knows that each retailer charges a markup of δ in his local store and thus that quality is salient only if $w \leq \tilde{w}$. Thus, if $\tilde{w} \geq \hat{w}_Q$ – which is equivalent to $\delta \geq q_L/\gamma - c_L$ – the optimal wholesale price is $w^F = \hat{w}_Q$. Compared to the fringe product, the brand manufacturer charges a markup of the perceived quality difference under quality salience. For higher wholesale prices, a consumer never purchases the branded product. In this case, i.e. if δ is high, the salience constraint does not restrict the manufacturer in its price setting. For lower levels of δ , quality is salient at the store only if the manufacturer chooses a wholesale price $w \leq \tilde{w} < \hat{w}_Q$. In other words, the manufacturer can choose between two potentially optimal strategies: (i) setting $w = \tilde{w}$ so that quality is salient, or (ii) setting $w = \hat{w}_P$ and thus charging the highest feasible markup under price salience. The former strategy is optimal if and only if $\tilde{w} \geq \hat{w}_P$, which is equivalent to

$$\gamma q_L - c_L \le \delta. \tag{15}$$

If consumers have only a weak preference for purchasing at a local store, $\delta < \gamma q_L - c_L$, a wholesale price $w^F = \hat{w}_P$ is optimal. In this case, price is salient in the store.

The following proposition summarizes these observations.

Proposition 2 (Free Distribution).

- (I) For a weak preference of the consumers to purchase at a local store, $\delta < \gamma q_L c_L$, the manufacturer charges $w^F = \hat{w}_P$. Price is salient in the store and both consumer types purchase at the brick-and-mortar store.
- (II) For an intermediate preference of the consumers to purchase at a local store, $\gamma q_L c_L \leq \delta < q_L/\gamma c_L$, the manufacturer charges $w^F = \tilde{w}$. Quality is salient in the store and both consumer types purchase at the brick-and-mortar store.
- (III) For a strong preference of the consumers to purchase at a local store, $\delta \ge q_L/\gamma c_L$, the manufacturer charges $w^F = \hat{w}_Q$. Quality is salient in the store and both consumer types purchase at the brick-and-mortar store.

The stronger consumers' preferences for purchasing at a brick-and-mortar store instead of online are, the higher is the market power of each retailer. If a retailer's market power is higher, he charges a higher markup at his brick-and-mortar store compared to the internet prices. Thus, the higher a retailer's markup, the higher is the price level in his local store, which implies that it is more likely that quality is salient. For a high price level, case (III) of Proposition 2, quality is salient for all relevant wholesale prices and thus the manufacturer charges $w^F = \hat{w}_Q$ and makes a profit of $\Pi^F = \hat{w}_Q - c_H$ per retailer. The prices at the brick-and-mortar store are $p_H^S = (q_H - q_L)/\gamma + c_L + \delta$ and $p_L^S = c_L + \delta$. For an intermediate price level, case (II) of Proposition 2, the manufacturer charges a wholesale price so that quality is just salient, i.e. $w = \tilde{w}$. The per retailer profit is $\Pi^F = \tilde{w} - c_H$. The retailer charges $p_H = (q_H/q_L)(c_L + \delta)$ and $p_L = c_L + \delta$ at its brick-and-mortar store. For a low price level at the brick-and-mortar store, case (I) of Proposition 2, it is too costly for the manufacturer to charge a wholesale price that orchestrates quality salient. The optimal wholesale price is $w^F = \hat{w}_P$ leading to a per retailer profit of $\Pi^F = \hat{w}_P - c_H$. The retailer charges $p_H = \gamma(q_H - q_L) + c_L + \delta$ and $p_L = c_L + \delta$ at its brick-and-mortar store, where in this case price is salient. In all cases, both consumer types purchase at a brick-and-mortar store. Type L purchases quality q_L and type H quality q_H .

4.2. Restricted Distribution

Under the free distribution system, a retailer has no preferences for quality or price salience in the store because his markup is bounded by δ due to competition from the online platform. This changes dramatically if the manufacturer operates a distribution system under which sales on online platforms are forbidden. Now, the markup on the branded product can be higher than δ and depends on whether quality or price is salient in the store.

First, note that due to perfect competition on the internet, we have $p_L^I = c_L$. The branded product is not sold online and only available in the brick-and-mortar stores. Thus, if a retailer wants to sell the fringe product at his local store, the optimal price is $p_L^S = c_L + \delta$. It is important to point out that a retailer can always ensure himself a profit of $\pi = 2\delta$ by charging $p_L^S = c_L + \delta$ and a prohibitively high price for the branded product. In this case, both consumer types purchase the fringe product at the local store. Hence, the brand manufacturer has to charge a wholesale price so that a retailer can earn a markup of at least δ on sales of the branded product.

