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Abstract

In this paper, we show that the consensus forecast can be biased if some fore-
casts minimize an asymmetric loss function and the DGP features conditional het-
eroscedasticity. This result still holds if cross sectional heterogeneity in the loss
function is allowed for, including the case where a share of the cross section of
forecasts is produced under a symmetric (squared) loss objective. In this setting,
the time-varying bias depends on the variance of the process. As a consequence,
the information from the ex-ante variation of forecasts can be used to improve the
predictive accuracy of the combined forecast. We consider two widely employed
measures for the ex-ante forecast variance, namely the average over the variances of
individual cross sectional units on the one hand and the cross sectional dispersion
of point forecasts (“disagreement”) on the other hand. Both statistics are shown
to be informative. The average individual variance provides the largest predictive
content. Forecast survey data from the Euro area and the U.S. confirm the impli-
cations of the theoretical model.
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1 Introduction

Macroeconomic forecasts often violate the assumption of unbiasedness in the sense of

Mincer and Zarnowitz (1969). The presence of a bias term is often interpreted as a

deviation from rationality (Conlisk, 1996). However, an alternative explanation that does

not require the specification of a particular form of non-rationality is that forecasters

attempt to minimize an asymmetric loss function. It has been shown by Granger (1969)

how biased forecasts can arise as a result of asymmetric loss. Moreover, Christoffersen

and Diebold (1997) show that in the presence of conditional heteroscedasticity, a bias

that is generated by asymmetric loss can be time-varying due to the dependence of the

forecasts on the conditional variance.

In this paper, we study if alternative measures of forecast variance are useful to improve

the predictive accuracy of a combined forecast. To this end, we outline a model framework

where a principal elicits the forecasts of a number of survey participants. These agents

predict the realizations of a dynamic data generating process (DGP) that features con-

ditionally heteroscedastic disturbances. Moreover, each individual agent might or might

not be characterized by asymmetric loss. This is expressed by means of a relatively gen-

eral loss function that is called the “linex-” criterion. This function nests the symmetric

mean squared error function (Varian, 1974; Zellner, 1986). Consequently, agents’ fore-

casts contain a time-varying bias that depends on the disturbances’ conditional variance.

Extending results of Granger (1969) Christoffersen and Diebold (1997), Capistrán and

Timmermann (2009) and Issler and Lima (2009), we note that such a bias is also present

when an equally weighted combination (“consensus forecast”) of the individual forecasts

is computed.

In general, it is unclear how the unobservable ex-ante uncertainty of a forecast should

be measured. By discussing distinct assumptions regarding the conditional variance pro-

cess, we are able to compare the scope of alternative measures of forecast variance to

improve the predictive accuracy of the biased consensus forecast. In particular, we ex-

plore various means to introduce heterogeneity into the conditional mean and the con-
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ditional variance of forecasters’ models and derive corresponding representations for two

commonly employed ex-ante measures of forecast uncertainty. The first metric of forecast

uncertainty is the average over individual agents’ forecast variance. Zarnowitz and Lam-

bros (1987) and Lahiri and Sheng (2010) discuss under which circumstances this statistic

can be interpreted as the ex-ante uncertainty of the consensus forecast. The average

indivudal forecast variance is typically regarded as the theoretically most appealing mea-

sure of uncertainty, however, it is only available if forecasters report density- or variance

forecasts. This is the case, e.g., in the Survey of Professional Forecasters (SPF) that is

conducted by the US-FED or the ECB. Another widely used uncertainty measure is the

cross-sectional variance of agents’ point predictions. Though the relation of this statistic

to the average individual uncertainty is not always clearly stated, disagreement is widely

employed if forecast survey data are examined that only elicit point forecasts.

This study contributes to the literature in the following ways. First, we extend the

framework of related studies such as Capistrán and Timmermann (2009) or Issler and

Lima (2009) to examine which measure of forecast variance should be preferred as a

means to reduce the time-varying bias of the consensus forecast. In particular, we discuss

under which conditions disagreement can serve as a substitute for the average individual

forecast variance in this context. Second, we extend the results derived in Christoffersen

and Diebold (1997), Batchelor and Peel (1998) and Capistrán and Timmermann (2009) by

explicitly considering the consensus forecast in addition to analyzing individual forecasts.

From the viewpoint of rationality testing, this is important since many related studies

do not employ individual data but aggregate statistics such as the consensus forecast to

test for the biasedness of forecasts by means of model-free procedures like the Mincer-

Zarnowitz test. Apart from these considerations, we also contribute to a recent discussion

which addresses the information content of density forecasts. Evaluating measures of un-

certainty, Clements (2010) documents that the informative content of density forecasts

for the purpose of deriving ex-ante uncertainty statistics that align with realized squared

forecast errors is rather marginal. In this study, we evaluate the predictive content of
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higher moments of density forecasts such as average individual uncertainty from the per-

spective of a distinct model framework. Moreover, similar as in Issler and Lima (2009),

we propose the bias-adjusted consensus forecast as an improved forecast combination that

is feasible in “large-N” situations where the number of forecasts that are combined can

exceed the time-series dimension. In this respect, we contribute to the rapidly evolving

literature on combining forecasts in “big-data” environments. The augmented consen-

sus is an alternative to computationally intensive approaches from the emerging machine

learning literature that have been recently proposed for such problems.

Our empirical strategy is based on an examination of both individual and consensus

forecasts. Thereby, we provide a detailed account of the heterogeneity at the individual

level, the degree to which biases of single forecasts carry over to the consensus forecast and

if such a bias can be reduced by commonly employed measures of uncertainty. By using

the information from matched point- and density forecasts, we estimate the time-varying

bias in terms of the deviation of the midpoint of the empirical distribution and the point

forecast. This metric is not based on realized values and might therefore be less affected

by distortions that arise merely as a result of a mismatch between the choice of the data

vintage that is employed to compute realized forecast errors and the one that is actually

targeted by individual forecasters or other statistical artifacts.

We find that both average individual uncertainty and disagreement are useful in that

they help to improve the accuracy of the consensus forecasts. This is first derived theoret-

ically. Then, we document by means of empirical data from the SPF of the U.S.-FED and

the ECB that this claim holds for both inflation and GDP growth forecasts. Moreover,

the predictive content of the uncertainty measures is documented both from an in-sample

and an out-of-sample point of view. Furthermore, we highlight the practical relevance of

the considered theoretical setting by examining several of its testable implications. This

includes the biasedness of forecasts that is found in most cases for the consensus statis-

tics and also for a considerable share of the individual forecasts for inflation and GDP

growth. Another implication of the theoretical setting that is confirmed by the data is
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that the mean squared error of the consensus forecast does not necessarily increase with

the forecast horizon. This is a result of the combination of asymmetric loss and condi-

tional heteroscedasticity, a finding that has been first derived by Patton and Timmerman

(2007). However, to our knowledge, we are the first to document this behavior empirically.

The remainder of this paper is structured as follows. In Section 2, the theoretical

model is introduced. Here, we distinguish between individual forecasters (agents) and the

principal who uses the information they provide, which we also call a “researcher” in the

following. Furthermore, we state assumptions regarding their respective information sets

and forecast loss functions. Next, we compare the MSE of the combined forecasts to the

MSE of the combination that is augmented by measures of forecast variance. To test the

model’s implications, we employ data from the SPF that is introduced in Section 3. In

Section 4, we report and discuss the results from the empirical investigation. Section 5

summarizes and concludes.

