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Abstract

In standard models of spatial harvesting, the resource is distributed over the com-
plete domain and the agent is able to control the harvesting activity everywhere
all the time. In some cases, though, it is more realistic to assume that the resource
is located at a single point in space and that the agent is required to travel there
in order to be able to do harvesting. In this case, the agent faces a combined
travelling–and–harvesting problem. We scrutinize this type of a two-stage opti-
mal control problem, and illuminate the interdependencies between the solution
of travelling and that of the harvesting sub-problem. In particular, bounds on
either control, i. e. on acceleration respectively on the harvesting capacity, signifi-
cantly affect the policies in both sub-problems. Since the model is parsimoniously
parameterised, we are able to characterise the optimal policy of the complete
travelling–and–harvesting problem analytically.
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1. Introduction

In the management of renewable natural resources the spatial dimension has at-

tracted substantial attention in the last years. The focus of this literature is on

the movement of the resource, such as fish or game, and on the optimal alloca-

tion of the harvesting effort over the domain (distributed control). In this paper,

we reverse this view: we consider an agent required to move within the space in

order to be able to harvest an immobile resource. While the standard approach

is descriptive when the resource is able to cover large distances when compared

with the agent, our approach is expedient if, the resource, when compared with

the agent, is spatially rather immobile or even fixed.

The management of renewable natural resources is a central issue in economics

since, at the latest, Gordon (1954) and Smith (1968) have revitalize this topic. In

this regard, optimal control theory has proved as a suitable technique to design

optimal harvesting strategies with respect to both the temporal and the spatial

dimension. Notably, in their monographs Conrad and Clark (1987), Conrad (2010)

and Clark (2010) nicely demonstrate how optimal control theory may fruitfully

contribute to the management of fisheries. Subsequently, these textbook models

have been extended and generalised in various respects. For example, Fan and

Wang (1998) generalise the optimal harvesting policy of a autonomous harvesting

problem with logistic growth (see, for example, Clark, 2010) to a non-autonomous

case with periodic coefficients; Liski et al. (2001) accounting for costly changes of

the harvesting rate explore the effects of increasing returns to scale for a standard

fishery management model;1 and Ainseba et al. (2003), Feichtinger et al. (2003),

Hritonenko and Yatsenko (2006), Tahvonen (2008, 2009a,b), Li and Yakubu (2012),

Skonhoft et al. (2012), Quaas et al. (2013), Tahvonen et al. (2013) and Belyakov

and Veliov (2014) investigate harvesting of age-structured populations.2

While that work takes into account the temporal and the bioeconomic dimen-

sion, the spatial dimension—though already present in the literature of theoretical

biology and applied mathematics—has entered the focus of economists relatively

late; namely, it was Sanchirico and Wilen (1999) who brought the spatial dimen-

sion to the attention of resource economists. In their seminal paper Sanchirico

and Wilen generalize the fundamental open-access models of Gordon (1954) and

1In this way these authors demonstrate a link between stable limit cycle policies and increasing

returns in harvesting; notably, they show that for moderate adjustment costs the harvest rate

and thus the stock of fish may oscillate persistently.
2Notably, Ainseba et al. (2003), investigating the optimal harvesting problem for a non-linear

age-dependent and spatially structured population dynamics model, prove the existence and

uniqueness of a solution along with the existence of an optimal control, and provide necessary

optimality conditions.
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Smith (1968) with respect to the spatial dimension: they set up a bioeconomic

model with a finite number of patches with migration of the biomass and reallo-

cation of effort between patches. In this way the authors integrate within- and

between-patch biological forces and economic forces, and demonstrate how these

effects determine the process of bioeconomic convergence over space and time.3

Following Sanchirico and Wilen (1999), the early models in spatial resource

economics feature discrete patches, where at each location of the resource the stock

evolves according to an ordinary differential equation (ODE); migration of the

biomass is then modelled as entry and exit of the biomass from one location to the

other. The contemporary literature, though, models the migration and the spread

of the biomass as diffusion described by partial differential equations.4 Notable

contributions are Cañada et al. (1998), Montero (2000, 2001), Neubert (2003), Bai

and Wang (2005), Brock and Xepapadeas (2008, 2010), Ding and Lenhart (2009),

Joshi et al. (2009), Bressan et al. (2013), Uecker and Upmann (2016) and others.

In both strands of the literature it is the biomass which is mobile while the

agent harvesting the resource is immobile. Metaphorically speaking, the agent is

waiting for the resource approaching, catching it when passing by. In many in-

stances this is a reasonable approach suitably describing the situation (e. g. shoot-

ing off game or coastal fishery), but in other cases it is not. For example, in fruit

harvesting, forestry, extensive agriculture etc. it is the agent who is moving in or-

der to access the resource. In this paper, we build on that observation and analyse

the optimal behaviour of an agent who is required to travel in order to be able to

get access to and to harvest a remote resource. Thus, when compared with the

standard approach in spatial resource economics, we complement that literature

by reversing the ability of movement. This reversal may enhance the realism in

modelling natural resource extraction when the resource is rather immobile and is

located at some distant or hardly accessible place.

In this paper, we assume that the resource is localised at some fixed and

known patch. Since the agent’s harvesting activity is limited to that single loca-

tion, the agent is required to move to that location in order to get access to the

resource, which is a prerequisite for any harvesting activity.5 Yet, harvesting not

only requires the physical presence of the agent, but the process of harvesting also

takes time. Thus, both processes, movement and harvesting, are time-consuming.

3In a subsequent paper Sanchirico and Wilen (2005) utilize the model of their 1999 paper

to characterise the spatially differentiated landings and effort taxes suitable to implement a

first-best allocation.
4A presentation of the basic population models with diffusion can be found, for example, in

Aniţa (2000, sec. 1.2), Okubo and Levin (2001), Murray (2003) and the references therein.
5The realism of this approach is thus highest where the spatial domain is relatively large when

compared with the region which can be harvested at a single instant of time.
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In order to move from their initial location to the location of the resource and

then to perform harvesting, the agent has first to control the navigation process

and then, upon arrival at the resource, the harvesting process. Consequently, any

admissible policy consists of a sequence of a travelling and a harvesting interval—

and we are interested in this optimal travelling–and–harvesting policy, that is, in

the interdependency of the travelling and the harvesting decision. In this way, this

paper complements the contemporary literature on spatial resources economics by

seriously taking into account the sequence of time periods required for travelling

and harvesting, and by scrutinizing the interaction between the travelling and the

harvesting decision.

Few papers only consider the travelling–and–harvesting problem of the agent

in a spatial domain: notably, Behringer and Upmann (2014) and Belyakov et al.

(2015) consider an immobile resource located on the periphery of a circle and an

agent who gets out for a round trip, returning to their home after a turn. Both,

Behringer and Upmann (2014) and Belyakov et al. (2015), assume that the agent is

able to do en passant harvesting, so that the agent need not stop (at each location)

in order to extract the resource; rather, the agent is able to extract the resource by

passing by, implying that there is no need not reduce the travelling speed and to

stop. As a consequence, the harvesting activity does not cost any time (over and

above the time of travelling), but can be done during travelling. In this way, the

travelling and the harvesting activity go in parallel and may even be identified with

each other. This is quite opposite to our approach where travelling and harvesting

are mutually exclusive, rival activities (with different cost functions): the more

time is spent on travelling, the less time is left for harvesting, and vice versa.

Since in our approach travelling and harvesting are quite two different activ-

ities which take place at different locations at different times, we are confronted

with two, yet interdependent, optimal control problems: the problem of travelling,

where acceleration (or speed) has to be chosen to steer to the location of the re-

source; and the harvesting problem, where the harvesting rate has to be determined

to maximise the yield. In order to solve this combined profit-maximising prob-

lem, we draw upon the literature of two-stage optimal control problems with finite

time horizon: notably, Amit (1986), Tomiyama (1985), Tomiyama and Rossana

(1989) provide optimality conditions for two-phase, finite time dynamic optimiza-

tion problems similar to the one considered here.6

We solve this two-stage optimal control problem and derive the optimal trav-

elling and harvesting policy, including the optimal point in time at which the agent

6An extension to infinite horizon can be found in Makris (2001); and applications of this

theory to two-stage optimal control problems, in Grass et al. (2012), Bar-Ilan and Strange

(1998), Tahvonen and Withagen (1996) and Boucekkine et al. (2004), for example.
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arrives at the location of the resource and commences harvesting. In particular, we

demonstrate the interdependency between the travelling and the harvesting prob-

lem, a feature which has, to our knowledge, been left unnoticed and unexplored in

the literature. To scrutinize the robustness of our finding, we consider two differ-

ent specifications of the growth process of the resource: exponential growth and

logistic growth. For both types of processes we derive the value function of the

optimal harvesting policy. Finally, we explore the sensitivity of our results with

respect to the rate at which future revenues and costs are discounted and with

respect to the presence of bounds on the control of movement, and show that the

fundamental insights are robust.

