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Abstract

This paper combines the bifurcation theory and the nonlinear moving average approxima-

tion to solve asymmetric DSGE models with portfolio choice. The proposed method can be

viewed as a generalization of the workhorse routine developed by Devereux and Sutherland

(2010, 2011). Contrary to their approach, it can be used to obtain higher-order approximation

of gross asset holdings capturing the direct effect of the presence of risk on agents’ portfolios.

The risk-adjusted net and gross asset positions are shown to be in line with the global solu-

tion. Hence, the proposed method is able to account for asymmetries, which may lead to an

accuracy improvement in terms of Euler equation errors relative to the Devereux-Sutherland

procedure.
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1 Introduction

The explosion of cross-border gross asset positions over the last two decades, documented by

Lane and Milesi-Ferretti (2001, 2007), has drawn researchers’ attention to international portfolios.

Obstfeld (2007) writes

3. Wanted: A general-equilibrium portfolio-balance model

In light of these important implications of international portfolios, it is imperative to

understand how investors make asset allocation decisions for different asset classes

across countries and currencies. [...] the need for such an approach [i.e. general

equilibrium approach] has become acute as asset trade has expanded.

Investigating portfolio choice in a general equilibrium model under the assumption of in-

complete markets is challenging, as such models are associated with indeterminacy in a cer-

tainty equivalent environment. As a consequence, standard local approximation methods cannot

be applied. Furthermore, global techniques suffer from the curse of dimensionality and cannot

be employed in models with a richer state space. In response to these problems, new solution

methods have been developed.1

The workhorse routine to solve a DGSE model with portfolio choice is a perturbation-based

method developed by Devereux and Sutherland (2010, 2011), henceforth DS. It is fast, easy to im-

plement and can be applied to a variety of models. Rabitsch et al. (2015) show that DS performs

well in comparison to a global solution method, but they also find some scope for improvement in

a setup with asymmetric countries. In particular, they document that 1) DS does not capture the

direct effect of the presence of risk on portfolio holdings2 and 2) approximates the policy function

around net foreign positions equal to zero, even in presence of cross-country differences. More-

over, Rabitsch et al. (2015) show that iterative procedure proposed by Devereux and Sutherland

(2009) to update net foreign position deteriorates the accuracy of the approximation. As a result,

applying DS may yield unsatisfactory results, if, for instance, the focus lies on gross capital flows

between developed and emerging market countries.

1See, among others, Schmedders et al. (2002), Devereux and Sutherland (2010, 2011), Tille and Van Wincoop
(2010), Evans and Hnatkovska (2012), Stepanchuk and Tsyrennikov (2015) and Reiter (2015).

2See also Rabitsch and Stepanchuk (2014).
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The aim of this paper is to improve upon the two shortcomings of DS. To this end, it combines

the bifurcation theory and the nonlinear moving average approximation (Lan and Meyer-Gohde,

2013, 2014a). The use of the bifurcation approach overcomes the problem of indeterminacy of

portfolio holdings, whereas policy functions approximated with the nonlinear moving average

include risk correction evaluated at the stochastic steady state. The proposed technique can be

viewed as a generalization of DS. That is, it yields the same results up to first order of accuracy

but can also be used to compute higher-order approximations accounting for the presence of

risk. The resulting risk correction of gross and net asset positions is in line with the solution

provided by global methods. This indicates that asymmetries present in the model are captured

already at the starting point of approximation. Moreover, the proposed technique is fast and

can handle models with a richer state space. The time necessary to compute a solution of the

model considered in this paper amounts to 1.846683 seconds.3 Finally, the procedure can be

easily incorporated in Dynare, a popular software platform for solving DSGE and OLG models.

Including second-order risk correction under the proposed method is shown to improve the

quality of the approximation. First, the ergodic mean of gross asset holdings lies closer to its

global solution counterpart with the largest discrepancy among the available assets amounting

to 3.63 %. By contrast, this figure is nearly twice as large for DS. Second, accounting for the

direct effect of risk has the potential to improve the accuracy of the approximation measured by

Euler equation errors. The largest documented average accuracy gain is one order of magnitude,

whereas the maximum improvement amounts to five orders.

This paper builds mostly on Judd and Guu (2001) who discuss theoretical foundations of bi-

furcation methods and employ them to solve a partial equilibrium model with portfolio choice. I

aim at extending their methods to general equilibrium models. In this regard, my work is closely

related to Winant (2014). He independently developed a bifurcation-based solution method for

DSGE models with portfolio choice. The main difference between this paper and Winant (2014)

is the use of nonlinear moving average. In particular, I show that using standard state space

methods instead can lead to highly volatile portfolios.

