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Nikolaus Hautsch*, Stefan Voigt†

Preliminary version. Please do not circulate.

We propose a Bayesian sequential learning framework for high-dimensional asset al-

locations under model ambiguity and parameter uncertainty. We consider portfolio

allocations maximizing predictive expected utility after transaction costs, optimally

balancing implementation shortfall and adjustments due to updated information.

The unifying framework allows for time-varying mixtures of predictive return distri-

butions which may exhibit fat tails, resulting from high- and low-frequency data. The

model is estimated via MCMC methods and allows for a wide range of data sources

as inputs. We consider predictive models resulting from high-dimensional Wishart

approaches for high-frequency based blocked realized kernels, low-frequency based

multivariate stochastic volatility factor models and regularized daily covariance esti-

mates. Employing the proposed framework on a large set of NASDAQ-listed stocks,

we observe that time-varying mixtures of high- and low-frequency based return pre-

dictions significantly improve the out-of-sample portfolio performance compared to

individual models and outperform the naive 1/N-allocation in terms of Sharpe ratio

and utility-based measures. Bootstrapping the optimization procedure shows that

our results are robust with respect to the choice of the asset universe. We show that

regularization of turnover is crucial in large dimensions and illustrate that the rela-

tive contribution of high-frequency data and low-frequency data strongly varies over

time.

JEL Classification: C52, C11, C58, G11

Keywords: Portfolio choice, model uncertainty, estimation uncertainty, transaction costs, model

combination, high frequency data

*University of Vienna, Department of Statistics and Operations Research.
†WU (Vienna University of Economics & Business), Vienna Graduate School of Finance.

1



1. INTRODUCTION

Structuring a decision process for portfolio optimization in the spirit of Markowitz (1952) remains

a challenge for econometricians and practitioners. A quantification of potential risk and rewards

of future returns is not readily observable, instead, the investor can only make assumptions about

the (possibly time-varying) data generating process (DGP) of future returns. Even if we could ab-

stract from the question ’which parameters are driving the returns of tomorrow?’ it would still be

necessary to answer ’what are the parameters?’. An investor ignoring the effect of parameter- and

model uncertainty on the predictions of future returns underestimates the risks she is exposed

to (see e.g. Uppal and Wang (2003)). Good forecasts solely are not sufficient to form success-

ful investment decisions. Transaction costs could prevent the portfolio adjustment because the

expected benefits of reallocating wealth may be smaller than the costs associated with turnover.1

In this paper we show how to disentangle two driving forces behind promising portfolio alloca-

tion decisions, namely (i) improving predictive accuracy by adjusting for estimation uncertainty

and (ii) balancing responsiveness to updated (high-frequency based) predictions and transaction

costs.

Exploiting high-frequency data (HF) opens a channel to increase the precision of covariance

estimates and forecasts.2 Predictions of return covariances exploiting HF data immediately react

to changing market circumstances and are considered useful especially during times of abrupt

changes in the volatilities and covariances (Hansen et al., 2012). Methods and HF data available

to forecast covariances in large dimensions also triggered empirical studies putting emphasis on

examining the benefits for portfolio selection, e.g. Fleming et al. (2003), Liu (2009) and Hautsch

et al. (2015).3 Their findings underline the benefits of intra-daily information to forecast covari-

ances.

Asset allocations in practice, however, do not only require (precise) predictions of covariance

matrices but predictive distributions beyond second moments. They moreover need to account

for transaction costs, model ambiguity and parameter uncertainty. Moreover, changing market

1See Brandt (2010) for an excellent review on common pitfalls in portfolio optimization. The effect of ignoring esti-

mation uncertainty is considered, amongst others, by Jobson et al. (1979), Jorion (1986), Chopra and Ziemba (1993)

and DeMiguel et al. (2009). Model uncertainty is investigated by Wang (2005) and Garlappi et al. (2007).
2The benefits of high-frequency data to investigate covariances have been documented by a large range of appli-

cations, among others by Andersen and Bollerslev (1998), Andersen et al. (2001) and Barndorff-Nielsen (2002),

Barndorff-Nielsen and Shephard (2004).
3Multivariate approaches are proposed, among others, by Barndorff-Nielsen et al. (2011), Bannouh et al. (2012), Fan

et al. (2012), Noureldin et al. (2012), Aït-Sahalia and Xiu (2015), Liu et al. (2016) and Halbleib and Voev (2016).
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regimes and structural breaks are hardly captured by a single model. Investors rather consider a

set of predictive models and adjust their relative importance according to market conditions and

past performance.

The objective of this paper is to analyze whether and to which extent adaptive combinations

of different models are beneficial in high-dimensional portfolio problems under realistic condi-

tions. We moreover aim studying the relative importance of high-frequency and low-frequency

data in such problems and to which extent these contributions change over time. For this pur-

pose, we propose a large-scale Bayesian sequential learning framework focusing on the entire

return distribution instead of only the second moment (as in classical Markowitz global minium

variance setups). In addition, we consider transaction costs and parameter- and model-uncertainty

in the decision process. Our approach ensures optimality of the portfolio weights with respect to

the predicted out-of-sample utility after transaction costs and regularizes turnover conditional

on current beliefs about the future evolution of the DGP of the returns.

We embed HF data as one potential source of information and combine the predictions with

estimation methods based on lower frequencies. Mixing approaches considered are Bayesian

Model Averaging (BMA) and optimal prediction pooling (Geweke and Amisano, 2011). These

methods adapt to changes in the market environment based on the past predictive performance

of the models. We also allow beliefs regarding the reliability of distinct models to be driven by an

utility-based objective function in the spirit of Billio et al. (2013).

To our best knowledge, this paper is the first approach combining the benefits of different pre-

dictive models based on high-frequency and low-frequency data sources in a large-scale portfolio

allocation framework under widely realistic conditions. Our approach brings together concepts

from (i) Bayesian estimation for portfolio optimization, regularization and turnover penalization,

(iii) predictive model combinations in high dimensions and (iv) high-frequency-based covariance

modeling and prediction.4

In particular, we address the following research questions: (i) Can sequential learning and mix-

ing of individual allocation strategies improve the out-of-sample portfolio performance in a high

dimensional asset space? (ii) How important is turnover penalization in light of transaction costs?

4Bayesian estimation for portfolio optimization has been applied within a wide range of applications, starting with

Brown (1976) and Jorion (1986). Imposing turnover penalties is related to the ideas of Brodie et al. (2009) and

Gârleanu and Pedersen (2013). Tu and Zhou (2010), Tu and Zhou (2011) and Anderson and Cheng (2016) emphasis

the benefits of model combination in portfolio decision theory. Sequential learning in a two-dimensional asset

horizon is performed by Johannes et al. (2014). However, none of these approaches is focusing on mixtures of HF

and lower frequencies approaches and aims at large dimensional allocation problems.
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(iii) How strong is the time-variation in model combinations? (iv) What is the value of high-

frequency predictions relative to low-frequency based predictions in a setting where not only

second moments but the entire return distribution needs to be predicted?

We address these questions in a large-scale setting based on stocks traded on NASDAQ be-

tween 2007 and 2016. Utilizing high-frequency message data for the entire period, we compute

covariance estimates using blocked realized kernels according to Hautsch et al. (2012). Precise

(HF-based) covariance predictions solely, however, are shown to be insufficient when it comes

to portfolio applications where the entire predictive density is needed. We therefore propose a

Normal-Wishart model for block realized kernel covariances. Carefully adjusting for parameter

uncertainty in the spirit of Forsberg and Bollerslev (2002) is shown to considerably improve the

predictive accuracy of HF data-based estimates. In addition to HF data, we utilize predictive dis-

tibutions resulting from low-frequency multivariate stochastic volatility factor models, capturing

co-movement among assets and persistence in variances.5

We find that time-varying combinations of low-frequency-based and high-frequency-based

predictive return distributions significantly increases the predictive performance compared to

the use of all single models. We moreover show that the predictive superiority also translates into

superior asset allocations. Based on out-of-sample portfolio returns and bootstrap inference for

Sharpe ratios our approach outperform all implemented competitors. We also find that regu-

larization of turnover is crucial in large dimensions in order to transform accurate predictions

into high out-of-sample utilities: without considering potential transaction costs ex ante in the

decision process it is not possible to obtain a satisfying performance. Finally, we find strong evi-

dence for time-varying model weights. The relative contribution of high-frequency based return

predictions is on average approximately 40% while the remaining 60% are provided by both the

multivariate stochastic volatility model (approximately 30%) and predictions based on regular-

ized sample covariances.

The structure of this paper is as follows: Section 2 introduces our baseline model to form coher-

ent allocation decisions. Section 3 describes the combination framework to tackle model uncer-

tainty in detail. Section 4 discusses high-frequency and low-frequency based predictive return

distributions. Section 5 describes the data. Section 6 contains empirical results and Section 7

concludes.

5Stochastic volatility models have been shown to be beneficial in portfolio allocation by Aguilar and West (2000) and

Han (2006).
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2. DECISION FRAMEWORK AND ESTIMATION TECHNIQUES

We consider an investor who allocates her wealth among N distinct assets in the spirit of Markowitz

(1952). At each point in time t , the investor observes past returns Rt =
(
r ′

1, . . . ,r ′
t

)′ ∈ Rt×N , where

ri ∈ RN , i ∈ {1, . . . , t }. Additionally, the set of observable variables contains information Ft , e.g.

intra-daily message data or asset characteristics such as book-to-market ratios. Conditional on

observing (Rt ,Ft ) the investor draws inference about unobservable parameters of the return dis-

tribution with the aim to forecast the returns of tomorrow. Forecasts take the form of a multi-

variate probability distribution pt (rt+1|M ) := p(rt+1|M ,Rt ,Ft ) and express the beliefs about the

DGP. M captures the assumptions regarding the structure of the return distribution.

We define an optimal portfolio as an allocation which maximizes the expected utility of the

investor after subtracting transaction costs arising due to rebalancing. Therefore, at time t the

investor with utility function Uγ and risk aversion parameter γ solves a static maximization prob-

lem conditional on her current beliefs regarding the distribution of the returns of the next period:

ω∗
t+1 := argmax

ω∈RN , ι′ω=1
E

(
Uγ

(
ω′rt+1 −νt (ω)

) |M ,Rt ,Ft
)

(EU)

= argmax
ω∈RN , ι′ω=1

∫
RN

Uγ

(
ω′rt+1 −νt (ω)

)
pt (rt+1|M )drt+1, (1)

where νt (ω) reflects transaction costs including broker fees or implementation shortfall. Rebal-

ancing portfolio weights without taking into account a measure for transaction costs ignores that

utility is derived after paying the broker and is not just based on the portfolio return ω′rt+1. 6

One way to parametrize transaction costs is to model them as proportional to the amount of

rebalancing νt (ωt+1) ∝ ||ωt+1 −ωt+ ||. Here, ||ωt+1 −ωt+ || denotes some distance measure be-

tween the new allocation ωt+1 and the allocation right before readjustment, ωt+ := ωt◦rt
ι′(ωt◦rt ) . The

distinction between ω+
t and ωt is important, as the price dynamics in the interval [t , t +1] affect

the allocation of wealth.