The rest of the paper is structured as follows. In Section 2 we set up the

model. In Section 3 we decompose the travelling–and–harvesting problem into

the two sub-problems, which are then analysed in Section 4 (harvesting) and in

Section 5 (travelling). In Section 6 we explore the robustness of our results by

inspecting the effects of changes in the discount rate and of bounds on the controls.

Finally, we conclude in Section 7.

2. The Model

2.1. Sketch of the Model. We consider a renewable natural resource located at

some fixed location. The agent can harvest the resource at their current location

only, and is thus required to move to get access to and to be able to extract the

resource. Consequently, the agent has to steer to the location of the resource,

at may commence with harvesting upon arrival (at the earliest). The process of

harvesting takes time, and so the stock diminishes gradually during harvesting

takes place.7 Consequently the agent’s problem is a combined travelling–and–

harvesting problem where the speed of travelling, and thus the arrival time, and

the harvesting rate have to be determined jointly in order to maximise the total

profit composed of the revenue from harvesting net of harvesting and travelling

cost.

2.2. Details of the Model. We consider a finite time horizon T with a planning

period T ≡ [0, T ]. During this planning period, the economic agent has the

exclusive right to harvest the renewable natural resource, which is located at some

fixed and known position x1 > 0. At time t ∈ T the position of the economic

agent is x(t) ∈ X ≡ [0, x̄], called the location of the agent; the initial location of

the agent is x(0) = 0. We assume x̄ ≥ x1. Since the resource is located x1 units of

length remote from the agent, the agent is unable to commence harvesting until

7This contrasts with en passant harvesting of a continuously distributed resource where the

agent is not required to stop but can collect the resource while he is moving.
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Figure 1. Travelling–and–harvesting period

they arrive at the location of the resource, i. e., x(t) = x1. Harvesting thus requires

the agent to travel from 0 to x1, to stop there, and to commence with harvesting.

In order to move from one location to the next, the agent has to adjust the

velocity of travelling v(t), which we assume to be non-negative and finite so that

v(t) ∈ V = [0, v̄].8 Since speed cannot be chosen directly, but is controlled by

means of acceleration a(t) ∈ A of the vehicle of movement or the harvesting

machine we have9

ẋ(t) = v(t) and v̇(t) = a(t) ∀t ∈ T . (1)

There may be lower and upper bounds on acceleration; in Section 6, we shall

assume that acceleration is bounded so that a ∈ A ≡ [
¯
a, ā] with

¯
a < 0 and

ā > 0.10

Since harvesting, as well as travelling, takes time and the time horizon is

finite, more time is left for harvesting the earlier the agent arrives at location x1.

More precisely, let t1 denote the arrival time of the agent at the location of the

resource x1, that is x(t) < x1 for all t < t1 ≤ T and x(t1) = x1; if the agent

does not arrive at x1 by time T , such that x(T ) < x1, then we set t1 = +∞.

Thus, we have t1 ∈ T+∞ ≡ T ∪ {+∞}. Consequently, Λ ≡ [0, t1 ∧ T ] denotes the

agent’s travelling period;11 and ∆ ≡ (t1 ∧ T, T ], the resulting harvesting period.

The total available time is then either spent for travelling or for harvesting, so

that Λ ∪∆ = T represents the travelling–and–harvesting period ; this is visualized

in Figure 1.

The size of the stock of the resource (i. e. the biomass) at time t ∈ T is denoted

by s(t) ≥ 0. We assume that the renewable resource is growing autonomously at

rate g, and allow for the growth rate of the stock to depend on the size of the stock:

g(s) with g(0) = 0. Furthermore, the stock is reduced as a result of the harvesting

8The assumption of non-negative speed rules out that the agent moves backwards. Since mov-

ing backwards is economically unreasonable, this assumption can be made without reservations.
9Taking into account acceleration is made to avoid an unrealistic speed profile where the agent

may instantaneously switch speed in a non-continuous way.
10The minimum acceleration

¯
a is necessarily negative to allow for a slowdown of speed, as the

agent would otherwise be unable to stop—and start harvesting.
11We assume that the travelling period is convex. That is, once the agent has reached location

x1, they will never start travelling again, and thus completes the planning period at x1.
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activity. The harvest depends on the availability of the resource, i. e. on the

stock s, and on the harvesting effort h exercised to acquire the resource. Suppose

that effort is less productive the lower the stock, and that a given stock yields less

harvest the lower the effort. According to this, we assume that harvest at time t

amounts to H(t) = h(t)s(t) provided that the agent’s location is x1, and H(t) = 0

otherwise. Thus, the resulting growth of the stock is governed by the differential

equation

ṡ(t) = g(s(t))− h(t)s(t)1{x(t)=x1}(t), ∀t ∈ T , (2)

where the indicator function 1{x(t)=x1} accounts for the fact that harvesting can

only be effective it the agent’s location at time t equals x1, i. e., if x(t) = x1. In

other words, upon arrival at location x1, the agent starts the path of the harvesting

activity {h(t)}t∈∆.
12

The process of harvesting gradually diminishes the stock, and the agent may

decide to continue with harvesting until the stock is depleted: with s(t) = 0 it

immediately follows that H(t) = 0 for any harvesting activity h(t) ≥ 0. Also, once

the stock is depleted, we have ṡ(t) = 0 due to our assumption g(0) = 0. Hence,

s = 0 represents an absorbing barrier or an equilibrium of the stock dynamics.

(Subsequently, we will consider the cases of exponential and logistic growth of

the stock both of which satisfy these assumptions.) Owing to the immediate,

negative effect of harvesting on growth, intensive harvesting leaves the stock with

less beneficial conditions for future growth, and thus impairs the possibilities for

future harvesting. There is thus a trade-off between present and future yield from

harvesting.

Travelling and harvesting both are costly. We assume that harvesting cost

C increase in the amount of the resource harvested. Accordingly, harvesting cost

C(H) is increasing and (weakly) convex, i. e. C ′ > 0 and C ′′ ≥ 0 for all H ∈ R+,

with C(0) = 0. Also, travelling is associated with some cost, which (generically)

depends on both speed and acceleration: K : V × A → R : (v, a) 7→ K(v, a).

Naturally, pausing is costless, K(0, 0) = 0, while travelling cost increase with both

speed and acceleration, and acceleration is more costly the higher the speed. Thus,

the signs of the partial derivatives of the cost function are given by Kv ≥ 0, Ka ≥ 0

and Kva ≥ 0.

Since the maximum speed v̄ is finite, travelling from 0 to x1 takes at least

x1/v̄ units of time. For this reason, travelling is not only costly in pecuniary

terms, but also in terms of foregone time, time that might otherwise been used

for harvesting. Thus, while a short travelling time may be desirable in order to

12In principle, we allow the agent to choose h(t) > 0 for times t < t1, but since this harvesting

activity is sure to yield no return at any time t ∈ Λ, the choice of h(t) > 0 is a futile action in

this case. Mathematically, this is captured by the indicator function.
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commence harvesting soon, a short travelling time is costly in terms of pecuniary

expenses, as this requires travelling at a high speed. Also, a short travelling time

implies that there is less time for the resource to grow before a new period of

harvesting starts.

Let ρ ≥ 0 denote the discount rate of the agent, and normalize the price of

one unit of the harvested resource to unity. The problem of the agent is then

to maximize the discounted profit flow consisting of instantaneous revenue net of

harvesting cost and net of travelling cost for the planning period T . Presupposing

that the agent reasonably chooses h(t) = 0, ∀t ∈ Λ,13 we obtain the travelling cost

J1(a) ≡

∫ t1

0

e−ρtK(v(t), a(t)) dt (3)

and the profit from harvesting

J2(h) ≡

∫ T

t1

e−ρt (h(t)s(t)− C(h(t)s(t))) dt (4)

where the arrival time t1 depends on the acceleration path {a}t∈Λ. Putting pieces

together, the agent’s optimisation problem then reads as

max
{a,h}

J(a, h) ≡ −J1(a) + J2(h) (5)

subject to the dynamics of movement (1), the stock dynamics of the resource (2),

and their associated constraints v(t) ∈ V(t), a(t) ∈ A(t), h(t) ∈ H(t) ∀t ∈ T , as

well as to the initial conditions s(0) = s0, x(0) = 0 and v(0) = 0, the “arrival

conditions” t1 ∈ T+∞ free, x(t1) = x1 and v(t1) = 0 if t1 ∈ T , and the terminal

condition s(T ) ≥ 0 free, x(T ) ∈ X free, v(T ) = 0. Note that the constraints

x(t) = x1, ∀t ∈ ∆ and v(t) = 0, ∀t ∈ ∆ are already implied by (2) and thus need

not be added.14

3. Decomposition of the problem

In order to solve problem (5), we decompose the intertemporal optimal travelling–

and–harvesting problem in the travelling and the harvesting sub-problem. In order

to render the travelling–and–harvesting problem reasonable, we subsequently as-

sume that the costs of travelling are not too high, so that the problem is meaningful

and an arrival is before time T is expedient. In addition, because maximum speed

is finite, the arrival time must be strictly positive. Therefore, the corner solutions

