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Abstract

We investigate the behaviour of the Lasso for selecting invalid instruments in lin-
ear instrumental variables models for estimating causal effects of exposures on
outcomes, as proposed recently by Kang, Zhang, Cai and Small (2016, Journal of
the American Statistical Association). Invalid instruments are such that they fail
the exclusion restriction and enter the model as explanatory variables. We show
that for this setup, the Lasso may not select all invalid instruments in large samples
if they are relatively strong. Consistent selection also depends on the correlation
structure of the instruments. We propose a median estimator that is consistent
when less than 50% of the instruments are invalid, but its consistency does not
depend on the relative strength of the instruments or their correlation structure.
This estimator can therefore be used for adaptive Lasso estimation. The methods
are applied to a Mendelian randomisation study to estimate the causal effect of
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Temple, Ian White and seminar participants at Amsterdam, Bristol, Lausanne, Monash, Oxford, Prince-
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BMI on diastolic blood pressure using data on individuals from the UK Biobank,
with 96 single nucleotide polymorphisms as potential instruments for BMI.

Key Words: causal inference, instrumental variables estimation, invalid instru-
ments, Lasso, Mendelian randomisation

1 Introduction

Instrumental variables estimation is a procedure for the identification and estimation

of causal effects of exposures on outcomes where the observed relationships are con-

founded by non-random selection of exposure. This problem is likely to occur in ob-

servational studies, but also in randomised clinical trials if there is selective participant

non-compliance. An instrumental variable (IV) can be used to solve the problem of

non-ignorable selection. In order to do this, an IV needs to be associated with the ex-

posure, but only associated with the outcome indirectly through its association with the

exposure. The former condition is referred to as the ‘relevance’and the latter as the

‘exclusion’condition. Examples of instrumental variables are quarter-of-birth for educa-

tional achievement to determine its effect on wages, see Angrist and Krueger (1991), ran-

domisation of patients to treatment as an instrument for actual treatment when there is

non-compliance, see e.g. Greenland (2000), and Mendelian randomisation studies use IVs

based on genetic information, see e.g. Lawlor et al. (2008). For recent reviews and further

examples see e.g. Clarke and Windmeijer (2012), Imbens (2014), Burgess et al. (2015)

and Kang et al. (2016).

Whether instruments are relevant can be tested from the observed association be-

tween exposure and instruments. The effects on the standard linear IV estimator of

‘weak instruments’, i.e. the case where instruments are only weakly associated with the

exposure of interest, have been derived for the linear model using weak instrument as-

ymptotics by Staiger and Stock (1997). This has led to the derivation of critical values

for the simple F-test statistic for testing the null of weak instruments by Stock and Yogo

(2005).

In this paper we consider violations of the exclusion condition of the instruments,

following closely the setup of Kang et al. (2016) for the linear IV model where some of

the available instruments can be invalid in the sense that they can have a direct effect on

the outcomes or are associated with unobserved confounders. Kang et al. (2016) propose
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a Lasso type procedure to identify and select the set of invalid instruments. Liao (2013)

and Cheng and Liao (2015) also considered shrinkage estimation for identification of

invalid instruments, but in their setup there is a subset of instruments that is known

to be valid and that contains suffi cient information for identification and estimation of

the causal effects. In contrast, Kang et al. (2016) do not assume any prior knowledge

about which instruments are potentially valid or invalid. This is a similar setup as in

Andrews (1999) who proposed a selection procedure using information criteria based on

the so-called J-test of over-identifying restrictions, as developed by Sargan (1958) and

Hansen (1982). The Andrews (1999) setup is more general than the Kang et al. (2016)

setup and requires a large number of model evaluations, which has a negative impact on

the performance of the selection procedure.

This paper assesses the performance of the Kang et al. (2016) Lasso type selection and

estimation procedure. The Lasso can be obtained using a modification of the Least Angle

Regression (LARS) algorithm of Efron et al. (2004). By evaluating the LARS/Lasso path

using large sample asymptotics, we show that the Lasso method may not consistently se-

lect the correct invalid instruments. Consistent selection depends on the relative strength

of the instruments and/or the instrument correlation structure, even when less than 50%

of the instruments are invalid, which is a suffi cient condition for the identification of the

parameters.

We show that under the condition that less than 50% of the instruments are invalid, a

simple median type estimator is a consistent estimator for the parameters in the model,

independent of the relative strength of the instruments or their correlation structure.

It can therefore be considered for use in the adaptive Lasso procedure as proposed by

Zou (2006). With n the sample size, we show that the median estimator converges at

the
√
n rate, but with an asymptotic bias, as the limiting distribution is that of an

order statistic. It does, however, satisfy the conditions for the adaptive Lasso procedure

to enjoy oracle properties.1 Although the less than 50% invalid instruments condition

needed for the median estimator is a stronger condition in principle than needed for

the Lasso estimator, we derive asymptotic results for a simple model design where the

1Bowden et al. (2015) and Kolesar et al. (2015) allow for all instruments to be invalid and show that
the causal effect can be consistently estimated if the number of instruments increases with the sample
size under the relatively strong assumption of uncorrelatedness of the instrument strength and their
direct effects on the outcome variable.
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parameters are identified when there are more than 50% invalid instruments, but the

Lasso method will only select the invalid instruments correctly if there are less than 50%

invalid instruments.

Instrument strength is very likely to vary by instruments, so it will be important

to consider our adaptive Lasso approach for assessing instrument validity and estimat-

ing causal effects. In Mendelian randomisation studies it is clear that genetic markers

have differential impacts on exposures from examining the results from genome wide

association studies.

Another strand of the literature focuses on instrument selection in potentially high-

dimensional settings, see e.g. Belloni et al. (2012) and Lin et al. (2015). Here the focus

is on identifying important covariate effects and selecting optimal instruments from a

(large) set of a priori valid instruments, where optimality is with respect to the variance

of the IV estimator. Belloni et al. (2012) propose a new method for selecting the Lasso

penalty parameter. We analyse its behaviour for the Lasso selection method in cases

where this method consistently selects the instruments. As our setting is that of a fixed

number of potential instruments, we find that simply using Hansen’s J-test for a stopping

rule performs well. We find that a 10—fold cross-validation method to determine the Lasso

penalty parameter selects too many instruments as invalid, which does not improve with

increasing sample size, and explain this using distribution theory related to the Hansen

J-test. Further, we show and explain that the so-called post-Lasso selection two-stage

least squares estimator for the causal effect has smaller finite sample bias than the Lasso

estimator.

The next section, Section 2, introduces the model and the Lasso estimator as proposed

by Kang et al. (2016). In Section 3, we analyse the behaviour of the Lasso estimator

under conditions where it selects the invalid instruments consistently and assess various

stopping rules for selecting the number of invalid instruments. In Section 4, we show

that the Lasso may select the valid instruments as invalid if the invalid instruments are

relatively strong. Section 5 discusses the identification issues that arise form different

correlation structures of the instruments. Section 6 introduces the median estimator,

establishes its consistency and shows that its asymptotic behaviour is such that the

adaptive Lasso estimator enjoys oracle properties. In Section 7 the methods are applied

to a Mendelian randomisation study to estimate the causal effect of BMI on diastolic
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blood pressure using data on individuals from the UK Biobank, with 96 single nucleotide

polymorphisms as potential instruments for BMI. Section 8 concludes.

2 Model and Lasso Estimator

We follow Kang, Zhang, Cai and Small (2016) (KZCS from now on), who considered the

following potential outcomes model. For i = 1, ..., n, let Y (d,z)
i , be the potential outcome if

the individual i were to have exposure d and instrument values z. The observed outcome

for an individual i is denoted by the scalar Yi, the treatment by the scalar Di and the

vector of L potential instruments by Zi.. The instruments may not all be valid and

can have a direct or indirect effect. For two possible values of the exposure d∗, d and

instruments z∗, z, assume the following potential outcomes model

Y
(d∗,z∗)
i − Y (d,z)

i = (z∗ − z)′ φ+ (d∗ − d) β (1)

E
[
Y
(0,0)
i |Zi.

]
= Z′i.ψ (2)

where φmeasures the direct effect of z on Y , and ψ represents the presence of unmeasured

confounders that affect both the instruments and the outcome.

We have a random sample {Yi, Di,Z
′
i.}

n
i=1. Combining (1) and (2), the observed data

model for the random sample is given by

Yi = Diβ + Z′i.α + εi (3)

where α = φ+ ψ;

εi = Y
(0,0)
i − E

[
Y
(0,0)
i |Zi.

]
and hence E [εi|Zi.] = 0. The KZCS definition of a valid instrument is then linked to the

exclusion restriction and given as follows: Instrument j, j ∈ {1, ..., L}, is valid if αj = 0

and it is invalid if αj 6= 0. As in the KZCS setting, we are interested in the identification

and estimation of the scalar treatment effect β in large samples with a fixed number L

of potential instruments.