Penalizing transaction costs in such a way serves as natural shrinkage towardsωt+ and smooths

portfolio weights. Shrinkage methods are commonly used to reduce prediction errors, whereas in

our case deviating from ωt+ is beneficial if the updated beliefs regarding the parameters Θ of the

return distribution justify the potential costs. If a risk-free asset r f ,t is present, the optimization

6Whereas it is often the case that transaction costs are not directly considered within the decision framework, Per-

old (1984), Arnott and Wagner (1990) and Yoshimoto (1996) implement approaches based on the mean-variance

framework by either constraining turnover (which may not result in an optimal allocation) or by adjusting expected

portfolio returns for transaction costs.
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approach can alternatively be rewritten as

ω∗
t+1 :=argmax

ω∈RN

∫
RN

Uγ

(
ω′rt+1 +

(
1− ι′ω)

r f ,t+1 −νt (ω)
)

pt (rt+1|M )drt+1. (2)

This notation does not require an explicit constraint as the N +1 weights are implicitly assured to

sum-up to 1.

Under the very simplistic assumption of pt (rt+1|M ) being multivariate normally distributed

and ignoringνt (ω), the optimization framework EU goes hand-in-hand with the initial Markowitz

(1952) approach and allows to solve for ω∗
t+1 analytically.

2.1. THE NAIVE CASE: GAUSSIAN RETURNS WITH QUADRATIC TRANSACTION COSTS

The following illustrative example shows the effect of adjusting for expected turnover costs in

the case when no further frictions are present. If we assume multivariate log-normal distributed

returns with known parameters Σ and µ and power utility function Uγ(r ) = r 1−γ
1−γ the maximization

problem simplifies a lot. We model the transaction costs νt (ωt+1,ωt+ ,β) for shifting wealth from

ωt+ to allocation ωt+1 as

νt (ωt+1,ωt+ ,β) =β(ωt+1 −ωt+)′(ωt+1 −ωt+) (3)

with some parameter β> 0. Therefore, at t +1 the investors’ expectation of the parameters of the

portfolio return is

µPF =ω′
t+1µ−νt (ωt+1,ωt+ ,β) and σ2

PF =ω′
t+1Σωt+1. (4)

The allocation ω∗
t+1 is chosen to maximize the Certainty Equivalent (CE) after transaction costs

ω∗
t+1 = argmax

ω∈RN ,ι′ω=1
ω′µ−νt (ω,ωt+ ,β)− γ

2
ω′Σω. (5)

Proposition 1. Optimal rebalancing ∆∗ = ω∗
t+1 −ωt+ based on optimization problem (5) is given

by

∆∗
β =

1

γ

(
A−1 − 1

ι′A−1ι
A−1ιι′A−1

)
µ− A−1Σωt+ + 1

ι′A−1ι
A−1ιι′A−1Σωt+ (6)

with A :=
(

2
γβI +Σ

)
.

Proof. See Appendix.
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∆∗
β

illustrates the trade-off between responding to available information (estimates of µ and Σ)

and the costs resulting from constructing the corresponding efficient portfolio. The framework

above reduces to the efficient portfolio if we ignore transaction costs (by choosing β= 0)

ω∗
t+1,β=0 =∆∗

β=0 +ωt+ =1

γ

(
Σ−1 − 1

ι′Σ−1ι
Σ−1ιι′Σ−1

)
µ+ 1

ι′Σ−1ι
Σ−1ι︸ ︷︷ ︸

Global Min. Var. Portfolio

. (7)

Computing portfolio weights using ω∗
t+1,β=0 has been shown to perform rather poorly especially

in a high dimensional asset space when substituting µ and Σ with sample estimates µ̂ and Σ̂.

Adjusting for transaction costs by choosing ω∗
t+1,β reduces turnover and retains the informa-

tion given by the return distribution parameters µ̂ and Σ̂. The turnover penalty can increase

out-of-sample performance significantly and yield satisfying portfolio returns even if parame-

ter uncertainty is not adjusted for and the sample estimates µ̂ and Σ̂ do not reflect appropriate

estimates. To illustrate this effect, Table 1 contains the results of a horse-race based on N = 100

assets and daily readjustment, whereas we compute the portfolio weights by choosingω∗
t+1,β with

β = 50/10.000. Σ̄ is computed as the sample variance-covariance estimator, a regularization ap-

proach (Ledoit and Wolf, 2004) and a stochastic volatility factor model.7 Apparently, the allo-

cation approach is able to allocate wealth in a manner which is satisfying: although frequently

noted that the sample variance-covariance matrix is not reliable for the mean-variance approach

(especially not for such a large asset horizon), turnover penalization restricts the transaction in a

way which generates a positive Sharpe-Ratio after adjusting for transaction costs. In addition, as

soon as we elaborate more sophisticated estimates such as the regularization approach proposed

by Ledoit and Wolf (2004), we are able to beat the naive 1/N-portfolio. If we, however, relax the

assumption of quadratic transaction costs, we cannot provide analytic solutions for the optimal

portfolio. Furthermore, adjusting for model uncertainty requires deviating from simple CE max-

imization. Instead, we aim at considering the full predictive return distribution, also accounting

for higher moments of the return distribution.

2.2. A STEP TOWARDS REALITY: INCORPORATING PARAMETER UNCERTAINTY

A crucial input to obtain sensible portfolio weights is the choice of the forecasting density of re-

turns. Before taking into consideration model uncertainty, we focus on pt (rt+1|M ) denoting the

predictive return distribution of an investor who updates her beliefs sequentially according to

Bayes theorem.

7A description of the dataset and the estimators is given in more detail in Section 6.
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∆∗
β=0 ∆∗

β

Mean SD SR Mean SD SR

Sample Covariance (∆∗
β

) -86.4 11.8 - 7.0 10.63 0.658

Ledoit Wolf (∆∗
β

) -67.3 10.8 - 8.3 11.41 0.727

Stochastic Volatility (∆∗
β

) -42.6 12.1 - 10.5 11.82 0.888

Naive 7.2 10.58 0.680

Table 1: Results of the empirical horse-race after out-of-sample after transaction costs based

on 1904 trading days with imposed transaction fees of v(ωt+1) = 50/1000
∑N

i=1(ωt+1,i −
ωt+,i )2. SR denotes the (annualized) out-of-sample Sharpe ratio of the individual strate-

gies. The values are annualized.

M contains a likelihood function of the returns L (rt |Θ) with parametersΘ and a proper choice

of priors π(Θ). The stochastic nature of the unobservable parameters Θ reflects that the investor

does not know Θ with certainty. Conditional on the set of available information, (Rt ,Ft ), learn-

ing with respect to the parameters is represented by the posterior distribution π(Θ|Rt ,Ft ) ∝
L (Rt |Θ,Ft )π(Θ). The distribution π(Θ|Rt ,Ft ) reflects the updated beliefs of the investor re-

garding the underlying parameters of the model after combining the inference drawn from the

observed data with initial beliefs.

This forms the foundation to evaluate the (posterior) predictive distribution of the returns

p (rt+1|M ,Rt ,Ft ) :=
∫

L (rt+1|Θ)π(Θ|Rt ,Ft )dΘ. (8)

Marginalizing out the uncertain parameters generates a fat-tailed distribution. Power utility

functions take into account higher moments of the return distribution and therefore react sen-

sitive to this specification. After observing the past performance of the assets and updating the

beliefs about the parameter of the model, the investor chooses the optimal allocation of wealth

by maximizing expected one-period ahead utility.

In general, maximization problem (EU) cannot be solved analytically. Instead we apply Monte

Carlo methods to approximate the integral in the maximization problem (EU). This is done by

computing M sample draws θ(1), . . . ,θ(M) from the posterior distribution π(Θ|Rt ,Ft ) via Markov

Chain Monte Carlo algorithms.8 Subsequently, M draws from the predictive distribution are gen-

erated by sampling r (m)
t+1 from L (rt+1|M ,θ(m)). Conditional on ω ∈ RN , the integral in Equation

8See Hastings (1970) and Chib and Greenberg (1995).
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(EU) can be approximated by

E
(
Uγ

(
ω′rt+1 −νt (ω)

) |M ,Rt ,Ft
)≈ 1

M

M∑
m=1

Uγ

(
ω′r (m)

t+1 −νt (ω)
)

. (9)

The numerical solution ω̂t+1 of Equation (EU) is obtained by choosing ω to maximize the sum

in Equation (9). This approach is similar to the applications presented by Greyserman et al. (2006)

and Han (2006).

Bayesian computational methods allow to draw inference about the distribution of non-linear

transformations of our variable of interest. After generating draws from the posterior predictive

distribution of the returns, we can directly infer the vector
{
ω̂′

t+1r (m)
t+1 −νt (ω̂t+1)

}
m=1,...,M

which

represents a draw from the posterior predictive portfolio return distribution (after accounting for

transaction costs) conditional on model M . Choosing ω̂t+1 by maximizing the predicted out-of-

sample performance takes into account all the available information at time point t into account

and penalizes large rebalancing by the choice of the function νt (ω).

2.3. EXAMPLES

The following examples cover some of the most prominent classes of allocation strategies and

show that many approaches can be reformulated as a solution to the general maximization prob-

lem (EU):

Mean-variance approaches: including the seminal work of Markowitz (1952), many approaches

estimate portfolio weights based on the first two moments of the return distribution. This can

be justified either by the assumption of multivariate Gaussian returns pt (rt+1) = N (µt ,Σt ) or by

a quadratic utility function. Proposed estimators for Σt include, among others, shrinkage ap-

proaches (Ledoit and Wolf, 2004). Neglecting higher moments of the return distribution, however,

may deteriorate the performance of portfolio allocation strategies (se e.g. Harvey et al. (2010);

Jondeau and Rockinger (2012)).

Subjective approach of Black and Litterman: Black and Litterman (1992) propose to form port-

folio weights by taking into account two sources of information about future excess returns: the

imposed market equilibrium based on CAPM and subjective views, which are both associated

with uncertainty. They implicitly apply a Bayesian approach , whereas the distributional param-

eters are obtained via reverse optimization (see Idzorek (2002)).

The mean of the predictive returns, E(rt+1), is assumed to be distributed with covariance pro-

portional to the sample covariance τΣ̂. Basic foundation is a Gaussian likelihood rt+1 ∼ N (µt , Σ̂t ).

9



The investor expresses her subjective views about µt by imposing Pµt ∼ N (q,Ωt ) whereΩ is a di-

agonal matrix. The Black and Litterman approach rests on the assumption that under a complete

non-informative prior (|Ω| → ∞) the investor should stick to the market equilibrium portfolio.

Using the market equilibrium models as a prior is equivalent to setting µequ = γΣ̂tωmkt. Imposing

a natural conjugate prior for µt ∼ N (µequ,λΣ̂t ) leads to a mixed estimation model with corre-

sponding updated posterior of µt ∼ N (mv ,Λv ) and the Bayesian predictive density of one period

ahead returns is obtained as rt+1|v, Σ̂t ∼ N (mv , Σ̂t +Λv ). Transaction costs are not considered in

the Black Litterman approach.