Implementation of the proposed methodology is based on root-finding algorithms and

fixed point iteration techniques. Therefore, this work is also related to the paper by

3All experiments are conducted on a desktop computer with Intel R© Core
TM

i5-4690 CPU (3.5 GHz).
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Tille and Van Wincoop (2010) who utilize iterative procedures to obtain an approximation to

portfolio holdings. However, as their method is virtually the same as DS (the only difference

being the way of implementing), it suffers from the two aforementioned drawbacks.

The rest of the paper is organized as follows. Section 2 presents the model which is used

to explain and evaluate the proposed methodology. Section 3 discusses the key elements of the

proposed method and the main steps of the solution algorithm. All results are discussed in

section 4. Finally, section 5 concludes.

2 Motivating Example

This section presents the model used in the following to evaluate the proposed local approx-

imation method. It is a version of a real two-country Lucas tree model with portfolio choice

employed by Rabitsch et al. (2015). The choice of this particular model enables a direct com-

parison to the literature and thus speeds up the assessment of proposed method’s potential to

improve on existing techniques.

Economic environment. It is assumed that the world consists of two countries: Home (H)

and Foreign (F). Each country is endowed with two types of income. They are labeled as ”capital

income” (YK) and ”labor income” (YL) for convenience. Total GDP is thus simply the sum of both

types of income, i.e. Yit = YK
it + YL

it , with i = {H, F} being the country index.

The logarithm of country i′s income streams follows an autoregressive process of order one:

log(YK
it ) = ρK log(YK

it−1) + ǫK
it , (1)

log(YL
it ) = ρL log(YL

it−1) + ǫL
it. (2)

Innovations are assumed to be normally distributed and independent across countries but cor-

relation between shocks within a country is allowed to be non-zero, i.e., ǫ
j
it ∼ N(0, σ2

iǫ) and

corr(ǫ
j
Ht , ǫ

j
Ft) = 0, with j ∈ {K, L}. Moreover, I introduce asymmetries into the model, by assum-

ing that foreign income stream is twice as volatile as the endowment in the home country. This

assumption should capture the empirical observation that emerging market countries are charac-
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terized by higher macroeconomic risk (Aguiar and Gopinath, 2007). Thus, the foreign economy

can be viewed as a developing country.

Following Lan and Meyer-Gohde (2013), the model is perturbed via future shocks. Hence, all

future shocks are scaled by the perturbation parameter σ which governs the size of risk in the

model. σ = 0 implies a deterministic setup, whereas σ = 1 refers to fully stochastic world.4

Household. Country i is populated by a representative household whose preferences are

given by the following lifetime utility function:

E0

∞

∑
t=0

φit
C

1−γ
it

1 − γ
. (3)

Cit stands for a single good consumption and φit is the endogenous discount factor, one of the

mechanisms proposed by Schmitt-Grohé and Uribe (2003) to ensure stationarity of the approxi-

mate solution under the assumption of incomplete markets. Following Devereux and Sutherland

(2011), the endogenous discount factor is given by:

φit = β̄CAit
−ηφit−1, φi0 = 1. (4)

with β̄ denoting the discount factor in the deterministic steady state. Note that endogenous

discount factor does not depend on the individual consumption but on the economy average

(CAit). This assumption prevents the agent from internalizing the effects of her savings choice

on the discount factor and thus avoids further complications. In equilibrium, the individual

consumption is equal to the aggregate level, as there exists one representative household in each

country.

The representative household allocates its wealth between two internationally traded assets

which represent claims on ”capital income” of the respective country. Because of their definition,

assets can be interpreted as equity shares. The resulting budget constraint of the agent in country

i can be written as:

Cit + QHtθ
H
it + QFtθ

F
it = (QHt +YK

Ht)θ
H
it−1 + (QFt +YK

Ft)θ
F
it−1 + YL

it , (5)

4One should distinguish between σ measuring the size of the risk, σiǫ being the standard deviation of shocks in
country i, and σiY denoting the resulting standard deviation of the income.
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where Qit denotes the price of claims on country i′s ”capital income” whereas θH
it and θF

it stand

for holdings of home and foreign assets respectively.

The household in country i maximizes its lifetime utility subject to the budget restriction.

Solving this maximization problem yields the following Euler equations:

QHt = Et

[

β
C

γ−η
it

C
γ
it+1

(QHt+1 + YK
Ht+1)

]

(6)

QFt = Et

[

β
C

γ−η
it

C
γ
it+1

(QFt+1 +YK
Ft+1)

]

(7)

Market clearing. The goods market clears when

YHt +YFt = CHt + CFt. (8)

The supply of each asset is normalized to unity, so that financial markets clear if

θH
Ht + θH

Ft = 1, (9)

and

θF
Ht + θF

Ft = 1. (10)

Note that, because of normalization of the asset supply to one, θH
Ht can be interpreted as the share

of home equity held by home country.