Let y and d be the n-vectors of n observations on {Yi} and {Di} respectively, and
let Z be the n× L matrix of potential instruments. As an intercept is implicitly present
in the model, y, d and the columns of Z have all been taken in deviation from their

sample means. Let Zsel be a subset of instruments included in the equation, and let
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R =
[

d Zsel

]
. The standard Instrumental Variables, or Two-Stage Least Squares

(2SLS), estimator is then given by

θ̂ =

(
β̂
α̂sel

)
=
(
R′Z (Z′Z)

−1
Z′R

)−1
R′Z (Z′Z)

−1
Z′y. (4)

Let d̂ = PZd, PZ = Z (Z′Z)−1 Z′, then θ̂ is equivalent to the OLS estimator in the model

Yi = D̂iβ + Z′sel,i.αsel + ξi,

where ξi is defined implicitly, and hence

α̂sel =
(
Z′selMd̂Zsel

)−1
Z′selMd̂y

=
(
Z′selMd̂Zsel

)−1
Z′selMd̂PZy, (5)

where Md̂ = In−Pd̂, with In the identity matrix of order n.

d̂ is the linear projection of d on Z. If we define γ̂ = (Z′Z)−1 Z′d, then d̂ = Zγ̂, or

D̂i = Z′i.γ̂, and we specify

Di = Z′i.γ + vi, (6)

where γ = E [Zi.Z
′
i.]
−1E [Zi.Di], and hence E [Zi.vi] = 0. Further, as in KZCS, let

Γ = E [Zi.Z
′
i.]
−1E [Zi.Yi] = γβ + α. Clearly, both γ and Γ can be consistently estimated

under the standard assumptions. Assuming that γj 6= 0 ∀j, then define πj as

πj ≡
Γj
γj

= β +
αj
γj
. (7)

Theorem 1 in KZCS states the conditions under which, given knowledge of γ and Γ, a

unique solution exists for values of β and αj. A necessary and suffi cient condition to

identify β and the αj is then that the valid instruments form the largest group, where

instruments form a group if they have the same value of π. Corollary 1 in KZCS then

states a suffi cient condition for identification. Let s be the number of invalid instruments,

then if s < L/2, the parameters are identified as then clearly the largest group is formed

by the valid instruments.

In model (3), some elements of α are assumed to be zero, but it is not known ex-ante

which ones they are and the selection problem therefore consists of correctly identifying
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those instruments with non-zero α. KZCS propose to estimate the parameters α and β

by using `1 penalisation on α and to minimise(
α̂λ, β̂

λ
)

= arg min
α,β

1

2
‖PZ (y − dβ − Zα) ‖22 + λ‖α‖1, (8)

where the `1 norm ‖α‖1 =
∑

j |αj| and the squared `2 norm is (y − dβ − Zα)′PZ (y − dβ − Zα).

This method is closely related to the Lasso, and the regularization parameter λ deter-

mines the sparsity of the vector α̂λ. From (5), a fast two-step algorithm is proposed that

runs as follows. For a given λ solve

α̂λ = arg min
α

1

2
‖Md̂PZy −Md̂Zα‖

2
2 + λ‖α‖1 (9)

and estimate β̂
λ
by

β̂
λ

=
d̂′
(
y − Zα̂λ

)
d̂′d̂

. (10)

In order to find α̂λ in (9), the Lasso modification of the LARS algorithm of Efron,

Hastie, Johnstone and Tibshirani (2004) can be used and KZCS have developed an R-

routine for this purpose and called sisVIVE (some invalid and some valid IV estimator),

where the regularisation parameter λ is obtained by cross-validation.

Following the notation of Zou (2006), let A be the set of invalid instruments, A =

{j : αj 6= 0}. Let An =
{
j : α̂λj 6= 0

}
. We will first investigate under what conditions the

Lasso method consistently selects invalid instruments such that limn→∞ P (An = A) = 1,

or for a weaker version, such that limn→∞ P (An ⊇ A) = 1.

An important difference with the standard Lasso approach for linear models is that

the matrix of explanatory variables Md̂Z in (9) is not full rank, but its rank is equal to

L − 1. Whereas λ = 0 would simply include all regressors in the standard linear model

and the resulting OLS estimator is consistent, setting λ = 0 in (9) does not lead to a

unique 2SLS estimator, as all models with L − 1 instruments included as invalid would

result in a residual correlation of 0 and hence λ = 0. Therefore the LARS algorithm has

to start from a model without any instruments included in the model as invalid, and at

the last LARS/Lasso step one instrument is excluded from the model, i.e. treated as

valid. When L− 1 instruments have been selected as invalid and included in the model,

the resulting Lasso estimator is the (just identified) 2SLS estimator and this final model

is the model for which λ = 0. Clearly, it can then be the case that the LARS/Lasso path
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is such that it does not include a model where all invalid instruments have been selected

as such, which is the case when the final instrument selected as valid is in fact invalid.

If that is the case, then there is no value of λ for which β̂
λ
is consistent.

Below we show under what conditions the large sample, n → ∞, LARS/Lasso path
does or does not include models where all invalid instruments have been selected. In

simple settings, we show that this does depend on the number of invalid instruments, the

relative strengths of the invalid versus the valid instruments and the correlation structure

of the instruments. KZCS did show analytically that the performance of the Lasso esti-

mator is influenced by these factors. They derived an estimator performance guarantee

condition related to the values of µ = maxj 6=r
∣∣Z′.jZ.r

∣∣ and ρ = maxj

∣∣∣Z′.jd̂∣∣∣ /d̂′d̂. The
constant µ measures the maximum correlation between any two columns of the matrix of

instruments Z, and ρ is a measures the maximum strength of the individual instruments.

Their derived condition on the number of invalid instruments in Corollary 2 is that

s < min
(

1
12µ
, 1
10ρ2

)
. KZCS acknowledge the fact that these constraints are very strict.

For example, if µ = 0.1, then s < 10/12 and no invalid instruments are allowed, although

their Monte Carlo results show that a simple correlation structure does not affect the

behaviour of the estimator. Similarly for ρ, only a small value is allowed in order to have

any invalid instruments allowed in the setup. If we assume that plim (n−1Z′Z) = Q, then

plim


∣∣∣Z′.jd̂∣∣∣
d̂′d̂

 =

∣∣Q′.jγ∣∣
γ′Qγ

.

Therefore, if Q = IL this is equal to
∣∣γj∣∣ /γ′γ and hence ρ is associated with the strongest

instrument in terms of γj. Our results for consistent selection are based on the relative

values of γ for the valid and invalid instruments, where we simply refer to γj as the in-

strument strength for instrument j. We show for uncorrelated instruments, with Q = IL,

that if invalid instruments are stronger than the valid ones, the selection procedure may

select the valid instruments as invalid. Also, for the correlation structure, as in Zou

(2006), we show that consistent selection depends on the patterns of correlations, not

on the maximum correlation per se. Using our large sample analysis we can find simple

configurations where the Lasso selection is inconsistent, which we confirm in some Monte

Carlo studies.

In order to mitigate these problems for the Lasso estimator, one can use the adaptive
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Lasso approach of Zou (2006) using an initial consistent estimator of the parameters. In

the standard linear case, the OLS estimator in the model with all explanatory variables

included is consistent. As explained above, in the instrumental variables model this

option is not available. Let π̂j = Γ̂j/γ̂j, where γ̂ = (Z′Z)−1 Z′d and Γ̂ = (Z′Z)−1 Z′y.

Under standard assumptions as specified below, we show that the median of the π̂j is a

consistent estimator for β when s < L/2, without any further restrictions on the relative

strengths or correlations of the instruments, and hence this estimator can be used as an

initial consistent estimator for the adaptive Lasso.

For the random variables and i.i.d. sample {Yi, Di,Z
′
i.}

n
i=1, and model (3), we assume

throughout that the following conditions hold:

Assumption C1. E [Zi.Z
′
i.] = Q is full rank

Assumption C2. plim (n−1Z′Z) = E [Zi.Z
′
i.]; plim (n−1Z′d) = E [Zi.Di];

plim (n−1Z′ε) = E [Zi.εi] = 0.

Assumption C3. γ = (E [Zi.Z
′
i.])
−1E [Zi.Di], γj 6= 0, j = 1, ..., L.

3 Uncorrelated and Equal Strength Instruments

We first consider the conditions under which the Lasso procedure consistently selects the

invalid instruments for the case where the instrument strengths are all equal, i.e. γj =

γ̃ for j = 1, .., L, and the instruments are uncorrelated, with variances equal to 1,

E [Zi.Z
′
i.] = IL = plim (n−1Z′Z).