13We easily may include the case h(t) = 0 for some t ∈ Λ by setting the lower limit of

integration in J2 equal to 0.
14In addition, we may also require the agent to terminate his trip at the point of departure,

that is we may impose the requirement x(T ) = 0, so that the agent can only terminate his trip

“at home”. Also, we may add a ‘scrap’ value (‘salvage’ value) of the stock of the resource at

time T : φ(s(T ), T ), or we may add the constraint of a fixed endpoint s(T ) = sT .
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t1 = 0 and t1 = T as well as t1 = +∞ can be ruled out, so that both the travelling

period and the harvesting period are non-empty, Λ,∆ 6= ∅. For those reasons, we

subsequently presume t1 ∈ (0, T ).

In the travelling problem we choose an acceleration path {a(t)}t∈Λ and thus

the arrival time t1 so as to move from location 0 to location x1 at minimal cost:

min
{a,t1}

J1(a, t1) ≡

∫ t1

0

e−ρtK(v(t), a(t)) dt (6)

s. t. ẋ(t) = v(t), ∀t ∈ [0, t1]

v̇(t) = a(t), ∀t ∈ [0, t1]

a(t) ∈ A(t), ∀t ∈ [0, t1]

v(t) ∈ V(t), ∀t ∈ [0, t1]

ṡ(t) = g(s(t)), ∀t ∈ [0, t1]

x(0) = x0, x(t1) = x1,

v(0) = 0, v(t1) = 0,

Since the travelling time t1 can be chosen, we face a free-terminal-time problem.

Then, t1 represents the starting time of the harvesting period, and in the resulting

harvesting problem we choose a path of the harvesting activity (effort) {h(t)}t∈∆
to maximise profit from this activity (4):

max
{h}

J2(h, t1) ≡

∫ T

t1

e−ρt [h(t)s(t)− C(h(t)s(t))] dt (7)

s. t. ṡ(t) = g(s(t))− h(t)s(t) ∀t ∈ [t1, T ]

h(t) ∈ H(t), ∀t ∈ [t1, T ]

s(t1) = s1, s(T ) ≥ 0, free.

During the travelling time the resource remains unimpaired and thus grows (at

least) until the agent arrives at the location of the resource, x1. Consequently,

upon arrival, the stock of the resource equals s(t1) representing the solution of the

supposed growth process ṡ(t) = g(s(t)) with s(0) = s0. In this way, the travelling

decision determines s(t1) and thus the initial value of the stock of the harvesting

problem. The fact that the travelling time of the agent also represents the growth

time of the resource is the crucial link between the travelling problem (6) and

the harvesting problem (7). As a consequence, when we decide about the speed

of travelling, we have to take into account that a longer travelling time will re-

sult in a postponement of the profits from harvesting; while, in contrast, a lower

speed of travelling makes travelling less expensive and gives the resource more

time to grow, and thus provides the opportunity for a more abundant harvest
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at later times. Thus, taking into account these interdependencies between sub-

problems (6) and (7), then together they constitute the travelling–and–harvesting

problem:

V1 ≡ max
{h,a,t1}

−

∫ t1

0

e−ρtK(v(t), a(t)) dt+

∫ T

t1

e−ρt [h(t)s(t)− C(h(t)s(t))] dt (8)

s. t. ẋ(t) = v(t), ∀t ∈ [0, t1]

v̇(t) = a(t), ∀t ∈ [0, t1]

a(t) ∈ A(t), ∀t ∈ [0, t1]

v(t) ∈ V(t), ∀t ∈ [0, t1]

ṡ(t) = g(s(t)) ∀t ∈ [0, t1]

ṡ(t) = g(s(t))− h(t)s(t) ∀t ∈ [t1, T ]

h(t) ∈ H(t), ∀t ∈ [t1, T ]

x(0) = x0, v(0) = 0,

x(t1) = x1, v(t1) = 0,

s(0) = s0,

s(T ) ≥ 0 free

t1 ∈ T free

As the one-season travelling–and–harvesting problem is composed of two phases,

the travelling and the harvesting phase, an analysis of this problem requires the

derivation of the optimality conditions of a two-phase optimization model. In

particular we want to answer the following questions: at what point of time should

the agent switch from one phase to the other, i. e. when should he arrive at the

location of the resource and begin with its exploitation, and how long and at what

rate should the resource be exploited?

To solve problem (8), we derive necessary conditions for an optimal control

pair (a∗, h∗, t∗1), by applying the decomposition of the original problem into two

standard problems. We first consider the harvesting problem of the second stage,

and then the travelling problem of the first stage, acknowledging the dependence

of the solution of the second stage on the decision of the first stage. The optimal

control h∗ of the harvesting problem depends on the choice of the starting value

s1 = s(t1) and the starting time t1. More precisely, assuming the existence of the

optimal switching time t1 in the interior of the time interval T , we the second

stage problem and calculate the maximised objective function J∗
2 as a function of

the initial state s1 and the switching time t1. Then, we derive the optimal control

a∗ and the optimal switching time t1 by solving the travelling problem of the first

stage.
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Second stage. Given the control time interval [t1, T ] and the initial condition

s(t1) = s1, we solve problem (7) for an admissible optimal control h∗. This prob-

lem is of a standard form and can be solved using the well-known Pontryagin

maximum principle (see, for example, Kamien and Schwartz, 1991.) Then, using

the solution of the second-stage problem, h ∗ (t), λ∗2(t) and s∗(t), which depends

on the starting values s1 and t1, we calculate J∗
2 (s(t1), t1). Then, with the help of

J∗
2 , the original problem can be reformulated as follows:

First stage. Given a the constraints in (6), we look for an admissible optimal

control a∗ defined on [0, t∗1] and an optimal arrival time t∗1 ∈ (0, T ) such that

max
a

V1(a, t1) ≡ −J1(v, a) + J∗
2 (s(t1), t1), (9)

where J1 is defined as in (6). Since by assumption t∗1 ∈ (0, T ), the constraint

t1 ∈ (0, T ) is irrelevant, and this problem reduces to a standard problem with

‘scrap’ (or ‘salvage’) value J∗
2 , free terminal time t1 and end point s(t1). (See, for

example, Léonard and Long, 1992, sec. 7.2 and 7.6.)

The optimality conditions for this type of a two-phase dynamic optimization

problem are available from the literature. Details can be found in Tomiyama

(1985) and Amit (1986) who provide necessary conditions for a two-stage, finite-

horizon switching problem with endogenous switching time; while Makris (2001)

provides corresponding results for a two-stage switching problem with an infinite

time horizon.15 We here deploy the results of Tomiyama (1985) and Amit (1986).

4. Second Stage: Harvesting

We now solve the travelling–and–harvesting problem in the suggested way, i. e.we

solve the harvesting problem in this section, and then solve the travelling prob-

lem in Section 5. We consider two standard specifications of the growth process

of the resource: exponential growth, in sub-section 4.1, and logistic growth, in

sub-section 4.3. For both processes we derive the value function of the optimal

harvesting policy. (Similar models can be found in Conrad and Clark, 1987; Hock-

ing, 1991; Clark, 2010 and others.)

For concreteness we subsequently speak of fish and catch rather than of re-

newable resource and harvest. Yet, the analysis is fully applicable to any natural

renewable resource. Also, we may equivalently think of controlling the grazing of

herbivores.

15Tomiyama and Rossana (1989) and Grass et al. (2008, sec. 8.1.1) generalise the results of

Tomiyama (1985) and Amit (1986) for a finite and an infinite time horizon, respectively, when the

switch point appears as an argument of the integrands in each integral of the objective function.
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4.1. Exponential growth. Suppose that the stock of a given species of fish,

when left unimpaired, increases at a constant rate: g(s(t)) = s(t) for all t ∈ ∆ ≡

[t1, T ]. The stock is reduced by the catch H(t) ≡ s(t)h(t), where the harvesting

effort is bounded: h(t) ∈ H = [0, h̄]. Consequently the stock evolves according to

the differential equation

ṡ(t) = s(t)− h(t)s(t), s(t1) = s1, ∀t ∈ ∆, ∀h(t) ∈ H. (10)

We follow the familiar Schaefer model (see Schaefer, 1954), and specify the revenue

from fishing as a bi-linear function of effort and the stock H(t) = qs(t)e(t), where q

is the catchability coefficient, defined as the fraction of the population fished by an

effort unit. For convenience set set q = 1. Also, concordantly with the literature,

we presuppose a constant price of the resource so that revenue amounts to pH(t).

