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L2Boosting for Economic Applications

By Ye Luo and Martin Spindler∗

In the recent years more and more high-
dimensional data sets, where the number
of parameters p is high compared to the
number of observations n or even larger,
are available for applied researchers. Boost-
ing algorithms represent one of the major
advances in machine learning and statis-
tics in recent years and are suitable for the
analysis of such data sets. While Lasso
has been applied very successfully for high-
dimensional data sets in Economics, boost-
ing has been underutilized in this field, al-
though it has been proven very powerful in
fields like Biostatistics and Pattern Recog-
nition. We attribute this to missing theo-
retical results for boosting. The goal of this
paper is to fill this gap and show that boost-
ing is a competitive method for inference of
a treatment effect or instrumental variable
(IV) estimation in a high-dimensional set-
ting. First, we present the L2Boosting with
componentwise least squares algorithm and
variants which are tailored for regression
problems which are the workhorse for most
Econometric problems. Then we show how
L2Boosting can be used for estimation of
treatment effects and IV estimation. We
highlight the methods and illustrate them
with simulations and empirical examples.
For further results and technical details we
refer to (?) and (?) and to the online sup-
plement of the paper.

I. L2Boosting

To define the boosting algorithm for lin-
ear models, we consider the following re-
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gression setting:

yi = x′iβ + εi, i = 1, . . . , n,(1)

with vector xi = (xi,1, . . . , xi,pn) consist-
ing of pn predictor variables, β a pn-
dimensional coefficient vector, and a ran-
dom, mean-zero error term εi, E[εi|xi] = 0.

We allow the dimension of the predictors
pn to grow with the sample size n, and
even be larger than the sample size, i.e.,
dim(β) = pn � n. But we will impose a
sparsity condition. This means that there
is a large set of potential variables, but the
number of variables which have non-zero co-
efficients, denoted by s, is small compared
to the sample size, i.e. s� n.
X denotes the n× p design matrix where

the single observations xi form the rows. Xj

denotes the jth column of the design ma-
trix, and xi,j the jth component of the vec-
tor xi. We consider a fixed design for the
regressors. We assume that the regressors
are standardized with mean zero and vari-
ance one, i.e., En[xi,j] = 0 and En[x2

i,j] = 1
for j = 1, . . . , p,

The basic principle of Boosting can be
described as follows. We follow the inter-
pretation of (?) and (?) of Boosting as
a functional gradient descent optimization
(minimization) method. The goal is to min-
imize a loss function, e.g., an L2-loss or the
negative log-likelihood function of a model,
by an iterative optimization scheme. In
each step the (negative) gradient which is
used to update the current solution is mod-
eled and estimated by a parametric or non-
parametric statistical model, the so-called
base learner. The fitted gradient is used for
updating the solution of the optimization
problem. A strength of boosting, besides
the fact that it can be used for different loss
functions, is its flexibility with regard to the
base learners. We then repeat this proce-
dure until some stopping criterion is met.
The act of stopping is crucial for boosting
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algorithms, as stopping too late or never
stopping leads to overfitting and therefore
some kind of penalization is required. A
suitable solution is to stop early, i.e., before
overfitting takes place. “Early stopping”
can be interpreted as a form of penalization.
Similar to LASSO, early stopping might in-
duce a bias through shrinkage.

The literature has developed many dif-
ferent forms of boosting algorithms. In this
paper we consider L2Boosting with compo-
nentwise linear least squares, as well as two
variants. All three are designed for regres-
sion analysis. “L2”refers to the loss func-
tion, which is the typical sum-of-squares
of the residuals Qn(β) =

∑n

i=1(yi − x′iβ)2

typical in regression analysis. In this case,
the gradient equals the residuals. “Compo-
nentwise linear least squares”refers to the
base learners. We fit the gradient (i.e.
residuals) against each regressor (p uni-
variate regressions) and select the predic-
tor/variable which correlates most highly
with the gradient/residual, i.e., decreases
the loss function most, and then update
the estimator in this direction. We next
update the residuals and repeat the proce-
dure until some stopping criterion is met.
We consider L2Boosting and two modifica-
tions: the “classical”one which was intro-
duced in (?) and refined in (?) for re-
gression analysis, an orthogonal variant and
post-L2Boosting. In signal processing and
approximation theory, the first two meth-
ods are known as the pure greedy algo-
rithm (PGA) and the orthogonal greedy al-
gorithm (OGA) in the deterministic setting,
i.e. in a setting without stochastic error
terms.

ALGORITHM 1 (L2Boosting): 1) Start
/ Initialization: β0 = 0 (p-dimensional
vector), f0 = 0, set maximum number
of iterations mstop and set iteration
index m to 0.

2) At the (m + 1)th step, calculate the
residuals Um

i = yi − x′iβm.