Consider a retailer who wants to sell a positive amount of both products. The highest price it can charge for the branded product makes a type H consumer indifferent between purchasing high quality at the store and low quality at the store. The maximal price depends on whether quality or price is salient in the store. If quality is salient, a type H consumer purchases the branded product if and only if

$$\frac{1}{\gamma}q_{H} + \delta - p_{H} \ge \frac{1}{\gamma}q_{L} + \delta - c_{L} - \delta$$

$$\iff p_{H} \le \underbrace{\frac{1}{\gamma}(q_{H} - q_{L}) + c_{L}}_{=\hat{w}_{Q}} + \delta.$$
(16)

If, on the other hand, price is salient in the local store, the price of the branded good is bounded by

$$p_H \le \underbrace{\gamma(q_H - q_L) + c_L}_{=\hat{w}_P} + \delta. \tag{17}$$

Thus, for a given wholesale price, the retailer prefers a quality to a price salient environment because $\hat{w}_Q > \hat{w}_P$. For $p_H^S = \hat{w}_Q + \delta$ and $p_L^S = c_L + \delta$, quality is indeed salient in the local store if and only if

$$\frac{q_H}{q_L} \ge \frac{\hat{w}_Q + \delta}{c_L + \delta}$$

$$\iff \delta \ge \frac{1}{\gamma} q_L - c_L.$$
(18)

If condition (18) holds and $w \leq \hat{w}_Q$ so that the markup on the high-quality product is at least δ , then charging $p_H^S = \hat{w}_Q + \delta$ and $p_L^S = c_L + \delta$ is an optimal strategy for the retailer. This case is also optimal for the brand manufacturer who can charge a wholesale price of $w = \hat{w}_Q$. For higher wholesale prices, the branded product is never sold.

If condition (18) is violated – i.e. if consumers' preferences for purchasing at a local store are not strong, then a retailer who wants to sell the brand product at his local store cannot charge $p_H^S = \hat{w}_Q + \delta$ and $p_L^S = c_L + \delta$. He can choose between three potentially optimal alternative strategies.

First, the retailer can set the branded product's price so that quality is just salient, i.e. $p_H^S = (c_L + \delta)(q_H/q_L)$. If the retailer selects this strategy, the brand manufacturer can charge a wholesale price of at most $w = \tilde{w}$. For higher wholesale prices, the markup is less than δ so that the retailer prefers to sell only the fringe product.

Secondly, the retailer can acquiesce in price salience and charges $p_H^S = \gamma(q_H - q_L) + c_L + \delta$. Under this strategy, the brand manufacturer can charge a wholesale price of at most $w = \hat{w}_P$.

Thirdly, and most interestingly, the retailer can decide to make quality salient by increasing the price it charges for the fringe product, p_L^S . For instance, by setting $p_L^S = p_H^S$, the retailer makes quality salient in the store. This allows him to charge a price of $p_H^S = \hat{w}_Q + \delta$ for the branded product. The fringe product, however, is now too expensive at the local store and the type L consumer prefers to buy it on the internet platform. This implies that the retailer looses the type L consumer who generates a profit of δ . Hence, this strategy can be optimal only if the markup the retailer can charge on the high-quality product is at least 2δ . This restricts the wholesale price the manufacturer can charge in this case to $w = \hat{w}_Q - \delta$.

For the retailer, the wholesale price is given and he chooses the strategy that allows him to make the highest profit. This is typically the strategy that allows for charging the highest price for the branded product. This behavior of the retailer is also in the interest of the brand manufacturer: The higher the price of the branded product, the higher is the wholesale price the manufacturer can charge. The optimal strategy depends on the exogenous parameters, in particular on how strong consumers' preferences for purchasing at a local store are. The following proposition summarizes the equilibrium behavior under a distribution system with restrictions on online sales.

Proposition 3 (Restricted Distribution).

(I) Let the consumers' preferences to purchase at a local store be weak, $\delta < \gamma q_L - c_L$.