2 Forecasting environment

This section introduces the framework in which consensus forecasts are obtained. We

consider a situation where a user of a forecast survey such as, e.g., the SPF observes a

sequence of individual forecasts for the target variable yt that is predicted with a forecast

horizon of ` = 1. In the following, we first describe the assumptions regarding the DGP,

the model of survey participants and the loss functions of the survey user on the one hand

and survey participants on the other hand. The distinction between the producers and

the users of forecasts becomes particularly important if it is possible that these groups

are characterized by distinct loss functions (Elliott et al., 2005). Second, alternative

measures of ex-ante forecast variance are introduced. Third, we summarize and discuss

the implications of this model framework. Towards the end of this section, we discuss

some alternative specifications of the model framework.
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2.1 Assumptions and notation

Assumption 1 (DGP) Let yt be generated by the process

yt = E[yt|Ft−1] + ηt, (1)

ηt =
√
htτZt, (2)

where Zt
iid∼ N (0, 1) and Ft−1 denotes the information set at t−1. Moreover, ηt represents

a conditionally heteroscedastic process where ht is measurable with respect to Ft−1. We

further assume that E[ht] = 1, such that E[η2
t ] = τ with τ denoting a constant term.

The variance process in (2) could be described e.g. by means of a GARCH specification,

e.g., ht = (1 − α − β) + α
η2t−1

τ
+ βht−1, whereas the constant τ can be thought of as a

scaling factor for the conditional variance of yt.

Assumption 2 The survey panel consists of i = 1, ..., N forecasters who believe in their

own “model” of the DGP. The model of individual i reads as

yi,t = E[yt|Ft−1] + ηi,t, (3)

ηi,t =
√
htτiZt, (4)

where ht and τi are measurable with respect to the information set Ft−1.

Assumption 3 The components ht, τi and Zt are independent of each other for all t and

i. Moreover, τi
iid∼ D(τ, σ2

τ ) where “D” stands for some generic distribution.

Assumptions 1 and 2 imply that, conditional on information available to forecaster i in

period t − 1, E[η2
i,t|Ft−1] = htτi. This means that a forecaster is over(under-) confident

relative to τ if τi < τ (τi > τ). Next, we characterize the prediction problem of individual

forecasters by a flexible, asymmetric loss function that is a generalization of (14):

Assumption 4 (Linex loss) The “linex” function (Varian, 1974; Zellner, 1986) is given
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by

Llinexi,t (ei,t|t−1, φi) =
1

φ2
i

[exp(φiei,t|t−1)− φiei,t|t−1 − 1], (5)

where ei,t|t−1 = yt−ŷi,t|t−1 is individual i’s one-step ahead forecast error and the parameter

φi determines the degree of asymmetry.

In (5), positive (negative) values of ei,t|t−1 lead to larger increases in the individual loss

Llinexi,t (·) if φi > 0 (φi < 0). Moreover, Llinexi,t (·) converges to the squared loss
(
ei,t|t−1

)2
as

φi → 0. The shape of Llinexi,t (ei,t|t−1, φi) for some representative values of φi is shown in

Figure 1.

Figure 1: Linex loss function. If φ > 0 (φ < 0), under-predictions (over-predictions) are
more costly. The solid line depicts the limiting case of symmetric (squared) loss, where
φ→ 0.

Individual survey forecasts ŷi,t|t−1 are often combined to obtain a single aggregated fore-

cast. Such aggregates are often found to be more accurate than single forecasts from the

underlying cross section (Timmermann, 2006).

7



Definition 1 The equally weighted average of individual forecasts given by

ŷ
(C)
t|t−1 =

1

N

N∑
i=1

ŷi,t|t−1 (6)

is referred to as the consensus forecast.

2.2 Individual forecasts and the consensus

If forecasters minimize (5), the optimal forecast depends on both the individual’s condi-

tional expectation and individually perceived conditional variance, i.e.

ŷi,t|t−1 = E[yt|Ft−1] +
φi
2

Var[yi,t|Ft−1], (7)

where the last term on the right hand side enters (7) only if φi 6= 0, i.e. if the loss function

is asymmetric. The forecast error associated with (7) is given by

ei,t|t−1 = yt − E[yi,t|Ft−1]− φi
2

Var[yi,t|Ft−1]. (8)

which shows that the linex-optimal forecast contains a time-varying individual-specific

bias term. According to Definition 1, this implies for the consensus that

ŷ
(C)
t|t−1 =

1

N

N∑
i=1

E[yt|Ft−1] +
1

N

N∑
i=1

φi
2

Var[yi,t|Ft−1]. (9)

Hence, we have the following result.

Proposition 1 Under the Assumptions 1, 2 and 4, the error of the consensus forecast is

given by

e
(C)
t|t−1 = yt −

1

N

N∑
i=1

E[yt|Ft−1]− 1

N

N∑
i=1

φi
2

Var[yi,t|Ft−1],

= ηt −
1

2
htφτ, (10)
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i.e., e
(C)
t|t−1 contains a time-varying bias term.

Apparently, this bias term depends on the average ex-ante uncertainty (i.e. forecast

variance) of the individual forecasts ŷi,t|t−1. In the next step, we state two distinct ways

how uncertainy can be measured. To facilitate the discussion in terms of notation, we

consider the following special case.

Assumption 5 (Homogeneity in the loss function)

Let φi = φ for all i in (5), i.e. all forecasters share the same form of asymmetric loss.

2.3 Ex-ante uncertainty and disagreement

Definition 2 The average over individual forecaster’s ex-ante forecast variance,

Var[yi,t|Ft−1] = htτi, denoted as

Ut|t−1 =
1

N

N∑
i=1

htτi = htτ̄ (11)

is referred to as the average individual uncertainty.

For large cross sections, τ̄
p→ τ , so that plim Ut|t−1 = Var[yt|Ft−1] = htτ . The metric

Ut|t−1 has been suggested as a quantification of the uncertainty of a consensus forecast by

Zarnowitz and Lambros (1987) or Lahiri and Sheng (2010). However, it is only available

as an empirical measure of forecast uncertainty if, say, a survey data set provides density-

or variance forecasts. To obtain a proxy for Ut|t−1 in the absence of such information, the

cross-sectional variance of individual point forecasts is often employed.

Definition 3 The cross-sectional variance of individual point forecasts is called disagree-

ment. This measure is given by

Dt|t−1 =
1

N − 1

N∑
i=1

(ŷi,t|t−1 − ŷ(C)
t|t−1)2. (12)
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By plugging (7) and (9) into (12) and under Assumptions 1 to 5, we obtain

Dt|t−1 =
1

N − 1

N∑
i=1

(ŷi,t|t−1 − ŷ(C)
t|t−1)2 =

N

N − 1

φ2h2
t

4

(
τ 2
t − (τ)2

)
. (13)

For sufficiently large cross sections, N
N−1
≈ 1, hence we neglect this factor in (13) in the

following. Note that Ut|t−1 does not depend on the asymmetry parameter φ, but Dt|t−1

does.

2.4 The accuracy of the consensus forecast

Owing to the well documented success of this simple forecast combination approach in

many empirical applications, users might be interested in the performance of the consensus

forecast.1

Assumption 6 The researcher does not observe (3) and (4) but only the point forecasts

ŷi,t|t−1 and density forecasts, fi,t|t−1 that are elicited from the individual survey participants.

Moreoer, the user has a squared error loss function and minimizes the expected loss.

Lsqt (e
(C)
t|t−1) = (yt − ŷ(C)

t|t−1)2

=
(
e

(C)
t|t−1

)2

, (14)

where e
(C)
t|t−1 = yt − ŷ(C)

t|t−1 denotes the consensus forecast error.

The symmetric criterion in (14) is widely employed in the forecasting literature. Although

the consensus forecast may promise to deliver relatively accurate predictions of yt, the

researcher might figure that further improvements of Lsqt are feasible, for example if infor-

mation regarding forecast uncertainty is employed. As outlined above, such information

is provided by the survey participants, for example, through the density forecasts fi,t|t−1.