3) For each predictor variable j = 1, . . . , p
calculate the correlation with the resid-

uals:

γmj :=

∑n

i=1 U
m
i xi,j∑n

i=1 x
2
i,j

=
< Um, xj >n

En[x2
i,j]

.

Select the variable jm that is the
most correlated with the residuals, i.e.,
max1≤j≤p |corr(Um, xj)|1.

4) Update the estimator: βm+1 := βm +
γmjmejm where ejm is the jmth index vec-
tor and fm+1 := fm + γmjmxjm

5) Increase m by one. If m < mstop, con-
tinue with (2); otherwise stop.

Moreover, we consider two variants,
namely post-L2Boosting (post-BA) and or-
thogonal L2Boosting (oBA).

Post-L2Boosting is a post-model selec-
tion estimator that applies ordinary least
squares (OLS) to the model selected by
the first-step, namely L2Boosting. To de-
fine this estimator formally, we make the
following definitions: T := supp(β) and

T̂ := supp(βm
∗
), the support of the true

model and the support of the model esti-
mated by L2Boosting as described above
with stopping at m∗. A superscript C de-
notes the complement of the set with regard
to {1, . . . , p}. In the context of LASSO,
OLS after model selection was analyzed in
(?). Given the above definitions, the post-
model selection estimator or OLS post-
L2Boosting estimator will take the form

β̃ = argminβ∈RpQn(β) : βj = 0∀j ∈ T̂C ,
(2)

where Qn(β) =
∑n

i=1(yi − x′iβ)2. For
oBA, only the updating step is changed: an
orthogonal projection of the response vari-
able is conducted on all the variables which
have been selected up to this point. The
advantage of this method is that any vari-
able is selected at most once in this proce-
dure, while in the previous version the same
variable might be selected at different steps
which makes the analysis far more compli-
cated. More formally, the method can be
described as follows by modifying Step (4):

1Equivalently, which fits the gradient best in a L2-

sense.
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ALGORITHM 2 (Orthogonal L2Boosting):

(4′) ŷm+1 ≡ fm+1 = Pmy

and

Um+1
i = Yi − Ŷ m+1

i ,

where Pm denotes the projection of the vari-
able y on the space spanned by the first m
selected variables (the corresponding regres-
sion coefficient is denoted βmo .)

Define Xm
o as the matrix which consists

only of the columns which correspond to
the variables selected in the first m steps,
i.e. all Xjk , k = 0, 1, . . . ,m. Then we have:

βmo = (Xm
o
′Xm

o )−1Xm
o
′y(3)

ŷm+1 = fm+1
o = Xm

o β
m
o(4)

II. Inference with L2Boosting

In many cases the researcher is inter-
ested in valid inference of a low-dimensional
parameter α in the presence of a high-
dimensional nuisance parameter η where
modern methods of machine learning are
used to estimate the nuisance parameter η.
To achieve this, two conditions are suffi-
cient. First, it is important that estimating
equations used to draw inferences about α
satisfy a key orthogonality or immunization
condition. When estimation and inference
for α are based on the system of equations
M(α, η) = 0, this condition is fulfilled if

∂ηM(α, η) = 0.

This is an important element in providing
an inferential procedure for α that remains
valid when η is estimated using regularized
machine learning methods, like Lasso or
boosting. This orthogonality condition can
generally be established. Second, it is im-
portant to use high-quality, structured esti-
mators of η. Additional structure is usually
required for η and the imposed estimator
shall replicate this structure. It has been
shown that under a sparsity condition Lasso
is such a high-quality estimator. For a de-
tailed description of this approach to valid

post selection inference we refer to another
article in this session, (?), and (?).

(?) show that both post and orthogonal
L2Boosting fulfill the conditions for a high
quality estimator and have the same rate
of convergence as Lasso.2 Hence, those two
variants of boosting can be used in a high-
dimensional setting to estimate the nui-
sance parameter η and finally provide valid
inference for the target parameter of inter-
est, α. Formal statements of those results
are provided in (?). In the following sec-
tions we show how L2Boosting can be used
in practical economic problems, namely IV
estimation with many potential IVs, and
inference on treatment effects after selec-
tion among high-dimensional controls with
L2Boosting. (?) and (?) provide the un-
derlying theory for high-dimension, includ-
ing the immunized moment conditions.

III. Estimation of Treatment Effects

In this section we report briefly the re-
sults from the simulation studies and the
applications. A detailed description can be
found in the supplement to the paper.

A. IV estimation with many instruments

Here we use boosting for estimation of the
first stage in an IV setting with very many
potential instrumental variables. The simu-
lations show that boosting performs well in
common settings, giving a lower bias than
post-Lasso and rejection rates close to the
nominal 5% level. In the application the in-
fluence of property rights protection, mea-
sured by federal appellate court decisions
regarding in eminent domain, on GDP is
analyzed. The boosting estimates replicate
the Lasso estimates but with smaller stan-
dard errors. The economic conclusions re-
main unchanged.