- (a) For $\frac{1-\gamma^2}{\gamma}(q_H-q_L) < \delta < \gamma q_L c_L$, the manufacturer charges $w^R = \hat{w}_P$. Price is salient in the store and both consumer types purchase at the brick-and-mortar store.
- (b) For $\delta < \min\left\{\frac{1-\gamma^2}{\gamma}(q_H q_L), \gamma q_L c_L\right\}$, the manufacturer charges $w^R = \hat{w}_Q \delta$. Quality is salient in the store and only type H consumers purchase at the brick-and-mortar store.
- (II) Let the consumers' preferences to purchase at a local store be intermediate, $\gamma q_L c_L \leq \delta < q_L/\gamma c_L$.
 - (a) For $\max\left\{\gamma q_L c_L, \left(\frac{1}{\gamma} q_L c_L\right) \left(\frac{q_H q_L}{q_H}\right)\right\} \le \delta < \frac{1}{\gamma} q_L c_L$, the manufacturer charges $w^R = \tilde{w}$. Quality is salient in the store and both consumer types purchase at the brick-and-mortar store.
 - (b) For $\gamma q_L c_L \leq \delta < \left(\frac{1}{\gamma}q_L c_L\right) \left(\frac{q_H q_L}{q_H}\right)$, the manufacturer charges $w^R = \hat{w}_Q \delta$. Quality is salient in the store and only type H consumers purchase at the brick-and-mortar store.
- (III) Let the consumers' preferences to purchase at a local store be strong, $\delta \ge q_L/\gamma c_L$. Then, the manufacturer charges $w^R = \hat{w}_Q$. Quality is salient in the store and both consumer types purchase at the brick-and-mortar store.

It is important to note that case (I)(a) of Proposition 3 exists if and only if

$$(1 - \gamma^2)q_H < q_L - \gamma c_L, \tag{19}$$

while case (II)(b) exists if and only if the opposite is true.

When the consumers have a strong preference for purchasing at a local store, a retailer can charge a high price at the store for the the low-quality product which is also available online. This leads to a high price level in the store which makes quality salient. The retailer charges $p_H^S = (q_H - q_L)/\gamma + c_L + \delta$ for the branded product and the brand manufacturer demands $w^R = \hat{w}_Q$.

For a slightly weaker preference of the consumers to purchase at a local store, it is optimal for the retailer to set the price for the branded product such that quality is just salient, i.e. $p_H^S = (c_L + \delta)(q_H/q_L)$. For a relatively high δ , the necessary reduction in the price in order to make quality salient in the store is moderate. In this case, the manufacturer sets $w^R = \tilde{w}$.

If consumers have only a weak preference for purchasing at the local store, the markup on the low-quality fringe product is low. Correspondingly, the price level in the local store is relatively low if the retailer sells both products. This highly restricts the price the retailer can charge for the branded product if he wants to keep quality salient. Thus, the retailer either sells both products and accepts that price is salient or sells only the highquality product. In the former case the retailer charges $p_H^S = \gamma(q_H - q_L) + c_L + \delta$ and the manufacturer $w^R = \hat{w}_P$. In the latter case, the retailer sets $p_H^S = p_L^S = (q_H - q_L)/\gamma + c_L + \delta$ and the manufacturer charges $w^R = \hat{w}_Q - \delta$.¹⁹ In this case, the manufacturer has to set the wholesale price such that the retailer can make a profit of 2δ per unit of the brand product sold. In other words, this strategy is relatively costly to the manufacturer if δ is high. Thus, this strategy occurs in equilibrium only for low levels of δ , i.e. only when the market power of a local store is weak.

4.3. Optimal Distribution System

Having analyzed the equilibrium behavior under a given distribution system, we can now answer the question which distribution system, free or restricted, the brand manufacturer should adopt. We say that the brand manufacturer prefers a restricted distribution system under which online sales are prohibited to a free distribution system if its profits are strictly higher under the former than under the latter, i.e. if $\Pi^R > \Pi^F$. In order to answer this question, we distinguish two cases: (i) condition (19) holds, and (ii) condition (19) is violated. The two comparisons are depicted in Figure 1.

Suppose condition (19) holds. This case is depicted in part (a) of Figure 1. For $\delta \geq \frac{1-\gamma^2}{\gamma}(q_H - q_L)$, the brand manufacturer's optimal wholesale price is independent of whether or not online sales are prohibited. Put differently, the brand manufacturer is indifferent between the free and the restricted distribution system and thus selects the free distribution system. For $\delta < \frac{1-\gamma^2}{\gamma}(q_H - q_L)$ the brand manufacturer charges $w^F = \hat{w}_P$ under the free distribution system and $w^R = \hat{w}_Q - \delta$ under the restricted distribution

$$p_L^S \le \frac{q_L}{q_H} \left(\frac{1}{\gamma} (q_H - q_L) + \delta + c_L \right).$$

Thus, also prices $p_L^S < p_H^S$ are optimal.