As we will show in the following, the accuracy of ŷ
(C)
t|t−1 can be improved if not all fore-

1Examples include combined forecasts for macroeconomic variables such as GDP growth and infla-
tion (Stock and Watson, 2004), FX rate returns (Wright, 2008) or stock market volatility (Becker and
Clements, 2008).
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casting agents are confronted with the same symmetric loss function as the researcher.

Based on the previously described setting, we can state the MSE of the consensus forecast

as a next step. This serves as a reference point to which the augmented consensus fore-

casts that make use of uncertainty statistics are compared in subsequent sections. Given

Assumption 5, the MSE of the consensus forecast can be written as

E

[(
e

(C)
t|t−1

)2
]

= E

[(
ηt −

φ

2
htτ̄

)2
]

= E[η2
t ]− 2 E[ηt

φ

2
htτ̄ ] + E

[
φ2

4
h2
t (τ̄)2

]
= E[η2

t ] +
φ2

4
E[h2

t ] E[(τ̄)2], (15)

where the last equality follows from Assumptions 1 and 3. Due to the dependence of (10)

on the average uncertainty 1
N

∑N
i=1 Var[yi,t|Ft−1], this term is incorporated in the MSE

of the consensus forecast.

2.5 Augmenting the consensus forecast

Notwithstanding the high predictive accuracy of the consensus forecast, improvements

in forecast performance are still feasible under certain assumptions. In the following,

we show how such accuracy gains can be achieved in the forecasting framework that is

outlined above. Moreover, we show under which circumstances the uncertainty metric

Ut|t−1 provides at least as much information as Dt|t−1. The consensus forecast that is

augmented by Ut|t−1 is given by

ŷ
(U)
t|t−1 = ŷ

(C)
t|t−1 + γ(U)Ut|t−1.
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Consequently, the MSE of the error from the combined prediction augmented by Ut|t−1

can be written as

MSE(U) = E

[(
e

(U)
t|t−1

)2
]

= E

[(
ηt −

φ

2
htτ̄ − γ(U)Ut|t−1

)2
]

= E[η2
t ] +

φ2

4
E[h2

t (τ̄)2] + γ(U)φE[h2
t (τ̄)2] +

(
γ(U)

)2
E[h2

t (τ̄)2]. (16)

Next, consider Dt|t−1 as a predictor variable. In analogy to the case above, this yields

MSE(D) = E

[(
e

(D)
t|t−1

)2
]

= E

[(
ηt −

φ

2
htτ̄t − γ(D)Dt|t−1

)2
]

= E[η2
t ] +

φ2

4
E
[
h2
t (τ̄)2

]
+ γ(D) E[φhtτ̄tDt|t−1] +

(
γ(D)

)2
E[(Dt|t−1)2]. (17)

Proposition 2 The MSE-optimal choice of γ(D) in (17) results in

MSE(U)
∗ = E[η2

t ] and

MSE(D)
∗ = E[η2

t ] + c, c ≥ 0. (18)

With the result from (15), this implies that MSE(C) ≥ MSE
(D)
∗ ≥ MSE

(U)
∗ = MSE(optimal).

The proof of Proposition 2 is in the Appendix.

2.6 Generalized forecasting framework

In the following, we open up the model framework from the previous section and explore

the implications of certain generalizations. First, we examine the MSE of the consensus

at anticipation horizons larger than unity. The second extension we investigate are more

general forms of loss functions than the linex criterion. Third, we consider the case where
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the homogeneity assumption φi = φ for all i is replaced by φi 6= φj for i 6= j, while τi = τ

for all i.

2.6.1 Multi-horizon forecasts

In related studies that characterize professional forecasters, the comparison of outcomes

across distinct anticipation horizons is a routine step. Since data sets such as the SPF

provide forecasts not only for the forthcoming quarter but also several steps ahead, it

is tempting to examine the explanatory content of models such as the one described

in Assumption 1 for predictions at distinct horizons. To illustrate our arguments, we

consider an example for the conditionally heteroscedastic process in (1). Thereby, we can

derive a statement about the behavior of the consensus forecast at different horizons that

is empirically evaluated in the subsequent section.

Assumption 7 (Unit variance GARCH) The conditional variance ht is specified by a

GARCH(1,1) process, i.e.

ht = (1− α− β) + α
η2
t−1

τ
+ βht−1 (19)

under the restrictions α > 0, β ≥ 0 and α+ β < 1. Moreover, let ht|t−` denote the `-step

ahead forecast of the condtitional variance based on (19), where ` ≥ 1.

Assumption 8 The process yt is weakly stationary and has the Wold representation

yt =
∑∞

j=0 ψjηt−j, with
∑∞

j=0 ψ
2
j <∞ and ψ0 = 1.

Under assuptions 1, 4 and 5, the individual `− step ahead forecast is given by

ŷi,t|t−` = E[yt|Ft−`] +
φ

2
Var[yi,t|Fi,t−`], (20)

cf. Christoffersen and Diebold (1997). As for ` = 1, the consensus forecast ŷ
(C)
t|t−` takes

the same form as (20).

Proposition 3 The MSE of ŷ
(C)
t|t−` can be either increasing or decreasing in `.
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Proof. The MSE of ŷ
(C)
t|t−` can be written as

MSE(C) = E

[(
yt − E[yt|Ft−`] + E[yt|Ft−`]− ŷ(C)

t|t−`

)2
]

= E
[
(yt − E[yt|Ft−`])2]+ E

[(
E[yt|Ft−`]− ŷ(C)

t|t−`

)2
]
. (21)

From (9) and given Assumption 5, it can be seen that the second term in (21) equals

− 1
N

∑N
i=1

φ
2

Var[yi,t|Fi,t−`]. Using Assumptions 2 and 8, we have

MSE(C) =
`−1∑
j=0

ψ2
j E[η2

t−j] + E

[(
−φ

2
ht|t−`τ̄

)2
]
. (22)

Given Assumption 3, the second term in (22) can be written as

E

[(
−φ

2
Var[yt|Ft−`]

)2
]

=
φ2

4
E[h2

t|t−`] E[(τ̄)2].

Next, using Assumption 7 we obtain an expression for the `-step ahead forecast of the

conditional variance, i.e.

ht|t−` = 1− (α + β)` + α(α + β)`−1η
2
t−`

τ
+ β(α + β)`−1ht|t−1.

Abbreviating α` = α(α + β)`−1 and β` = β(α + β)`−1, this leads to

E[h2
t|t−`] =

[
1− (α + β)`

]
+ 2

[
1− (α + β)`

]
(α` + β`)

+
(1− α− β)(1 + α + β)(3α2

` + β2
` + 2α`β`)

1− 3α2 − β2 − 2αβ

→ 1 if `→∞.