2They also derive an upper bound for the rate of con-

vergence of L2Boosting which is slower than the Lasso
rate. Under additional assumptions an improvement
might be possible.
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B. Inference on treatment effects after
selection among high-dimensional controls

For estimation and inference of a treat-
ment effect in a setting with very many con-
trol variables we apply the so-called double
selection method. It consists of two sepa-
rate selection steps to determine the final
controls for the regression of the outcome
variable on the treatment variable and the
selected controls. In the simulations Lasso
shows a lower bias, but the rejection rates
are too small compared to the nominal 5%
level. The boosting estimates are close to
the nominal level. The application, analyz-
ing the convergence hypothesis in Macroe-
conomics, replicates the Lasso estimates.

IV. Conclusion

In this paper we define and explain briefly
L2Boosting and two variants, namely post-
L2Boosting and orthogonal boosting. We
show, how these methods can be used
within the orthongal moment conditions
framework for valid post-selection inference
on treatment effects, either in an IV esti-
mation setting with many instruments or
in a setting with very many controls. Al-
though only post- and orthogonal boost-
ing have been shown to have rate of con-
vergence in prediction norm, allowing valid
post-selection inference, all three versions
show very good properties in the simula-
tions. In the applications we present boost-
ing replicates the results from Lasso esti-
mates. In sum, boosting seems to be an
useful tool for the (micro-)econometrician’s
toolbox. The strength of boosting is par-
ticular in more complex models and offers
many interesting questions for future re-
search.

Online Appendix for “L2Boosting
for Economic Applications”

L2Boosting for Economic Applications]
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By Ye Luo and Martin Spindler

Abstract. In this supplement additional material,

in particular simulation results and applications, for the
paper “L2Boosting for Economic Applications“is pre-

sented.

Key words: L2Boosting, High-dimensional, instru-
mental variables, treatment effects, post-selection infer-

ence.

In this supplement additional material for
the article “L2Boosting for Economic Ap-
plications“is presented. First, a brief liter-
ature review of using boosting in Economics
and Finance is given. The main part shows
– by simulations and applications – how
boosting can be used for estimation of treat-
ment effects in a setting with very many
control variables and with very many po-
tential instrumental variables.

V. A Brief Review of the Literature

In this section we give a very brief re-
view of applications of boosting in Eco-
nomics and Finance. As the strength of
machine learning is in prediction and model
selection, boosting has been mainly used in
these domains. Although boosting has been
shown to be a useful approach in many sta-
tistical applications, it has been more or less
ignored in empirical economics and finance.
Some of the few exceptions include the fol-
lowing applications.

Boosting has been used for modeling and
predicting volatility,amongst others, by (?),
(?) and (?). (?) model stock–index volatil-
ity in a GARCH framework and employ
boosting for componentwise knot selection

∗ Luo: University of Florida, yeluo@ufl.edu.
Spindler: University of Hamburg, Hamburg Busi-

ness School, Hamburg Center for Health Economics
(hche) and Max Planck Society, martin.spindler@uni-
hamburg.de. We thank participants and the discussant
Hai Wang at the session Machine Learning in Econo-

metrics at the AEA annual meeting 2017 in Chicago for
valuable comments.
‡ Luo: University of Florida. Spindler: University

of Hamburg, Hamburg Business School, Moorweidenstr.
18, 20148 Hamburg, Germany, martin.spindler@uni-

hamburg.de.

in bivariate–spline estimation. (?) also
employ a GARCH framework for modeling
volatility but allow for a large set of macroe-
conomic variables which drive volatility.
Their data set consists of monthly data
with 253 months in total and 40 macroe-
conomic variables leading to more than 80
predictors (allowing lags). They employ
boosting for model estimation and variable
selection.

(?) use boosting to select the predictors
in factor-augmented autoregressions. (?)
classifies and predicts recessions with boost-
ing.

VI. IV estimation with many
instruments

In this section we demonstrate how
boosting can be used for IV estimation in a
setting with very many instruments.

A. Simulation

The simulations are based on a simple in-
strumental variables model data-generating
process (DGP):

yi = βdi + ei,(5)

di = ziΠ + vi,(6)

(ei, vi) ∼ N
(

0,

(
σ2
e σev

σev σ2
v

))
i.i.d.,(7)

where β = 1 is the parameter of interest.
The regressors Zi = (zi1, . . . , zi100)′ are nor-
mally distributed N(0,ΣZ) with E[z2

ih] =
σ2
z and Corr(zih, zij) = 0.5|j−h|. σ2

z and σ2
e

are set to unit, Corr(e, v) = 0.6. σ2
v =

1 − Π′ΣzΣ so that the the unconditional
variance of the endogenous variable equals
1. The first stage coefficients are set ac-
cording to Π = CΠ̃. For Π̃ we use a sparse
design, i.e., Π̃ = (1, . . . , 1, 0, . . . , 0) with s
coordinates equal to one and all other p− s
equal to zero. C is set in such a way that