Dividing by the sample size n, incorporating normalisation and noting that Z′Md̂Md̂PZy =

Z′Md̂y, the Lasso estimator α̂
λ is obtained as

α̂λ = arg min
α

1

2n
‖y − Z̃α‖22 +

λ

n
‖Ω̃nα‖1, (11)

where Z̃ = Md̂Z, and Ω̃n is an L × L diagonal matrix with diagonal elements ω̃j =√
Z̃′j.Z̃j./n =

√
Z′j.Md̂Zj./n.

The Lasso path can be obtained using the Lasso modification of the LARS algorithm,

see Efron et al. (2004). Starting from the model without any instruments included as

explanatory variables, let the L-vector of correlations ĉn be defined as

ĉn = n−1Ω̃−1n Z̃′y = n−1Ω̃−1n Z′Md̂y,
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with j-th element

ĉn,j =
n−1Z′.jMd̂y√
n−1Z′.jMd̂Z.j

(12)

The first LARS step selects the variable(s) Z̃.j for which |ĉn,j| is maximum. We have for
large samples that

plim (ĉn,j) =
αj − α√

(L− 1) /L
,

as

plim
(
n−1Z′.jMd̂y

)
= plim

(
n−1Z′.jMd̂Zα

)
= plim

(
n−1Z′.jZα

)
− plim

(
n−1Z′.jPZd (d′PZd)

−1
d′PZZα

)
= αj − γj

γ′α

γ′γ
= αj − L−1

L∑
r=1

αr

= αj − α,

and

plim
(
n−1Z′j.Md̂Zj.

)
= 1−

γ2j
γ′γ

= 1− 1

L
,

using the facts that plim (n−1Z′Z) = IL and that all the γjs are the same.

There are s < L invalid instruments. If all the invalid instruments have the same

effect αj = a, the case considered mostly in the KZCS simulations, then α = sa/L.

We then get for a valid instrument plim (ĉn,val) = −sa/
√
L (L− 1), and for an invalid

instrument plim (ĉn,inv) = (L−s)a/
√
L (L− 1). In large samples, the invalid instruments

get therefore selected in the first LARS step if

(L− s) |a| > s |a| ⇔ s < L/2, (13)

so less than 50% of the instruments can be invalid, which is aligned with Theorem 1 and

Corollary 1 of KZCS. In practice, of course, the finite sample correlations for the invalid

(and valid instruments) will not be exactly equal to each other, and the instruments will

be selected one at the time, with the LARS update of the predicted mean approaching

zero for large sample sizes within the two groups of instruments.

It is clear from the correlations derived above, that many situations can arise in

terms of selecting invalid instruments correctly, depending on the values of the αj. At

the one extreme, it is clear that the first LARS step would correctly select L− 2 invalid
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instruments, for L even, when half of them have effect a and the other half −a, which is
a case where the parameters are in principle not identified. Of interest is the following

result.

Proposition 1

Consider observational models (3) and (6) under assumptions C1, with Q = IL, C2, C3,

and with equal instrument strength γj = γ̃ for j = 1, ..., L. The s invalid instruments

have distinct positive effects, ordered in such a way that α1 > α2 > ... > αs > αs+1 =

... = αL = 0. Then the LARS/Lasso algorithm selects the invalid instruments in the first

s steps in large samples if s < L/2. For s > L/2 the full LARS/Lasso path does not

include a model where all invalid instruments have been selected.

Proof: see Appendix.

The result of Proposition 1 is striking, as the parameters are formally identified in this

case when s < L − 1 and hence the Lasso approach here requires stronger assumptions

for selecting the invalid instruments than is needed for identification.

For consistent model selection and estimation, the condition that s < L/2 is suffi cient

when instruments are uncorrelated and have equal strengths. We will show below that

this condition is no longer suffi cient when we allow for differential instrument strengths,

especially when invalid instruments are relatively strong. It is also not suffi cient under

certain correlation structures of the instruments, as observed by Zhao and Yu (2006)

and Zou (2006) for the standard linear model case. However, before we move to these

problems, we will analyse the behaviour of the Lasso estimator of (11) in situations where

the condition that s < L/2 is suffi cient for consistent selection of the invalid instruments.

We start with presenting some estimation results from a simple Monte Carlo exercise,

similar to that in KZCS. The data are generated from

Yi = Diβ + Z′i.α + εi

Di = Z′i.γ + vi,

where (
εi
vi

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
;

Zi. ∼ N (0, IL) ;
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and we set β = 0; γ = 0.2ιL with ιL an L-vector of ones; L = 10; ρ = 0.25; s = 3, and

the first s elements of α are equal to a = 0.2. Note that none of the estimation results

presented here and below depend on the value of β. Table 1 presents estimation results

for estimators of β in terms of bias, standard deviation, root mean squared error (rmse)

and median absolute deviation (mad) for 1000 replications for sample sizes of n = 500,

n = 2000 and n = 10, 000.

The information content for IV estimation can be summarised by the concentration

parameter, see Rothenberg (1984). If all instruments are valid, i.e. α = 0, the con-

centration parameter would be given by γ′Z′Zγ/σ2v. For this data generating process

with independent instruments, the expected concentration parameter is therefore given

by n (L− s) (0.22) and hence equal to 140 , 560 and 2800 for the three sample sizes. The

corresponding population F statistics are equal to n (0.22), or 20, 80 and 400 for the

sample sizes 500, 2000 and 10, 000 respectively. The F statistic is a test for H0 : γval = 0,

where γval is the L− s sub-vector of γ associated with the valid instruments.
The "2SLS" results are for the 2SLS estimator that treats all instruments as valid.

The "2SLS or" is the oracle 2SLS estimator that correctly includes the three invalid

instruments in the model as explanatory variables. For the Lasso estimates, the value

for λ has been obtained by 10-fold cross-validation, using the one-standard error rule, as

in KZCS. This estimator is denoted "Lassocvse" and is the one produced by the sisVIVE

routine. We also present results for the cross-validated estimator that does not use the

one-standard error rule, denoted "Lassocv". We further present results for the so-called

post-Lasso estimator, see e.g. Belloni et al. (2012), which is called the LARS-OLS hybrid

by Efron et al. (2004). In this case this is the 2SLS estimator (4), where Zsel is the set

of instruments with non-zero estimated Lasso coeffi cients α. Further entries in Table

1 are the average number of instruments selected as invalid, which are the number of

instruments with non-zero α coeffi cients, together with the minimum and maximum

number of selected instruments, and the proportion of times the instruments selected as

invalid include all 3 invalid instruments.
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Table 1. Estimation results for β; L = 10, s = 3

av. # instr freq. all s
selected as invalid invalid instr

β bias std dev rmse mad [min, max] selected
n = 500
2SLS 0.2966 0.0808 0.3074 0.2944 0 0
2SLS or 0.0063 0.0843 0.0845 0.0570 3 1
Lassocv 0.1384 0.0965 0.1687 0.1352 6.41 [2,9] 0.990
Post-Lassocv 0.1169 0.1136 0.1630 0.1143
Lassocvse 0.2206 0.0847 0.2363 0.2174 3.16 [0,8] 0.664
Post-Lassocvse 0.0905 0.1243 0.1537 0.0994
n = 2000
2SLS 0.3019 0.0387 0.3044 0.3007 0 0
2SLS or 0.0047 0.0422 0.0424 0.0285 3 1
Lassocv 0.0721 0.0509 0.0882 0.0705 6.64 [3,9] 1
Post-Lassocv 0.0617 0.0577 0.0845 0.0644
Lassocvse 0.1140 0.0430 0.1218 0.1165 3.76 [3,8] 1
Post-Lassocvse 0.0277 0.0521 0.0590 0.0387
n = 10, 000
2SLS 0.2996 0.0177 0.3002 0.2992 0 0
2SLS or 0.0006 0.0183 0.0183 0.0127 3 1
Lassocv 0.0317 0.0236 0.0395 0.0311 6.44 [3,9] 1
Post-Lassocv 0.0272 0.0267 0.0380 0.0282
Lassocvse 0.0479 0.0187 0.0514 0.0489 3.81 [3,9] 1
Post-Lassocvse 0.0118 0.0238 0.0265 0.0176
Notes: Results from 1000 MC replications; a = 0.2; β = 0; γ = 0.2; ρ = 0.25

The results in Table 1 reveal some interesting patterns. First of all, the Lassocv esti-

mator outperforms the Lassocvse estimator in terms of bias, rmse and mad for all sample

sizes, but this is reversed for the post-Lasso estimators, i.e. the post-Lassocvse outper-

forms the post-Lassocv. The Lassocv estimator selects on average around 6.5 instruments

as invalid, which is virtually independent of the sample size. The Lassocvse estimator

selects on average around 3.8 instruments as invalid for n = 2000 and n = 10, 000, but

fewer, 3.17 for n = 500. Although the 3 invalid instruments are always jointly selected as

invalid for the larger sample sizes, the Lassocvse is substantially biased, the biases being

larger than twice the standard deviations. The post-Lassocvse estimator performs best,

but is still outperformed by the oracle 2SLS estimator at n = 10, 000. Although the

post-Lassocvse estimator has a larger standard deviation than the Lassocvse estimator, it

has a smaller bias, rmse and mad for all sample sizes.
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Figures 1a and 1b illustrate the different behaviour of the Lasso and post-Lasso es-

timators. Figure 1a shows the bias and standard deviations of the two estimators for

different values of λ/n, for the design above with n = 2000, again from 1000 replications.