3 Solution Methods

3.1 Preliminaries

Rewriting the model This section discusses solution methods that are employed to solve

our example model. To apply local approximation techniques, it is helpful to rewrite the model

such that gross asset positions are in zero net supply.5 To this end, I follow Rabitsch et al. (2015),

and define αH
Ht ≡

(

θH
Ht − 1

)

QHt and αF
Ht ≡ θF

HtQFt as funds invested in home and foreign assets

5See Devereux and Yetman (2010).
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by the home country. With these definitions, the budget constraint of the home agent can be

written as:

CHt + αH
Ht + αF

Ht = RHtα
H
Ht−1 + RFtα

F
Ht−1 +YHt, (11)

where

Rit =
Qit +YK

it

Qit−1
(12)

is the rate of return on equity issued by country i. Similarly, the market clearing conditions for

financial markets are given by:

αH
Ht = −αH

Ft (13)

αF
Ht = −αF

Ft (14)

According to (11), consumption in the deterministic steady state depends on the steady-state

portfolio holdings. However, as explained below, the latter cannot be pinned down in a non-

stochastic environment. This problem will be solved by applying a sequential procedure, where

the Nth-order approximation of nonportfolio variables will be computed together with the (N-

1)th-order approximation of asset holdings (Samuelson, 1970; Devereux and Sutherland, 2010,

2011). To this end, the budget constraint will be rewritten in terms of net foreign asset holdings

(NFAHt):

CHt + NFAHt = Rxtα
H
Ht−1 + RFtNFAHt−1 +YHt, (15)

with

NFAHt = αH
Ht + αF

Ht (16)

and Rxt ≡ RHt − RFt denoting the excess rate of return on home equity. Market clearing condi-

tions (13) and (14) imply that NFAHt = −NFAFt.

The main focus of this paper lies on portfolio holdings reflected by α’s. It is sufficient to

obtain a solution for αH
Ht to determine the entire asset holdings structure in the model.6. For this

reason, I simplify the notation and denote αH
Ht as αt in what follows.

6All other α’s can be computed via clearing conditions for financial markets and the definition of home net foreign
assets.
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Equilibrium The full equilibrium of the rewritten model is described by equa-

tions (6)-(7), (12), (15)-(16) for both home and foreign country, and market clear-

ing conditions (8), (13)-(14). This gives 13 equations and 12 endogenous variables:

αH
H, αF

H, αH
F , αF

F, NFAH, NFAF, QH, QF, RH, RF, CH, CF, with one equation being redundant by the

Walras’ law.

Model Solution The model solution can be represented either as a set of state space policy

functions (see e.g., Jin and Judd, 2002; Schmitt-Grohé and Uribe, 2004) or as nonlinear moving

average policy functions introduced by Lan and Meyer-Gohde (2013). The former approach uses

a time-invariant mapping of state variables (ystate) and a vector of shocks (ǫ) to model variables

(y):

yt = g(σ, zt) (17)

where

zt = [ystate
t−1 , ǫt]

T

with ”T” denoting a transpose.

By contrast, the nonlinear moving average represents a direct mapping of the history of

shocks to model variables, i.e.,

yt = y(σ, ǫt , ǫt−1, ..) (18)

Note that size of risk enters as a separate argument in both cases, because it has a direct effect

on the policy function.

Due to nonlinearities present in the model, an exact solution is not feasible and thus one must

rely on approximation methods. Following Lan and Meyer-Gohde (2014a), the Mth-order Taylor

approximation of the state space policy function around the deterministic steady state can be

written as:7.

y
(M)
t =

M

∑
j=0

1

j!

[

M−j

∑
i=0

1

i!
gziσi

]

(zt − z̄)⊗[j] (19)

where (zt − z̄)⊗[j] denotes the jth fold Kronecker product of (zt − z̄) with itself. Due

7Consider a matrix valued function A(x) : R
s×1 → R

k×l. Then, Axi denotes the ith derivative of A with respect
to x evaluated at the deterministic steady state.
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to the rewritten form of the underlying model the state space is reduced to ystate
t =

[YK
Ht, YL

Ht, YK
Ft, YL

Ft, NFAHt, QHt, QFt, αt]T.

On the other hand, taking the Mth-order Taylor approximation of the nonlinear moving av-

erage policy function yields

y
(M)
t =

M

∑
m=0

1

m!

∞

∑
i1=0

∞

∑
i2=0

...
∞

∑
im=0

[

M−m

∑
n=0

1

n!
yσn i1i2...im

σn

]

(ǫt−i1 ⊗ ǫt−i2 ... ⊗ ǫt−im
) (20)

To facilitate the comparison with state space methods, I will exploit the recursive representation

of the nonlinear moving average approximation. As argued by Lan and Meyer-Gohde (2014a),

(20) can be rewritten as follows:

y(M) =
M

∑
m=0

1

m!
yσm +

M

∑
m=1

dy
(m)
t (21)

where dy
(m)
t ≡ y

(m)
t − y

(m−1)
t − 1

m! yσm , m = 1, 2, ... denotes the mth-order increment in the non-

linear moving average approximation. Lan and Meyer-Gohde (2014a) derive a recursive repre-

sentation for these increments and show that deterministic coefficients in (21) match the ones in

the state space policy function. However, there exist differences in the risk correction. Firstly,

constant risk adjustment terms in the nonlinear moving average approximation can be directly

used to compute an approximation to the stochastic steady state, defined as a fixed point in the

presence of risk (σ = 1), but in absence of shocks ǫt = 0 (Meyer-Gohde, 2014). In particular,

setting the history of shocks to zero yields the following expression for the stochastic steady

state:

ȳstoch ≈
M

∑
m=0

1

m!
yσm (22)

with ȳ ≡ yσ0 . By contrast, standard state space methods deliver one-step ahead risk adjustment.