Bayesian approaches: Greyserman et al. (2006) propose to compute portfolio weights based

on Equation (EU) within a fully Bayesian setting. Hereby, they rely on a hierarchical Gaussian

framework for the returns. Within their empirical study, Greyserman et al. (2006) do not penalize

transaction costs.

Han (2006) embeds the allocation framework into time-varying stochastic volatility return mod-

els, finding that neglecting stylized facts such as volatility clustering and time-varying volatility

diminish predictive performance of return forecast methodologies. However, transaction costs

νt (ωt+1) are not taken into account. Pettenuzzo and Ravazzolo (2016) compute portfolios (based

on one risky asset) in a similar fashion.

Our methodology is flexible in the sense that it nests a variety of well-known approaches. Fo-

cusing on the expected utility after adjusting for transaction costs allows to adopt many of these

methods to higher dimensions, as empirical considerations often point out, that neglecting trans-

action costs is a major concern (see DeMiguel et al. (2009)).

3. COMBINING PORTFOLIO STRATEGIES

Our optimization framework provides the tool to disentangle weight smoothness and predictive

accuracy: at first, we compute return predictions under parameter and model uncertainty. Re-

ducing turnover by weight smoothing is done in the subsequent step and should not be of any

concern at this stage.

We propose a range of different predictive models to adjust for parameter uncertainty. Struc-

tural changes in the return distribution, time-varying parameters and the unknown structure of

the DGP make it impossible to identify the main factors of the future return structure precisely.

Instead, we combine the distinct models to improve our forecast abilities and claim that focusing

10



on a single strategy means to discard valuable information.9 The investor chooses K distinct pre-

dictive return distribution models Ξ := {M1, . . . ,MK }, either trough personal preferences, data

availability or theoretical considerations. In the advent of large amounts of data available the

possibility to incorporate different sources of input is a valuable option. Over time, sequential

learning about the parameters of the individual models takes place and in addition the investor

decides how much her investment decision is driven by each of the individual models, condi-

tional on the past performance. The reliability of a model may change over time, which is re-

flected in the sensibility of the portfolio weights with respect to updated beliefs in the individual

models: predictive models which performed superior in the recent past obtain higher weights in

the combination scheme.

Well-known approaches to combine different models are, among many others, Bayesian model

averaging (see Hoeting et al. (1999)), optimal prediction pooling (Geweke and Amisano, 2011) and

decision-based model combinations (Billio et al., 2013).

In general, when combining multivariate predictive densities we are interested in a time-series

of combination weights ct ∈ RK . These weights can be interpreted as discrete probabilities over

the set of models Ξ. To justify the probabilistic interpretation of the combination scheme ct it is

required that that all weights take positive values and add up to one:

ct ∈∆[0,1]K :=
{

c ∈RK : ci ≥ 0∀i = 1, . . . ,K and
K∑

i=1
ci = 1

}
. (10)

Conditional on the combination weights ct , the predictive density of the combined models

takes into account the predictions of each individual model Mi to forecast returns of the next

period: define the associated predictive return distributions r̃Mi ,t+1 ∼ pt (rt+1|Mi , ,Ft ,Rt ). To

simplify notation we define the stacked N K vector of predictive distributions as

r̃t+1 := vec
({

r̃M1,t+1, . . . , r̃Mk ,t+1
})

(11)

and denote with pt (r̃t+1) its joint predictive density. Then, the predictive return distribution can

9Model combination in the context of return predictions has a long tradition in econometrics, starting from Bates

and Granger (1969). In Finance, Uppal and Wang (2003), Garlappi et al. (2007), Johannes et al. (2014) and Anderson

and Cheng (2016) amongst others apply model combinations and investigate the effect of uncertainty on financial

decisions.
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be rewritten as10

pt (rt+1|Rt ,Ft ,Ξ) =
∫ ∫

pt (rt+1|ct+1, r̃t+1)pt (ct+1|r̃t+1)pt (r̃t+1)dr̃t+1dct+1. (12)

This general notation nests a range of widely applied approaches: equation 12 allows for a stochas-

tic interpretation of ct , reflecting uncertainty with respect to the true value of the combination

weights, but one can also regard the term pt (ct+1|r̃t+1) as deterministic. In this case, it remains to

compute the value of ct as a function of the predictive returns of the distinct models r̃t+1. There

are multiple ways to compute ct as functions of the time-series of predictive returns of the model:

ct = argmax
c∈∆[0,1]K

f (c, r̃1, . . . , r̃t ) . (13)

Geweke and Amisano (2011) perform model combination by focusing on the past log predictive

likelihood of the set of models, which is defined as

LS(Rt ,Ft ,Mk ) =
t∑

i=1
log p(ri |Ri−1,Fi−1,Mk ). (14)

p(rt |Rt−1,Ft−1,Mk ) is computed by evaluating

p(rt |Rt−1,Ft−1,Mk ) =
∫

p(rt |Rt−1,Ft−1,Θ,Mk )dΘ (15)

≈ 1

M

M∑
m=1

p
(
rt |Θ(m) M ,Rt−1,Ft−1

)
, (16)

where M is the number of MCMC-draws. If the multivariate predictive density concentrates

around the observed values, the log predictive likelihood is higher. Therefore, the log predictive

likelihood of model Mk reflects a measure of the predictive accuracy. The time-varying com-

bination weights ct can be chosen to put weights on the models in a way to maximize the log-

predictive likelihood of the combined model:

c*
t = argmax

c∈∆[0,1]K

t∑
i=t−h

log

[
K∑

k=1
ck p(ri |Ri−1,Fi−1,Mk )

]
, (17)

where h defines the horizon length. Durham and Geweke (2014) provide empirical evidence for

the benefits in terms of predictive accuracy for asset price predictions based on prediction pool-

ing.

10The last term of this expression, pt (r̃t+1), can be evaluated by the MCMC sequences of the predictive return dis-

tribution of each model M1, . . . ,MK . Regions which are more likely within the joint predictive return distribution

affect the predictions more than regions which are viewed unlikely to occur.
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Choosing ct as a function of the predictive return distributions of the set of models Ξ also al-

lows to focus on combination schemes based on the past portfolio performance: at every point

in time the models M ∈Ξ generate portfolio weights
{
ω1

t , . . . ,ωk
t

} ∈RN×k as solutions to the max-

imization problem (EU). Therefore, ct can also be computed choosing, for instance,

ct = argmax
c∈∆[0,1]K

(1−λ)
t∑

i=t−h
λt−i cUγ(ω′

i ,k ri+1 −ν(ωi ,ωi−1,+)). (18)

In this case ct puts more importance on the recent past and ignores events which occurred more

than h periods ago. Given model Mk performs good and generated high utility in the past, ct is

high. ct increases if the performance of a portfolio allocation strategy increases. Billio et al. (2013)

embed such a decision-based approach in a Bayesian setting by assuming a Markovian process

for ct , adjusting for the case of misspecification of the weighting scheme.

Whereas optimal prediction pooling is driven solely by the predictive performance of the mod-

els, the crucial measure for investors to evaluate the allocation strategies is the predictive out-of-

sample portfolio return

r̃ pf
t+1 := ω̂′

t+1r̃t+1 −νt
(
ω̂t+1,ω̂t ,+

)
. (19)

In general, there can occur a discrepancy between predictive accuracy and portfolio perfor-

mance due to the distortion through transaction costs. Even if a model generates very precise

predictions regarding the returns of the next time-period, it might still be beneficial in terms

of realized portfolio returns to smooth rebalancing to avoid high fees or to generate price im-

pact by the investors own trade. Our optimization framework accounts for transaction costs and

therefore we do expect that combinations based on past portfolio performance do not differ in a

significant manner from combinations which focus on the past predictive performance.

4. HIGH-FREQUENCY AND LOW-FREQUENCY BASED PREDICTIVE RETURN

DISTRIBUTIONS

4.1. A VAST-DIMENSIONAL WISHART MODEL FOR BLOCKED REALIZED KERNELS

Intra-daily messages are far more informative about the current level of volatility than a single

observation of the squared daily return. Realized measures of volatility based on HF data have

been shown to provide accurate estimates of daily covariances.11 We expect HF data to provide

an economic significant benefit when used as input to the portfolio allocation procedure, as it

11See e.g. Andersen and Bollerslev (1998), Andersen et al. (2003) and Barndorff-Nielsen et al. (2009).
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captures current market movements much faster than estimators based on a long time-series of

past daily observations. This belief is in line with the findings of Hautsch et al. (2015) and Liu

(2009).

Estimating covariances based on intra-daily messages suffers from microstructure noise which

requires filtering methodologies to retain estimates of the variable of interest. In addition, trading

arises in irregular time-patterns. The multivariate realized kernel estimator of Barndorff-Nielsen

et al. (2011) is the first to address market microstructure and asynchronous price observations

while guaranteeing consistency and positive-semi-definiteness. In order to obtain forecasts of

covariances based on high-frequency data we employ block realized kernel (BRK) estimates as

proposed by Hautsch et al. (2012) to estimate the quadratic variation of the price process based

on discretely sampled and noisy price observations.

Synchronizing is obtained via refresh time sampling which discards many observations if the

asset horizon is large. Hautsch et al. (2012) propose a methodology to reduce dropout by compos-

ing blocks of asset clusters with similar liquidity structure and computing realized kernel estima-

tors block-wise. This increases the precision of the estimates as less observations are discarded.

We group assets conditional on the number of daily messages. Hereby, the periods between

refresh times for the assets belonging to the group with highest liquidity are generally smaller. We

denote the set of indices of the assets associated with block b ∈ 1, . . . ,6 by Ib . For each asset i , τ(i )
t ,l

denotes the time-stamp of message l on day t .Refresh times are defined as

rτb
t ,1 := max

i∈Ib

{
τ(i )

t ,1

}
, rτb

t ,l+1 := max
i∈Ib

{
τ(i )

t ,N (i )(rτb
t ,l )

}
(20)

where N (i )(τ) denotes the number of price observations of asset i before time τ. The definition of

refresh times synchronizes the observations: rτb
t ,i denotes the point in time where all of the assets

belonging to group b have been traded at least once since the last refresh time rτb
t−1,i . Based on

rτb
t ,l+1, synchronized returns are obtained as r (i )

t ,l := p(i )
rτb

t ,l

− p(i )
rτb

t ,l−1

with p(i )
rτb

t ,l

the log mid-quote

of asset i at time rτb
t ,l . For each block, the multivariate realized kernel (Barndorff-Nielsen et al.,

2011) is defined as

K b
t :=

H b
t∑

h=−H b
t

k

(
h

H b
t +1

)
Γh,b

t , (21)

where k(·) is the Parzen kernel andΓh,b
t is the h-lag auto-covariance matrix of the assets belonging

to block Ib . The estimates of the correlation of assets in block b takes the form

Ĥ b
t =

(
V b

t

)−1
K b

t

(
V b

t

)−1
V b

t = diag
[

K b
t

]1/2
. (22)
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To obtain the N × N correlation matrix Ĥt , the blocks Ĥ b
t are stacked as described in Hautsch

et al. (2012). The variances σ2
t ,i of each asset are computed based on the complete set of daily

observations by computing standard realized kernel estimates. Finally, the variance-covariance

matrix based on HF data is computed by

Σ̂BRK
t = diag

(
σ2

t ,1, . . . ,σ2
t ,N

)1/2
Ĥ b

t diag
(
σ2

t ,1, . . . ,σ2
t ,N

)1/2
. (23)

Although implying efficiency gains, block-wise estimation comes at the cost of positive semi-

definite and well-conditioned variance-covariance estimates. Eigenvalues which are close to zero

or even negative have to be adjusted in order to retain well-defined estimators. We employ clean-

ing following Laloux et al. (1999). This approach compares the eigenvalues of the estimates with

the derived distribution of eigenvalue given the processes would be independent and is derived

from random matrix theory. If the empirical eigenvalues are close to zero they are identified as

not carrying information on cross-sectional dependencies. Inflating these values recovers well-

conditioned matrices without significantly loosing information.