¹⁹The price for the low quality product at the local store is not uniquely defined. It has to satisfy the following condition:

a)
$$(1 - \gamma^2)q_H < q_L - \gamma c_L$$

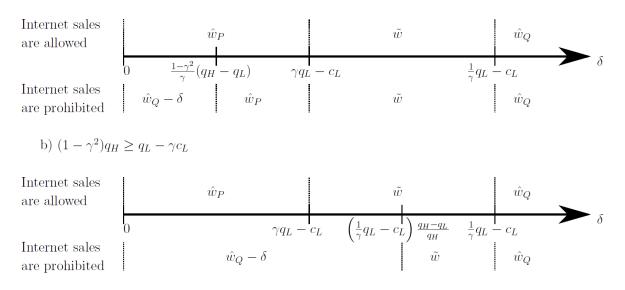


Figure 1: Comparison of the two distribution systems.

system. A comparison of the two wholesale prices reveals that $\hat{w}_Q - \delta > \hat{w}_P$ in the relevant parameter range. Thus, if consumers have only a weak preference for purchasing at a local store, it is optimal for the brand manufacturer to forbid online sales, i.e. to adopt the restricted distribution system.

Now, suppose condition (19) is violated. This case is depicted in part (b) of Figure 1. Again, for relatively high preferences to purchase at a local store, $\delta \geq (q_L/\gamma - c_L)(q_H - q_L)/q_H$, the brand manufacturer's wholesale price is independent of the distribution system. The indifferent brand manufacturer adopts the free distribution system and thus does not restrict online sales of its products. If, however, consumers have only relatively weak preference for purchasing at a local store, $\delta < (q_L/\gamma - c_L)(q_H - q_L)/q_H$, the brand manufacturer's wholesale price depends on whether or not online sales are prohibited. If online sales are prohibited, it charges $w^R = \hat{w}_Q - \delta$. The wholesale price charged under free distribution depends on δ . For moderate levels of δ the manufacturer chooses $w^F = \tilde{w}$, while for low levels of δ it chooses $w^F = \hat{w}_P$. For the relevant range of parameters, it can be shown that $\hat{w}_Q - \delta > \tilde{w}$ and $\hat{w}_Q - \delta > \hat{w}_P$. In other words, the brand manufacturer prefers to forbid only sales in these cases where the preferences for purchasing at a local store are relatively weak.

Now, we can state our main finding.

Proposition 4 (Comparison of Distribution Systems).

(a) Suppose (19) holds. The manufacturer strictly prefers a restricted distribution sys-

tem under which online sales are prohibited to a free distribution system iff

$$\delta < \frac{1-\gamma^2}{\gamma}(q_H - q_L) \equiv \bar{\delta}_a.$$

(b) Suppose (19) does not hold. The manufacturer strictly prefers a restricted distribution system under which online sales are prohibited to a free distribution system iff

$$\delta < \left(\frac{1}{\gamma}q_L - c_L\right)\frac{q_H - q_L}{q_H} \equiv \bar{\delta}_b.$$

The brand manufacturer strictly prefers to forbid online sales if consumers have a weak or only moderate preference for purchasing at a local store. In these cases, the market power of each local store is weak and thus the price level in a local store is low if both products are also available online. Due to the low price level, price is salient in the store. This is not in the interest of the brand manufacturer. If the brand manufacturer forbids online sales, a retailer can earn more than the low markup of δ on sales of the branded product. This creates an incentive for each retailer to render quality salient at his store, which is also in the brand manufacturer's interest. In other words, the restricted distribution system allows the brand manufacturer to align retailers' interests with its own. The imposed vertical restraint facilitates coordination of the supply chain. This feature is shared by orthodox models of industrial organization that investigate the role of vertical restraints, like resale price maintenance, exclusive territories, and many others. The crucial difference is that the necessity for supply chain coordination is rooted in consumers' behavioral bias – salient thinking – in our model.

How crucial is the consumers' bias for the result that a restricted distribution system can be optimal? Note that if consumers are (close to) rational, $\gamma \approx 1$, then (19) holds. This implies that forbidding online sales is optimal if and only if $\delta < 0$, which is never the case. On the other hand, the stronger consumers' salience bias (the lower γ), the larger is the range of parameter values for which the brand manufacturer strictly prefers to forbid online sales.

Corollary 1. A restricted distribution system under which online sales are prohibited is 'more likely' (in the sense of set inclusion) to be optimal, the more severe consumers' salience bias is. Formally, $\bar{\delta}'_a(\gamma) < 0$ and $\bar{\delta}'_b(\gamma) < 0$.