It is clear that the Lasso estimator exhibits a positive bias for all values of λ, declining

from that of the naive 2SLS estimator to the minimum bias of 0.0664 at λ/n = 0.0060.

In contrast, the post-Lasso estimator is (much) less biased, obtaining its minimum bias

of 0.0068 at the value of λ/n of 0.0965. Figure 1b displays the same information but now

as a function of the LARS steps (we have omitted 3 replications where there were Lasso

steps). At step 3, the correct 3 invalid instruments have been selected 991 times out of

the 997 replications, and the post-Lasso estimator has a bias there of 0.0058, only frac-

tionally larger than that of the oracle 2SLS estimator. In contrast, the Lasso estimator

for β still has a substantial upward bias at step 3. Its bias decreases from 0.116 at step

3 to a minimum of 0.0650 at step 8. Interestingly, the bias of the post-Lasso estimator

increases again after step 3, reaching the same bias as the Lasso estimator at the last

step, as there λ = 0 and the Lasso and post-Lasso estimators are equal.

Figures 1a and 1b. Bias and standard deviations of Lasso and post-Lasso estimators as

functions of λ/n, and LARS steps. Same design as in Table 1, n = 2000. 3 replications

out of 1000 omitted in 1b due to Lasso steps.

We can understand the different finite sample behaviour of the Lasso and post-Lasso

estimators, which is due to shrinkage of the Lasso estimator for α, as follows. Denote
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by Zλ
sel the matrix of selected instruments for any value of λ, i.e. those instruments with

non-zero values of α̂λ. For the Lasso and post-Lasso estimators, β̂
λ
and β̂, we have that

β̂
λ

= β̂ +
d̂′Zλ

sel

(
α̂sel − α̂λsel

)
d̂′d̂

.

For those values of λ where the correct invalid instruments have been included, the biases

of β̂ and α̂ are small in large samples. Define δ̂
λ
as the shrinkage factor of the Lasso

estimator, relative to that of the post-Lasso estimator, i.e. α̂λsel ≈ δ̂
λ
α̂sel. We then have

approximately

β̂
λ
≈ β̂ +

(
1− δ̂

λ
) d̂′Zλ

selα̂sel

d̂′d̂
.

Note that we have for the 2SLS estimator in the model that treats all instruments as

valid,

β̂ =
d̂′y

d̂′d̂
=

d̂′y

d̂′d̂
= β +

d̂′Zα

d̂′d̂
+

d̂′ξ

d̂′d̂
.

Therefore, the bias of the Lasso estimator due to shrinkage is in the direction of the bias

of the 2SLS estimator in the model where all instruments are treated as valid. As an

illustration, for the n = 2000 case above, at λ/n = 0.0965, the means of the first three

elements of α̂λsel are all equal to 0.067, whereas those of the post-Lasso 2SLS estimator

are equal to 0.198, hence 1 − δ̂
λ

= 0.662. The bias of the 2SLS estimator treating all

instruments as valid is given by 0.302, and 0.662∗0.302 = 0.200. This is very close to the

difference in the biases of β̂
λ
and β̂ at this point, which is given by 0.201−0.007 = 0.194.

3.1 Stopping Rule

It is clear from the results above that the post-Lasso estimator outperforms the Lasso

estimator, with the performance of the post-Lassocvse best, but still some way short of

that of the oracle 2SLS estimator, even for n = 10, 000. It is also clear, that the 10-fold

cross-validation method selects too many valid instruments as invalid over and above the

invalid ones. The ad-hoc one-standard error rule does improve the selection.

We next consider two alternative stopping rules, one proposed for the Lasso by Belloni

et al. (2012), and one for GMM moment selection by Andrews (1999).

Belloni et al. (2012) explicitly allow for general conditional heteroskedasticity and
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consider the Lasso estimator defined as

α̂λ = arg min
α

1

2n
‖y − Z̃α‖22 +

λ

n
‖Ω̃∗nα‖1,

where Ω̃∗n is an L× L diagonal matrix with j-th diagonal element

ω̃∗n,j =

√√√√n−1
n∑
i=1

z̃2ij ε̃
2
i ,

where

ε̃i = yi − Z̃′i.α.

Then let

ĉ∗n =
1

n

n∑
i=1

(
Ω̃∗n

)−1
Z̃i.ε̃i.

Belloni et al. (2012) apply the moderate deviation theory of Jing, Shao and Wang (2003)

to bound deviations of the maximal element of the vector of correlations ĉ∗n and hence

λ/n for models that have selected the invalid instruments. They establish that

P
(√

nmax (ĉ∗n) ≤ Φ−1
(

1− τn
2L

))
≥ 1− τn + o (1) ,

where Φ−1 (.) is the inverse, or quantile function, of the standard normal distribution,

and that the penalty level should satisfy

P

(
λ

n
≥ qmax (ĉ∗n)

)
→ 1

for some constant q > 1. Belloni et al. (2012) then recommend selecting

λ

n
= qΦ−1

(
1− τn

2L

)
/
√
n

and to set the confidence level τn = 0.1/ ln (n) and the constant q = 1.1. For n = 2000,

this results in a value for λ/n equal to 0.079, which suggests a good performance of the

post-Lasso estimator from Figure 1a, as the design there is conditionally homoskedastic.

We obtain the Lasso and post-Lasso estimators using the Belloni et al. (2012) iterative

procedure as described in their Appendix A, as the ε̃i need to be estimated to construct

Ω̃∗n. We use the post-Lasso estimator at every step to estimate the ε̃i.
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The second stopping rule we consider is based on the approach of Andrews (1999).

We can use this approach because the number of instruments L is fixed and (much)

smaller than n. Consider again the model

y = dβ + Zselαsel + ξ (14)

= Rθ + ξ.

Let Gn (θ) = n−1Z′ (y −Rθ), then the Generalised Methods of Moment (GMM) estima-

tor is defined as

θ̂GMM = arg min
θ

Gn (θ)′W−1
n Gn (θ) ,

see Hansen (1982). 2SLS is a one-step GMM estimator, settingWn = n−1Z′Z. Given the

moment conditions E (Zi.ξi) = 0, 2SLS is effi cient under conditional homoskedasticity,

E
(
ξ2i |Zi.

)
= σ2ξ . Under general forms of conditional heteroskedasticity, an effi cient two-

step GMM estimator is obtained by setting

Wn = Wn

(
θ̂1

)
= n−1

n∑
i=1

((
yi −R′i.θ̂1

)2
Zi.Z

′
i.

)
where θ̂1 is an initial consistent estimator, with a natural choice the 2SLS estimator.

Then, under the null that the moment conditions are correct, E (Zi.ξi) = 0, the Hansen

(1982) J-test statistic and its limiting distribution are given by

Jn

(
θ̂1

)
= nGn

(
θ̂2

)′
W−1

n

(
θ̂1

)
Gn

(
θ̂2

)
d→ χ2(L−dim(R)).

We can now combine the LARS/Lasso algorithm with the Hansen J-test, which is then

akin to a directed downward testing procedure in the terminology of Andrews (1999).

Let the critical value ζn,k = χ2k (τn) be the 1− τn quantile of the χ2k distribution, where
k = L − dim (R). Compute at every LARS/Lasso step as described above the Hansen

J-test and compare it to the corresponding critical value. We then select the model with

the largest degrees of freedom for which the J-test is smaller than the critical value. If

two models of the same dimension pass the test, which can happen with a Lasso step,

the model with the smallest value of the J-test gets selected. Clearly, this approach is a

post-Lasso approach, where the LARS algorithm is used purely for selection of the invalid

instruments. For consistent model selection, the critical values ζn,k need to satisfy

ζn,k →∞ and ζn,k = o (n) , (15)
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see Andrews (1999). We select τn = 0.1/ ln (n) as per the Belloni et al. (2012) method.