Therefore, solving for an approximation of the stochastic steady by using the state space repre-

sentation is not as straightforward as in the case of the nonlinear moving average and involves

iterative numerical procedures (see Juillard, 2011 and Coeurdacier et al., 2011 ).

Going beyond constant risk adjustment, Meyer-Gohde (2014) shows that time-varying risk

correction of the nonlinear moving average can be related to first-order derivatives of the under-

lying policy functions evaluated at the stochastic steady state.
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These properties allow the nonlinear moving average approximation to account for risk char-

acteristics of the model as reflected by the starting point of the approximation. As a result, it is

suitable to solve DSGE models with portfolio choice as risk considerations play a major role in

this setup. The reason for this is that optimal asset holdings are determined by agents’ hedging

motives.

In the course of this paper, I discuss how one can pin down coefficients in the approximate

solution for portfolio holdings. Moreover, I show that it matters for the solution whether the

state space approach or the nonlinear moving average is being used.

3.2 Failure of Regular Perturbation Techniques

Solving the model example with perturbation methods involves two difficulties. First, risk

is completely eliminated in the deterministic steady state. As the two assets differ only in their

risk characteristics, they become then perfect substitutes and yield the same rate of return. This

can be seen by investigating the Euler equations (6) and (7). They imply that R̄H = R̄F, with a

bar over a variable standing for its steady state value. As a consequence, countries’ gross asset

positions cannot be uniquely pinned down in the non-stochastic steady state.

Second, even if indeterminacy of the approximation point is somehow resolved, the first-order

approximation is not sufficient to determine the dynamics of portfolio holdings. The first-order

approximation of the Euler equation implies:

Et

[

R̂
(1)
Ht+1

]

= Et

[

R̂
(1)
Ft+1

]

. (23)

where a hat denotes log-deviations from the deterministic steady state. Thus, up to a first order

of accuracy, all assets have the same expected rate of return and portfolio holdings are again

indeterminate.8 Consequently, higher-order perturbations are necessary to obtain approximate

dynamics of portfolio holdings.

To explain general implications of the existence of portfolio choice for the perturbation ap-

proach, I will cast our example model in a more general form. In particular, as a member of a

8This is an implication of the certainty equivalence of first-order approximation (see Schmitt-Grohé and Uribe,
2004).
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family of discrete time rational expectations models, it can be written as:

Et [ f (yt+1, yt, yt−1, ǫt)] = 0 (24)

where f : R
ny ×R

ny ×R
ny × R

ne → R
ny is assumed to be analytic, yt ∈ R

ny stands for the vector

containing both endogenous and exogenous variables, and ǫt ∈ R
ne is a vector of zero-mean iid

shocks.

Standard local approximation methods are based on the Taylor Approximation and the Im-

plicit Function Theorem (Judd, 1998). The idea is to insert policy functions (state space or non-

linear moving average) into (24) and apply successive differentiation, where each derivative is

evaluated at the non-stochastic steady state. Applying this procedure to find first-order coeffi-

cients in the state space policy function and postmultiplying the result with zy yields:9

fy+(gzzy)
2 + fy(gzzy) + fzzy = 0 (25)

(25) is a matrix quadratic equation in gzzy measuring the dependence of y on state variables.

Note that gzzy can be interpreted as a lead operator (henceforth, F) in the absence of shocks.

Thus, multiplying (25) by ŷt−1 yields a second-order difference equation which in turn can be

converted to a first-order system:

(DF − E)x̂t = 0 with D ≡







0ny×ny Iny

fy+ 0ny×ny






, E ≡







Iny 0ny×ny

− fy − fzzy






and x̂t ≡







ŷt

ŷt−1






(26)

A unique solution to (26) can be obtained by using the generalized Schur decomposition of D

and E if the the pencil defined by those matrices, P(z) = Dz − E, is regular (Klein, 2000), i.e.,

∃a z : |Dx − E| 6= 0

However, DSGE portoflio choice models are characterized by a collinear relationship among

the Euler equations up to first order of accuracy. As a consequence, the above regularity

9Shifting the state space policy function (17) one period into the future yields yt+1 = g+ (σ, zt+1) with zt+1 =
[yt, σǫt+1]

T (Lan and Meyer-Gohde, 2014b).
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condition is violated and there exists a matrix polynomial ϕ(z), such that ϕ(z) (Dz − E) = 0

(King and Watson, 1998). Multiplying (26) by ϕ(F) implies 0 = 0. Thus, there exists infinitely

many solutions to (25) with the result that standard perturbation methods cannot be applied to

DSGE models embedding a portfolio choice problem.