To complete our definition of the profit function, we follow the specification of the

effort cost function chosen by, for example, Puchkova et al. (2014) and Moberg

et al. (2015) and assume that harvesting costs are linear in total catch, C(H(t)) =

cH(t) = c h(t)s(t), with 0 ≤ c < p.16 Then, instantaneous profit amounts to

(p− c)h(t)s(t). Finally, we normalize the per unit profit p− c to unity, so that the

objective function becomes

max
h∈H

J2 =

∫ T

t1

h(t)s(t) dt s. t. (10). (11)

According to a substantial part of the literature we abstract from discounting for

the moment, and set ρ = 0. (For example, the majority of the references provided

in fn. 16 abstracts from discounting.) This allows us to simplify the analysis, and

we show later, in Section 6, how our results are affected by the presence of a

positive discount rate.

The Hamiltonian of this problem is given by

H = h(t)s(t) + π(t)s(t) (1− h(t)) , (12)

16The Schaefer model is almost universally used in the literature, and most authors add

either linear or quadratic effort cost. For example, Clark (2010, Sec. 1.4), Puchkova et al.

(2014) and Moberg et al. (2015) presume linear cost yielding an instantaneous profit equal to

pqs(t)e(t) − ce(t); while He et al. (1994), Leung (1995), Cañada et al. (2001), Montero (2001),

Fister and Lenhart (2004, 2006) and Chang and Wei (2012) presume a quadratic effort cost

function, and Ding and Lenhart (2009) presume a linear-quadratic effort cost function. One

exception to the prevalence of linear and quadratic cost functions is Liski et al. (2001) who

suppose a concave-convex harvest cost. An alternative specification of the objective function

is to disregards effort cost altogether and to maximise the sustainable yield; this approach is

followed by, for example, Fan and Wang (1998), Neubert (2003), Bai and Wang (2005) and Kelly

et al. (2016).—All of these authors assume a fixed price of the (harvested) resource.
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and the maximum principle yields

0 = (1− π(t))s(t), (13)

π′(t) = h(t)π(t)− h(t)− π(t), (14)

along with eq. (10). Apparently, the optimal strategy depends on whether π is

less or greater than one. The maximum of H is thus achieved by

h(t) =

{

0 if π(t) > 1

h̄ if π(t) < 1.
(15)

Since s(T ) is free, the transversality condition requires π(T ) = 0. From that

condition together with h(t) = h̄ for π(t) < 1, we infer that we cannot end the

period ∆ with h = 0, i. e. we must have h(T ) = h̄. Moreover, the solution of

eq. (14) must satisfy

π(t) =







A0e
−t if h(t) = 0

h̄

h̄− 1
+ A1e

t(h̄−1) if h(t) = h̄.
(16)

Neither solution achieves the critical value π = 1 more than once. Consequently,

there is a unique switching point τ ,17 implying that we either have (i) h(t) = h̄ for

all t ∈ ∆, or (ii) h(t) = 0 for all t1 ≤ t < τ and h(t) = h̄ for all τ ≤ t ≤ T . Then,

along any path with h = h̄, the costate variable must satisfy

π(t) =
h̄

h̄− 1

(

1− e(1−h̄)(T−t)
)

(17)

where we determined A1 = h̄eT (1−h̄)/(1 − h̄) so as to satisfy the transversality

condition. Now, the switching time τ has to be chosen according to the condition

π(τ) = 1. Hence, we obtain from eq. (17)

τ = T − δ, with δ ≡
log
(
h̄
)

h̄− 1
. (18)

Since δ is a positive, decreasing and convex function for all values of h̄ 6= 1, we

define δ = 1 for h̄ = 1 so as to make δ a continuous function of h̄.18 Consequently,

the larger h̄, the longer the agent can wait and let the resource grow unimpaired,

allowing for more intensive harvesting later.

Depending on the sign of τ , either of two cases may occur.

17Alternatively, this observation follows from eq. (14), which implies that evaluated at a

switching point τ we have π′(τ) = −1 since π(τ) = 1 by definition.
18To see that δ = 1 for h̄ = 1, apply l’Hôpital’s rule.
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✲ t
0 τA

︸ ︷︷ ︸

δA

t1 τB

︸ ︷︷ ︸

δB

T

Figure 2. Cases A and B

4.1.1. Case A: T < δ + t1. In this case the maximal harvesting intensity h̄ is

relatively low requiring a rather long period of extraction: T − t1 < δ ⇔ τ < t1.

This implies that there is no switch in policy and for all t ∈ ∆ we choose:

h(t) = h̄, (19)

s(t) = s1e
(1−h̄)(t−t1), (20)

π(t) =
h̄

h̄− 1

(

1− e(1−h̄)(T−t)
)

, (21)

and the maximised profit is given by

J∗
2A = s1

h̄

h̄− 1

(

1− e(1−h̄)(T−t1)
)

. (22)

4.1.2. Case B: T > δ+ t1. In this case the maximal harvesting intensity h̄ is rela-

tively high so that the agent may afford not to begin with harvesting immediately

at time t1 but at some point in time: T − t1 > δ ⇔ τ > t1. Here the agent begins

with h = 0 and then, at time τ , switches to h = h̄.

During the period [t1, τ) the stock is left unimpaired and is thus given by

s(t) = s1e
t−t1 ,

so that at time τ the stock amounts to

s(τ) = s1e
τ−t1 ,

which is the starting value for the harvesting period [τ, T ]. During this period the

stock equals

s(t) = A2e
(1−h̄)t = s(τ)e(1−h̄)(t−τ) = s1e

h̄(τ−t)+t−t1 .
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4.1.3. Optimal policy. Putting parts together, for all h̄ 6= 1 the optimal policy is

thus given by

h(t) =

{

0 for t1 ≤ t < τ

h̄ for τ ≤ t ≤ T
(23)

s(t) =

{

s1e
t−t1 for t1 ≤ t < τ

s1e
h̄(τ−t)+t−t1 for τ ≤ t ≤ T

(24)

π(t) =







eτ−t for t1 ≤ t < τ
h̄

h̄−1

(

1− e(1−h̄)(T−t)
)

for τ ≤ t ≤ T,
(25)

and the maximised profit amounts to

J∗
2B = h̄

∫ T

τ

s(t) dt =
h̄

h̄− 1
s1e

τ−t1
(

1− e(1−h̄)(T−τ)
)

= s1 h̄
1/(1−h̄) eT−t1 , (26)

where the last equality follows from the substitution of τ , given by eq. (18).

4.1.4. Optimal policy for h̄ = 1: In this case we may take the limits of Case A

and Case B obtaining

(s, π, h) =

{

(s1, T − t, 1) if T ≤ δ + t1,

(s1e
τ−t1 , T − t, 1) if T > δ + t1,

for all t ∈ [τ, T ] and

J∗
2B|h̄=1 =

{

s1(T − t1) if T ≤ δ + t1

s1e
T−t1−1 if T > δ + t1.

(27)

4.2. Discussion. In the optimal solution, the time during which fishing takes

place is equal to δ = T − τ = log(h̄)/(h̄ − 1). If there is plenty of time in the

sense that T > δ + t1, there will be no fishing during the initial period of length

T − t1 − δ, while fishing will take place at the maximum rate h̄ during the final

period. In case that there is not enough time available, that is if T ≤ δ+ t1, agent

does fishing all the time at the maximum rate.

Whether the stock increases or decreases during fishing, depends on whether

the harvesting capacity h̄ exceeds or falls short of the growth rate of the stock,

which is assumed to be equal to one here. The situation when h̄ is larger than 1

is depicted in Figure 3; and the situation with h̄ < 1 in Figure 4 (both for t1 = 0).

It is important to note the optimal length of the fishing period, δ, depends

on h̄ but is independent of T . However, the maximised profit in Case A and B,

given by eq. (22) and (26) respectively, depends on T . While J∗
2B is increasing and

convex in T , J∗
2A is convex only if h̄ < 1, and is concave if h̄ > 1. Moreover, for
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Figure 3. Optimal fishing in Case B, T > δ + t1, with t1 = 0 and

h̄ > 1.
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Figure 4. Optimal fishing in Case B, T > δ + t1, with t1 = 0 and

h̄ < 1.

any given values of t1 and s1 we have J
∗
2B ≥ J∗

2A. This is depicted in Figures 5 and

Figure 6 for the case t1 = 0. Therein, the vertical line represents the critical time

T = δ + t1 for a given value of h̄, and the red curve depicts the profit function

for varying values of T . If time is scarce in the sense that T − t1 < δ, Case A

applies and the blue curve represents the resulting maximised profit (covered by

the red curve for values T < δ, though). If there is plenty of time, in the sense that

T > δ+ t1, Case B applies and the green curve represents the resulting maximised

profit (similarly covered by the red curve for values T > δ + t1). Note, however,



16

T

J∗
2A, J

∗
2B

0.5

0.5

1

1.5

1.5δ

2

1 2

Figure 5. Maximised profit function for h̄ = 3/4 < 1, i. e. δ =

4 log
(
4
3

)
= 1.15073.