From the distribution theory above we can explain the fact that cross-validation

selects too many instruments as invalid. In the 10-fold cross-validation as proposed by

KZCS, the model is estimated on a random 90% training sample for a grid of values of

λ/n. The estimates are then used in the validation sample to evaluate the minimisation

criterion

Sv

(
β̂
λ

t , α̂
λ
t

)
=
(
yv − dvβ̂

λ

t − Zvα̂
λ
t

)′
Zv (Z′vZv)

−1
Z′v

(
yv − dvβ̂

λ

t − Zvα̂
λ
t

)
where the subscripts v and t here indicate that the data are from the validation sample

and the estimates obtained from the training sample. The value of λ/n is chosen that

minimises the average of Sv
(
β̂
λ

t , α̂
λ
t

)
over the 10 folds. In this homoskedastic design,

note that at the true parameter values

Sv (β, α)

σ2ε

d−→ χ2L.

The same result holds for any
√
n consistent estimator of (β, α′)′, estimated in the training

sample. Therefore, for the cross-validation exercise,

Sv

(
β̂
λ

t , α̂
λ
t

)
σ2ε

a∼ χ2L,

for values of λ/n such that the invalid instruments have correctly been selected. How-

ever, due to the finite sample shrinkage bias, as discussed above and seen in Figure 1a,

Sv

(
β̂
λ

t , α̂
λ
t

)
will be larger than σ2εL in expectation. Figure 2a below confirms this. It

shows the Monte Carlo mean of the 10-fold average of Sv
(
β̂
λ

t , α̂
λ
t

)
as a function of λ/n,

for the n = 2, 000 (and σ2ε = 1) case. It clearly mimics the bias results for β̂
λ
as depicted

in Figure 1a and is close to L = 10 when the bias of β̂
λ
is small, and larger everywhere

else. This bias is small for small values of λ/n and hence the cross-validation method is

conservative in selecting too many instruments as invalid. This is confirmed in Figure

2b, which shows the average number of instruments selected as invalid in the training

samples as a function of λ/n.

The Monte Carlo frequency distribution of selecting 3, 4..., 9 instruments as invalid for

the Lassocv estimator in Table 1 for the n = 2, 000 case is given by 0.024, 0.081, 0.194,
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0.175, 0.167, 0.177, 0.182. This is an approximate uniform distribution for 5, 6, ..., 9

instruments as expected from Figures 2a and 2b.

Figures 2a and 2b. Means and standard deviations of 10-fold average Sv
(
β̂
λ

t , α̂
λ
t

)
, and

number of selected instruments as invalid in training samples. Same design as in Table

1, n = 2000, 1000 MC replications.

Table 2 presents the estimation results using the two alternative stopping rules.

The subscripts "bcch" and "ah" denote the Belloni et al. (2012) method and the An-

drews/Hansen approach respectively. Both post-Lasso estimators are the simple 2SLS

estimators for comparison with the results in Table 1.
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Table 2. Estimation results for β; L = 10, s = 3

av. # instr freq. all s
selected as invalid invalid instr

β bias std dev rmse mad [min, max] selected
n = 500
Lassobcch 0.2770 0.0846 0.2896 0.2770 1.16 [0,4] 0.068
Post-Lassobcch 0.1914 0.1324 0.2327 0.2028
Post-Lassoah 0.0896 0.1252 0.1539 0.1007 2.56 [0,5] 0.391
2SLS or 0.0063 0.0843 0.0845 0.0570 3 1
n = 2000
Lassobcch 0.1688 0.0438 0.1744 0.1694 3.11 [3,5] 1
Post-Lassobcch 0.0091 0.0445 0.0454 0.0294
Post-Lassoah 0.0055 0.0430 0.0434 0.0286 3.02 [3,5] 1
2SLS or 0.0047 0.0422 0.0424 0.0285 3 1
n = 10, 000
Lassobcch 0.0751 0.0180 0.0772 0.0756 3.11 [3,5] 1
Post-Lassobcch 0.0027 0.0191 0.0193 0.0134
Post-Lassoah 0.0009 0.0186 0.0186 0.0129 3.02 [3,5] 1
2SLS or 0.0006 0.0183 0.0183 0.0127 3 1
Notes: Results from 1000 MC replications; a = 0.2; β = 0; γ = 0.2 ρ = 0.25

For n = 500, we find that the value of λ/n as determined by the bcch method is too

large and the method selects too few instruments as invalid, resulting in severely biased

Lasso and post-Lasso estimates. The ah approach behaves better for n = 500, but it also

selects too few invalid instruments, resulting in an upward bias in this particular case.

This is similar to the results for the post-Lassocvse estimator in Table 1. For n = 2000 and

n = 10, 000, both post-Lasso procedures perform very well with properties very similar

to that of the oracle 2SLS estimator, with the ah approach marginally outperforming the

bcch approach for this design.

Using standard asymptotic robust standard errors for the post-Lasso 2SLS estimators,

Wald tests for the null H0 : β = 0, at the 10% level, reject 11.9% (10.9%) and 10.8%

(9.4%) for the bcch and ah methods respectively for n = 2000 (n = 10, 000), indicating

that their distributions are well approximated by the standard limiting distribution of

the 2SLS estimator.

20



4 Varying Instrument Strength

As derived above, for the first step of the LARS algorithm we have, still assuming that

E (Zi.Z
′
i.) = IL,

plim (ĉn,j) =
αj − γj γ

′α
γ′γ√

1− γ2j
γ′γ

.

It is clear that allowing for differential instrument strengths, i.e. different values of γ,

may result in the LARS/Lasso path not selecting all invalid instruments as invalid. For

example, consider again the situation where all s invalid instruments have the same direct

effect a. The valid instruments all have strength γval, whereas the invalid instruments

all have strength γinv = tγval, with t > 0. Then for an invalid and a valid instrument we

get respectively,

plim (ĉn,inv) =
1√

st2 + L− s
a (L− s)√

(s− 1)t2 + L− s
;

plim (ĉn,val) = − 1√
st2 + L− s

ast√
st2 + L− s− 1

,

and hence we see that the valid instruments get selected as being invalid in large samples

if
st√

st2 + L− s− 1
>

L− s√
(s− 1)t2 + L− s

. (16)

For example, when L = 10 and s = 3, this happens when t > 2.7. As all the invalid

instruments in this case are "valid" for a causal estimate of β + a/γinv, the Lasso will

select the L − s valid instruments as invalid. Table 3 presents estimation results for

the same Monte Carlo design as in Table 1, with γval = 0.2, but γinv = 3γval. For

brevity, we only present results for the post-Lassocvse and post-Lassoah estimators. Note

that the behaviour of the oracle 2SLS estimator is the same as in Table 1. In this case

β + a/γinv = 0 + 0.2/0.6 = 0.33, which is the value of the causal effect estimated by

the invalid instruments. The results in Table 3 confirm that, for large sample sizes,

the LARS/Lasso method selects the valid instruments as invalid because of the relative

strength of the invalid instruments. For n = 500 the algorithm cannot separate the

instruments and selects only very few as invalid.
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Table 3. Estimation results for β; L = 10, s = 3, γinv = 3γval
av. # instr freq. all s

selected as invalid invalid instr
β bias std dev rmse mad [min, max] selected
n = 500
Post-Lassocvse 0.2658 0.0428 0.2692 0.2651 0.44 [0,8] 0
Post-Lassoah 0.2651 0.0485 0.2695 0.2666 0.76 [0,6] 0
n = 2000
Post-Lassocvse 0.2911 0.0352 0.2932 0.2933 6.58 [0,9] 0.00
Post-Lassoah 0.2803 0.0399 0.2831 0.2845 5.05 [1,9] 0
n = 10, 000
Post-Lassocvse 0.3202 0.0122 0.3204 0.3205 8.70 [7,9] 0
Post-Lassoah 0.3233 0.0131 0.3236 0.3242 8.09 [6,9] 0
Notes: Results from 1000 MC replications; a = 0.2; β = 0; γval= 0.2 ρ = 0.25

It is clear that various combinations of instrument strengths can lead to inconsistent

selection and estimation. One simple, but quite interesting example is the following.

Let L = 5 and s = 2. Let α = (0.2, 0.15, 0, 0, 0)′ and γ = (0.8, 0.7, 1, 0.25, 0.15)′, so

the strongest instrument and the two weakest instruments are valid, and the two invalid

instruments are relatively strong. The large sample LARS/Lasso path can be calculated

in this case to be {3, 1, 4, 5}, i.e. the strong valid instrument gets selected as invalid first,
and the full LARS path does not include a model where the two invalid instruments are

selected as invalid.

On the other hand, from (16) it is also easily seen that when the valid instru-

ments are stronger than the invalid ones, the LARS algorithm may select the correct

invalid instruments also when s ≥ L/2. For example, again for L = 10, when t = 0.5,

|plim (ĉn,inv)| > |plim (ĉn,val)| for s = 1, ..., 6.