3.3 Devereux Sutherland Method

Devereux and Sutherland (2010, 2011) aim to obtain the following approximation of the port-

folio solution:

α
(1)
t = ᾱ + g̃α

ystateŷ
(1),state
t (27)

with ’∼’ reflecting the fact that the coefficient measures the dependence on the current values of

state variables and a hat denoting again the log-deviation from the deterministic steady state.10

To this end, the authors decompose the model into a portfolio equation and a macroeconomic part

(i.e., the remaining equations). The portfolio equation can be obtained by combining the Euler

equations:

Et

[(

C
−γ
Ht+1 − C

−γ
Ft+1

)

(RHt+1 − RFt+1)
]

= 0. (28)

In the macroeconomic part of the model, portfolio holdings appear only in the budget constraint

(15) and are multiplied by the excess return. As mentioned above, this fact allows for a sequential

solution strategy. To see this, consider the log-linearized version of the budget constraint:

ˆNFA
(1)
Ht =

1

β
ˆNFA

(1)
Ht−1 +

1

βȲH
ᾱR̂

(1)
xt − Ĉ

(1)
Ht + Ŷ

(1)
Ht (29)

where ˆNFAHt = NFAHt

ȲH
and R̂xt = R̂Ht − R̂Ft. Note that (29) does not include α̂t so that first-

order nonportfolio variables depend only on the steady-state value of α. Moreover, since the

expected excess return is zero up to a first-order accuracy, one can eliminate the expression

1
βȲH

ᾱR̂
(1)
xt by introducing an auxiliary wealth shock (ζt ≡

1
βȲH

ᾱR̂
(1)
xt ). The macroeconomic part can

be then solved conditional on this shock. This approximate solution is in turn used to compute

zero-order portfolio holdings. Devereux and Sutherland (2010) show that this procedure can be

extended to determine first-order portfolio dynamics. In general, portfolio equation needs to be

10It does not matter whether the approximate solution links portfolio holdings to the current or past values of
states, as both representations are equivalent. (27) follows the convention of DS.
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approximated up to the order N+2, whereas the macroeconomic part to the (N+1)-th order, to be

able to pin down the Nth-order component of portfolio holdings (Samuelson, 1970).

3.4 Bifurcation Methods

Standard perturbation techniques cannot be employed to solve DSGE models with portfolio

choice as there are infinitely many optimal portfolio holdings when risk is eliminated (i.e. σ = 0).

However, as long as some risk is present, there exists a unique solution, given that standard

regulatory conditions are fulfilled (concavity of the objective function etc.). This change in the

number of solutions, as the perturbation parameter varies, is an example of a bifurcation.

Definition (Bifurcation, Judd and Guu, 2001). Suppose that H(α, σ) is analytic and α(σ) is implicitly

defined by H(α(σ), σ) = 0. One way to view equation H(α, σ) = 0 is that for each σ it defines a collection

of α that solves it. Bifurcation occurs if number of such α changes as we change σ.

Bifurcation problems can be tackled by employing the bifurcation theory. In the following, I

lay down its two building blocks.

Definition (Bifurcation Point, Zeidler, 1986). (α0, σ0) is a bifurcation point of H iff the number of

solutions α to H(α, σ) = 0 changes as σ passes through σ0, and there are at least two distinct parametric

paths (αA,n, σA,n) and (αB,n, σB,n) which converge to (α0, σ0) as n → ∞.

Theorem (Bifurcation Theorem for R
n). Suppose H: R

n × R → R
n, H is analytic for (α, σ)

in a neighborhood of (α0, σ0), and H(α, σ0) = 0 for all α ∈ R
n. Furthermore suppose that

i) Hα(α0, σ0) = 0

ii) Hσσ(α0, σ0) = 0

iii) det (Hσσα(α0, σ0)) 6= 0 .

Then (α0, σ0) is a bifurcation point and there is an open neighborhood N of (α0, σ0) and a function h(σ):

R → R
n, such that h is analytic and H(h(σ), σ) = 0 for (h(σ), σ) ∈ N.

Proof. See Appendix A.

The intuition behind the bifurcation theorem can be understood as follows. The original

function H, characterized by a first-order singularity in a non-stochastic environment, is replaced
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by some other function, H̃. Given that σ = 0, this new function has a zero at the bifurcation point

of H. Moreover, since the indeterminacy issue does not apply to H̃, the successive differentiation

can be employed again. In the context of a DSGE model, it can be shown that

H̃(α, σ) =











H(α,σ)
σ2 i f σ 6= 0

∂2 H(α,σ)
(∂σ)2 i f σ = 0

.