T
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2A, J
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Figure 6. Maximised profit function for h̄ = 3/2 > 1, i. e. δ =

2 log
(
3
2

)
= 0.81093.

that in Case A, the Case B profit function is not attainable, so that the dashed

green curve is merely hypothetical and cannot be reached for values of T lower

than δ.

4.3. Logistic growth. In this section we modify the growth process of the re-

source and now assume that the stock obeys a logistic, rather than an exponential
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growth process:

f(s(t)) = 2s(t)

(

1−
s(t)

2

)

. (28)

With this specification, the net-growth of the stock, i. e. after deduction of the

harvest, is governed by the differential equation

ṡ(t) = f(s(t))− h(t)s(t) = s(t) (2− s(t)− h(t)) (29)

If left unimpaired, the fish stock equilibrates at the level s∗ = 2. Let us assume

that the initial stock equals that level, i. e. s(t1) = 2.—Everything else of the

model is adopted from Section 4.1.

The Hamiltonian of the problem is given by

H = h(t)s(t) + π(t)s(t) (2− s(t)− h(t)) ,

and the maximum principle yields

0 = (1− π(t))s(t), (30)

π′(t) = −h(t)− π(t) (2− 2s(t)− h(t)) , (31)

along with eq. (29); and since s(T ) is free, the transversality condition requires

π(T ) = 0.

Lemma 1. π(t1) < 1.

Proof. Assume, on the contrary, that π(t1) > 1. Then, since s(t1) = 2, it follows

from eq. (31) that π′(t1) = −h(t1) + π(t1) (2 + h(t1)) > 0. Since h(t) = 0 as long

as π(t) > 1, the stock remains at its starting value s(t1) = 2. Given this, there is

no turning point in the evolution of π and thus π continues to grow, i. e. we have

π′(t) > 0 for all t. Yet, this contradicts transversality condition π(T ) = 0, and

thus proves our claim π(t1) < 1, and thus h(t1) = h̄. �

It thus follows from Lemma 1 that optimal policy rule coincides with the rule

obtained for exponential growth of the resource (15):

Lemma 2. The maximum of the Hamiltonian H is achieved by

h(t) =

{

0 if π(t) > 1

h̄ if π(t) < 1.
(32)

Since π(t1) < 1 by Lemma 1, it follows from eq. (32) that the optimal path

begins with h(t1) = h̄. Intuitively, since the initial stock equals its maximum

level, s(t1) = 2, there is no case in beginning with h = 0, and thus we commence

with h(t1) = h̄. Then, if time is relatively scarce, in relation to the harvesting

capacity, we continue with h(t) = h̄ for all t ∈ T , or if there is plenty of time we

have to reduce harvesting in the meantime because else we would have completed
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Figure 7. Trajectories for the case h = h̄ = 0.8 (solid curves) and

the case h = 0 (thin curves).

harvesting to early, and the terminal condition π(T ) = 0 could not be met. More

precisely, the optimal harvesting policy is as follows.

Proposition 1. The optimal harvesting policy is given by

h(t) = h̄ if h̄ ≤ h̄c (33)

h(t) =







h̄ t1 ≤ t < t2,

1 t2 ≤ t < t3,

h̄ t3 ≤ t < T.

if h̄ > h̄c, (34)

with h̄c ≡ ψ−1(T ), where ψ : (1, 2) → R+ defines the critical length of the harvest-

ing period

Tc = ψ(h̄) ≡ t1 +
1

2− h̄
log

(
h̄

2(h̄− 1)2

)

. (35)

Proof. Since the Hamiltonian is autonomous, it is constant along the optimal tra-

jectory.19 We can therefore characterise the trajectories in the (s, π) plane for

h = 0 and for h = h̄. Let K denote the level of the Hamiltonian, then the optimal

trajectories are characterised by the equations

π(t) =
K

2s(t)− s2(t)
and π(t) =

K − s(t)h̄

2s(t)− s2(t)− s(t)h̄
(36)

19See, for example, Intriligator (1971, p. 355).
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Figure 8. Trajectories for the case h = h̄ = 1.5 (solid curves) and

the case h = 0 (thin curves), with critical trajectory (red).

for the cases h = 0 and h = h̄, respectively. The h = 0-curves have their minima

at s = 1, and the curves with h = h̄ have their maxima along the curve

π(t) =
−h̄

2− 2s(t)− h̄
for s > 1−

1

2
h̄. (37)

Both of theses curves are depicted in Figures 7 and 8. The curves starting from

s(t1) = 2 reach the horizontal axis at time T , i. e. π(T ) = 0. Those curves

with h̄ < 1 cross the horizontal axis at a point to the right of 2 − h̄, that is

s(T ) > 2 − h̄. If h̄ is sufficiently small, the trajectory does not reach the π = 1

line (see Figure 7). Since the locus of maxima crosses the point (1, 1), see eq. (36),

the critical trajectory is that one which achieves its maximum at this point (see

Figure 8). Because the trajectories do not cross the horizontal axis to the left of

2 − h̄, the critical trajectory must feature h̄ > 1, and is associated with a critical

time horizon Tc. It thus follows that the critical harvesting capacity exceeds unity,

h̄c > 1. Finally, that eq. (35) characterises the critical time horizon follows from

Lemma 4. �

4.3.1. Case A: either h̄ < 1 or 1 < h̄ < 2 and T ≤ Tc. In this case, the maximal

fishing effort is relatively low, h̄ < h̄c = ψ−1(T ), so that h(t) = h̄ can be maintained

throughout. Then, the optimal fishing strategy is given by
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Figure 9. The critical value of Tc as function of h̄.

Lemma 3. Let either h̄ < 1 or 1 < h̄ < 2 and T ≤ Tc. Then the optimal fishing

policy is given by

h(t) = h̄, (38)

s(t) =
2
(
h̄− 2

)

h̄e(h̄−2)(t−t1) − 2
, (39)

π(t) =
h̄(s(T )− s(t))

2s(t)− s(t)2 − h̄s(t)
, (40)

for all t ∈ ∆. The resulting maximised profit amounts to

J∗
2A = h̄

∫ T

t1

x(t) dt = h̄ log

(

2e(2−h̄)(T−t1) − h̄

2− h̄

)

. (41)

Proof. We know from the proof of Proposition 1 that for all sub-critical cases T <

Tc (or h̄ < ψ−1(T )) defined in eq. (35), we have h(t) = h̄ for all t ∈ ∆. Substituting

this, together with initial condition s(t1) = 2 and the terminal condition π(T ) = 0,

into eqs. (29)–(31), we obtain eqs. (38)–(41). �

Lemma 4. The critical time horizon is given by

Tc = ψ(h̄) = t1 +
1

2− h̄
log

(
h̄

2(h̄− 1)2

)

. (42)

Proof. From eqs (39) and (40) we can calculate the critical time horizon Tc for

which at some point in time tc the trajectory goes through the point (s(tc), π(tc)) =

(1, 1). Using that information and evaluating eq. (40) at Tc yields tc = t1 +
1

2−h̄
log
(

h̄
2(h̄−1)

)

and thus eq. (42). �
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The critical time horizon Tc is illustrated in Figure 9 (for t1 = 0). In this

critical case, the optimal profit amounts to

Jc
2A = 2h̄ log

(
h̄

h̄− 1

)

. (43)

Remark 1. The profit for h̄ = 1 is given by

J∗
2A|h̄=1 = log

(
2eT−t1 − 1

)

4.3.2. Case B: 1 < h̄ < 2 and T > Tc. In this case, the time available for

harvesting T − t1 is too long such that, given the maximal harvesting capacity h̄,

it is not optimal to do maximal harvesting all the time, as this would imply that

π = 0 is reached before time T . Thus, harvesting cannot be maintained at rate h̄

throughout, but must be reduced during some interval—and the optimal fishing

strategy is as follows.

Lemma 5. Let 1 < h̄ < 2 and T > Tc. Then the optimal fishing policy is given by

h(t) =







h̄ t1 ≤ t < t2,

1 t2 ≤ t < t3,

h̄ t3 ≤ t < T,

(44)

with switching times

t2 = t1 +
log
(

h̄
2(h̄−1)

)

2− h̄
and t3 = T −

log
(

1
h̄−1

)

2− h̄
.