5 Correlated Instruments

We revert back to the case where all γj are the same, but we now allow the instruments

to be correlated such that

E [Zi.Z
′
i.] = plim

(
n−1Z′Z

)
= Q

with all diagonal elements of Q equal to 1.
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For the numerator of ĉn,j as defined in (12) we get

plim
(
n−1Z′.jMd̂y

)
= Q′.j

(
α− γ γ

′Qα

γ′Qγ

)
= Q′.j

(
α− ιL

ι′LQα

ι′LQιL

)
,

where Q.j is the jth column of Q; ιL is an L-vector of ones, and the second result follows

because the γj are all the same.

For the denominator, we get

plim
(
n−1Z′.jMd̂Z.j

)
= 1−

(
Q′.jγ

)2
γ′Qγ

= 1−
(
Q′.jιL

)2
ι′LQιL

.

If we denote again the first s instruments to be the invalid ones, and when all the αj for

the invalid instruments are the same and equal to a, then for the invalid instruments we

have that

plim (ĉn,j)j∈{1,..,s} =
aQ′.j

(
es − ιL ι

′
LQes
ι′LQιL

)
√

1− (Q′j.ιL)
2

ι′LQιL

, (17)

and for the valid instruments

plim (ĉn,r)r∈{s+1,..,L}

aQ′.r

(
es − ιL ι

′
LQes
ι′LQιL

)
√

1− (Q′.rιL)
2

ι′LQιL

(18)

where es =
(
ι′s 0′L−s

)′
and 0L−s is an L− s vector of zeros.

KZCS first of all set all pairwise correlations of the instruments equal to a single value

η. In that case Q′.jιL = Q′.rιL and the invalid instruments are selected, if∣∣∣1 + (s− 1) η −
(

(1 + (L− 1) η)
s

L

)∣∣∣ > ∣∣∣sη − (1 + (L− 1) η)
s

L

∣∣∣ ,
or

(L− s) (1− η) > |−s (1− η)| ⇐⇒ L > 2s,

which is the same result as (13) derived for uncorrelated instruments.

KZCS considered 2 alternative designs, one with the same pairwise correlation η

within the valid and invalid instruments but no correlation between the valid and invalid

instruments, and one with only pairwise correlation η between valid and invalid instru-

ments. As above, from (17) and (18), it can be shown that both these designs do not

alter the results derived above for equal strength instruments when the instruments are

uncorrelated.
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There are, however, correlation structures that affect the selection process in such a

way that the large sample LARS/Lasso path does not include a model where all invalid

instruments are selected as invalid, even when s < L/2. This has been documented well

for the Lasso in the standard linear model, see e.g. Zhao and Yu (2006) and Zou (2006).

As a simple example, if η1 is the pairwise correlation between the invalid instruments,

η12 that between the valid and invalid ones, and η2 that between the valid instruments,

then e.g. for L = 10, s = 3, and values of η1 = −0.22, η12 = −0.11 and η2 = 0.85, from

(17) and (18) we get for the invalid and valid instruments

plim (ĉn,inv) /a = 0.5570

plim (ĉn,val) /a = −0.5915.

Hence, for this parameter configuration and correlation structure, the valid instruments

will be selected as invalid in large samples.

There is an important conceptual issue when instruments are correlated, in the sense

that for general correlation structures valid instruments are only valid after inclusion of

the invalid instruments in the model. This is unlike the case of uncorrelated instruments,

where inclusion of invalid instruments in the model or dropping them from the instru-

ment set both lead to a consistent 2SLS estimator. Therefore, assumption (2) about

the relationship between the instrument and the confounders, E
[
Y
(0,0)
i |Zi.

]
= Z′i.ψ, is

essential for the identification and estimation of the parameters when instruments are

correlated. As can be seen from the observational model (3), the direct effect assumption

(1) and the conditional mean assumption (2) are observationally equivalent. Consider

changing the conditional mean assumption (2) to one of correlation, i.e.

E
[
Y
(0,0)
i Zi.

]
= ψ̃, (19)

with some of the elements of ψ̃ equal to 0. These are for example the moments con-

sidered by Han (2008), Liao (2013) and Cheng and Liao (2015). Then model (3) no

longer follows unless instruments are uncorrelated. For general correlation structures all

instruments would enter the outcome model (3) under condition (19), or in other words,

all αj coeffi cients would be unequal to 0 and the causal effect parameter would therefore

not be identified using the selection methods based on model specification (3).
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6 A Consistent Estimator when s < L/2 and Adap-
tive Lasso

As the results above highlight, the LARS/Lasso path may not include the correct model,

leading to an inconsistent estimator of β. This is the case even if more than 50% of

the instruments are valid because of differential instrument strength and/or correlation

patterns of the instruments. In this section we present an estimation method that consis-

tently selects the invalid instruments when less than 50% of the potential instruments are

invalid. This is the same condition as that for the LARS/Lasso selection to be guaranteed

to be consistent for equal strength uncorrelated instruments, but the proposed estimator

below is consistent when the instruments have differential strength and/or have a general

correlation structure.

We consider the adaptive Lasso approach of Zou (2006) using an initial consistent

estimator of the parameters. In the standard linear case, the OLS estimator in the model

with all explanatory variables included is consistent. As explained in Section 2, in the

instrumental variables model this option is not available. We build on the result of Han

(2008), who shows that the median of the L IV estimates of β using one instrument at

the time is a consistent estimator of β in a model with invalid instruments, but where

the instruments cannot have direct effects on the outcome, unless the instruments are

uncorrelated.

Define Γ̂ = (Z′Z)−1 Z′y; γ̂ = (Z′Z)−1 Z′d, and let π̂ be the L-vector with j-th element

π̂j =
Γ̂j
γ̂j
, (20)

Under the standard assumptions, we show below that the median of the π̂j is a consistent

estimator for β when s < L/2, without any further restrictions on the relative strengths

or correlations of the instruments, and hence this estimator can be used for the adaptive

Lasso.

Proposition 2

Under model specifications (3) and (6), assumptions C1-C3, the L-vector π̂ with elements

as defined in (20) and the condition that s < L/2, the estimator β̂m, defined as

β̂m ≡ median (π̂) (21)
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is a consistent estimator for β.

Proof: Under the stated assumptions,

plim
(

Γ̂
)

= γβ + α;

plim (γ̂) = γ.

Hence

plim (π̂j) =
γjβ + αj

γj
= β +

αj
γj
.

As s < L/2, more than 50% of the αs are equal to zero and hence it follows that more

than 50% of the elements of plim (π̂) are equal to β. Using a continuity theorem, it then

follows that

plim
(
β̂m

)
= median {plim (π̂)} = β.

Given the consistent estimator derived above for β, we can obtain a consistent esti-

mator for α

α̂m = (Z′Z)
−1

Z′
(
y − dβ̂m

)
= Γ̂− γ̂β̂m,

which can then be used for the adaptive Lasso specification of (11) as proposed by Zou

(2006). The adaptive Lasso estimator for α is defined as

α̂λad = arg min
α

1

2n
‖y − Z̃α‖22 +

λ

n

L∑
l=1

|ω̃lαl|
|α̂m,l|υ

,

and, for given values of υ can be estimated straightforwardly using the LARS algorithm,

see Zou (2006).

Table 4 presents the estimation results for the adaptive Lasso for the design as in

Table 3, setting υ = 1. As L is even here, the median is defined as β̂m =
(
π̂[5] + π̂[6]

)
/2,

where π̂[j] is the j-th order statistic.
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Table 4. Estimation results for β, adaptive Lasso; L = 10, s = 3, γinv = 3γval
av. # instr freq. all s

selected as invalid invalid instr
β bias std dev rmse mad [min, max] selected
n = 500

β̂m 0.1126 0.0935 0.1463 0.1129
Post-ad Lassocvse 0.2426 0.0787 0.2550 0.2568 0.46 [0,6] 0.04
Post-ad Lassoah 0.2173 0.1091 0.2432 0.2471 0.85 [0,5] 0.07
n = 2000

β̂m 0.0636 0.0503 0.0811 0.0649
Post-ad Lassocvse 0.0283 0.0774 0.0824 0.0348 3.07 [0,6] 0.89
Post-ad Lassoah 0.0172 0.0673 0.0694 0.0302 3.05 [1,5] 0.94
n = 10, 000

β̂m 0.0278 0.0226 0.0358 0.0285
Post-ad Lassocvse 0.0011 0.0185 0.0185 0.0128 3.02 [3,6] 1
Post-ad Lassoah 0.0009 0.0185 0.0185 0.0128 3.01 [3,5] 1
Notes: Results from 1000 MC replications; a = 0.2; β = 0; γval= 0.2; ρ = 0.25; υ = 1

As can be seen in Table 4, the adaptive Lasso does not perform well for n = 500,

but does for the sample sizes of n = 2000, and n = 10, 000, with results for the latter

very similar to the oracle 2SLS results. This is as expected from the theoretical results

of Zou (2006), who shows that the adaptive Lasso has oracle properties in terms of

consistency of variable selection and asymptotic normality. Following Remark 1 in Zou

(2006, p. 1420), α̂m is not required to be
√
n consistent. As the results show, there is

still some bias in β̂m, even at the largest sample size. This is due to the fact that the

median estimator, whilst converging at the
√
n rate, has an asymptotic bias in this design

because its limiting distribution is that of an order statistic which does not have zero

mean. It follows that α̂m converges at the
√
n rate, but with an asymptotic bias. This

implies that
√
n (α̂m − α) = Op (1) and hence the conditions in Remark 1 in Zou (2006)

hold for the adaptive Lasso proposed here to enjoy oracle properties.