In the following, I will demonstrate the practical implementation of the bifurcation theory. To

this end, I use firstly state-space methods and then discuss how the approach changes if we the

use the nonlinear moving average instead.

3.4.1 State Space Approach

The bifurcation theorem cannot be directly applied to DSGE models with portfolio choice,

because it requires that all endogenous variables are indeterminate at the approximation point.11

This is true only for portfolio holdings, whereas all non-portfolio variables are pinned uniquely

in the deteministic steady state. To overcome this problem, I follow Devereux and Sutherland

(2010, 2011) and decompose the model into a portfolio equation and a macroeconomic part.12 To this

end, I will distinguish between several types of model variables and rewrite the model (24) as

follows:

Et

[

n
(

y
f wd
t+1 , y

f wd
t , ystate

t , ystate
t−1 , αt, αt−1,ǫt

)]

= 0 (30)

Et [m(µt+1)⊗ b(rt+1)] = 0 (31)

where n and b are vector-valued functions with dimensions ny × 1 and na × 1 respectively,

whereas R is the range of m . All functions are assumed to be analytic in the neighborhood of the

bifurcation point. Moreover, y f wd ∈ R
ny f wd denotes forward looking variables, ystate ∈ R

nystate

contains both endogenous and exogenous non-portfolio state variables and αt ∈ R
na represents

gross asset holdings. Note the following link to (24): ny = ny f wd + nystate + na. Finally, (31)

decomposes y f wd into a vector of rates of returns, r ∈ R
nr, and the remaining forward looking

11See condition i) of the bifurcation theorem.
12This is also the approach adopted by Winant (2014).
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variables, µ ∈ R
nmu. Thus, ny f wd = nr + nmu = na + 1 + nmu. Given a guess for the policy

function for α, a unique approximate solution to the real part (30) of the model can be obtained.

The approximate solution can then be exploited to express the portfolio equation (31) in terms of

portfolio holdings, perturbation parameter, future shocks and state variables of the model:

H
(

σ, αt, ystate
t , ǫt+1|g

α
guess

)

≡

Et

[

m
(

gµ
(

σ, αt, ystate
t , ǫt+1

∣

∣ gα
guess)

)

⊗ b
(

gr
(

σ, αt, ystate
t , ǫt+1|g

α
guess

))]

(32)

where ”|gα
guess” indicates that policy functions for non-portfolio variables has been approximated

given a guess for the policy function governing gross asset holdings. The function H defined in

(32) fulfills all requirements stated by the bifurcation theorem.

To solve a decomposed version of a DSGE portfolio choice model, a fixed point needs to be

found, i.e. gα = gα
guess. This can be done relatively easily by applying a recursive procedure given

that Nth-order components of non-portfolio variables depend only on the (N-1)th-order compo-

nent of gross asset holdings. As already explained, this is the case in the rewritten version of the

example model. Likewise, I will assume throughout the general exposition that this condition is

fulfilled.

Assumption (Recursiveness). Nth order components of non-portfolio variables depend only on the (N-

1)th order component of portfolio holdings.

In the following, I will explain how to use the bifurcation theory to compute the first-order

approximation of the optimal portfolio:

α
(1)
t = ᾱ + g̃α

σ + g̃α
ystateŷ

(1),state
t (33)

Computing the bifurcation portfolio According to the bifurcation theorem, zero-order

portfolio holdings (ᾱ) satisfy the following condition:

H̄σσ ≡ Hσσ|σ=0,ŷstates
t =0 = −2brgr

ǫΣg
µ⊤
ǫ m⊤

µ = 0 (34)
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where gǫ denotes vector of coefficients measuring the dependence on shock realizations and Σ

stands for variance-covariance matrix of the underlying shock process. To evaluate (34), one

requires the first-order approximation of non-portfolio variables, which in turn depends on the

zero-order portfolio holdings. To solve the resulting root-finding problem standard nonlinear

solvers can be applied. The iterative procedure can be summarized as follows:

Algorithm 1. Computing the Bifurcation Portfolio

1. Select an error tolerance δ for the stopping criterion and an initial guess for ᾱ.

2. Solve the macroeconomic part of the model conditional on the guess.

3. Use results from step 2 to evaluate (34).

4. Check stopping criterion: if |H̄σσ| < δ, the guessed value of ᾱ represents the bifurcation portfolio.

Otherwise, update the guess (according to the numerical procedure used) and go back to step 2.

Equation (34) coincides with the condition characterizing steady state portfolio holdings com-

puted with DS.13 Thus, I provide a formal proof that DS always yields the bifurcation point as

steady-state portfolio holdings.