With the parameter restrictions on α and β from Assumption 7, this shows that the

second term in (22) is decreasing in `. It can also be seen from (22) that the first term,

in contrast, is increasing in `. Hence the influence of ` on the MSE of ŷ
(C)
t|t−` can point in

either direction, as it is stated in Proposition 3.
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2.6.2 Skewness in the loss function

In this section, we generalize Assumption 4 such that higher moments of yt my affect the

loss of individual forecasters. Thereby, it is possible to model the depedence of forecasts on

time-varying higher moments such as, for example, conditional skewness. Time-variation

in the third moment can be relevant because, for example, the probability of negative

inflation shocks might be higher during recession periods. Similar as Christofferson and

Diebold (1997), we consider an optimal forecast of general form. This prediction may

depend on higher moments up to order three, say. Denoting the first three time-conditional

moments of the DGP by µt+1|t, σt+1|t and St+1|t, respectively, this forecast reads as

ŷt+1|t = G(µt+1|t, σt+1|t,St+1|t), (23)

i.e. the optimal forecast depends on the first three conditional moments and where the

function G is continuously differentiable. Note that, in contrast to (7), the relation in

(23) will in general not be linear. A first-order Taylor series expansion of ŷt+1|t around

the unconditional moments yields

ŷt+1|t ≈ G(µ, σ,S) +G′(·)


µt+1|t − µ

σt+1|t − σ

St+1|t − S

 = ỹt+1|t. (24)

Defining ν = G(µ, σ,S) − G′(µ, σ,S)(µ + σ + S), β1 = G′(µ, σ,S), β2 = G′(µ, σ,S) and

β3 = G′(µ, σ,S), the approximation in (24) can be written as

ỹt+1|t = ν + β1µt+1|t + β2σt+1|t + β3St+1|t. (25)

2.6.3 An alternative way to introduce heterogeneity

To consider a complementary case with respect to the one in Assumption 5, we alter this

assumption in the following way.
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Assumption 9 (Homogeneity in the conditional variance, heterogeneity in φi)

Let τi = τ for all i. In contrast to Assumption 5, let φi 6= φj for all i 6= j.

Under Assumption 9, uncertainty and disagreement are given by

Ut|t−1 = htτ (26)

and

Dt|t−1 =
N

N − 1

h2
t τ

2

4

(
φ2
i − (φ̄)2

)
, (27)

respectively. Comparing (27) to (12) shows that under Assumption 9, Dt|t−1 is based on

the cross sectional variation in the asymmetry parameter φi.

Proposition 4 Given Assumption 9, we obtain

MSE(U)
∗ = E[η2

t ] and

MSE(D)
∗ = E[η2

t ] + c, c ≥ 0. (28)

With the result from (15), this implies that MSE(C) ≥ MSE
(D)
∗ ≥ MSE

(U)
∗ = MSE(optimal).

This means that replacing ssumption 5 by ssumption 9 does not essentially affect the

conclusions regarding the MSE of the augmented forecasts. The proof is found in the

appendix.

3 Data

In the following empirical analysis, two data sets with survey forecasts are employed. The

SPF is conducted both for the U.S. by the Federal Reserve Bank of Philadelphia and for

the Euro area by the ECB. We refer to these data sets as U.S.-SPF and ECB-SPF. The
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quarterly survey forecast data covers the period between 1992Q1 and 2013Q4 in case of

the U.S.-SPF and the period between 1999Q1 and 2016Q2 in case of the ECB-SPF.

Both the U.S.-FED and the ECB provide both point- and density forecasts. The

survey participants provide density forecasts for a range of potential outcomes regarding

the growth rate of the GDP deflator. To this end, they assign probability values to a set

of histogram bins which cover a range that is prespecified by the survey questionnaire.

The manual of the U.S.-SPF states that the reported data “gives the mean responses

for the probabilities that the annual-average over annual-average percent change in the

level of the GDP price index falls into a number of alternative ranges.” Here, the annual-

average level is the average of the quarterly levels over the four quarters of a calendar year.

In the case of the ECB-SPF, inflation and GDP growth point- and density forecasts refer

to the year-on-year growth rates of the “harmonized index of consumer prices” (HICP)

as the inflation metric and real GDP for the Euro area. A particularity of the density

forecasts in the U.S.-SPF is that forecasts that are reported during successive quarters

of a certain year relate to the growth rate of prices or GDP of that or the next entire

year. This means that the forecast horizon declines with each quarter until a new target

year starts. This is referred to as a “fixed-event” structure in the related literature. For

this reason, we restrict the empirical analysis of the U.S.-SPF to forecasts from the 1st

quarter of each year. Thereby, we obtain forecasts with a horizon of approximately one

year. In contrast, the ECB-SPF provides one-year ahead forecasts at each quarter. After

excluding forecasters who report less than 6 predictions, the total number of individual

forecasts is 46 (48) for inflation (GDP growth) forecasts from U.S.-SPF, whereas the

ECB-SPF comprises 65 (67) individual forecasts for inflation and GDP growth forecasts,

respectively. Forecast errors are based on “real-time” data, i.e. we employ the earliest

data vintage that is available. For the U.S., the data source is the real-time database of

the Federal Reserve Bank of Philadelphia. For the Eurozone, data are drawn from the

ECB real-time data set.
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4 Empirical results

Since the SPF predictions are among the few data sources that provide density forecasts

for macroeconomic variables, tests for the dependency of the consensus forecast on forecast

uncertainty can be readily implemented. Thus, employing the SPF data provides an ideal

empirical framework for testing the hypotheses that are implied by the theoretical model.

In this section, we collect evidence for biases in SPF forecasts. We then document to

which extent such biases might be explained by the theoretical claims regarding asym-

metric loss in the previous sections. We first examine the evidence for bias in individual

and aggregate forecasts by means of conventional diagnostics that are based on forecast

errors. As a second step, an introduction of the empirical measure by means of which we

evaluate the relation between the consensus forecast and forecast variation follows. Here

we compare the point forecasts to the ones that are derived as the midpoint of density

forecasts. Third, we test if the theoretical findings regarding the predictive content of the

distinct metrics of ex-ante variance are confirmed empirically by comparing the relative

accuracy of the resulting augmented forecast combinations. Fourth, the examination of

the MSE of the consensus forecast across anticipation horizons provides an assessment of

the relevance of the model framework with asymmetric loss and conditional heteroscedas-

ticity. Finally, we test if extensions of the baseline model are justified in terms of their

explanatory content for the SPF data.

4.1 The evidence on bias in SPF forecasts

In this section, we examine two of the central claims of the theoretical model, namely

that individual point forecasts and the consensus forecast are biased. We first consider

individual data and then test for biasedness of the consensus forecast. The presence of a

bias term in the individual and aggregate predictions is an implication of asymmetry in the

loss function. This can be seen from equation (8). The presence of forecast bias is routinely

tested in the framework of Mincer and Zarnowitz (1969), where the realization of the target

variable is regressed on the forecast and a constant term, i.e. yt = δi0 + δi1ŷi,t|t−1 + εit.
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The null hypothesis of unbiasedness is then specified as H0 : (δi0, δi1)′ = (0, 1)′. Figure

Figure 2: Histogram of individual average one-year-ahead forecast errors. Forecasts which
are diagnosed as biased at the 10%-level by Mincer-Zarnowitz tests are marked in yellow.

2 contains histograms for the individual mean forecast errors. Similar as in Capistrán

and Timmermann (2009), we distinguish between those average forecast errors where the

Mincer-Zarnowitz test indicates the presence of a bias term and those where the respective

H0 cannot be rejected. The former cases are shown as yellow in the graphs. Comparing

the findings for the U.S. to the ones for the Euro area, we find that the number of negative

bias terms is larger except in the case of the inflation forecasts in the ECB-SPF. This

means that in the majority of cases, inflation and GDP growth are more often over-

than underpredicted. For example, a relatively large number of individual forecasts for

inflation predictions in the U.S. are diagnosed to be, on average, significantly higher than

the realized values. In contrast, the histograms for the GDP growth forecasts appear
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slightly more symmetric, though the number of negative bias terms is also larger than the

number of positive ones in this case. On average across forecasters, the share of biased

forecasts seems to be larger in the U.S. sample than in the Euro area sample. Both for

the inflation- and the GDP growth forecasts, the number of large (negative) bias terms is

higher for the participants of the U.S.-SPF. Thus, there is relatively strong evidence for

biasedness, both in inflation- and GDP growth forecasts. This is the case for both the

U.S. and the Euro area sample and is in line with the theoretical result in equation (8).