To derive the asymptotic bias of the median estimator β̂m, let δ be the L-vector with

elements

δj =
αj
γj
.

Partition δ as δ =
(
δ′s δ′0

)′
, where δs contains the elements of δ that are not equal

to 0, and δ0 = 0L−s. Partition π̂ accordingly as π̂ =
(
π̂′s π̂′0

)′
. Under the standard
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conditions and using the delta method, the limiting distribution of π̂ is given by

√
n (π̂ − (βιL + δ))

d−→ N (0,Σπ) .

As β̂m = median (π̂),

√
n
(
β̂m − β

)
=
√
n (median (π̂)− β)

= median
(√

n (π̂ − βιL)
)
.

As
√
n (π̂ − βιL) =

( √
n (π̂s − (βιs + δs)) +

√
n (δs)√

n (π̂0 − βιL−s)

)
,

it then follows that

√
n
(
β̂m − β

)
= median

(√
n (π̂ − βιL)

) d−→ q[l],L−s

where for L odd, q[l],L−s is the l-th order-statistic of the limiting distribution of
√
n (π̂0 − βιL−s),

where l is determined by L, s and the signs of the elements of δs. For L even, q[l],L−s is

defined as the average of either the [l] and [l − 1] order statistics, or the [l] and [l + 1]

order statistics.

The design in Table 4 has L = 10, s = 3 and α1 = α2 = α3 = a > 0. The median is

defined here as β̂m =
(
π̂[5] + π̂[6]

)
/2. We therefore get that

√
n
(
β̂m − β

)
= median

(√
n (π̂ − βι10)

) d−→ q[5,6],7

where q[5,6],7 is the limiting distribution of the average of the fifth and sixth order statistic

of

√
n


 π̂4

...
π̂10

− βι7
 d−→ N (0,Σ∗π) ,

where for the design in Table 4, Σ∗π = 25I7, as σ2ε = 1 and 1/γ2j = 25 for j = 4, ..., 10.

From a simple simulation, drawing repeatedly from the N (0, 25I7) distribution, we find

that E
[
q[5,6],7

]
= 2.78. Therefore E

[
q[5,6],7

]
/
√
n = 0.0278 for n = 10, 000, exactly the

result found for the bias of β̂m in Table 4.

For this design, the asymptotic bias of the median estimator is affected by the number

of invalid instruments in the following way. For n = 10, 000 we get for s = 4, 2, 1, 0
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respectively E
[
q[5,6],6

]
/
√
n = 0.0477; E

[
q[5,6],8

]
/
√
n = 0.0156; E

[
q[5,6],9

]
/
√
n = 0.0069;

and E
[
q[5,6],10

]
/
√
n = 0.

Having all elements of δs with the same sign is clearly the worst case scenario for the

asymptotic bias of the median estimator. The best case scenario is for even s, if half

the elements in δs are positive and half negative, as we then have that
√
n
(
β̂m − β

)
converges to the median of the limiting distribution of

√
n (π̂0 − βιL−s), and therefore

has no asymptotic bias.

For the results in Table 4, for n = 2000, the means of the estimates for the positive

αj = 0.2 are approximately 0.161 whereas the means of the estimates for the αj = 0 are

approximately 0.0186. For n = 10, 000, these are approximately 0.183 and 0.0085. The

ratios of the biases for n = 10, 000, relative to those of n = 2000 are approximately 0.44

which is equal to
√

2000/
√

10, 000, confirming that the bias in α̂m decreases at the
√
n

rate.

Using standard asymptotic robust standard errors for the post-adaptive Lassoah 2SLS

estimator, the Wald test for the null H0 : β = 0, at the 10% level, rejects 15.4% and 9.2%

for n = 2000 and n = 10, 000 respectively, confirming the oracle property for the large

sample size.

7 The Effect of BMI on Diastolic Blood Pressure
Using Genetic Markers as Instruments

We use data on 105, 276 individuals from the UK Biobank and investigate the effect of

BMI on diastolic blood pressure (DBP). See Sudlow et al. (2016) for further information

on the UK Biobank. We use 96 single nucleotide polymorphisms (SNPs) as instruments

for BMI as identified in independent GWAS studies, see Locke et al. (2015).

With Mendelian randomisation studies the SNPs used as potential instruments can be

invalid for various reasons, such as linkage disequilibrium, population stratification and

pleiotropy, see e.g. von Hinke et al. (2016). For example, a SNP has pleiotropic effects if

it not only affects the exposure but also has a direct effect on the outcome. Whilst we

guard against population stratification by considering only Caucasian UK individuals in

our data, the use of the Lasso methods can be extremely useful here to identify the SNPs

with direct effects on the outcome and to estimate the causal effect of BMI on diastolic
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blood pressure taking account of this.

Because of skewness, we log-transformed both BMI and DBP. The linear model spec-

ification includes age, age2 and sex, together with 15 principal components of the genetic

relatedness matrix as additional explanatory variables. Table 5 presents the estimation

results for the causal effect parameter, which is here the percentage change in DBP due

to a 1% change in BMI. As critical value for the Hansen test based procedures we take

again 0.1/ ln (n) = 0.0086.

Table 5. Estimation results, the effect of ln (BMI) on ln (DBP )

estimate st err # instr p-value J-test
selected as invalid

OLS 0.206 0.003
2SLS 0.087 0.016 0 0.0000

Lassocvse 0.110 18
Post-Lassocvse 0.147 0.020 18 0.4889
Post-Lassoah 0.122 0.018 12 0.0122

median, β̂m 0.148
ad Lassocvse 0.131 17

Post-ad Lassocvse 0.151 0.019 17 0.4091
Post-ad Lassoah 0.163 0.018 11 0.0102
Notes: sample size n = 105, 276; L = 96

The OLS estimate of the causal parameter is equal to 0.206 (s.e. 0.003), whereas the

2SLS estimate treating all 96 instruments as valid is much smaller at 0.087 (s.e. 0.016).

The J-test, however, rejects the null that all the instruments are valid. The Lassocvse

procedure identifies 18 instruments as invalid and the Lassocvse estimate is equal to 0.110.

The Post-Lassocvse estimate is equal to 0.147, which is in line with our findings above

that the Lasso estimator is biased towards the 2SLS estimator that treats all instruments

as valid due to shrinkage. The Post-Lassoah procedure selects a subset of 12 instruments

as invalid, and the Post-Lassoah parameter estimate is equal to 0.122.

The median estimate β̂m is equal to 0.148. Using this estimate for the adaptive Lasso

results in the cvse method selecting 17 instruments as invalid. The adaptive Lassoah

30



method selects a subset of 11 instruments as invalid. The adaptive Lassocvse, post-

Lassocvse and post-Lassoah estimates are equal to 0.131, 0.151 and 0.163 respectively.

The median and the two post-adaptive Lasso estimators indicate that the OLS estimator

is less confounded than suggested by the 2SLS estimation results using all 96 instruments

as valid instruments.

The strongest potential instrument is the FTO SNP. For all Lasso estimators in Table

5 it is selected as an invalid instrument. The value for π̂FTO = −0.009, i.e. negative,

which is contrary to the direction of the found causal effect.

The F statistic for H0 : γval = 0 for the model resulting from the adaptive Lassoah

procedure is equal to 18.21 with the associated estimate of the concentration parameter

equal to 1547.81. The F -test result indicates that the 2SLS estimator may have some

many weak instruments bias, see Stock and Yogo (2005). However, the LIML (Limited

Information Maximum Likelihood) estimator in this model is very similar to the 2SLS

estimator and equal to 0.159 (s.e. 0.019), indicating that there is not a many weak

instruments problem here, see Davies et al. (2015).

8 Conclusions

Instrumental variables estimation is a well established procedure for the identification and

estimation of causal effects of exposures on outcomes where the observed relationships

are confounded by non-random selection of exposure. The main identifying assumption is

that the instruments satisfy the exclusion restriction, i.e. they only affect the outcomes

through their relationship with the exposure. In an important contribution, Kang et

al. (2016) show that the Lasso method for variable selection can be used to select invalid

instruments in linear IV models, even though there is no prior knowledge about which

instruments are valid.

We have shown here that, even under the suffi cient condition for identification that

less than 50% of the instruments are invalid, the Lasso selection may select the valid

instruments as invalid if the invalid instruments are relatively strong, i.e. the case where

an invalid instrument explains more of the exposure variance than a valid instrument.