4.4. Welfare Implications

In this section, we investigate the welfare implications of a ban on distribution systems under which online sales are prohibited. We assume that there is a law maker or an antitrust authority that can forbid manufacturers to impose retail restrictions on their retailers. In other words, it can be unlawful if a brand manufacturer does not allow its retailers to sell its products next to at the brick-and-mortar store also on an internet platform. The antitrust authority is interested in maximizing consumer welfare, i.e. we presume a consumer welfare standard. This is also the welfare standard applied by the European Commission. This is nicely illustrated by the following quote from Joaquín Almunia, who was commissioner in charge of competition policy at that time: "Competition policy is a tool at the service of consumers. Consumer welfare is at the heart of our policy and its achievement drives our priorities and guides our decisions".²⁰ Nevertheless, we briefly comment on the implications of such a ban for total welfare.

With biased consumers, welfare analysis is intricate because preferences are not stable. A consumer's preferences are affected by the choice environment – whether price or quality is salient at the local store. In order to deal with this issue, we posit that the utility function affected by salience corresponds to a consumer's *decision utility*. A consumer's *experienced* or consumption utility – the hedonic experience associated with the consumption of the good – is given by his unbiased utility function, $u^E = q - p + \delta \mathbb{I}$.²¹ This assumption seems plausible for goods that are not consumed immediately after purchase, which includes most goods that are typically sold online. For these goods, the salience of attributes at the point of sale should have only a minor impact on the experienced consumption utility weeks or months later (the goods are likely to be durable goods).²² A ban on prohibiting internet sales has either no impact (large δ), or it leads to lower wholesale prices for the branded product that translate into lower final good prices (small δ). Thus, the following result is readily obtained.

Proposition 5 (Welfare). Suppose that either (19) holds and $\delta < \bar{\delta}_a$ or that (19) is violated and $\delta < \bar{\delta}_b$. Then, a ban on distribution systems under which online sales are prohibited leads to lower final prices of the branded product, which increases consumer welfare.

For low levels of δ , price is salient in a local store if internet sales are allowed, while quality is salient if internet sales are prohibited. In the former case, the prices at a local

²⁰Joaquín Almunia, Competition and consumers: the future of EU competition policy, speech at European Competition Day, Madrid, 12 May 2010.

²¹For an elaborate discussion on the differences between decision and experienced utility see Kahneman and Thaler (2006).

²²For goods that are consumed at the point of sale, like meals at a restaurant, the biased decision utility might be a more appropriate description also of experienced utility.

store are $p_H^S = \gamma(q_H - q_L) + \delta$ and $p_L^S = c_L + \delta$, and both consumer types purchase at a local store. If, on the other hand, internet sales are prohibited, the price for the branded product at the local store is $p_H^S = (q_H - q_L)/\gamma + \delta$. A type *H* consumer still purchases the branded product at his local store but now has to pay a higher price. A type *L* consumer purchases the fringe product on the internet at $p_L^I = c_L$. His experienced utility is independent of whether or not internet sales are allowed.

For intermediate levels of δ so that $w^F = \tilde{w}$ and $w^R = \hat{w}_Q - \delta$ (see Figure 1 (b)), quality is salient under either distribution system. If online sales are prohibited, the salience constraint restricts the brand manufacturer – and the retailer alike – in its price setting. The prices at a local store are $p_H^S = \tilde{w} + \delta$ and $p_L^S = c_L + \delta$. Both consumer types purchase at a local store. If internet sales are prohibited, the price for the branded product at a local store is again $p_H^S = (q_H - q_L)/\gamma + \delta > \tilde{w} + \delta$. Thus, a type *H* consumer, who purchases the high-quality product at his local store, is again harmed if internet sales are prohibited. A type *L* consumer purchases the fringe product online at $p_L^I = c_L$, and thus his utility is not affected by whether or not the branded product is also available on the internet.

In our simple model, where – on the equilibrium path – a type H consumer always buys the branded product and a type L consumer always buys the fringe product, the prices are welfare neutral transfers from consumers to firms. In other words, the price levels do not affect the volume of sales of the two products. In a richer model with elastic demand, higher prices translate into lower sales and also lower welfare. If this is the case, a prohibition of internet sales can be harmful to total welfare (sum of consumer and producer surplus). Nevertheless, whether or not internet sales are allowed has an impact on total welfare also in our model. From a welfare perspective, each consumer should purchase a good at a local store because consumers have a preference for purchasing there rather than on the internet platform. If internet sales are prohibited, type L consumers purchase from the internet platform, leading to a welfare loss of δ . Hence, a ban on prohibiting internet sales is beneficial for total welfare because inefficient internet sales are avoided.