Testing for biasedness in the consensus forecast proceeds in the same way as for the

individual data. The results are summarized in Table 1.

Table 1: Tests of unbiasedness of consensus forecasts

Target variable Data set Mean error δ0 δ1 F -statistic
[p-value]

Inflation U.S.-SPF -0.44 1.21
(0.46)

0.25
(0.20)

17.94
[0.00]

ECB-SPF 0.08 0.10
(1.28)

0.98
(0.77)

0.20
[0.81]

GDP growth U.S. SPF -0.35 3.96
(1.39)

−0.49
(0.48)

7.61
[0.00]

ECB-SPF -0.33 0.72
(0.49)

0.19
(0.28)

5.15
[0.01]

NOTE: Cell entries show 1) Mean errors and 2) coefficient estimates and test results from Mincer-

Zarnowitz regressions for one-year-ahead forecasts. Newey-West HAC standard errors of coefficient esti-

mates are reported in parentheses.

The coefficient estimates for δ0 and δ1 in the table show that according to the F -

statistic for H0 : (δ0, δ1)′ = (0, 1)′, all forecasts except the inflation predictions for the

Euro area are diagnosed as biased. This result is in line with the graphical display of the

inflation forecasts in the Euro area in Figure 3. As the graph on the upper right hand side

of the figure shows, a large numer of forecasters underpredicted inflation until the years

of the financial crisis (i.e. most forecast errors are positive). In contrast, overpredictions

occurred more frequently afterwards. This may be the reason why no significant bias can

be detected for inflation forecasts from the Euro area if coefficient estimates are computed

based on information from both periods. This can also be seen from the average error

statistic in the third column of Table 1, which is relatively close to zero. Moreover, the

20



estimates of the asymmetry parameter that are shown in Figure 5 also shows that the

distribution of individual φi coefficients is most symmetric in the case of the Euro area

inflation data. These estimates will be described in more detail below. A more clear-cut

tendency to overpredict is found for the remaining forecasts, irrespective of the target

variable or the data set that is employed. In these cases, we find more overpredictions

and the average size of underpredictions is larger than the size of overpredictions.
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Figure 3: The graphs show one-year-ahead forecast errors of the consensus (solid line)
and the 5%- and 95% quantiles of the cross section of individual forecasts (dashed lines).

Interestingly, the slope coefficients are rather small and in all cases insignificant. How-

ever, the inflation forecasts for the Eurozone are distinct also in this case. For these fore-

casts, the estimate of δ1 is not significantly different from unity. The deviations from unity

of the remaining coefficient estimates for δ1 are significant at the 5% level in all three cases.

In contrast, the assumption that any one of these slope coefficient estimates equals zero
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cannot be rejected. This might be understood by recalling that the point forecasts include

both E[yt|Ft−1] and Var[yi,t|Ft−1]. Hence, in a Mincer-Zarnowitz regression, the point

forecast may be regarded as an imprecisely measured (and biased) metric of E[yt|Ft−1].

Pagan (1984) has shown that the coefficient estimates of such mismeasured variables will

be biased towards zero.

4.2 Construction of empirical measures

In the following empirical analysis, we make use of the matched point- and density fore-

casts from the SPF data sets provided by the U.S. FED and ECB, which contain point

forecasts ŷi,t|t−1 besides the density forecasts that are denoted as fi,t|t−1. From individual

density forecasts, the expected value as denoted ̂E[yi,t|Ft−1] is obtained as an alternative

to ŷi,t|t−1. It has been documented e.g. by Engelberg et al. (2009) that many forecasters

in the SPF report ŷi,t|t−1 and ̂E[yi,t|Ft−1] that do not coincide. Engelberg et al. (2009)

conjecture that this can be due to asymmetric preferences which underly the point fore-

casts. If such a bias is present only in ŷi,t|t−1, the difference between the two forecasts

should reveal this term. The histogram-based expected value ̂E[yi,t|Ft−1] is computed as

̂E[yi,t|Ft−1] =
∑K

k=1 Pi,t|t−1(k)µi,t|t−1(k), where K denotes the number of histogram bins,

Pi,t|t−1(k) stands for the probability weight forecaster i attaches to bin k and µi,t|t−1(k)

represents the midpoint of that bin.2 Following Capistrán and Timmermann (2009) inter

alia, we proceed by treating the leftmost and rightmost bin of the histogram as closed

intervals with the same width as the intermediate intervals. Similar to Clements (2014),

we define the difference between the mean of the density forecast and the point prediction

as

ξi,t|t−1 = ̂E[yi,t|Ft−1]− ŷi,t|t−1, i = 1, ..., N.

2Other methods that have been applied to derive density forecasts from the SPF questionnaires
include the fitting of a normal- or a beta distribution (cf. Engelberg et al, 2009). The results that are
documented in the following are qualitatively robust with respect to the consideration of these alternative
methods.
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If the term φi
2
Var[yi,t|Ft−1] is, as in the discussion of the Mincer-Zarnowitz results in

section 4.1 interpreted as a measurement error within ŷi,t|t−1, then, according to Clements

(2014), a forecast error ei,t|t−1 can be regarded as a noisy proxy variable for ξi,t|t−1. More-

over, working with ξi,t|t−1 does not require to specify which data vintage of the target

variable yt is forecasted by the survey participants. A further advantage of ξi,t|t−1 in com-

parison to the forecast error is that it is unaffected by persistent shocks in yt that generate

biased forecast errors which might be mistakenly interpreted as the result of asymmetric

loss (Clements, 2014). An alternative method to estimate asymmetry parameters that is

based on foreast errors and the assumption that the conditional variance of the DGP and

of the individual models can both be consistently estimated is proposed by Franses et al.

(2016). In the empirical analysis of Franses et al. (2016) that is carried out for sales data,

standardized forecast errors are employed to estimate the parameters of certain asym-

metric loss functions, including linex, by means of OLS. In this case, the standardization

might mitigate the aforementioned issue of persistence in the disturbance process. By

employing model-based estimates of the conditional variance, the analysis of Franses et

al. (2016) offers a view that is complementary to our empirical approach that uses survey

data to compute the conditional variance.

To examine the scope of information from the histogram forecasts to improve the

consensus, we we extract the variances of individual density forecasts as a measure of

ex-ante uncertainty. From the histogram forecasts, we obtain Ûi,t|t−1 = ̂Var[yi,t|Ft−1] =∑K
k=1 Pi,t|t−1(k)

(
µi,t|t−1(k)− ̂E[yi,t|Ft−1]

)2

. The second metric that is related to forecast

variation is the disagreement statistic Dt|t−1. As in the case of uncertainty, we distinguish

between the theoretical and the empirical measure and denote the empirical disagreement

measure as D̂t|t−1 in the following.

4.3 Testing for a time-varying bias in SPF forecasts

The following section consists of two parts. After first examining the evidence for a time-

varying bias in individual forecasts, we turn to aggregate statistics in the second step. If
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Table 2: Empirical measures of forecasts and forecast variance

Statistic Symbol Source Formula

Consensus forecast ŷ
(C)
t|t−1 ŷi,t|t−1

1
N

∑N
i=1 ŷi,t|t−1

Avg. cond. expectation ̂E[yt|Ft−1] fi,t|t−1
1
N

∑N
i=1

̂E[yi,t|Ft−1]

Histogram-point deviation ξt|t−1 ŷi,t|t−1, fi,t|t−1
̂E[yt|Ft−1]− ŷ(C)

t|t−1

Avg. indiv. uncertainty Ût|t−1 fi,t|t−1
1
N

∑N
i=1

̂Var[yi,t|Ft−1]

Disagreement D̂t|t−1 ŷi,t|t−1
1

N−1

∑N
i=1(ŷi,t|t−1 − ŷ(C)

t|t−1)2

Avg. indiv. skewness Ŝt|t−1 fi,t|t−1
1

N−1

∑N
i=1

̂Skew[yi,t|Ft−1]

(7) holds and ŷi,t|t−1 entails a bias due to asymmetric loss and conditional heteroscedas-

ticity, we have that

ξi,t|t−1 = −φi
2

̂Var[yi,t|Ft−1].