The estimates Σ̂BRK
t represent the realized volatilities and covariances within trading day t .

To use these estimates for forecasting purposes it is required to parametrize a suitable return

distribution which is driven by the dynamics of Σ̂BRK
t . In a first step we ignore parameter un-

certainty and proceed with a random-walk forecasting procedure by assuming pt
(
rt+1|Σ̂BRK

t

) ∼
N

(
0, Σ̂BRK

t

)
. This parametrization implies that the current state of market, represented by Σ̂BRK

t

also represents the market volatility of tomorrow. However, although this approach makes use

of highly informative data, ignoring parameter uncertainty with respect to the covariances of to-

morrow affects the predictive accuracy.

We extend this model by embedding our approach in a Bayesian setting in the spirit of Jin

and Maheu (2013). To capture uncertainty with respect to the parameters of the DGP, we model

integrated volatility as a Wishart distribution, which represents a multivariate extension of the

normal-inverse-gamma approach, applied for example by Andersson (2001), Jensen and Lunde

(2001), Forsberg and Bollerslev (2002) and Barndorff-Nielsen (1997).

The Wishart distribution has the advantage that its support consists of the set of nonnegative-

definite matrices. Regularization of the posterior estimates to obtain interpretable results is there-

fore not necessary anymore. We model the dynamics of the predicted return process conditional

on the latent covariance Σt as multivariate Gaussian

L (rt+1|Σt+1) ∼ N (0,Σt+1). (24)
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To justify our likelihood assumption, we rely on the mixture-of-distribution hypothesis which

starts from the premise that the distribution of discretely sampled returns (such as daily ones)

conditional on latent information is Gaussian (Clark, 1973). From a Bayesian perspective we con-

sider the latent variable Σt+1 as uncertain and assume

Σt+1|κ,St ∼ IW (κ,St ) (25)

where κ> N and St = f (Σ̂BRK
1 , . . . , Σ̂BRK

t ) is measurable with respect to Ft . We employ

St = Σ̂BRK
t . (26)

Combining the distributional assumptions yields the implied posterior distribution:

π(Σt+1|Rt ,Ft ) ∼ IW

(
t∑

i=1

(
Ri − R̄

)′ (
Ri − R̄

)+κSt , t +κ
)

. (27)

This distribution exhibits the posterior mean

E(Σt+1|Rt ,Ft ) = 1

t +κ−N −1

t∑
i=1

(
Ri − R̄

)′ (
Ri − R̄

)+κSt (28)

= t −N −1

t +κ−N −1
Σ̂t + κ

t +κ−N −1
St . (29)

This specification is sensible to parameter uncertainty regarding the latent factorΣt+1 and adjusts

depending on the choice of the hyperparameter κ.

4.2. MULTIVARIATE FACTOR STOCHASTIC VOLATILITY MODELS

Return time series often exhibit time-varying volatilities and co-movements among the distinct

assets. Often referred to as the curse of dimensionality, modeling this behavior with many as-

sets requires a trade-off between flexibility of feasibility of computation. Multivariate stochastic

volatility models are one way to impose a structure which is flexible enough to capture these styl-

ized facts and to keep the number of parameters on a reasonable low level. Han (2006) derives

portfolio weights incorporating time-varying forecasts of the covariance matrix in the spirit of

stochastic volatility models and obtains strong portfolio performances. This is in line with the

recent findings of Johannes et al. (2014), stating evidence for return predictability provided time-

varying volatility and estimation risk is adjusted for.

Lopes et al. (2016) propose an efficient way to compute Bayesian estimates of dynamic covari-

ance matrices in multivariate time series through a stochastic volatility factor model in the spirit

16



of Shephard (1996), Jacquier et al. (2002) and Chib et al. (2006). The factor model facilitates the

numerical burden and ensures flexibility of the coefficients to capture volatility clustering and

volatility co-movement. Time-varying variances are allowed for both the N idiosyncratic inno-

vations as well as j factors, depending on N + j latent volatilities ht = (
h1,t , . . . ,hN+ j ,t

)
. Our

implementation follows the structure outlined in Lopes et al. (2016) and takes the form

rt =ΛV (ht )1/2ζt +Q(ht )1/2εt . (30)

Λ ∈ RN× j is the unknown factor loadings matrix, Q(ht ) = diag
(
exp(h1,t ), . . . ,exp(hN ,t )

) ∈ RN×N

and V (ht ) = diag
(
exp(hN+1,t ), . . . ,exp(hN+ j ,t )

) ∈R j× j contain the factor variances. The variances

ht are modeled as latent variables following AR(1)-processes

hi t =µi +φi (hi ,t−1 −µi )+σiηi ,t i = 1, . . . , N + j . (31)

Hereby, the initial state hi 0 is unknown. The innovations εt ,ζt ,ηt are assumed to follow indepen-

dent standard normal distributions. This model implies

cov(rt |ht ) =Σt (ht ) =ΛVt (ht )Λ′+Qt (ht ). (32)

Appealingly, instead of computing (N + 1)N /2 correlation parameters, co-movements between

assets are affected only through the factor loadings Λ due to the parsimonious structure of the

diagonal matrices Q and V . The priors for the univariate stochastic volatility processes are chosen

independently

p(µi ,φi ,σi ) = p(µi )p(φi )p(σi ) (33)

The level µi is equipped with a normal prior, the persistence parameter φi is chosen such that

(φi +1)/2 ∼ B(a0,b0), and σ2
i ∼G

(
1
2 , 1

2Bσ

)
. For each element of the factor loadings matrix, a zero-

mean Gaussian distribution is chosen.

The SV model has been shown to provide good results when it comes to modeling covariances

of financial time series. Therefore it serves as a natural candidate in the portfolio allocation con-

text.12

4.3. LEDOIT-WOLF COVARIANCE REGULARIZATION

One standard approach to predict return volatilities is the sample covariance estimator

St := 1

t −1

t∑
i=t−h

(
ri − µ̂t

)(
ri − µ̂t

)′ (34)

12The implementation is based on the R package factorstochvol (Kastner, 2016). The algorithm to sample from the

posterior distribution is explained in detail in Lopes et al. (2016).
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with µ̂t := 1
h−1

∑t
i=t−h ri and estimation window size h. However, often it is preferred to deviate

from the consistent estimator St and instead to choose a biased but less volatile estimator. The

shrinkage variant of the covariance-estimator of Ledoit and Wolf (2004) takes the form

Σ̂t,Shrink = δ̂F + (1− δ̂)St (35)

where δ̂ minimizes the Frobenius norm between the sample constant correlation matrix F and

the sample covariance estimator St . F is based on the sample correlations ρ̂i j := si jp
si i s j j

where

si j is the i -th element of the j column of the sample covariance matrix St . The average sample

correlations are given by ρ̄ := 2
(N−1)N

N∑
i=1

N−1∑
j=i+1

ρ̂i j . F is defined as Fi j = ρ̄
√
ρ̂i i ρ̂ j j .13 Modeling the

time-series of future returns is performed by assuming pt (rt+1|Σ̂t ,Shr i nk ) ∼ N (0, Σ̂t ,Shr i nk ).

5. DATA

We consider an investment strategy with daily readjustment for N = 100 stocks traded at NASDAQ

during 27th of June 2007 until 27th of June 2016. After excluding weekends and holidays, the time

series of returns covers 2265 trading days. The 100 stocks are sampled randomly from the total

population of available tickers. Companies whose stocks were not traded during the complete

time period are excluded from the analysis. All the computations are performed after adjusting

for stock splits and dividends. Our dataset of further explanatory variables Ft contains intra-

daily message data, extracted from LOBSTER.14 For each asset, LOBSTER reconstructs the full

limit order book within each trading day. We concentrate on forecasting volatilities based on

realized kernels and only investigate the time-series of mid-prices.

Panel a) of Figure 1 visualizes the cross-sectional average of realized volatilities for each trading

day. Volatile periods, such as the financial crisis, are clearly represented in the sample. Further-

more, persistence and time-varying properties of assets volatilities are present. Panel b) of Figure

1 shows the average of absolute correlation computed using block realized kernel estimates on

a daily basis. The figure underlines the time-varying properties of correlations among financial

assets. Furthermore, persistence in co-movement among the selected assets can be detected.

Figure 2 visualizes the empirical correlation matrices based on daily observations at three dif-

ferent points in time. Panel a) belongs to the estimation horizon reaching from June 2007 until

June 2009 and exhibits the strongest correlation among the assets compared to calmer market

13The formula for the shrinkage intensity δ̂ can be found in Appendix B in Ledoit and Wolf (2004).
14See https://lobsterdata.com/.
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periods such as the time between June 2013 and June 2016. Blue colors indicate positive corre-

lations. The brighter the color, the less pronounced the correlation. During the complete time

horizon the assets always exhibit positive correlation amongst each other. This is probably due

to the common market place they share. In terms of portfolio allocation the positive correlation

patterns should make it harder to come up with strong diversification effects due to the absent of

natural hedging instruments. We aim at constructing predictive models capturing these essential

properties of time-series. Subsequently, we expect portfolio performance gains by exploiting the

informational content inherent in the predictions.

6. EMPIRICAL FINDINGS

6.1. EVALUATION OF PREDICTIVE PERFORMANCE

We disentangle between the (i) predictive accuracy and (ii) portfolio performance of the models

taken into consideration. First, we visualize the substantial differences of the models used in our

setting for a particular example and provide some insights on the predictions made by the distinct

models: based on the data available up to point in time t , we sequentially compute the predictive

distribution of the naive portfolio returns
(
ωnaive := 1

N ι
)

at day t+1. This is done using MVSFV, the

BRK approach based on HF-data and the Gaussian setting with Ledoit-Wolf regularization, Σ̂LW
t .

The HF-data is exploited by first computing the BRK approach ignoring parameter uncertainty as

we assume multivariate Gaussian distributed returns rt+1 ∼ N (0, Σ̂BRK
t ). In addition, we forecast

returns by sampling from the predictive distribution using the covariance-matrix resulting from

the Bayesian Normal-Wishart approach (see Equation (27)).

For each of these models we generate 50.000 sample draws according to Equation (8). First, we

generate samples from the posterior distribution of the parameters, then we generate N = 100 di-

mensional predictions rt+1 and in a subsequent step we project these vectors into one dimension

by computing ω′
naivert+1. This procedure generates samples from the predicted return distribu-

tion of the naive portfolio.