5. Conclusion

We provide an explanation for a brand manufacturer's rationale to restrict online sales based on the assumption that a consumer's purchasing decision is distorted by salient

thinking according to the theory of Bordalo, Gennaioli, and Shleifer (2013): On an online platform, there is severe competition and the price level is relatively low. Due to diminishing sensitivity, consumers focus more on price rather than quality in this low-price environment. Especially if consumers have only a mild preference for purchasing in the physical store instead of online, price tends to be salient also in the local store and internet prices severely restrict a retailer in his price-setting in store. This, in turn, highly limits the wholesale price the brand manufacturer can charge. The manufacturer can try to circurvent this problem by prohibiting online sales of its product. If the branded product is not available online, internet prices are less critical for a retailer's price-setting in the local store. In particular, he can now charge a significant markup on the branded product. As the markup is higher if quality rather than price is salient, this creates an incentive for the retailer to make quality the salient attribute – which is also in the brand manufacturer's interest. In other words, prohibiting internet sales aligns a retailer's incentives regarding the salient attribute with the brand manufacturer's. We also show that, the weaker are consumers' preferences for purchasing in the physical store and the stronger their salience bias, the more likely it is that a brand manufacturer wants to restrict online sales. Moreover, we find that banning distribution systems that prohibit internet sales leads to lower prices for final consumers and thus a higher consumer welfare. Additionally, a ban is also beneficial for total welfare because inefficient online sales are avoided. However, the welfare implications that can be drawn from our analysis are limited as, in our simple model, whether internet sales are prohibited or not has no impact on the total amount sold of either product. A deeper analysis of the welfare implications is beyond the scope of this paper and a fascinating topic for future research.

A. Proofs of Corollary and Propositions

Proof of Proposition 1. The proof follows from the arguments outlined in the main text.

Proof of Proposition 2. TBA \Box

Proof of Proposition 3. TBA

Proof of Proposition 4. First, suppose that $(1 - \gamma^2)q_H < q_L - \gamma c_L$; i.e., condition (19) holds. We distinguish four cases, depending on the size of δ .

(i) For $\delta \geq q_L/\gamma - c_L$, the highest wholesale price the manufacturer can charge if internet sales are allowed is $w^F = \hat{w}_Q$ (see Proposition 2). If internet sales are prohibited, the manufacturer charges $w^R = \hat{w}_Q$ (see Proposition 3). Thus, there is no rationale for the manufacturer to restrict online sales.

(ii) For $\gamma q_L - c_L \leq \delta < q_L/\gamma - c_L$, the highest wholesale price the manufacturer can charge under both distribution systems makes quality just salient, i.e. $w^F = w^R = \tilde{w}$. Again, there is no reason for the manufacturer to restrict online sales.

(iii) For $(1 - \gamma^2)(q_H - q_L)/\gamma \leq \delta < \gamma q_L - c_L$, price is salient in equilibrium under both distribution systems. The maximal wholesale price the manufacturer can charge is thus independent of the distribution system and given by $w^F = w^R = \hat{w}_P$. The manufacturer has no incentive to ban online sales.

(iv) For $\delta < (1-\gamma^2)(q_H-q_L)/\gamma$, the maximal wholesale price if internet sales are allowed is $w^F = \hat{w}_P$. If internet sales are prohibited, the manufacturer charges $w^R = \hat{w}_Q - \delta$. The manufacturer strictly prefers to prohibit internet sales if

$$\hat{w}_Q - \delta > \hat{w}_P \tag{A.20}$$

$$\iff \frac{1}{\gamma}(q_H - q_L) + c_L - \delta > \gamma(q_H - q_L) + c_L \tag{A.21}$$

$$\iff \frac{1-\gamma^2}{\gamma}(q_H - q_L) > \delta, \tag{A.22}$$

which holds true in case (iv).

Secondly, suppose that $(1 - \gamma^2)q_H \ge q_L - \gamma c_L$, i.e. condition (19) is violated. Again, we distinguish four cases.

(i) For $\delta \ge q_L/\gamma - c_L$, the highest wholesale price under both distribution systems is $w^F = w^R = \hat{w}_Q$.

(ii) For $(q_L/\gamma - c_L)(q_H - q_L)/q_H \leq \delta < q_L/\gamma - c_L$, the maximal wholesale price under both distribution systems is $w^F = w^R = \tilde{w}$.

(iii) For $\gamma q_L - c_L \leq \delta < (q_L/\gamma - c_L)(q_H - q_L)/q_H$, the manufacturer charges $w^F = \tilde{w}$ if internet sales are allowed and $w^R = \hat{w}_Q - \delta$ if internet sales are prohibited. Hence, the manufacturer strictly prefers to ban internet sales if

$$\hat{w}_Q - \delta > \tilde{w} \tag{A.23}$$

$$\iff \frac{1}{\gamma}(q_H - q_L) + c_L - \delta > \frac{q_H}{q_L}c_L + \frac{q_H - q_L}{q_L}\delta \tag{A.24}$$

$$\iff (q_H - q_L) \left[\frac{q_L}{\gamma} - c_L \right] > q_H \delta. \tag{A.25}$$

Note that $\delta < (q_L/\gamma - c_L)(q_H - q_L)/q_H$ and thus the above condition is always satisfied. Put verbally, the manufacturer strictly prefers to ban online sales.