Consistent selection of invalid instruments also depends on the correlation structure of

the instruments.
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We show that a median estimator is consistent when less than 50% of the instruments

are invalid, and its consistency does not depend on the relative strength of the instru-

ments or their correlation structure. This initial consistent estimator can be used for

the adaptive Lasso estimator of Zou (2016) and we show that it performs well for larger

sample sizes in our simulations, solving the inconsistency problem of the Lasso method

when the relative strength of the invalid instruments is such that Lasso method selects

the valid instruments as invalid.

Whilst less than 50% invalid instruments is a suffi cient condition for identification,

in principle the parameters are identified if the valid instruments form the largest group.

Instruments form a group if they have the same estimate for the causal effect. Future

research will therefore focus on how to obtain consistent results when more than 50% of

the instruments are invalid, but the parameters are such that they are asymptotically

identified.
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9 Appendix

9.1 LARS Steps for Instrument Selection

Following Efron et al. (2004), the LARS algorithm begins at µ̂0 = 0 and builds up µ̂ by

steps. Suppose that µ̂A is the current LARS estimate and that

ĉn = n−1Z̃′ (y − µ̂A) (22)

is the vector of current correlations. The active set A is the set of indices corresponding

to covariates with the greatest absolute current correlations

Ĉn = max
j
{|ĉn,j|} and A =

{
j : |ĉn,j| = Ĉn

}
.

Define

sj = sign {ĉn,j} for j ∈ A

and

Z̃s
A =

(
· · · sjZ̃.j · · ·

)
j∈A

= Z̃ASA

with SA = diag (sj). Further, define

Gn,A = n−1Z̃s′
AZ̃s

A = SAZ̃′AZ̃ASA

and

Bn,A =
(
ι′AG−1n,AιA

)−1/2
,

where ιA is a vector of ones of length |A|, the size of A. Define the equiangular vector

un,A = Z̃ASAwn,A,

where

wn,A = Bn,AG−1n,AιA.
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Further, define

bAn = n−1Z̃′un,A,

with j-th element bAn,,j.

Then the next step of the LARS algorithm updates µ̂A to

µ̂A+ = µ̂A + κ̂Au
n,A

where

κ̂A = min
j∈Ac

+

{
Ĉn − ĉn,j
Bn,A − bAn,j

,
Ĉn + ĉn,j
Bn,A + bAn,j

}
, (23)

where min + indicates that the minimum is taken over only positive components within

each choice of j. κ̂A is the smallest positive value of κA such some new index ĵ joins the

active set; ĵ is the minimizing index in (23) and the new active set A+ is A ∪
{
ĵ
}
. The

updated correlations are equal to ĉn,j − κ̂AbAn,j, the new maximum absolute correlation is
Ĉn,+ = Ĉn − κ̂ABn,A, which is the value of the correlations for the active set A+.

Assuming that all γj are the same and that E [Zi.Z
′
i.] = plim (n−1Z′Z) = IL, we have

that

plim
(
n−1Z̃′Z̃

)
= I− L−1ιLι′L,

and hence

plim
(
Ω̃n

)
= diag

(√
1− L−1

)
and so we can ignore Ω̃n asymptotically for this case and focus on ĉn as defined above

in (22).

As

plim
(
n−1Z̃′AZ̃A

)
= IA − L−1ιAι′A,

it follows that

GA = plim
(
n−1Gn,A

)
= S′A

(
IA − L−1ιAι′A

)
SA

= IA − L−1sAs′A,

where sA is the |A| vector of signs {sj}. Hence,

G−1A = IA + (L− |A|)−1 sAs′A
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and

BA = plim (Bn,A) =
(
ι′AG−1A ιA

)−1/2
=
(
|A|+ (L− |A|)−1 q2A

)−1/2
,

where

qA = ι′AsA

is the difference in the numbers of +1 and −1 in sA. Further,

wA = plim (wn,A) = BAG−1A ιA = BA

(
ιA +

qA
(L− |A|)sA

)
and

plim
(
n−1SAZ̃′AuA

)
= BAιA.

Then

bA = plim
(
bAn
)

=

 plim
(
n−1Z̃ ′AZ̃ASAwA

)
plim

(
n−1Z̃ ′AcZ̃ASAwA

)  =

[
(IA−L−1ιAι′A) SAwA

−L−1ιAcι′ASAwA

]
.

Consider the case as described in Proposition 1 with all non-zero αs being positive,

and ordered such that α1 > α2 > .. > αs > αs+1 = ... = αL = 0. We have at µ̂0 = 0,

plim (ĉn) = plim
(
n−1Z̃′y

)
= α− α. (24)

It follows that if (α1 − α) > α, then A = A1 = {1} and Ĉ = |α1 − α|. The minimum κ̂A1

for the invalid instruments is given by

min (κ̂A1,inv) =
(α1 − α)− (α2 − α)

BA1 − bA12
=

α1 − α2
BA1 − bA12

and for the valid instruments,

min (κ̂A1,val) =
(α1 − α) + (−α)

BA1 + bA1val
=

α1 − 2α

BA1 + bA1val

and so the invalid Z̃.2 enters the active set if

α1 − α2
BA1 − bA12

<
α1 − 2α

BA1 + bA1val
,

and then κ̂A1 = min (κ̂A1,inv).
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At step m, assume that m < s invalid instruments have been selected, hence A =

Am = {1, 2, ...,m}. For all A1...Am we have that all correlations are positive, so SA = IA,

sA = ιA, qA = |A|, and

BA =

(
L− |A|
L |A|

)1/2
wA = BA

(
1 +

|A|
L− |A|

)
ιA = BA

(
L

L− |A|

)
ιA

b
Aj
j+1 = b

Aj
val = −BAj

(
|Aj|

L− |Aj|

)
.

As there are no Lasso steps, |Aj| = j.

By repeated substitution, the minimum κ̂Am for the invalid instruments is then given

by

min κ̂Am,inv =

(
α1 − α−

∑m−1
j=1 κ̂AjBAj

)
−
(
αm+1 − α−

∑m−1
j=1 κ̂Ajb

Aj
m+1

)
BAm − bAmm+1

=
α1 − αm+1 −

∑m−1
j=1 (αj − αj+1)

BAm − bAmm+1
=

αm − αm+1
BAm − bAmm+1

.

For the valid instruments it is given by

min κ̂Am,val =

(
α1 − α−

∑m−1
j=1 κ̂AjBAj

)
+
(
−α−

∑m−1
j=1 κ̂Ajb

Aj
val

)
BAm + bAmval

=

α1 − 2α−
∑m−1

j=1 (αj − αj+1)
BAj+b

Aj
val

BAj−b
Aj
j+1

BAm + bAmval
,

as

BAj + b
Aj
val = BAj

(
1− |Aj|

L− |Aj|

)
= BAj

(
L− 2 |Aj|
L− |Aj|

)
and

BAj − b
Aj
j+1 = BAj

(
1 +

|Aj|
L− |Aj|

)
= BAj

(
L

L− |Aj|

)
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it follows that
BAj + b

Aj
val

BAj − b
Aj
j+1

=
L− 2 |Aj|

L
=
L− 2j

L
.

Therefore

α1 − 2α−
m−1∑
j=1

(αj − αj+1)
BAj + b

Aj
val

BAj − b
Aj
j+1

= α1 − 2α−
m−1∑
j=1

(αj − αj+1)
L− 2j

L

=
L− 2 (m− 1)

L

(
αm − 2α(m−1)

L− (m− 1)

L− 2 (m− 1)

)
where

α(m−1) =
1

L− (m− 1)

L∑
j=m

αj.

Then the next invalid instrument gets selected if

αm − αm+1
BAm − bAmm+1

<

L−2(m−1)
L

(
αm − 2α(m−1)

L−(m−1)
L−2(m−1)

)
BAm + bAmval

αm − αm+1 <
L− 2 (m− 1)

L

(
αm − 2α(m−1)

L− (m− 1)

L− 2 (m− 1)

)(
L

L− 2m

)
αm+1 > 2α(m)

L−m
L− 2m

.

Hence the LARS algorithm selects the last invalid instrument at step s if

αs > 2α(s−1)
L− (s− 1)

L− 2 (s− 1)
= 2

αs
L− (s− 1)

L− (s− 1)

L− 2 (s− 1)

L− 2s+ 2 > 2 ⇔ s < L/2.

For L even, if s = L/2 thenmin (κ̂As,inv) = min (κ̂As,val) and all remaining instruments

get in principle selected as invalid. In practice therefore, the invalid instrument may or

may not be selected as invalid. If s > L/2, the valid instruments get selected as invalid

before all invalid ones have been selected, and hence there is no path that includes all

invalid instruments.
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