Figure 3 visualizes the resulting 95% credible regions: the purple dots indicate the true return of

the naive portfolio at day t +1 (the value our models aim to predict), whereas the blue lines show

the predictive interval computed with the stochastic volatility factor model. The smooth green

lines correspond to the Ledoit-Wolf regularized variance-covariance estimation based on the past

250 trading days. The yellow line captures the predictions based on the HF-data computed with

BRK. The red line corresponds to our Wishart-model for blocked realized kernels. The figure
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indicates the superiority of the stochastic volatility factor model compared to the (static) Ledoit-

Wolf approach. MVSFV and BRK both seem to capture changes in the market environment very

fast.15

The results of a more in-depth analysis of the predictive performance are presented in Table

2 to underline the predictive performance of the applied approaches in a more comprehensive

manner: we compute the log posterior predictive likelihood for MVSFV, Ledoit-Wolf regulariza-

tion and the BRK approaches as shown in Equation (15). The log posterior predictive likelihood

indicates how much probability mass the individual predictive distribution assigned to the ob-

served outcomes. We compute summary statistics of the time-series of likelihoods to evaluate

the predictive performance: the stochastic volatility factor model outperforms its peers in terms

of the mean posterior log-likelihood obtained in the sample.

Forecasting large-dimensional time-series based on a rolling-window estimate of the sample

variance-covariance matrix is dominated by imposing additional regularization in the form of

Ledoit-Wolf shrinkage. However, these models perform rather poor compared to the dynamic

implementations based on stochastic volatility and the HF-data based estimates.

The forecasts based on the BRK-estimates neglecting parameter uncertainty do not exhibit fat

tails and cannot be used as reliable predictive models in our setting. However, incorporating pa-

rameter uncertainty by marginalizing out the uncertain parameters improves predictive accuracy

compared to the BRK estimates. Adjusting for parameter uncertainty by using the dynamic spec-

ification proposed in Equation (27), the forecast quality of the HF-data based estimates increases

considerably: implied fat tails decrease the variance of the predictive log-likelihood and increase

the mean precision, denoted in the second-to-last column of Table 2.

The last row of Table 2 denotes the fraction of days through the sample, on which the individ-

ual models generates the best prediction in terms of predictive log-likelihood. Apparently, the

Normal-Wishart parametrization outperformed its peers on 41% of the days. This provides fur-

ther evidence on the importance of HF-data to predict market movements.

We also adjust for model uncertainty and compute predictions by mixing the individual mod-

els: computing a time-series of combination weights ct in the spirit of Geweke and Amisano

(2011) allows to put weight on each of the models according to the past predictive accuracy in

terms of the predictive log-likelihood. The sequentially updated combination weight vector ct is

plotted in Figure 4. Each time-series of Panel a) corresponds to one of the 5 implemented mod-

15 The extreme spike corresponding to the BRK estimates on May 2010 corresponds to the severe intra-daily volatility

caused by the Flash Crash which did not only affect the S&P 500 but also affected many stocks, leading to extreme

estimates for this day. A similar extreme event can be observed in August 2015.
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MVSFV Sample LW BRK BRKNW Mixing

Mean 309.22 276.57 300.90 224.71 303.78 323.03

Standard deviation 24.42 70.82 37.75 98.12 32.02 20.58

Range 185.38 615.73 314.6 915.34 211.92 152.73

% best prediction 0.27 0.16 0.16 0.01 0.41 -

Table 2: Predictive accuracy of the predictive models. At every period in time t the past returns Rt

are used to compute the predictive distribution of the models. Mean denotes the aver-

age posterior predictive log-likelihood based on 1904 computed forecasts for the returns

of the 100 assets. Standard deviation and Range summarize the dispersion of these esti-

mates. The last row denotes the fraction of days where the individual models performed

best among their peers in terms of predictive log-likelihood. MVSFV denotes a factor

model with j = 2 factors. Sample covariance is computed by implying constant covari-

ance matrix rt+1 ∼ N (0,S) with S being the sample variance-covariance matrix based on

an estimation window of size h = 250 days, Ledoit-Wolf regularization is based on the

regularized variance-covariance forecast rt+1 ∼ N (0, Σ̂Shrink). BRK corresponds to covari-

ance estimates based on HF-data, obtained by computed block-realized kernel estimates

with 6 blocks. BRKNW corresponds to the inverse Wishart specification proposed in Sec-

tion 4.1. Mixing corresponds to predictions created by combining the individual models

in the spirit of Geweke and Amisano (2011).

els. The BRK approach without adjusting for parameter uncertainty is dominated by the Normal-

Wishart approach and does not receive any weight. However, the dynamic of the remaining ap-

proaches is time-varying and exhibits interesting patterns: throughout the whole sample period,

most of the weight is put on the HF-data, followed by the stochastic factor volatility model. The

weights of the Ledoit-Wolf approach as well as the sample variance-covariance counterpart never

exceed 20%. Panel b) of Figure 4 denotes the model weights conditional on the data source: the

red line corresponds to the total fraction assigned to models based on HF data, whereas the blue

line shows the cumulative sum of model probabilities of all models based on daily data as input

source. Apparently, the relative importance of HF data is changing over time.

The last column of Table 2 reveals the impressive impact of model combination for predic-

tions: forecasting high-dimensional return time-series based on iteratively updating combina-

tion scheme ct and mixing the models accordingly results in predictive log-likelihoods which are
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superior on average and exhibit the lowest standard deviation among all individual models.

However, superior predictive accuracy is not equivalent to superior portfolio performance. The

volatility of the predictive credible regions visualized in Figure 3 underlines that an investor not

adjusting for transaction costs ex ante may rebalance her portfolio unnecessarily often if she re-

lies on the predictions based on the stochastic volatility factor model. Although the underlying

predictions may be quite accurate, transaction costs can easily offset this advantage compared to

using the rather smooth prediction of the Ledoit-Wolf regularized forecasts.

6.2. EVALUATION OF PORTFOLIO PERFORMANCE

Besides the statistical performance of our prediction models, we aim at investigating the benefits

of our approach in terms of economical significance. In order to do this we perform a portfo-

lio allocation horse-race to compare the performance of our approaches. First, we fix the asset

horizon and the set of k models Ξ. Then, at each time period, the investor uses the available

information to update her beliefs about the parameters and state variables. Subsequently, based

on the estimates, she generates predictions for the returns of tomorrow an allocates her wealth

accordingly by solving Equation (EU). After holding the assets for a day, she realizes the gains and

losses, updates posterior distribution and recomputes optimal portfolio weights. This procedure

is repeated for each period and allows to analyze the time-series of obtained out-of-sample re-

turns r k
t+1 = ω′

k,t+1rt+1 as well as the out-of-sample returns net of transaction costs for each of

the implemented models k.

We focus our interest to the out-of-sample portfolio returns after taking into account transac-

tion costs of the form

νt (ωt+1,ωt ) = 50

10.000

∥∥∥∥wt+1 −
w ′

t rt

||w ′
t rt ||1

∥∥∥∥
1

(36)

as suggested by DeMiguel et al. (2009). Hereby, the term
w ′

t rt

||w ′
t rt ||1 denotes the portfolio weights at

point in time t immediately before readjustment. Therefore, the portfolio returns of strategy k are

defined as

r k,OOS
t+1 := r k

t+1 −νt (ωk
t+1). (37)

Based on the out-of-sample returns after transaction costs we evaluate the mean and the variance

µ
(
r k,OOS

T

)
:= 1

T

T∑
t=1

r k,OOS
t+1 , σ

(
r k,OOS

T

)2
:= 1

T −1

T∑
t=1

(
r k,OOS

t+1 −µ
(
r k,OOS

T

)2
)

. (38)
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Furthermore, the Sharpe Ratio is evaluated as

SRk
T :=

µ
(
r k,OOS

T

)
√
σ

(
r k,OOS

T

)2
. (39)

In addition we examine several characteristics related to the portfolio turnover and the composi-

tion of the portfolio allocation. The average weight concentration is given by

pck := 1

T

T∑
t=1

N∑
n=1

ω2
t ,n . (40)

The average size of the short positions is evaluated by computing

spk = 1

T

T∑
t=1

N∑
n=1

|ωn,t |1
{
ωn,t < 0

}
. (41)

The procedure of our empirical simulation is summarized in Table 3, taking into account the

combination strategies presented. After choosing N assets and a set of models Ξ, at each point

in time the investor observes the available data (Rt ,Ft ). Based on the observation the optimiza-

tion framework stated in Equation EU is solved for each model Mk after updating the parameters

and computing the predictive return distribution pt (rt+1|Mk ). The time-series of past realized

returns {r k,OOS
i }i=1,...,t−1 is used to compute the combination weights ct . In the last step, the pre-

dictive return distribution after accounting for model uncertainty, pt (rt+1|Ξ) is used as input to

solve Equation EU again. The resulting allocation vector ω∗
t+1 determines rebalancing.

At t = 0 Define investment horizon N

Define set of K models Ξ

At t > 0 Investor observes past returns Rt and Ft

For each model Mk ∈Ξ compute the posterior predictive pt (rt+1|Mk )

Solve (EU) for ωMk ,t+1

Based on Rt and pt (rt+1|Mk ) compute value of objective function ξt ,k

ct serves as input to compute pt (rt+1|Ξ).

Investment decision ω∗
t+1 is obtained by solving (EU) based on pt (rt+1|Ξ).

Table 3: Initial decisions and procedure to compute portfolio weights taking into account model

uncertainty, parameter uncertainty and transaction costs within our framework.

We implement portfolio allocation strategies based on the predictive models described above

and the proposed mixing strategies. The forecasting and optimization procedure requires large
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computing resources. The computational result have been achieved in part using the Vienna Sci-

entific Cluster.16 Additionally, we implement the naive portfolio allocation. Investing the wealth

into equal partsω 1
N

:= 1
N ι is not prone to any estimation error. Furthermore, the transaction costs

associated with this strategy are considerably low due to the persistence in the weights. Among

others, DeMiguel et al. (2009) shows that the naive portfolio often outperforms more sophisti-

cated strategies in terms of out-of-sample returns.

The Bayes-Stein estimator of Jorion (1986) tackles model and parameter uncertainty by modify-

ing shrinkage parameters to minimize the effect on utility loss of errors. This method serves as

a competitor and is also implemented. Details with respect to the implementation are given in

the Appendix. Furthermore, the global minimum variance portfolio is computed based on the

Ledoit-Wolf Regularization approach which is the solution to the optimization problem

ωGMVP := argmin
ω∈RN :ι′ω=1

ω′ΣLWω.

Additionally we compare the results to the GMVP portfolio with a no-short sale constraint as pro-

posed by Jagannathan and Ma (2003). A summary of the distinct strategies implemented is listed

in Table 6. Table 4 summarizes the portfolio performances of the distinct models implemented.