The resulting profit is given by

J∗
2B = T − t1 + 2h̄ log

(
h̄

h̄− 1

)

−
1

2− h̄
log

(
h̄

2(h̄− 1)2

)

, (45)

Proof. In the limiting case of T = Tc, we have t2 = t3 and the middle interval

vanishes. That equation (44) is indeed the optimal fishing policy can bee seen as

follows. First note that π = 1 is a singular level. Since we already know that

π(t1) < 1, it follows that π′ ≥ 0 at the time the singular level π = 1 is reached. If

we have π = 1 for some time interval with positive length, then π′ = 0 and hence

we must have s = 1 ⇒ s′ = 0 ⇒ h = 1 from eq. (29).

Now, after completing the singular path we cannot have a path with h = 0.

This can be seen as follows: h = 0 implies s′ > 0, which in turn implies that,

since s = 1 on the singular arc, s > 1 right after the singular arc. Together with

h = 0 this in turn implies that π′ > 0. Hence, we enter a path where both s and π

are growing so that the transversality condition π(T ) = 0 cannot be satisfied. We

thus conclude that the optimal policy must proceed with h = h̄ after completing

singular path. in eq. (44) is indeed optimal.
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Next we investigate the resulting profit. The fishing activity during the peri-

ods [t1, t2) and [t3, T ], the total length of which amounts to Tc−t1, given by eq. (42),

brings about the same profit as in Case A, that is Jc
2A as given in eq. (43); while

during the time interval [t2, t3) the profit collected is equal to the length of the

fishing period: t3 − t2 = T − Tc. So we obtain

J∗
2B = Jc

2A +

∫ t3

t2

1 dt = Jc
2A + T − Tc.

Then, substituting the definition of Tc, eq. (42), yields eq. (45). �

Remark 2. The limit of the profit for h̄→ 1 equals T − t1+ log(2); and for h̄→ 2,

we obtain T − t1 −
3
2
+ log(16). In the limit when the fishing capacity becomes

unbounded, we obtain limh̄→∞ J∗
2B = T − t1 + 2.

The intuition for the optimal strategy characterised in Lemma 5 is as follows.

There is too much time for harvesting T > Tc, implying that if the agent followed

the critical path (the red path in Figure 8), they would have reached the π = 0–

line too early. Thus, one might consider following a trajectory lying above the

critical one, reaching the π = 1–line at some value s > 1. But then one has to

switch to h = 0 following an upward-sloping trajectory (a thin path in Figure 8),

implying that both the stock and the costate variable increase—and there is no

possibility of satisfying the terminal condition π(T ) = 0. For that reason the

optimal policy is as follows: pursue the critical path up to (s, π) = 1, which is

reached at time t2; then, upon arrival at (s, π) = 1 reduce harvesting to h = 1,

which, in view of eqs (29) and (31), renders both s and π to be constant, for 1

is the natural growth rate of the resource; finally, to complete the optimal path,

resume maximal harvesting so as to arrive at π = 0 at time T .

The maximised profit function is depicted in Figures 10–12 for T = 2, 5 and

20, respectively. Therein, the vertical line represents the critical capacity ψ−1(T ).

For values of h̄ < ψ−1(T ) Case A applies; for values of h̄ > ψ−1(T ), Case B. The

critical values h̄c = ψ−1(T ) can be gathered from eq. (42) viz. from Figure 9.
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Figure 12. Profit in Case A and B for varying values of h̄ and T = 20.
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5. First Stage: Travelling

Having solved the harvesting problem, we now go back in time and solve the

travelling problem. We begin our analysis with the simple, in our framework

hypothetical, case of a fixed travelling period (sub-section 5.1), and then continue

with acknowledging the subsequent harvesting period and endogenising the arrival

time t1 in sub-section 5.2. In this way we are able to show which additional effects

and which corresponding optimality conditions have to be added to the solution of

former problem to obtain the solution of the latter. We proceed is this successive

manner for this allows us to make very clear the differences between the solution

of the isolated travelling problem (3) / (6) and the solution of the travelling–and–

harvesting problem as formalised in (9).

5.1. Fixed travelling period. Assume that the cost of travelling depends lin-

early on speed v and quadratically on acceleration a:

K(v, a) = cv + a2

Assuming ρ = 0 and c = 1/10, the resulting aggregated travelling cost amounts to
∫ t1

0

e−tρ
(
cv(t) + a(t)2

)
dt =

∫ t1

0

(
v(t)

10
+ a(t)2

)

dt (46)

Together with the constraints

ẋ(t) = v(t), v̇(t) = a(t), ṡ(t) = g(s(t)),

we obtain the Hamiltonian

H = −
v(t)

10
− a(t)2 + π2(t)a(t) + π1(t)v(t).

For ease of tractability, we assume that there are no bounds on the control a.

Yet, we may drop this assumption later. Then, the familiar maximum principle

then yields

x(t) =
t2

120
(30K1 − 10K2t+ t) , v(t) =

t

40
(20K1 − 10K2t+ t) ,

π1(t) =K2, π2(t) =K1 +
t

10
(1− 10K2) ,

with K1 and K2 constants. Together with the boundary conditions x(0) = v(0) =

v(t1) = 0 and x(t1) = 1, we obtain

x(t) =
t2(3t1 − 2t)

t31
, v(t) =

6t(t1 − t)

t31
, a(t) =

6(t1 − 2t)

t31
,

π1(t) =
24

t31
+

1

10
, π2(t) =

12(t1 − 2t)

t31
,
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Figure 13. Speed and acceleration of the vehicle for t1 = 1, . . . , 5.

and the maximised objective function equals

J∗
1 (t1) =

∫ t1

0

(

a(t)2 +
v(t)

10

)

dt =
12

t31
+

1

10
. (47)

Correspondingly, the value of the maximised Hamiltonian equals H∗ = −36
t4
1

. The

acceleration of the vehicle and its resulting speed are depicted in Figure 13.

5.2. Optimal travelling–and–harvesting policy. In sub-section 5.1 we as-

sumed that t1 is fixed. But the agent may choose the length of the travelling

period, and thus the beginning of the harvesting period to maximise the profit.

In order to determine the optimal policy for the travelling–and–harvesting prob-

lem, three different effects must be acknowledged, and the associated necessary

optimality conditions have to be added to those of the pure travelling decision.

First, the growth process of the resource during the travelling period must be

acknowledged, and the associated necessary optimality condition must be added

to the canonical system:

ṡ(t) = g(s(t)) =

{

2s(t)− s2(t) logistic growth

s(t) exponential growth,
(48)

π̇(t) = −
∂H1

∂s(t)
= −π(t)g′(s(t)) =

{

−2π(t)(1− s(t)) logistic growth

−π(t) exponential growth.
(49)

Next, the terminal time t1 and the endpoint s1 of the travelling problem are

free and may be chosen in an optimal way. While the arrival time t1 determines

the length of the harvesting period ∆, the endpoint s1 determines the initial value

of the growth process in the harvesting problem. Together, both effects determine

the maximal value J∗
2 (s1, t1) of the harvesting period, which in turn represents the

scrap value of the compound problem (9). However, the endpoint s1 = s(t1) is fully

determined by the arrival time, as the stock of the resource cannot be controlled

before time t1. For this reason, we do not have two, but only one transversality
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condition taking into account both effects: the direct effect of the arrival time on

the length of the harvesting period ∆, and the effect of t1 on the stock at the

beginning of that period s(t1).

Hence, to derive a necessary condition for the optimal choice of the arrival

time t1, we first have to substitute the transversality condition (50), i. e. s1 =

s(t1) = s0e
t1 , into J∗

2A. Then, this value function, which may be viewed as a

scrap value function of the travelling problem, can be written, with slight abuse of

notation, as J∗
2A(t1) ≡ J∗

2A(s(t1), t1). Using this, the associated necessary condition

for the free terminal time of the travelling problem t1 reads as20

H1(s(t
∗
1), c(t

∗
1), π(t

∗
1), t

∗
1) +

dJ∗
2 (t

∗
1)

dt1
= 0. (50)

With the help of condition (50) we are now able to calculate the optimal travelling–

and–harvesting policy. We do this for both growth functions specified above.