To obtain a graphical impression of ξi,t|t−1, consider Figure 4 which depicts the average

deviation, ξt|t−1 for the distinct data sets. It can be seen that the deviation between

conditional expectation and the point forecasts is negative most of the time. This holds,

with some exceptions, for both the inflation and the GDP growth forecasts. In case of the

inflation forecasts in the Euro area, ξi,t|t−1 reverts it sign around the year 2009, shortly

after the outbreak of the financial crisis. While ̂E[yt|Ft−1] exceeds ŷ
(C)
t|t−1 until this date,

the reverse holds for the rest of the sample. In the following analysis, we examine potential

reasons for this behavior that is not found in this pronounced form for the other data

sets. In the remaining cases, positive values of ξi,t|t−1 are limited to shorter periods, either

at the start of the sample period as in the case of U.S. GDP growth or for single time

instances around the most turbulent period after the Lehman bancruptcy incident in case

of U.S. inflation or GDP growth in the Eurozone. The box plots for individual deviations,

ξi,t|t−1, that are found on the right-hand side next to these graphs show that these findings

are in most cases not generated by outliers, with the exception of GDP growth in the
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Euro area, where the large spike in ξi,t|t−1 in 2008 suggests that for some individuals,

the conditional expectation has been considerably larger than the point forecast. These

forecasters issued considerably more accurate point forecasts during the most turbulent

period. This is evidently not reflected in their histogram forecasts since ξi,t|t−1 takes high

values in this particular time period. To examine the adjustment behavior of individual

forecasters in more detail, we employ the following regression model:

ξi,t|t−1 = γi ̂Var[yi,t|Ft−1] + εi,t. (29)

From the estimates γ̂i in (29), we obtain the asymmetry parameter as φ̂i = −2γ̂i. Figure

5 shows a histogram of these coefficient estimates. Those estimates that are significant

at least at the 10% level are shown in yellow. From the figure it can be seen that the

asymmetry parameter is positive in the majoritiy of cases. This finding also holds if only

the significant estimates are considered. Given the definition of the linex loss function,

this implies that most forecasters consider underpredictions as more costly. For both the

inflation and GDP growth forecasts, coefficient estimates vary between -2 in the lowest

cases up to a value of about 5. Computing cross sectional averages of the asymmetry

parameter, we obtain the following numbers:

U.S. Inflation Euro area inflation U.S. GDP growth Euro area GDP growth

φ̄ 0.73 0.04 1.12 0.32

This shows that the asymmetry parameter estimates, on average, suggest that un-

derpredictions are considered as more costly. A value close to zero is obtained only for

the inflation forecasts in the Eurozone. This also underlines the findings regarding the

unbiasedness of these forecasts in contrast to the remaining data sets that are reported

in Table 1 for the Mincer-Zarnowitz regressions. To consider an example for the loss that

is implied by such number for the asymmetry parameter, a forecaster with φ = 1 that

produces a positive forecast error (i.e. an underprediction) equal to one percentage point

in inflation experiences a loss of Llinexi,t ≈ 0.72, whereas φ = 5 results in Llinexi,t ≈ 5.69.

25



4.4 The explanatory content of Ût|t−1, D̂t|t−1 and Ŝt|t−1

In the next step, we analyze the scope of density forecasts to improve the consensus

forecast ŷ
(C)
t|t−1. Thus, we focus on aggregate statistics in the following. This has the

advantage that individual forecasters who deliver very few observations can not exert an

undue influence on the empirical findings. As noted by Elliott et al. (2008), findings

from the U.S. SPF obtained at the level of individual forecasters have to be interpreted

with care because for several forecasters, only a relatively small number of observations

are available. The aggregate statistics that are derived from individual point and density

forecasts are listed in Table 2.

Given the evidence of biasedness in individual forecasts, we now investigate the the-

oretical hypothesis that aggregate measures of forecast variance can explain the wedge

between ̂E[yt|Ft−1] and ŷ
(C)
t|t−1. For this purpose, we employ a time series regression model

to reveal the relative explanatory content of the ex-ante measures of forecast variance

Ût|t−1 and D̂t|t−1. Moreover, to allow for the presence of higher moments in a (general)

loss function, we examine of the average conditional skewness can also help to explain

variation in ξt|t−1. The regression equation reads as

ξt|t−1 = γÛt|t−1 + λŜt|t−1 + εt. (30)

An analogously specified model is employed to examine the predictive content of D̂t|t−1

instead of Ût|t−1. The results from (30) for the four distinct data sets are summarized in

the tables 3 to 6. The coefficient estimates φ̂ = −2γ̂i for Ût|t−1 are positive in all cases.

This is in line with the findings for individual forecasts and the general level of ξt|t−1 in

the majority of cases as it is depicted in Figure 4. The same holds in general also for the

estimates obtained if D̂t|t−1 appears on the right hand side of (30), however, estimates are

insignificant in two cases. We find that the estimates of Ût|t−1 are throughout significant

at the 1% level, irrespective of which data set is considered. Thus, Ût|t−1 is related to the

bias in the consensus forecast and should, consequently, increase the predictive accuracy
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of ŷ
(C)
t|t−1. In contrast, D̂t|t−1 is insignificant if inflation in the U.S. or GDP growth in the

Eurozone is considered. This is in line with the theoretical finding that Ût|t−1 is more

directly related to the time-varying bias term within ŷ
(C)
t|t−1 than D̂t|t−1.

As a next step, we turn to extensions of the baseline model. As outlined in section

2.6.2, the consideration of more general loss functions than (5) may lead to cases where

the conditional skewness influences the point forecasts. For this reason, the empirical

model in (30) allows for the influence of Ŝt|t−1.

The corresponding results are reported in column III of Tables 3 to 6. We find that

the conditional skewness, Ŝt|t−1, has a significant explanatory content for ξt|t−1 for both

inflation and GDP growth, yet only for the Euro area data set if Ŝt|t−1 is included as

the only regressor. This specification should, however, be affected by an omitted variable

bias if the conditional variance component is an important determinant of ξt|t−1, as it

has been documented in columns I and II. Turning to the outcomes reported in column

IV, however, shows that the joint consideration of Ût|t−1 and Ŝt|t−1 leads to significant

results for both variables. Interestingly, in all tables, the size of the coefficient of Ût|t−1

is larger in column IV than in column II, where Ût|t−1 is the only explanatory variable.

From this we conclude that the consideration of a broader class of loss functions makes

sense from an empirical point of view, yet this generalization strengthens the initial claim

regarding the explanatory content of Ût|t−1. The positive sign of most of the coefficient

estimates for Ŝt|t−1 can be explained by noting that forecasters should be aware that the

conditional skewness and the conditional expectation are positively related. For example,

a positive skewness coefficient typically results in an expected value that exceeds the

median. Given this effect, forecasters might tend to report point predictions that are

closer to the conditional median than to the conditional mean, i.e. we expect a negative

sign for the coefficient β3 in (25). As a consequence, the coefficient of Ŝt|t−1 in a regression

with ξt|t−1 on the left hand side should be positive as long as Ŝt|t−1 takes positive values.