The evaluation of portfolio returns is computed both before and after adjusting for transaction

costs. The main results can be summarized as follows:

1. Without regularizing turnover, portfolio allocation in high dimensions is doomed to fail.

2. Our approach transforms good predictions into strong portfolios.

3. Model combination increases the portfolio performance considerably.

6.2.1. BENEFITS OF REGULARIZATION OF TRANSACTION COSTS

First, we compare the allocation of an investor ignoring transaction costs ex ante (by setting

v(ω) = 0 when computing optimal weights ω∗) with the optimization result if we embed regular-

ization according to equation EU. The associated allocation strategies are depicted as ωLW,unrest

and ωMVSFV,unrest.17 The results clearly show that penalizing turnover is crucial to obtain satisfy-

ing portfolio performances: optimal weights suffer from high turnover and the resulting portfo-

lio returns are consumed by the transaction costs. After adjusting for transaction costs, neither

16All computations are done with R. The source code is available upon request.
17Equivalent computations have been performed for the remaining models as well but are not displayed. The resulting

portfolio performance look similar, none of the unrestricted allocation strategies performs well after adjusting for

transaction costs.
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Before transaction costs After transaction costs

Mean SD SR Mean SD SR Neg. W. pc

ωLW, unrest 10.3 10.54 0.977 -3.2 10.52 - 1.11 0.49

ωMVSFV, unrest 13.6 12.89 1.055 -89.73 13.21 - 0.94 0.44

ωS 14.2 13.37 1.062 14.1 13.45 1.055 0.13 0.24

ωLW 13.8 13.41 1.029 13.7 13.39 1.023 0.13 0.23

ωBRK 13.5 15.71 0.859 13.4 15.61 0.852 0.15 0.20

ωBRK,NW 14.4 15.02 0.959 14.2 15.09 0.941 0.08 0.13

ωMVSFV 16.6 14.02 1.184 16.4 14.04 1.168 0.41 0.54

ωMixing 16.2 13.62 1.189 16.1 13.70 1.174 0.18 0.35

ωGMVP 8.9 11.08 0.802 - 11.4 10.01 - 1.50 0.59

ωGMVP w/o short 9.9 11.07 0.894 7.0 11.09 0.631 0.00 0.45

ωBS 5.09 12.82 0.397 -22.26 13.84 - 1.21 0.90

ωNaive 12.0 17.59 0.682 10.9 17.66 0.617 0.00 0.01

Table 4: Results of the empirical horse-race after out-of-sample based on 1904 trading days.

Transaction costs are imposed as proportional to the L1 norm of rebalancing (denoted in

Equation 36). SR denotes the (annualized) out-of-sample Sharpe ratio of the individual

strategies. Neg. W. is the average of the absolute value of negative portfolio weights. pc is

the portfolio concentration, computed as the average L2 norm of the portfolio weights. A

description of the trading strategies is provided in Table 6.

ωLW,unrest nor ωMVSFV,unrest create value to the investor, although the predictive performance of

these models seemed rather promising.

However, adjusting for transaction costs changes the picture: the implemented strategies per-

form well and all of them outperform competitors in terms of out-of-sample the Sharpe Ratios.

The models perform stronger than the naive portfolio, which is remarkable in the case of N = 100

assets. Imposing ’wrong’ restrictions such as the no-short sale constraint for the global minimum

variance portfolio (ωGMVP w/o short) does not seem to be able to reach the strong performance

of our models neither. To give some intuition on the effect of turnover penalization, we plot the

daily turnover of the individual strategies in Figure 6b. The Figure reveals the Lasso-like behav-

ior of the optimization strategy: whereas the no-short sale constrained GMVP allocation strategy
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does not penalize small transactions and instead exhibits a continuous flow of orders and there-

fore also transaction costs, the penalized strategies MVSFV and BRK exhibit a completely differ-

ent trading pattern.18 By adjusting updated information and capturing transaction costs within

the optimization procedure, the investor implicitly implements a buy-and-hold strategy whereas

trading only occurs if the sequentially updated beliefs about the parameters of the DGP propose

a substantial different allocation than represented by her current allocation.

In line with our findings with respect to the accuracy of the predictors, adjusting for parame-

ter uncertainty of the estimations based on HF data in the spirit of Equation (27) increases the

portfolio performance. The obtained Sharpe ratio after transaction costs of the Normal-Wishart

approach ωBRK,NM exceeds the ’naive’ approach using the BRK estimates within a simple Gaus-

sian framework.

6.2.2. OUT-OF-SAMPLE PERFORMANCE OF MODEL MIXING PROCEDURES

The predictive performance of our mixing procedure reveals that adjusting for model uncertainty

provides a benefit when it comes to forecasting. The results of the associated portfolio strategy

ωMixing underline that the same holds for allocation strategies. Mixing the forecasts of the indi-

vidual models based on their past predictive accuracy and using the resulting predictive return

distribution pt (rt+1|Ξ) =
K∑

k=1
pt (rt+1|Mk )ct ,k as input to our optimization framework generates

portfolio weights which increase the performance even further: the obtained Sharpe ratio (be-

fore and after transaction costs) is highest among all implemented methods for our data set. This

provides further evidence on the benefits of adjusting for model uncertainty to account for struc-

tural breaks and time-varying dynamics in the DGP of future returns.

6.2.3. PORTFOLIO BOOTSTRAPPING

Obviously, a crucial input parameter of an portfolio allocation strategy is the set of investment

possibilities n ∈ {1, . . . , N }. In order to underline the robustness of our results, we implement a

portfolio bootstrap by repeating the horse-race explained above 100 times by repeatedly sam-

pling N = 100 assets and performing the optimization procedure again. The results are summa-

rized in Table 5. Computing allocations based on the stochastic volatility factor model (by simply

taking the posterior median of the variance-covariance matrix and neglecting higher moments)

outperforms the competing models when adjusting for transaction costs. The results seem ro-

bust over the choice of the investment horizon and on average the Multivariate Stochastic Factor

18Note that the naive portfolio also exhibits turnover, as readjustment occurs at every period.
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Volatility model generates the highest returns after adjusting for transaction costs. To underline

this statement, the corresponding cross-section of Sharpe ratios (after transaction cost) is visu-

alized in Figure 7. Each box plot corresponds to the realized out-of-sample Sharpe ratios for the

distinct methods implemented. Evidently, our optimization procedures are able to outperform

the often proposed naive allocation.

Before transaction costs After transaction costs

Mean SD SR Mean SD SR pc

ωMVSVF 15.9 13.95 1.14 15.1 17.59 1.13 0.46

ωLW 14.1 13.03 1.06 13.8 13.8 1.00 0.24

ωBRK 14.5 16.47 0.88 14.0 15.90 0.88 0.22

Naive Portfolio 13.4 18.10 0.74 12.6 18.52 0.68 0.12

ωGMVP w/o short 10.6 11.91 0.89 4.0 12.93 0.31 0.44

Table 5: Results of the bootstrapped empirical horse-race after transaction costs based on 1904

trading days and randomly choosing N = 100 assets 100 times. SR denotes the (annual-

ized) out-of-sample Sharpe ratio of the individual strategies. Neg. W. is the average of the

absolute value of negative portfolio weights. pc is the portfolio concentration, computed

as the average L2 norm of the portfolio weights. A description of the trading strategies is

provided in Table 6.

7. CONCLUSIONS

The uncertain structure of real-world financial time series makes it hard to allocate wealth effi-

ciently among many assets in order to maximize expected utility. We propose an optimization

framework which incorporates model- and parameter uncertainty into the decision process and

adjusts for transaction costs in a subsequent step. Our procedure allows to rely on the predic-

tive performance of many different sources of information. We employ forecasting procedures

based on high-frequency data and implement multivariate stochastic factor models. Within our

approach we separate the task of predicting returns and reducing transaction costs, which is an

advantage compared to widely used regularization approaches, as our framework addresses the

objective function which we consider relevant for the investor: maximizing expected utility after

adjusting for transaction costs. Based on analyzing portfolios generated based on NASDAQ data
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from 2007 until 2016 we find that regularization is a key component in large dimensions and illus-

trate the importance of high-frequency data in the portfolio allocation context. We find that our

model combination approach is not only successful in predicting returns but also outperforms a

range of competitors in terms of portfolio performance.

A. IMPLEMENTATION DETAILS

A.1. BAYES-STEIN PROCEDURE

Jorion (1986) imposes regularization on the sample estimates µ̂ and S of the expected mean and

variance-covariance matrix to reduce estimation error. The estimate of the mean takes the form

µ̂∗
t = (1−ψ)µ̂t +ψµ̂g

t (42)

where µ̂g
t is defined as µ̂g

t =
(
µ̂′

t Σ̂
−1ι

ι′Σ̂−1ι

)
ι. The shrinkage parameter ψ ∈ (0,1) is defined as

ψ= N +2

(N +2)+h(µ̂t − µ̂g
t )′Σ̂−1(µ̂t − µ̂g

t )
. (43)

In our application the estimation window h is chosen to be 250 trading days. The variance is

estimated by shrinking S towards the variance of the minimum variance portfolio

Σ̂∗
t =

(
1+ 1

h + Jt

)
S + Jt

h(h +1+ Jt )

ιι′

ι′Σ̂−1ι
. (44)

The shrinkage factor Jt takes the form

Jt = N +2

(µ̂t − µ̂g
t )′Σ̂−1(µ̂t − µ̂g

t )
(45)

The optimal portfolio choice rule ωBS is the solution to the optimization problem

ωBS = argmax
ι′ω=1

ω′µ̂∗
t −

2

γ
ω′Σ̂∗

t ω.

B. PROOFS AND DERIVATIONS

Proof of Proposition 1. The allocation ω is chosen to maximize the CE after transaction costs

ω∗ = argmax
ω∈RN :ι′ω=1

ω′µ−νt (ω,ωt+ ,β)− γ

2
ω′Σω. (46)
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Equivalently, the optimization problem can be rewritten as choosing the rebalancing vector ∆:

ω∗ =ωt+ +argmax
ι′∆=0

(ωt+ +∆)′µ−β∆′∆− γ

2
(ωt+ +∆)′Σ(ωt+ +∆). (47)

∆∗ =argmax
ι′∆=0

ω′
t+µ−

γ

2
ω′

t+Σωt+︸ ︷︷ ︸
C E(ωt+ )

+∆′µ−β∆′∆− γ

2
∆′Σ∆−γ∆′Σωt+ . (48)

∆∗ =argmax
ι′∆=0

∆′µ− γ

2
∆′

(
2

γ
βI +Σ

)
︸ ︷︷ ︸

:=A

∆−γ∆′Σωt+ . (49)

The first-order conditions take the form:

0 =µ−γA∆−γΣωt+ −λι (50)

0 =ι′∆ (51)

It follows that

∆=1

γ
A−1 (

µ−γΣωt+ −λι
)

(52)

Evaluating ι′∆= 0 with ∆ as above results in

λ= 1

ι′A−1ι
ι′A−1µ− γ

ι′A−1ι
ι′A−1Σωt+ (53)

Plug-in gives:

∆∗
β =

1

γ
A−1µ− A−1Σωt+ − 1

γ

1

ι′A−1ι
A−1ι′A−1µι+ 1

ιA−1ι
A−1ι′A−1Σωt+ ι (54)

= 1

γ

(
A−1 − 1

ι′A−1ι
A−1ιι′A−1

)
µ− A−1Σωt+ + 1

ι′A−1ι
A−1ι′A−1Σωt+ ι (55)

C. FIGURES AND TABLES
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Figure 1: Cross-sectional averages of daily realized volatilities and absolute correlation estimates

based on intra-daily data for N = 100 assets. Realized volatilities are computed using

the methodology proposed by Zhang (2011). The second panel denotes the mean of the

absolute entries in the estimated BRK-matrices as described in Section 2.