Computing first-order coefficients. Given ᾱ, the bifurcation theorem enables implicit differ-

entiation to pin down first-order coefficients of the approximated policy function:

g̃α
σ = −

1

3
H̄

−1

σσα H̄σσσ (35)

g̃α
ystate = −H̄

−1

σσα H̄σσystate (36)

The first-order dynamics of gross asset holdings is driven by time-varying risk components which

are reflected by third derivatives of the portfolio equation.

To evaluate (35) and (36), the second-order approximation of non-portfolio variables is nec-

essary.14 It depends in turn on the first-order dynamics of portfolio holdings. Therefore, the

problem at hand takes again the form of a fixed point search and can be solved by applying the

following algorithm:

13See Devereux and Sutherland (2010), p. 1331, equation (21).
14See Appendix B for expressions of the respective derivatives of the portfolio equation.
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Algorithm 2. Computing First-Order Components of Portfolio Holdings

1. Select an error tolerance δ for the stopping criterion and an initial guess for g̃α
σ and g̃α

ystate.

2. Solve the macroeconomic part of the model conditional on the guess g̃α
σ(k) and g̃α

ystate(k), where k is

the iteration index.

3. Use results from step 2 to compute (35) and (36): g̃α
σ(k + 1) and g̃α

ystate(k + 1) .

4. Check the stopping criterion: if ‖p(k + 1)− p(k)‖ < δ (1 + ‖p(k)‖) with p ≡ [g̃α
σ, g̃α

ystate]T, a fixed

point has been reached. Otherwise, update the guess and go back to step 2.

As shown in Appendix B, the first-order risk correction can be expressed as:

g̃α
σ = τ̄Σ3 (37)

with τ̄ denoting the skew tolerance at the bifurcation point, as in Judd and Guu (2001), and

Σ3 ≡ Et

[

ǫ
⊗[3]
t

]

referring to the matrix of third moments of the underlying shock structure. Note

that (37) implies that g̃α
σ is equal to zero under symmetrically distributed shocks. This result can

be seen as an extension of the certainty equivalence of the first-order approximation documented

by Schmitt-Grohé and Uribe (2004). Furthermore, it explains why Devereux and Sutherland

(2010) consider only state variables in their first-order approximation, given that they assume

a symmetric distribution.

Computing Second-Order Risk Correction Term The above procedure can be easily ex-

tended to pin down coefficients of higher-order approximations of portfolio holdings. The focus

of this paper lies on the heterogeneity across countries implying different magnitudes of agents’

precautionary motives which will be reflected by risk adjustment terms. Therefore, I will also dis-

cuss how the second-order risk correction can be obtained for gross asset holdings. In particular,

the bifurcation theorem implies the following expression under normally distributed shocks:

g̃α
σσ = −

1

6
H̄

−1

σσα H̄σσσσ (38)
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The second-order risk adjustment of portfolio holdings is thus driven by forth-order accurate

interaction between non-portfolio variables of the model.

The expression (38) can be evaluated with the help of the third-order approximation of non-

portfolio variables. Their third-order components depend in turn on second-order asset holdings.

Therefore, we face again a fixed point problem which can be solved by employing the following

iterative routine:

Algorithm 3. Computing Second-Order Risk Correction of Portfolio Holdings

1. Select an error tolerance δ for the stopping criterion and an initial guess for g̃α
σσ.

2. Solve the macroeconomic part of the model conditional on the guess g̃α
σσ(k), where k is the iteration

index.

3. Use results from step 2 to evaluate (38): g̃α
σσ(k + 1) .

4. Check the stopping criterion: if ‖g̃α
σσ(k + 1) − g̃α

σσ(k)‖ < δ (1 + ‖g̃α
σσ‖), a fixed point has been

reached. Otherwise, update the guess and go back to step 2.

3.4.2 Nonlinear Moving Average

If the nonlinear moving average is used instead of state space methods, the first-order ap-

proximation of portfolio holdings is given by:

α(1) = ᾱ + ασ + g̃α,nlma
ystate dy

(1),state
t (39)

To combine the bifurcation theory with the nonlinear moving average approximation, one can

exploit ideas presented in the previous section. In particular, the H function needs to be replaced

by Hnlma defined as:

Hnlma
(

σ, αt, ǫt+1, ǫt, ǫt−1, ...|αguess

)

= H
[

σ, αt, ystate
t (σ, ǫt, ǫt−1, ...) , ǫt+1|αguess

]

(40)

Implicit differentiation of (40) yields the following results. Firstly, it does not matter for the bifur-

cation portfolio, whether the nonlinear moving average or state space methods are being used.