5.3. Optimal Travelling–and–harvesting policy for exponential growth.

Acknowledging those transversality conditions, the following conditions have to be

added

s(t) = s0e
t, π(t) =

(
1

h̄

) 1

h̄−1

eT−t. (51)

It is obvious that t1 must be equal to the switching time τ , so that harvesting

commences immediately upon arrival. This is because arriving too early is costly

without yielding any additional profit, as we have initially h(t) = 0 in Case B. So

Case A applies (indeed, both Case A and Case B yield h = h̄ at t = t1), and the

maximised value function of the harvesting problem is given by eq. (22):

J∗
2A(s1, t1) = s1

h̄

h̄− 1

(

1− e(1−h̄)(T−t1)
)

. (52)

After substitution of s(t1) = s0e
t1 , we obtain the derivative of the value function

J∗
2A(t1) ≡ J∗

2A(s(t1), t1):

dJ∗
2A(t1)

dt1
= −

s0e
t1 h̄
(

h̄e(h̄−1)(t1−T ) − 1
)

h̄− 1
.

It is easy to show that the sign of this derivative depends on whether the switching

point τ is before or after the arrival time t1:

dJ∗
2A(t1)

dt1
T 0 ⇔ T − t1 T δ ≡

log(h̄)

h̄− 1
.

Since δ is a decreasing function of h̄, the derivative of dJ∗
2A is positive for large,

and negative for small values of h̄. If the harvesting capacity, when compared

20Condition (50) represents a modification of the usual necessary condition for the free termi-

nal time, as provided, for example, by Léonard and Long (1992, Theorem 7.6.1).
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Figure 14. Value function J∗
2A (black), cost function J∗

1 (red), and

profit function −J∗
1 + J∗

2A (green), for s0 = 1, T = 5 and h̄ = 3/4,

yielding the optimal arrival time t∗1 = 3.8539.

with the length of the harvesting period ∆ ≡ T − t1, is large, a later arrival time

increases the yield from the harvesting period because it give the resource more

time to grow while at the same time the harvesting capacity is large enough so

as to harvest high volumes in a shorter time interval; in this case, the agent may

wish to postpone the arrival. But when the harvesting capacity is relatively low,

a postponing the start of the harvesting activity in unattractive, as the agent will

we unable to benefit from the higher stock due to the constraint on the harvesting

capacity. Hence, with negligible travelling cost the optimal arrival time will be

equal to t∗1 = T − δ. This arrival time balances the benefits from an earlier and a

later arrival.

Now, using the maximised Hamiltonian of sub-section 5.1, H∗ = −36/t41, the

transversality condition (50) reads as

−
36

t41
+ s0e

t1
h̄

h̄− 1

(

h̄e(h̄−1)(t1−T ) − 1
)

= 0. (53)

This condition determines t∗1 as a function of the exogenous parameters h̄ and

T . Since H∗ is negative, the derivative dJ∗
2A(t1)/dt1 must be negative as well in

order for (53) to have a solution t∗1. Consequently, in the optimal travelling–and–

harvesting policy, the length of the harvesting period ∆ ≡ T − t1 is lower than

the harvesting period the agent would have chosen in the absence of the need

for travelling (assuming T > δ); that is, in the optimal solution Case A prevails,

i. e. T − t1 < δ. In other words, in the optimal solution arrival is relatively late

given the harvesting capacity h̄. We have already seen that in Case A the agent
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begins with harvesting at the maximum rates immediately at time t1. This result

also holds in the optimal solution, for an early arrival is associated with higher

travelling cost, so that a premature arrival should be avoided.

The functions J2A(t1) and J
∗
1 (t1), given by eq. (52) and (47) respectively, are

depicted in Figure 14 for parameter values s0 = 1, T = 5 and h̄ = 3/4. With these

parameters the optimal solution, indicated by the dashed line in the figure, equals

t∗1 = 3.8539, yielding a net profit equal to J2A(t
∗
1)− J1(t

∗
1) = 46.6488.

5.4. Optimal travelling–and–harvesting policy for logistic growth. By

assumption s(t1) is fixed at s1 = 2, so that we can choose only t1 without affecting

s1 though.

With logistic growth we have to consider both Case A and Case B.

5.4.1. Case A: either h̄ < 1 or 1 < h̄ < 2 and T ≤ Tc. For h̄ < 1, we have

h(t) = h̄ for all t ∈ ∆ and the resulting profit is given in eq. (41):

J2A(t1) = h̄

∫ T

t1

x(t) dt = h̄ log

(

2e(2−h̄)(T−t1) − h̄

2− h̄

)

. (54)

The time derivative of JA equals

dJ2A(t1)

dt1
= −

2
(
h̄− 2

)
h̄

h̄e(h̄−2)(T−t1) − 2
.

This derivative is negative as the numerator and the denominator are both nega-

tive, as h̄ < 2.

The functions J2A(t1) and J
∗
1 (t1), given by eq. (54) and (47) respectively, are

depicted in Figure 15 for T = 5 and h̄ = 3/4. With these parameters the optimal

solution, indicated by the dashed line in the figure, equals t∗1 = 2.47928 yielding

a net profit equal to J2A(t
∗
1) − J1(t

∗
1) = 1.81612. Observe that Case A actually

results for T = 5 and h̄ = 3/4, see Figure 11.

5.4.2. Case B: 1 < h̄ < 2 and T > Tc. In case of a higher harvesting capacity,

say h̄ = 3/2, Case B results (see again Figure 11). This scenario is depicted in

Figure 16. With these parameters the optimal solution is given by t∗1 = 2.44949

yielding a net profit of J2B(t
∗
1)− J1(t

∗
1) = 2.73263.

Had we chosen some later starting time t1 > tc ≡ T − Tc = 5 − 2 log(3) =

2.8028, then Case A would become relevant as the fisher had less than the required

minimal time for fishing in Case B, Tc = T − tc = 2 log(3) = 2.1972.
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profit function −J∗
1 + J∗

2A (green), for T = 5 and h̄ = 3/4, yielding

the optimal arrival time t∗1 = 2.47928.
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Figure 16. Value function J∗
2B (black) with the critical arrival time

tc = 5 − 2 log(3) = 2.8028 (blue), cost function J∗
1 (red), and profit

function −J∗
1 + J∗

2B (green), for T = 5 and h̄ = 3/2, yielding the

optimal arrival time t∗1 = 2.44949.
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6. Robustness of our results: a positive discount rate and bounds on

the acceleration

We begin our investigation of the robustness of the model with the travelling prob-

lem. Using our previous specification Assume that the cost of travelling depends

linearly on speed v and quadratically on acceleration a:

K(v, a) = cv + a2

with c = 1/10, we now set ρ = 1/20 and, for the moment, T = 40. Also, we assume

that acceleration is bounded to A = [a, a] = [−1,+1]. With this specification the

objective function is given by

J1(a(t)) =

∫ 40

0

e−t/20

(
v(t)

10
+ a(t)2

)

dt.

Acknowledging the system of differential equations (1) governing the move-

ment of the agent

ẋ(t) = v(t) and v̇(t) = a(t) ∀t ∈ T ,

the Hamiltonian is given by

H = −K(v(t), a(t))+ψ1(t)v(t)+ψ2(t)a(t) = −
v(t)

10
−a(t)2+ψ1(t)v(t)+ψ2(t)a(t),

and the Lagrangean reflecting the restriction u ≤ u ≤ u by

L = −
v(t)

10
− a(t)2 + π1(t)v(t) + π2(t)a(t) + λ1(t)(a(t) + 1) + λ2(t)(1− a(t)).

Note the Hamiltonian and the costate variable are now defined in current

values.21 Accordingly, the necessary conditions are modified to account for the

fact that the costate variables are defined in current values:

−2a(t) + π2(t) + λ1(t)− λ2(t) = 0 ⇔ a(t) =
1

2
(π2(t) + λ1(t)− λ2(t)) . (55)

In addition, we have the necessary conditions

π̇1(t) = −
∂L

∂x(t)
+ ρπ1 =

π1(t)

20
, (56)

π̇2(t) = −
∂L

∂v(t)
+ ρπ2 = −π1(t) +

π2(t)

20
+

1

10
. (57)

21So, H should be read as H̃ , and π as ψ in the notation of Léonard and Long (1992).
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Analysis of the unbounded solution. In this case we have λ1(t) = 0 = λ2(t),

and equations (1) and (55) simplify to

x′(t) = v(t), v′(t) =
π2(t)

2
(58)

together with equations (56) and (57). Using the, yet unspecified, initial values

π1(0) = m1 and π2(0) = c1, we obtain

π1(t) = m1e
t/20, π2(t) = et/20(c1 −m1t+ 2)− 2. (59)

Substituting eq. (59) into (55) yields the system

x′(t) = v(t), v′(t) =
1

2

(
et/20(c1 −m1t + 2)− 2

)
, x(0) = 0, v(0) = 0.

Using the initial values and solving the resulting initial value problem, we obtain

x(t) =
1

2

(
20c1

(
−t + 20et/20 − 20

)
− 400m1t

−400et/20(m1(t− 40)− 2)− 16000m1 − t2 − 40t− 800
)
,

v(t) = 10c1
(
et/20 − 1

)
− 10et/20(m1(t− 20)− 2)− 200m1 − t− 20.