Sector Number of Ticker

Health Care 9

Consumer Durables 2

Capital Goods 7

Finance 12

Consumer Services 21

Energy 11

Public Utilities 11

Transportation 3

Technology 14

Basic Industries 5

Consumer Non-Durables 3

Miscellaneous 2

Table 7: Industry classification (according to NASDAQ) of the N = 100 assets chosen from the

asset universe used to create the results in Sections 2 and 6.

31



●
●
●

●
●

●

●

●
●

●

●
●

●
●

●

●
●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●

●
●
●

●

●

●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●

●

●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●

●

●
●
●
●

●
●

●

●
●
●
●
●

●

●

●
●
●
●

●
●
●
●

●
●

●
●
●

●
●

●
●

●

●
●
●

●
●
●

●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●

●

●
●

●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●

●

●
●
●

●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●
●

●

●
●
●
●
●
●

●

●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●

●
●
●

●

●
●

●
●
●
●
●
●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●
●

●
●
●
●
●

●
●
●

●
●
●

●
●

●

●

●

●

●

●
●

●
●
●
●
●

●

●
●

●
●
●

●
●

●

●
●
●
●
●

●

●
●

●
●
●

●
●
●

●
●
●

●
●

●

●
●

●
●

●
●

●

●

●
●
●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●
●

●
●
●

●
●
●
●

●

●

●
●
●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●
●
●

●
●
●
●

●
●

●

●
●
●
●

●
●

●

●
●
●
●
●

●

●

●
●
●

●

●

●
●

●

●

●

●
●
●

●
●

●
●

●

●
●
●

●
●
●

●

●

●
●
●

●
●
●
●
●

●
●

●
●

●

●

●
●

●
●
●

●
●

●
●

●

●
●

●

●

●
●
●
●

●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●
●
●
●
●
●

●
●
●
●

●
●

●

●
●
●
●

●

●

●

●
●
●
●
●
●

●
●

●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●

●
●
●

●

●
●

●
●
●

●
●
●
●
●

●
●
●
●

●
●
●
●
●

●

●
●
●
●
●

●
●

●

●

●

●
●
●

●
●
●
●

●

●

●
●
●

●
●

●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●

●
●

●
●
●

●
●
●

●
●
●
●

●
●

●
●
●

●
●
●

●

●
●
●

●

●
●
●

●
●

●

●
●
●

●
●

●
●

●

●

●

●
●
●
●
●

●

●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●

●
●

●

●

●
●

●
●
●
●
●
●
●

●

●

●
●

●
●

●
●

●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●

●
●
●
●
●
●

●
●

●
●

●
●
●

●
●

●
●
●
●
●
●

●
●

●

●
●

●
●

●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●

●
●

●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●

●
●

●

●
●

●
●
●

●
●

●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●

●
●

●
●
●
●
●
●

●
●
●

●
●

●
●

●
●
●

●
●

●

●

●
●

●
●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●
●

●

●
●

●
●
●

●

●
●
●

●

●
●
●

●

●
●

●
●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●
●
●
●

●
●

●

●

●
●

●

●
●

●

●
●
●
●
●

●

●
●

●
●
●

●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●

●
●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●

●
●

●
●
●

●
●

●

●
●
●

●
●

●
●

●

●

●

●
●
●
●
●

●

●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●

●
●
●

●

●
●

●
●
●
●
●
●
●

●

●

●
●

●
●

●
●

●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●

●
●
●

●
●
●

●
●

●

●

●

●

●

●
●

●
●
●
●
●

●

●
●

●

●
●

●
●

●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●

●

●

●
●
●

●

●

●
●
●

●
●

●
●
●

●
●

●
●

●

●
●
●

●
●
●

●

●

●

●
●

●
●
●

●

●

●
●

●
●
●

●

●
●
●
●
●
●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●
●

●
●

●

●

●

●
●
●

●
●

●
●
●
●
●
●

●
●
●

●
●

●
●

●
●
●
●
●
●

●

●
●

●
●
●

●
●
●

●

●
●

●

●

●
●
●

●

●
●
●
●
●

●
●
●

●
●
●

●
●

●

●
●

●
●
●

●
●
●
●

●
●

●
●
●

●
●
●
●
●

●
●
●
●

●

●
●
●
●
●

●
●
●

●
●

●

●
●

●

●
●
●

●
●
●

●
●

●

●
●

●
●
●
●

●
●

●

●

●
●

●

●
●

●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●

●

●
●

●

●

●
●
●
●
●
●

●

●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●

●
●

●

●

●
●

●
●
●
●
●
●

●

●

●

●
●

●
●

●
●

●
●
●
●

●
●

●
●
●

●
●

●

●
●
●
●
●

●
●
●

●

●
●

●
●

●
●

●

●

●

●
●

●
●
●
●
●
●

●
●

●

●
●

●
●

●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●

●

●
●
●

●

●
●
●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●

●

●
●
●

●
●
●

●

●
●

●
●

●

●
●

●
●
●

●
●
●
●

●

●
●
●
●
●

●
●
●

●
●

●
●
●

●

●
●

●
●
●
●

●

●

●

●
●

●

●
●

●

●
●
●

●

●
●

●

●
●

●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●

●
●
●

●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●

●
●
●

●
●

●

●
●
●
●
●

●
●

●
●
●

●
●
●
●
●

●
●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●

●

●

●
●
●

●
●
●
●
●

●
●

●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●

●
●
●
●

●
●
●

●
●
●
●

●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●

●
●

●
●

●

●
●

●
●
●
●
●

●

●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●

●
●

●

●

●
●

●
●
●
●
●
●
●

●

●

●
●

●
●

●
●

●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●

●

●
●
●
●
●

●

●
●

●

●

●
●
●

●
●

●
●
●
●
●
●

●
●

●

●
●

●
●

●

●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●

●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●

●

●
●

●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●

●

●
●
●

●
●

●
●
●
●
●

●

●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●

●
●

●

●

●
●

●
●
●
●
●
●
●

●

●

●
●

●
●

●
●

●
●
●
●

●
●
●
●
●
●
●

●

●
●
●
●

●

●
●
●

●
●
●

●
●

●

●

●

●

●
●
●

●
●
●
●
●
●

●
●

●

●
●

●
●

●

●
●
●
●
●

●
●
●

●
●
●

●
●
●
●

●
●

●
●

●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●

●

●
●

●
●
●
●
●
●
●

●

●

●
●

●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●
●

●

●
●
●

●
●

●
●
●

●

●

●
●

●
●

●
●
●

●
●

●
●

●
●

●

●

●
●
●

●

●
●
●

●
●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●
●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●
●

●
●
●

●

●

●

●
●

●

●
●

●
●
●

●

●

●
●

●

●
●

●

●
●
●

●
●

●
●

●

●
●

●
●
●
●
●

●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●

●

●

●
●

●

●
●
●
●

●

●

●
●
●

●
●

●
●
●

●
●

●
●
●
●
●
●

●
●

●
●
●

●
●

●

●
●
●
●
●

●

●

●
●
●
●

●
●
●
●

●
●

●
●
●

●
●

●
●

●
●
●
●

●
●
●

●
●

●

●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●

●

●
●

●
●

●
●
●
●

●
●

●
●

●
●
●
●

●
●
●
●
●
●

●

●

●
●
●
●
●

●
●
●
●

●
●

●

●
●
●
●

●
●

●

●

●
●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●
●
●

●
●

●
●

●

●

●
●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●
●
●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●
●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●
●
●
●

●

●

●
●
●

●

●
●
●
●

●
●

●
●
●

●
●

●
●

●

●
●
●

●
●
●

●
●

●
●
●

●
●
●

●
●

●
●
●
●
●

●

●
●
●
●
●
●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●
●
●

●
●
●

●

●
●
●
●
●
●

●
●
●
●
●
●

●

●
●
●
●

●
●

●

●
●
●
●
●

●
●

●
●
●

●
●
●
●
●

●
●

●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●

●
●

●
●

●

●
●
●
●
●
●

●
●
●

●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●
●

●
●

●
●

●

●
●
●
●
●
●
●

●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●

●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●

●
●

●
●

●

●
●
●
●
●
●
●

●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●
●

●

●
●
●
●
●
●

●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●

●
●
●

●
●
●
●
●

●
●

●
●
●

●
●

●

●
●
●
●
●

●
●

●
●
●

●
●

●

●
●
●
●
●

●
●

●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●

●
●

●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●

●

●
●
●
●

●
●

●
●

●

●
●
●
●

●
●

●
●
●

●

●
●
●
●
●
●

●
●
●
●
●
●

●
●

●
●
●

●
●

●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●

●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●

●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●

●
●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●

●
●
●
●
●
●

●

●

●

●
●

●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●

●

●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●

●
●

●
●
●
●
●
●

●

●
●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●
●

●

●

●
●

●
●

●
●

●
●
●

●

●
●
●
●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●
●
●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●
●