In this sense, the negative value of λ for the case of U.S. GDP growth makes sense since,

in contrast to the other data sets, the time-average of Ŝt|t−1 in this data set is negative
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and equals a value of -0.21.

Table 3: U.S. inflation

Col. no. I II III IV
Sample period: 1993Q1 to 2013Q1

D̂t|t−1 −0.35∗∗

(0.15)

Ût|t−1 −0.28∗∗

(0.13)

−1.06∗∗∗

(0.36)

Ŝt|t−1 −0.26
(0.19)

1.69∗∗∗

(0.52)

No. obs. 21 21 21 21

Note: Newey-West HAC standard errors in parentheses. Asterisks [∗∗∗,∗∗ ,∗] denote significance at the 1%, 5% and 10%

level, respectively.

Table 4: Euro area inflation

Col. no. I II III IV
Sample period: 1999Q1 to 2016Q1

D̂t|t−1 −0.09∗

(0.05)

Ût|t−1 −0.04∗∗

(0.02)

−0.05∗∗∗

(0.02)

Ŝt|t−1 0.23∗∗∗

(0.04)

0.25∗∗∗

(0.04)

No. obs. 69 69 69 69

Note: Newey-West HAC standard errors in parentheses. Asterisks [∗∗∗,∗∗ ,∗] denote significance at the 1%, 5% and 10%

level, respectively.

4.4.1 An out-of-sample forecast competition

A further test of the theory outlined in this study is to examine out-of-sample forecasts

of inflation and GDP growth. Candidate predictions that are compared are the average

conditional mean, the consensus forecast and distinct extensions of the consensus forecast.

As it is described in Proposition 2, we expect the lowest overall MSE for ̂E[yt|Ft−1], and,
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Table 5: U.S. GDP growth

Col. no. I II III IV
Sample period: 1993Q1 to 2013Q1

D̂t|t−1 −1.09∗

(0.56)

Ût|t−1 −0.38∗

(0.19)

−0.92∗∗∗

(0.28)

Ŝt|t−1 −0.10
(0.31)

−1.28∗∗∗

(0.49)

No. obs. 21 21 21 21

Note: Newey-West HAC standard errors in parentheses. Asterisks [∗∗∗,∗∗ ,∗] denote significance at the 1%, 5% and 10%

level, respectively.

Table 6: Euro area GDP growth

Col. no. I II III IV
Sample period: 1999Q1 to 2016Q1

D̂t|t−1 0.05
(0.13)

Ût|t−1 −0.11∗∗∗

(0.03)

−0.11∗∗∗

(0.03)

Ŝt|t−1 1.18∗∗

(0.58)

1.16∗∗

(0.51)

No. obs. 69 69 69 69

Note: Newey-West HAC standard errors in parentheses. Asterisks [∗∗∗,∗∗ ,∗] denote significance at the 1%, 5% and 10%

level, respectively.

moreover, that the consideration of D̂t|t−1 and Ût|t−1 helps to increase the predictive

accuracy of ŷ
(C)
t|t−1. In the following, we discuss the outcomes of a horse-race between these

alternative forecasts. For this purpose, we compare the MSE of ̂E[yt|Ft−1] and ŷ
(C)
t|t−1 to

the MSE of augmented consensus forecasts that are computed, for example as

ŷt|t−1 = ŷ
(C)
t|t−1 + γ̂Ût|t−1 + λ̂Ŝt|t−1, (31)

29



where the estimates of γ and λ are obtained from regressions such as the one in (30).

The findings of the forecast competition are found in Table 7. As expected, the average

conditional mean is the most successful forecast. The finding of a high predictive accuracy

of ̂E[yt|Ft−1] is in line with Proposition 1 since this forecast does not include the bias term

φ
2
Ût|t−1. Consequently, the consensus that includes this term is throughout among the

forecasts with the lowest forecast accuracy. Exceptions from this pattern are the forecasts

for inflation in the Eurozone. A reason for this might be that individual asymmetry

parameters are located on both sides of the cross sectional average φ̄, such that the

bias terms cancel each other. From Figure 5 and the table for φ̄ on page 24, it can

be seen that the distribution of individual estimates φi is rather symmetric in this case,

whereas it is more tilted to one side for U.S. inflation and GDP growth in the Euro

area. Here, ̂E[yt|Ft−1] delivers more accurate forecasts than ŷ
(C)
t|t−1. Moreover, we find that

the forecast ŷ
(C)
t|t−1 can be improved by either Ût|t−1 or D̂t|t−1, though the former measure

provides a higher information content. Again, the most pronounced results obtain for

predictions of U.S. inflation. However, the forecast variance statistics Ût|t−1 or D̂t|t−1

typically improve predictive accuracy, whereas the conditional skewness delivers mixed

results that improve forecasts to a considerable extent only for U.S. inflation when it is

considered in combination with Ût|t−1. Overall, we conclude that the information from

density forecasts can be employed fruitfully to improve the accuracy of the consensus.

This is possible in particular in those cases where a considerable part of the cross section

can be characterized by a similar asymmetry in the forecast loss function. These results

clearly support the implications of the theoretical model that is described in this work.

4.5 Multi-step forecasts

A further testable implication of the considered model is that the MSE of the consensus

forecast need not be an increasing function of the forecast horizon. Patton and Tim-

mermann (2007) were among the first to show that such a behavior can be the result of

asymmetric loss and a DGP with conditionally heteroscedastic disturbances. However,

30



Table 7: Forecast Evaluation.

• = M̂SE
(•)

M̂SE
(E)

- M̂SE
(•)

M̂SE
(C)

- M̂SE
(•)

M̂SE
(U)

- M̂SE
(•)

M̂SE
(D)

- M̂SE
(•)

M̂SE
(S)

- M̂SE
(•)

U.S. sample: 1993Q1 to 2013Q1. Inflation

E ̂[yi,t|Ft−1] 0.62 0 · · · ·
ŷ

(C)
t|t−1 0.87 -0.2438 0 · · ·
Û 0.82 -0.1955 0.0483 0 · ·
D̂ 0.87 -0.2470 -0.0032 -0.0515 0 ·
Ŝ 0.87 -0.2533 -0.0095 -0.0578 -0.0063 0

Û + Ŝ 0.62 -0.0048 0.2390 0.1907 0.2422 0.2485
Euro area sample: 1999Q1 to 2016Q1. Inflation

E ̂[yi,t|Ft−1] 0.85 0 · · · ·
ŷ

(C)
t|t−1 0.86 -0.0069 0 · · ·
Û 0.86 -0.0078 -0.0009 0 · ·
D̂ 0.86 -0.0088 -0.0019 -0.0010 0 ·
Ŝ 0.85 -0.0012 0.0057 0.0066 0.0077 0

Û + Ŝ 0.86 -0.0018 0.0051 0.0060 0.0070 -0.0006
U.S. sample: 1993Q1 to 2013Q1. GDP growth

E ̂[yi,t|Ft−1] 6.76 0 · · · ·
ŷ

(C)
t|t−1 6.31 0.4456 0 · · ·
Û 6.28 0.4802 0.0347 0 · ·
D̂ 6.20 0.5616 0.1160 0.0814 0 ·
Ŝ 6.36 0.4035 -0.0421 -0.0768 -0.1581 0

Û + Ŝ 6.76 0.0031 -0.4425 -0.4771 -0.5585 -0.4004
Euro area sample: 1999Q1 to 2016Q1. GDP growth

E ̂[yi,t|Ft−1] 4.27 0 · · · ·
ŷ

(C)
t|t−1 4.31 -0.0389 0 · · ·
Û 4.30 -0.0294 0.0095 0 · ·
D̂ 4.30 -0.0292 0.0097 0.0002 0 ·
Ŝ 4.32 -0.0446 -0.0058 -0.0152 -0.0154 0