(iv) For $\delta < \gamma q_L - c_L$, the maximal wholesale price if internet sales are allowed is $w^F = \hat{w}_P$. If internet sales are prohibited, the manufacturer charges $w^R = \hat{w}_Q - \delta$. The manufacturer strictly prefers to prohibit internet sales if

$$\hat{w}_Q - \delta > \hat{w}_P \tag{A.26}$$

$$\iff \frac{1-\gamma^2}{\gamma}(q_H - q_L) > \delta. \tag{A.27}$$

We know that $\delta < \gamma q_L - c_L$ and thus the above inequality holds if

$$\frac{1-\gamma^2}{\gamma}(q_H - q_L) \ge \gamma q_L - c_L \tag{A.28}$$

$$\iff (1 - \gamma^2)q_H \ge q_L - \gamma c_L, \tag{A.29}$$

which holds always true (because (19) is violated).

Proof of Corollary 1. The result follows immediately from Proposition 4. \Box

Proof of Proposition 5. The unbiased – experienced utility – of a consumer is $u^E(q, p) = q - p + \mathbb{I}\delta$. Consumer welfare is defined as the sum of experienced utility of a type L and a type H consumer. A type L consumer either purchases quality q_L at a brick-and-mortar store at price $p_L^S = c_L + \delta$ or on the internet at $p_L^I = c_L$. Thus, his utility in equilibrium is always $u^E = q_L - c_L$.

A consumer of type H always purchases quality q_H at a brick-and-mortar store, i.e. at price p_H^S . First, suppose that (19) holds and that $\delta < \bar{\delta}_a$. If internet sales are allowed, we have $p_H^S = \hat{w}_P + \delta$. If internet sales are prohibited, we have $p_H^S = \hat{w}_Q$. From the proof of proposition 4, we know that $\hat{w}_Q > \hat{w}_P + \delta$. Thus, the brand product is cheaper and consumer welfare is higher if it is illegal to ban internet sales.

Secondly, suppose that (19) is violated and that $\delta < \overline{\delta}_b$. We distinguish two subcases. (i) $\gamma q_L - c_L \leq \delta < (q_L/\gamma - c_L)(q_H - q_L)/q_H$: The prices at a brick-and-mortar store under the free and the restricted distribution system are $p_H^S = \tilde{w} + \delta$ and $p_H^S = \hat{w}_Q$, respectively. From the proof of proposition 4 we know that $\hat{w}_Q > \tilde{w} + \delta$ in the relevant parameter range. Thus, the brand product is cheaper and consumer welfare is higher if it is illegal to ban internet sales. (ii) $\delta < \gamma q_L - c_L$: If internet sales are allowed, $p_H^S = \hat{w}_P + \delta$, while, if internet sales are prohibited, $p_H^S = \hat{w}_Q$. From the proof of proposition 4 we know that $\hat{w}_Q > \hat{w}_P + \delta$. Again, the brand product is cheaper and consumer welfare is higher if it is illegal to ban internet sales.

References

- ADRIAN, N. C. (2016): "Price Discrimination and consumer Salience," mimeo, University of Bern, Switzerland.
- APFFELSTAEDT, A., AND L. MECHTENBERG (2016): "Competition over context-sensitive consumers," mimeo, University of Hamburg.
- ARMSTRONG, M., AND Y. CHEN (2009): "Inattentive Consumers and Product Quality," Journal of the European Economic Association, 7(2/3), 411–422.
- ASKER, J., AND H. BAR-ISAAC (2014): "Raising Retailers' Profits: On Vertical Practices and the Exclusion of Rivals," *The American Economic Review*, 104(2), 672–686.
- BORDALO, P., N. GENNAIOLI, AND A. SHLEIFER (2013): "Salience and Consumer Choice," *Journal of Political Economy*, 121(5), 803–843.
- (2016): "Competition for Attention," *The Review of Economic Studies*, 83(2), 481–513.
- BRYNJOLFSSON, E., AND M. D. SMITH (2000): "Frictionless Commerce? A Comparison of Internet and Conventional Retailers," *Management Science*, 46(4), 563–585.
- BUSHONG, B., M. RABIN, AND J. SCHWARZSTEIN (2015): "A Model of Relative Thinking," mimeo, Harvard University.
- CAVALLO, A. (2017): "Are Online and Offline Prices Similar? Evidence from Large Multi-Channel Retailers," *The American Economic Review*, 107(1), 283–303.
- DELLAVIGNA, S., AND U. MALMENDIER (2004): "Contract Design and Self-Control: Theory and Evidence," *Quarterly Journal of Economics*, 119(2), 353.
- DERTWINKEL-KALT, M., K. KÖHLER, M. R. LANGE, AND T. WENZEL (2016): "Demand Shifts Due to Salience Effects: Experimental Evidence," *Journal of the European Economic Association*, forthcoming.
- GABAIX, X., AND D. LAIBSON (2006): "Shrouded Attributes, Consumer Myopia, and Information Suppression in Competitive Markets," *Quarterly Journal of Economics*, 121(2), 505–540.