5
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we generate target values for the concen-
tration parameter µ = nΠ′ΣzΠ

σ2
v

which deter-

mines the behavior of IV estimators. We
set the sample size equal n to 100, s = 5,
p = 100 and the concentration parame-
ter equal to 180. We estimate the first
stage and calculate the first stage predic-
tions with L2Boosting and its variants. The
simulation results in Table ?? reveal that
boosting has a smaller bias than post-Lasso
in this setting. While post-Lasso produces
rejection rates below the nominal 5% level,
boosting is slightly above.

B. Application

We consider IV estimation of the effects
of federal appellate court decisions regards
in eminent domain on macroeconomic out-
comes, here in particular the log of the
GDP.1 The structural model is given by

yct = αc + αt + γct+ βTakingsLawct +W ′
ctδ + εct,

(8)

where yct is the economic outcome, here
log of GDP, for circuit c at time t,
TakingsLawct number of pro-plaintiff ap-
pellate takings decisions in circuit c and
time t, Wct judicial pool characteristics, a
dummy for whether there were no cases in
that circuit-year, and the number of takings
appellate decisions; αc, αt and γct denote
circuit-specific, time-specific and circuit-
specific time trends. The parameter of in-
terest, β, represents the effect of an addi-
tional decision upholding individual prop-
erty interpreted as more protective individ-
ual property rights. The sample size is 312.
The analysis of the causal effect of takings
law is complicated by potential endogeneity
between taking law decisions and economic
variables. We employ an instrumental vari-
ables strategy that relies on the random as-
signment of judges to federal appellate pan-
els and uses characteristics of federal circuit
court judges (e.g. gender ,race, religion, po-
litical affiliation, etc.) as instruments. This
gives 138 instruments. We estimate the ef-
fect β by doing the selection of IVs and

1We refer to (?) for more information on this appli-

cation.

estimation the first-stage predicted values
ˆTakingsLawct by employing the boosting

algorithms introduced before. The results
are given in Table ??. The boosting es-
timates agree with the Lasso estimate but
give smaller standard errors. The economic
conclusions remain unchanged.

VII. Inference on treatment effects
after selection among

high-dimensional controls

A. Simulation

Here we consider the following data-
generating process:

yi = diα0 + x′iθg + ξi(9)

di = x′iθm + νi,(10)

where (ξi, νi)
′ ∼ N(0, I2) with I2 the 2 × 2

identity matrix, p = 200, xi ∼ N(0,Σ) with
Σkj0 = .5|j−k|. The parameter of interest,
α0, is set equal to 0.5 and the sample size
is n = 100. We consider a design with
a decaying sequence of θm and θg, namely
1/j2 for j = 1, . . . , p. The results in Table
?? show that post-Lasso has a smaller bias
than the boosting algorithms, but too small
rejection rates (RP) compared to the nom-
inal 5% level. Boosting has rejection rates
close to the nominal level.

B. Application

In Macroeconomics an important ques-
tions is how the rates (Y ) at which
economies of different countries grow are
related to the initial wealth levels in each
country (D) controlling for country’s in-
stitutional, educational, and other similar
characteristics (W ). The relationship is
captured by beta1, the “speed of conver-
gence/divergence”, it measures the speed at
which poor countries catch up beta1 < 0 or
fall behind beta1 > 0 rich countries, after
controlling for W . Hence the model is given
as

Y = β1D + β′2W + ε.(11)

For the analysis we use the Barro-Lee data
set with 90 countries (observations) and
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Table 1—Simulation results.

post-Lasso BA post-BA oBA
bias 0.194 0.142 0.142 0.141
RP 0.032 0.060 0.064 0.056

Table 2—Effect of Federal Appellate Takings Law Decisions on Economic Outcomes.

post-Lasso BA post-BA oBA

β̂ 0.005 0.005 0.004 0.008
se 0.012 0.007 0.006 0.006

about 60 controls. We estimate the pa-
rameter of interest by the double selec-
tion method employing both Lasso and
L2Boosting for the two selection steps.
The double selection method implicitly con-
structs an orthogonal moment condition.
The results are given in Table ??. Here
again, the boosting estimates agree with the
Lasso estimate and confirm the convergence
hypothesis.
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Table 3—Simulation results.

post-Lasso BA post-BA oBA
bias 0.082 0.121 0.136 0.121
RP 0.002 0.042 0.054 0.042

Table 4—Effect of Initial GDP level om Growth.

post-Lasso BA post-BA oBA

β̂ −0.040 −0.042 −0.042 −0.041
se 0.015 0.012 0.012 0.013