π1(t) = m1e
t/20,

π2(t) = et/20(c1 −m1t+ 2)− 2.

Finally, using the terminal conditions x(T ) = 300 and v(T ) = 0 to determine the

constants, we obtain

c1 =
−25 + 35e2 − 4e4

2 (1− 6e2 + e4)
, m1 =

13 + 3e2

40 (1− 6e2 + e4)
.

Thus, the solution is given by

x(t) = −
1

2 (1− 6e2 + e4)

(
e4t2 − 6e2t2 + t2 + 140e2t− 80t+ 10et/20 (60)

(
13t+ e2(3t− 340)− 100

)
+ 3400e2 + 1000

)
, (61)

v(t) = −
et/20 (13t+ e2(3t− 280) + 160) + 4 (t + e2 ((e2 − 6) t+ 70)− 40)

4 (1− 6e2 + e4)
, (62)

π1(t) =
(13 + 3e2) et/20

40 (1− 6e2 + e4)
, (63)

π2(t) = −
et/20 (13t+ e2(3t− 220) + 420)

40 (1− 6e2 + e4)
− 2, (64)

a(t) =
e

t
20

+2(220− 3t)− et/20(13t+ 420)− 80e4 + 480e2 − 80

80 (1− 6e2 + e4)
. (65)

Substituting this into the objective function yields

J∗
1 =

80− 1725e2 + 925e4 − 80e6

4 (e2 − 6e4 + e6)
≈ 16.7095.
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Analysis of the bounded solution. Now, assume that there are bounds on the

control: a(t) ∈ [a, a] ≡ [−1, 1]. As we can see from Figure 17, the unbounded

solution (blue case) hits the lower bound, at time t = 34.2818. Since the upper

boundary u = 1 is not binding, it suffices to consider the hitting of the lower bound

only. We must have a(t) = a = −1 for all t in the final interval (ξ, T ]. Apparently,

we must choose some ξ < 34.2818, for if ξ = 34.2818 the remaining time would

only suffice to guarantee the terminal condition v(T ) = 0, if we were able to set

u < u. Thus, during the final time interval (ξ, T ], the solution must satisfy

ẋ(t) = v(t), v̇(t) = −1, x(40) = 300, v(40) = 0,

the solution of which is

x(t) =
1

2

(
−t2 + 80t− 1000

)
, v(t) = 40− t, a(t) = −1. (66)

This is the optimal travelling policy and the end of the travelling period.

We must now calculate the optimal switching point ξ, which must be deter-

mined so that the following boundary conditions (for the first interval) are met:

x(0) = 0, v(0) = 0, x(ξ) =
1

2

(
−ξ2 + 80ξ − 1000

)
, v(ξ) = 40− ξ.

Together with the optimality conditions for the unbounded problem, eqs (58), (56)

and (57), this yields the system

ẋ(t) = v(t), v̇(t) =
π2(t)

2
, (67)

π̇1(t) =
π1(t)

20
, π̇2(t) = −π1(t) +

π2(t)

20
+

1

10
, (68)

x(0) = 0, v(0) = 0, (69)

x(ξ) =
1

2

(
−ξ2 + 80ξ − 1000

)
, v(ξ) = 40− ξ, (70)

the solution of which gives the optimal travelling policy in the interval [0, ξ]:

a(t) =
1

−eξ/20 (ξ2 + 800) + 400eξ/10 + 400
×

(

e
t+ξ
20 (t(65− 2ξ) + ξ(2ξ − 105) + 2100)− 5et/20(13t+ 420)

+eξ/20
(
ξ2 + 800

)
− 400eξ/10 − 400

)
,
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Figure 17. Optimal acceleration with (red) and without (blue) bounds.

which reaches the lower bound a = −1 at time ξ = 29.5984. Using this value, the

solution of system (67)–(70) is given by

x(t) = et/20(1455.52− 20.9131t)− 0.5t2 − 51.8628t− 1455.52, (71)

v(t) = et/20(51.8628− 1.04565t)− t− 51.8628, (72)

π1(t) = 0.104565et/20, (73)

π2(t) = et/20(3.09497− 0.104565t)− 2, (74)

and hence the optimal policy is given by

a(t) =
1

2

(
et/20(3.09497− 0.104565t)− 2

)
(75)

Finally, composing both parts we obtain the optimal solution, which is illustrated

in Figures 17, 18 and 19.

The optimal objective value equals J
∗

1(40, 300) = 18.4648 for the case of a

bounded control, compared to J∗
1 (40, 300) = 16.7095 for the case of an unbounded

control. So, as expected, the presence of the bound on acceleration results in an

increase in travelling cost. We may also compare our result with the case with

a zero discount rate, explored in Section 5. Applying the specification T = 40,

x(T ) = 300 and ρ = 0, we obtain J∗
1 (40, 300)|ρ=0 = 375/8 = 46.875. Clearly, dis-

counting lets part of the cost disappear, so that here the cost without discounting

are significantly exceed those with discounting, as the time horizon is larger. Also,

as can be seen from Figures 17–19, discounting makes the agent initially move

more slowly and speed up later so that part of the travelling cost is shifted to the

future. In case of bounds on the control, such cost shifting becomes limited so

that some part of the travelling cost must be incurred earlier.
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on acceleration.

We have thus shown that our results for the optimal travelling–and–harvesting

policy for a resource that is located as some distance is robust to the introduc-

tion of both, a positive discount rate (as is commonly used in economics to take

into account the opportunity costs) and bounds on the acceleration. Nevertheless,

the introduction of a positive discount rate will affect the optimal acceleration

path. Whereas the original path is decreasing linearly leading to a symmetric and

concave velocity curve, the optimal acceleration under discounting is now concave

too, first increasing then decreasing. This reflects the fact that present acceleration
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and velocity costs have become more costly compared to future ones. As a conse-

quence, such costs are shifted towards the future, leading to a concave acceleration

profile. In case that acceleration is bounded from below, the slowing down is con-

strained, leading to an acceleration profile with a higher (and therefore costlier)

acceleration at the start (leading to a slightly larger maximum speed) which may

be afforded as later discounted costs of slowing down are exogenously limited. The

velocity curves and the optimal position curves reflect these optimal acceleration

patterns accordingly. However, irrespective of the particular acceleration profile,

the qualitative way in which the travelling and the harvesting decision interact

so as to determine the optimal arrival time, which coincides with the start of the

harvesting activity, is unaffected by both the discount rate and possible bounds

on acceleration.

7. Conclusion

In this paper we contribute to the theory of spatial resource economics. We

explicitly take into account the fact that in many settings an agent has to travel to

the location of the resource before being able to harvest that resource. Although

some papers in the literature acknowledge the requirement of an agent to travel

(e. g. Behringer and Upmann, 2014; Belyakov et al., 2015) the approach in this

paper is novel in that the resource cannot be harvested in an en passant manner,

i. e. the agent has to stop at the location of the resource in order to harvest. The

travelling problem then is preceding the harvesting problem, and because of the

growth process of the resource both sub-problems are linked by both the spatial

and the temporal dimension making the arrival time at the resource an optimal

control decision. We are able to fully characterize the control programme for the

composed travelling–and–harvesting problem employing recent tools for two-phase

dynamic optimization problems.

We investigate the consequences that different growth processes (exponential

and logistic) have on the optimal harvesting control paths—which, in principle,

allow the agent not to commence with harvesting immediately upon arrival at the

resource, but to leave the resource unimpaired for some time—and characterize

the implied optimal yields. Translating optimal yields into economic profits, we

allow for a positive discount factor and investigate its consequences on the optimal

travelling decision of the agent. We find that such a discount factor changes the

optimal movement of the agent in an intuitive manner. Costs from acceleration and

speed are shifted towards the future. We also allow for the fact that acceleration

of the agent may be bounded by technical constraints which lead to yet another

intuitive adjustment of the agent’s optimal control paths while obeying the travel

cost minimizing objective.
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Overall, we have demonstrated that acknowledging a spatial dimension in the

classical renewable resource harvesting context can lead to tractable and econom-

ically relevant changes that even allow for the introduction of realistic periods of

travelling and their associated economic costs. This extension, besides contribut-

ing to the call of introducing a spatial dimension and so making resource economics

more realistic (e. g. Sanchirico and Wilen, 2005), allows for an even more precise

extension of the theory into a realm where space implies that the agent also faces

a transportation problem that is temporarily and spatially linked to the resource

extraction problem.

An obvious extension of the above analysis consists of investigating sequences

of travelling–and–harvesting problems that result from having multiple remote

renewable resources. This is left for future research.
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