Û + Ŝ 4.31 -0.0348 0.0041 -0.0054 -0.0056 0.0099

little is known about the empirical relevance of this argument. To the best of the author’s

knowledge, the current study is the first which documents that a non-increasing behavior

of the MSE of a consensus forecast can be found for SPF data. Figure 6 depicts the MSE

of the consensus forecast over the forecast horizon. The data sets represented by the

31



graphs are forecasts for GDP growth in the U.S. and inflation and GDP growth for the

Euro area. For the U.S.-SPF, long-term inflation forecasts with a horizon of more than 2

years are only available for the most recent years which precludes to employ this data for

such a purpose. We find a similar pattern for the MSE of all the consensus forecasts. The

MSE of all forecasts initially increases with the forecast horizon. For horizons between

six and less than twelve quarters, the increase is less pronounced. This might reflect

the sparsity of relevant information at these horizons. At a horizon of 12 quarters, all

forecasts reach a maximum value for the MSE. Beyond this horizon, the employed data

sets do not provide forecasts except for the very long term. Comparing the MSE of these

predictions with a horizon of approximately five years to the remaining ones, it turns out

that the long-term MSE is only slightly larger than the value obtained for two-year ahead

forecasts and is considerably smaller than the one for three-year ahead predictions. Such

a reduction of the MSE cannot be explained by typical dynamic processes but requires

an argument such as the one provided by the decline in the conditional variance, as it is

outlined in Proposition 3. An initial increase in the MSE seems to be largely driven by

the accumulation of squared shocks that are contained in the Wold representation of the

process. Beyond horizons at which the net increase of the MSE due to such terms is neg-

ligible, the decline in the MSE becomes visible due to the more pronounced convergence

of the conditional variance towards the unconditional variance.

5 Summary and conclusions

By means of a model which assumes a generalization of the mean squared error criterion

as the relevant loss for individual forecasters, we show that the performance a combined

forecast can be improved by augmenting a consensus forecast by measures of ex-ante

forecast variance. An empirical illustration, which is based on density forecasts from the

SPF confirms the implications of the theoretical model. We find that while point forecasts

are biased and therefore less accurate than the conditional mean predictions, the former

can be improved by employing the information from the SPF to compute the average
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individual uncertainty and the variation across point predictions. As suggested by our

model, the former leads to higher improvements in the augmented forecast. A number of

plausibility checks based on testable implications of the theoretical model underline the

empirical relevance of the considered framework.
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A Proof of Proposition 2

Let γ
(U)
∗ denote the solution of

∂MSE(U)

∂γ(U)

!
= 0.

⇒ γ(U)
∗ = −φ

2
(32)

⇒ MSE(U)
∗ = E[η2

t ] = MSE(optimal). (33)

Next, the solution for the case when the consensus is augmented by disagreement is given

by setting

∂MSE(D)

∂γ(D)

!
= 0.

⇒ γ(D)
∗ = −

E[φhtτ̄Dt|t−1]

2 E[(Dt|t−1)2]

⇒ MSE(D)
∗ = E[η2

t ] + E

[
φ2

4
h2
t (τ̄)2

]
−
(
E[φhtτ̄Dt|t−1]

)2

4 E[(Dt|t−1)2]

= E[η2
t ] +

φ2

4
E[h2

t ] E[(τ̄)2]−
φ2
(
E
[
h3
t τ̄
(
τ 2 − (τ̄)2

)])2

4 E

[
h4
t

(
τ 2 − (τ̄)2

)2
] . (34)

Comparing (34) to (15) shows that MSE
(D)
∗ is smaller than the MSE of the combined

forecast without disagreement, i.e. MSE(C) ≥ MSE
(D)
∗ . Further rearrangement of (34)

leads to

MSE(D)
∗ = E[η2

t ] +
φ2

4

E
[
h2
t (τ̄)2]E [h4

t

(
τ 2 − (τ̄)2

)2
]
−
(
E
[
h3
t τ̄
(
τ 2 − (τ̄)2

)])2

E

[
h4
t

(
τ 2 − (τ̄)2

)2
]

= E[η2
t ] +

φ2

4

E[h2
t ] E[h4

t ] E
[
(τ̄)2]E [(τ 2 − (τ̄)2

)2
]
− (E[h3

t ])
2
(
E
[
τ̄
(
τ 2 − (τ̄)2

)])2

E[h4
t ] E

[(
τ 2 − (τ̄)2

)2
]

(35)
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From the Cauchy-Schwarz-inequality, it follows that 1.) E[h2
t ] E[h4

t ] ≥ (E[h3
t ])

2
and 2.)

E
[
(τ̄)2]E [(τ 2 − (τ̄)2

)2
]
≥
(
E
[
τ̄
(
τ 2 − (τ̄)2

)])2

, thus the second term in the last line

of (35) is positive. Hence, we can compare (33) to (35), which shows that MSE
(U)
∗ =

MSE(optimal) ≤ MSE
(D)
∗ . Together with the result from (34), Proposition 2 follows.

B Proof of Proposition 4: φi 6= φj for i 6= j

First, consider Ut|t−1 as a predictor variable. This yields

MSE(U) = E

[(
e

(U)
t|t−1

)2
]

= E

[(
ηt −

φ̄

2
htτ − γ(U)Ut|t−1

)2
]

= E

[(
ηt −

φ̄

2
htτ − γ(U)τ

)2
]

= E[η2
t ] +

(
φ̄
)2

4
E[h2

t ] E[τ 2] + γ(U)φ̄E[h2
t ] E[τ 2] +

(
γ(U)

)2
E[h2

t ] E[τ 2] (36)

Let γ
(U)
∗ denote the solution of

∂MSE(U)

∂γ(U)

!
= 0.

⇒ γ(U)
∗ = − φ̄

2
(37)

⇒ MSE(U)
∗ = E[η2

t ]. (38)

Next, a solution for MSE(D) is found by setting

∂MSE(D)

∂γ(D)

!
= 0.

⇒ γ(D)
∗ = −

φ̄E[htτDt|t−1]

2 E[(Dt|t−1)2]
.
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Then,

MSE(D)
∗ = E[η2

t ] +

(
φ̄
)2

4
E[h2

t ] E[τ 2]−
(
φ̄
)2 (

E[htτDt|t−1]
)2

4 E[(Dt|t−1)2]

= E[η2
t ] +

(
φ̄
)2

4
E[h2

t ] E[τ 2]−
(
φ̄
)2

(E[h3
t ])

2(E[τ 3])2

4 E[h4
t ] E[τ 4]

= E[η2
t ] +(

φ̄
)2

(E[h2
t ] E[h4

t ] E[τ 2] E[τ 4]− (E[h3
t ])

2(E[τ 3])2)

4 E[h4
t ] E[τ 4]

≥ E
[
(yt − E[yi,t|Ft−1])2] = E[η2

t ]. (39)

The inequality MSE
(D)
∗ ≤ MSE(C) follows directly from the second line of (39). Moreover,

as for (34), the positivity of the second term on the right-hand side of (39) follows from

the Cauchy-Schwarz-inequality. This shows that MSE
(U)
∗ ≤MSE

(D)
∗ and the result follows.
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Figure 4: The left panel depicts the average deviation of the histogram mean from the

point forecast consensus, i.e. ξt|t−1 = ̂E[yt|Ft−1]− ŷ(C)
t|t−1. The right panel depicts box plots

of individual deviations, ξi,t|t−1.
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Figure 5: Histogram of individual asymmetry parameter estimates φ̂i. Estimates that are
significantly different from zero at the 10%-level are shown in yellow.
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Figure 6: MSE of the consensus across the forecast horizon, in quarters.
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