- HAUCAP, J., AND T. STÜHMEIER (2016): "Competition and Antitrust in Internet Markets," in *Handbook on the Economics of the Internet*, ed. by J. M. Bauer, and M. Latzer, pp. 183–210. Edward Elgar.
- HERWEG, F., D. MÜLLER, AND P. WEINSCHENK (2017): "Salience, competition, and decoy goods," *Economics Letters*, 153, 28 31.
- HUNOLD, M., AND J. MUTHERS (2017a): "Resale price maintenance and manufacturer competition for retail services," *The RAND Journal of Economics*, 48(1), 3–23.
- (2017b): "Vertical Restraints and Internet Retailing," mimeo, University of Würzburg.
- INDERST, R., AND M. OBRADOVITS (2015): "Too Much Attention on Low Prices? Loss Leading in a Model of Sales with Salient Thinkers," http://www.cepr.org/active/ publications/discussion_papers/dp.php?dpno=10813, CEPR DP10813.
 - (2016): "Excessive Competition for Headline Prices," http://www.cepr.org/ active/publications/discussion_papers/dp.php?dpno=11284, CEPR DP11284.
- JULLIEN, B., AND P. REY (2007): "Resale price maintenance and collusion," The RAND Journal of Economics, 38(4), 983–1001.
- KAHNEMAN, D., AND R. H. THALER (2006): "Anomalies: Utility Maximization and Experienced Utility," *The Journal of Economic Perspectives*, 20(1), 221–234.
- KATZ, M. (1989): "Vertical contractual relations," in *Handbook of Industrial Organization*, ed. by R. Schmalensee, and R. Willig, vol. 1, chap. 11, pp. 655–721. Elsevier, 1 edn.
- KŐSZEGI, B., AND A. SZEIDL (2013): "A Model of Focusing in Economic Choice," Quarterly Journal of Economics, 128, 53–104.
- KRISHNAN, H., AND R. A. WINTER (2007): "Vertical Control of Price and Inventory," *American Economic Review*, 97(5), 1840–1857.
- MATHEWSON, G. F., AND R. WINTER (1984): "An Economic Theory of Vertical Restraints," *RAND Journal of Economics*, 15(1), 27–38.

- OECD (2013): "Vertical Restraints for Online Sales," OECD: Paris, OECD Policy Roundtable, Document DAF/COMP(2013)13.
- PERRY, M. K., AND R. H. PORTER (1986): "Resale Price Maintenance and Exclusive Territories in the Presence of Retail Service Externalities," mimeo, Bell Communications Research, Inc.
- PRUZHANSKY, V. (2014): "Luxury goods, vertical restraints and internet sales," European Journal of Law and Economics, 38(2), 227–246.
- REY, P., AND J. STIGLITZ (1988): "Vertical restraints and producers' competition," European Economic Review, 32(2), 561 – 568.
- (1995): "The Role of Exclusive Territories in Producers' Competition," *RAND Journal of Economics*, 26(3), 431–451.
- REY, P., AND J. TIROLE (1986): "The Logic of Vertical Restraints," American Economic Review, 76(5), 921–939.
- REY, P., AND T. VERGÉ (2008): "Economics of Vertical Restraints," in *Handbook of* Antitrust Economics, ed. by P. Buccirossi, chap. 9, pp. 353–390. MIT Press.
- SPENGLER, J. J. (1950): "Vertical Integration and Antitrust Policy," Journal of Political Economy, 58, 347–352.
- SPIEGLER, R. (2011): Bounded Rationality and Industrial Organization. Oxford University Press.
- TELSER, L. G. (1960): "Why Should Manufacturers Want Fair Trade?," Journal of Law & Economics, 3, 86–105.
- YAMEY, B. S. (1954): The economics of resale price maintenance. Sir Isaac Pitman, London.