●
●

●

●
●

●

●

●

●

●
●
●

●
●

●

●
●

●

●
●

●

●
●
●

●
●

●

●

●

●
●

●
●

●

●
●
●
●
●

●

●

●
●
●
●

●

●
●
●
●
●

●
●
●

●
●

●
●

●

●
●
●

●
●
●

●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●

●
●
●
●
●

●
●

●

●
●

●
●

●
●
●
●

●
●

●
●

●
●
●

●
●
●
●

●
●

●

●

●

●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●

●
●

●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●

●
●

●

●
●
●
●
●

●

●

●
●
●
●

●
●
●
●

●
●

●
●
●

●
●

●
●

●
●
●
●

●
●
●

●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●

●
●

●
●
●
●

●
●

●
●

●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●

●
●

●

●
●
●
●
●

●
●

●
●
●

●
●
●
●
●

●
●
●
●
●

●
●

●
●

●

●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●

●
●

●
●
●
●

●
●

●
●

●

●
●
●
●
●
●

●
●
●

●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●

●

●
●

●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●

●
●
●

●
●

●

●
●

●
●

●
●
●
●
●

●
●
●

●
●
●

●
●
●

●
●
●
●
●
●

●
●
●

●
●

●
●
●
●
●
●

●

●

●
●
●

●
●

●

●
●
●

●
●

●
●

●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●

●
●
●
●

●

●
●
●
●
●

●

●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●
●

●

●
●

●
●
●

●
●

●
●
●

●

●
●
●
●
●

●
●
●

●
●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●
●
●
●
●

●
●
●

●
●
●

●

●

●

●
●
●

●
●

●

●

●

●
●
●

●
●
●

●

●
●

●

●

●
●
●

●
●

●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●

●

●

●
●

●

●
●

●
●
●
●
●

●

●
●
●

●

●
●
●
●
●
●
●
●
●

●
●
●
●

●
●

●

●

●
●

●
●
●
●
●
●
●

●

●

●
●

●

●

●
●

●

●
●
●

●
●

●
●
●

●
●

●

●
●

●
●
●

●
●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●
●

●
●

●

●

●

●
●

●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●

●
●
●

●

●
●

●
●
●
●
●
●
●

●

●

●
●
●
●

●
●

●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●

●
●

●

●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●

●

●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●

●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●

●
●

●

●

●
●

●
●
●
●
●
●
●

●

●

●
●

●
●

●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●

●

●

●

●

●
●
●

●
●
●
●
●
●
●
●

●

●
●

●
●

●

●
●
●

●
●

●

●

●

●
●

●
●
●
●
●

●
●

●
●

●

●
●

●
●

●

●

●
●
●
●
●
●
●

●
●
●

●

●
●

●
●
●

●

●
●
●

●

●
●
●
●
●

●
●

●
●

●
●
●

●
●
●
●
●
●

●

●

●
●

●
●
●

●
●
●

●

●
●
●

●

●

●
●
●

●
●

●
●
●
●
●
●

●
●
●

●
●

●
●

●

●
●
●

●
●

●
●

●

●
●

●
●
●
●
●

●

●
●
●

●

●
●
●
●

●

●
●
●
●

●
●
●

●

●
●
●

●

●
●

●
●
●
●

●
●
●

●

●

●

●
●
●

●
●

●
●
●
●

●
●

●
●
●
●
●

●

●

●
●

●

●

●
●
●
●

●

●
●
●

●

●

●

●
●

●
●

●

●
●
●
●
●

●
●

●

●
●

●
●

●

●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●

●

●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●
●

●

●
●
●
●

●

●

●
●

●
●
●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●
●
●

●
●

●
●

●

●
●
●

●
●

●
●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●
●
●

●
●
●
●

●

●
●

●

●
●
●
●
●
●

●
●

●

●
●

●
●

●
●
●
●
●
●
●
●
●

●

●
●

●

●
●

●
●
●
●

●
●
●

●

●
●
●
●
●

●
●

●
●

●
●
●
●

●

●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●

●

●

●

●
●

●
●

●
●
●
●
●
●

●
●

●
●
●

●
●

●

●
●
●
●

●

●
●
●

●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●
●

●
●
●

●
●
●
●

●
●

●
●
●

●
●
●
●
●
●
●

●
●
●

●
●
●
●
●

●
●
●

●
●

●
●
●

●
●
●
●
●
●
●

●
●

●

●
●

●
●
●

●

●
●

●

●

●
●
●

●
●

●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●

●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●

●

●
●
●
●

●
●
●

●
●
●
●
●
●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●
●
●

●
●
●

●
●

●

●
●
●

●
●
●
●
●

●

●

●
●

●

●
●

●
●
●

●
●

●
●

●

●

●
●

●
●

●

●
●
●
●
●

●
●
●

●
●
●

●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●
●

●
●
●

●
●
●

●
●

●

●
●

●
●
●

●
●
●
●

●
●

●
●
●

●
●

●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●

●
●

●
●
●

●
●
●
●
●
●
●

●
●

●
●
●

●
●
●
●

●
●

●

●

●
●
●

●
●

●

●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●

●
●

●
●
●
●

●
●
●

●
●

●
●
●
●
●
●
●
●

●
●
●
●
●

●

●
●
●
●
●
●
●
●
●

●

●
●
●
●

●
●
●
●

●

●

●
●
●

●
●
●
●
●
●

●
●
●

●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●

●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●

●
●
●

●

●
●

●
●
●
●
●
●
●

●

●

●
●

●
●

●
●

●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●

●
●

●

●

●

●

●
●
●

●
●
●
●
●

●

●
●

●
●
●

●
●

●

●
●
●
●
●
●
●

●

●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●

●
●
●

●
●

●
●
●
●
●
●

●
●

●
●
●

●
●

●

●
●
●

●
●

●
●

●
●
●

●
●
●
●
●

●
●

●
●
●

●
●

●
●

●

●
●
●
●
●
●

●
●

●

●
●

●
●
●

●
●

●

●
●
●
●

●

●
●
●
●
●

●
●

●
●

●

●
●

●
●

●
●
●
●

●
●

●
●

●

●
●
●

●
●
●

●
●
●

●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●

●
●

●

●
●
●
●
●

●
●

●

●
●
●
●
●
●
●

●
●

●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●

●

●
●

●

●
●

●
●
●
●

●
●
●

●

●

●
●
●
●

●

●

●
●

●
●
●
●

●

●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●
●
●

●
●

●

●
●
●
●

●
●
●
●
●
●

●

●

●
●
●

●
●

●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●

●

●
●

●
●
●
●
●
●
●

●
●

●
●
●

●
●

●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●

●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●

●
●

●

●
●
●
●
●

●

●

●
●
●

●

●
●
●
●

●
●

●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●

●
●

●
●
●

●
●

●
●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●

●
●

●

●
●
●
●
●
●
●
●

●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●

●
●

●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●

●

●

●
●
●
●

●
●
●
●
●
●

●
●

●
●
●

●
●

●
●
●

●
●

●

●

●
●

●
●
●

●
●

●

●

●
●

●

●

●
●
●

●

●
●
●
●
●

●
●
●

●
●
●

●
●

●

●
●

●

●

●

●
●
●
●

●
●

●
●
●

●
●

●
●
●

●
●
●

●

●

●
●
●

●
●

●
●
●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●
●

●
●
●

●

●

●
●

●

●

●
●

●
●

●
●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●
●
●
●

●

●

●
●
●

●

●

●
●

●

●

●

●
●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●
●

●

●
●

●
●

●

●

●
●

●
●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●
●
●

●
●
●

●
●
●
●

●
●

●

●
●

●
●

●

●

●

●
●
●
●
●

●

●
●
●
●
●

●
●
●
●

●
●

●
●
●

●
●

●
●

●

●
●
●

●
●
●

●
●

●
●
●
●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●

●

●
●

●
●

●
●
●
●

●

●

●
●
●

●
●

●
●
●

●

●
●

●
●

●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●

●

●

●
●
●

●

●
●
●
●

●
●

●
●
●

●
●

●
●

●

●
●
●

●
●
●

●
●

●
●
●
●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●

●

●
●

●
●

●
●
●
●

●
●

●
●

●

●
●

●
●
●
●

●
●
●

●

●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●

●

●
●
●
●
●

●
●
●

●
●
●

●
●
●

●
●

●
●

●
●
●
●

●
●
●
●
●

●

●
●

●
●
●
●
●

●
●
●
●

●

●

●
●
●
●
●
●
●
●
●

●
●
●
●

●

●
●
●
●

●

●

●
●

●

●
●
●

●
●
●
●
●
●

●

●
●
●

●
●
●

●
●
●
●
●
●

●

●
●
●
●

●
●

●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●

●
●
●
●
●

●

●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●

●

●
●
●
●
●

●
●

●
●
●

●
●
●
●
●

●
●

●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●

●
●

●
●

●

●
●
●
●
●
●

●
●
●

●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●

●
●

●

●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●

●

●

●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●

●
●

●

●
●
●
●
●

●

●

●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●

●

●
●
●
●
●

●
●
●
●

●
●

●
●

●
●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●
●

●

●
●

●
●
●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●
●

●
●

●

●
●
●

●
●

●
●

●

●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●

●

●
●

●
●
●
●
●

●

●
●

●

●
●
●

●
●
●
●

●
●

●

●

●
●

●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●

●
●

●
●

●

●
●
●
●
●

●

●
●
●

●

●

●
●
●
●
●

●
●
●
●
●
●

●
●

●

●
●

●
●

●

●
●
●
●
●

●

●

●
●
●

●

●

●
●
●

●

●

●
●
●

●
●

●
●

●

●
●
●

●
●
●

●
●

●

●
●
●
●
●
●
●

●

●
●
●
●

●

●
●
●
●
●

●
●

●
●

●

●
●

●
●

●
●
●
●

●
●

●
●

●

●
●
●

●
●

●

●
●
●

●

●
●
●
●
●
●

●
●
●
●
●
●

●

●
●

●
●

●
●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●

●
●

●

●
●

●
●
●
●
●
●

●
●
●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●

●
●
●

●
●
●
●
●
●

●
●
●
●

●

●
●
●
●

●
●
●
●

●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●

●
●
●

●

●
●
●

●
●

●

●
●
●

●
●

●

●
●
●
●

●
●
●
●
●

●
●

●
●
●

●
●

●
●

●

●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●

●
●

●
●
●

●
●
●
●
●
●

●
●
●

●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●
●

●

●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●

●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●

●
●
●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●
●
●

●
●
●

●
●
●
●

●
●

●

●
●

●
●

●

●

(a) 2007 - 2009
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(b) 2009 - 2013
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(c) 2013 - 2016

Figure 2: Empirical correlation matrices for the N = 100 assets based on daily observations.

Brighter values indicate lower correlations among the assets. During the sample period

only positive correlations are measured. The darker, the higher the correlations. The

first figure shows estimates before and during the financial crisis (June 2007 until June

2009), Panel b) denotes the time horizon between June 2009 and June 2013 and Panel

c) visualizes the estimates based on the observations between June 2013 and June 2016.

Correlations are time-varying and especially large during the crisis in our sample.
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Figure 3: Illustrative results to compare the predictive performance of the stochastic volatility fac-

tor model with 2 factors, the block realized-kernel estimates and the Ledoit-Wolf regu-

larization. For each of the three models a sample of the predicted portfolio return of

the 1/N allocation is generated by first sampling from the predictive return distribution

r (m)
t+1 and then evaluating the vector 1

N ι
′r (m)

t+1 . The blue line indicates the 0.05 and 0.95

quantiles of the prediction according to the SV Model, the green line shows the corre-

sponding quantiles of the Ledoit-Wolf approach and the yellow line corresponds to the

BRK estimates. The red line corresponds to the forecasts based on our Normal-Wishart

model. The purple dots indicate the observed return at time t +1.
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Figure 4: Optimal weighting schemes ct based on Geweke and Amisano (2011).
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Figure 5: Optimal weighting schemes conditional on data input. Time-series of model combi-

nation weights based on the predictive performance. HF corresponds to the cumula-

tive probability of the BRK modes, daily corresponds to the sum of the combination

weights resulting from the Ledoit-Wolf approach, the sample covariance estimator and

the stochastic volatility factor model.
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(a) Cumulative wealth for the distinct portfolio al-

location strategies (starting value of 1)
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(b) Daily turnover measured as L1 norm of the dis-

tinct portfolio allocation strategies.

Figure 6: Summary statistics of the performance of the distinct allocation strategies based on

N = 100 assets. The strategies implemented are described in Table 6. Plotted are only

the results of optimization strategies which take into consideration ν(ω) (unrestricted

strategies exhibit much more turnover).
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Figure 7: Annualized Sharpe ratios of the distinct portfolio allocation strategies based on portfo-

lio bootstrapping. We compute the optimization procedure by picking N = 100 assets

randomly for s = 75 times. For each sample s a complete horse-race is performed as

described in Section 6. The box plots denote the out-of-sample Sharpe ratios after ad-

justing for transaction costs. The corresponding strategies are listed in Table 6.
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