Since only the first-order approximation is necessary to compute zero-order asset holdings, it
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holds, due to certainty equivalence, that H̄nlma
σσ = H̄σσ. A similar result applies to the first-order

risk adjustment term which is always zero under the normality assumption, no matter which rep-

resentation of the policy function is being used. On the other hand, state space methods and the

nonlinear moving average will imply different first-order dynamics, as reflected by g̃α
ystate. This can

be seen by inspecting the following relationship: H̄nlma
σσystate = H̄σσystate + H̄ystateystate

(

Inystate ⊗ ystate
σσ

)

with Inystate denoting the identity matrix with dimension nystate × nystate. Finally, if we want to

go beyond the first-order approximation, it can be shown that the second-order risk adjustment

term implied by the nonlinear moving average is given by:

ασσ = gα,nlma
σσ + gα,nlma

ystate ystate
σσ = gα

σσ + ∆ + gα,nlma
ystate ystate

σσ (41)

Note that the one-step-ahead risk correction (gα,nlma
σσ ) differs from its state space counterpart as

it includes the factor ∆. The reason for this is that excess returns (Rx) does not depend on state

variables up to a first-order accuracy along the equilibrium path. However, this is no longer

the case for higher-order approximations. Thus, ∆ reflects the transition to the second order of

accuracy.

4 Numerical Results

This section evaluates three perturbation methods: DS, bifurcation used together with the

state space approach (henceforth: BIF) and a combination of bifurcation methods and the non-

linear moving average (henceforth: BIFN). As the nonlinear moving average approximation is

automatically pruned, solutions obtained with DS and BIF are pruned as well for the sake of com-

parability. The second-order approximation will be pruned with the Kim et al. (2008) algorithm,

whereas the procedure developed by Andreasen et al. (2013) will be used for the third-order ap-

proximation. An additional advantage of pruning the solution of BIF and DS is the possibility to

represent all three methods in a unified state space. In particular, Lan and Meyer-Gohde (2014a)

express the above pruning algorithms recursively in terms of approximation increments, exactly

as in the case of the nonlinear moving average.
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Parameter Value

Discount factor in deterministic steady state β̄ 0.95

Elasticity of the endogenous discount factor η 0.001

Risk aversion γ 2

Capital income share ȲK

Ȳ
0.3

Persistence ρ 0.8

Volatility of endowment in Home σYK
H

, σYL
H

0.02

Volatility of endowment in Foreign σYK
F

, σYL
F

0.04

Correlation corr(YK , YL) 0.2

Table 1: Calibration

4.1 Calibration

In all numerical exercises, I employ calibration used by Rabitsch et al. (2015). This allows

me to use their global solution15 as a benchmark for evaluating accuracy of the proposed tech-

nique. Table 1 reports the chosen parameter values. Almost all of them are commonly used

in the macroeconomic literature. The only exception is the consumption elasticity of the en-

dogenous discount factor which is set to 0.001, whereas the standard choice is 0.022 (Mendoza,

1991; Schmitt-Grohé and Uribe, 2003). A small value of η aims at minimizing the effect of this

stationarity-inducing device on the predictions of the model.16 Note that this assumption implies

a high persistence of net foreign assets, as the corresponding eigenvalue is close to unity. This

property of the model will make lengthy simulations necessary to compute underlying ergodic

distributions.

4.2 First-Order Accurate Dynamics

Before considering the role of risk correction, I evaluate first-order differences between BIF

and BIFN documented in the previous section. The latter technique yields the same first-order

dynamics as DS. On the other hand, portfolio holdings implied by BIF are more volatile.17

15Rabitsch et al. (2015) use time iteration spline collocation algorithm to solve the model globally.
16See Rabitsch et al. (2015) for a more detailed discussion.
17In a symmetric setup, all three methods imply the same dynamics of portfolio holdings. The reason for this are

identical precautionary motives of economic agents that offset each other.
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Figure 1: First-Order Accurate Share of Home Equity owned by the Home Country. Policy functions are
depicted in an interval based on the ergodic set of the home NFA implied by DS. The ergodic set is defined as an
interval covering 95 % of the probability mass of the underlying distribution. It is determined by simulating 10

million periods and subsequently discretized by 1001 equidistant grid points.

Home Equity Share
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Figure 2: Ergodic Distribution of the Share of Home Equity owned by the Home Country. A proxy for
the ergodic distribution is obtained by simulating 10 million of periods.

Figure 1 reports the first-order accurate share of home equity held by the domestic agent

(θH
H ) in an interval based on the ergodic set for home net foreign assets. All other state variables

take their respective steady state values. Policy function obtained with DS and BIFN are indis-
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tinguishable, whereas BIF yields more variation of asset holdings. Figure 2 shows that higher

volatility implied by BIF is not only a short-run outcome but is also reflected by the ergodic

distribution of θH
H which is obtained by simulating 10 million periods. Compared to the other

two methods, BIF implies a standard deviation that is roughly four times larger: 0.56 in contrast

to 0.138. To understand this outcome, consider the respective derivative of H and Hnlma in the

example model:18

H̄σσystate = −2γ
(

g
Ch
ystateǫ

− g
C f

ystateǫ

)

(

Inystate ⊗ Σ
(

g
Rh
ǫ − g

R f
ǫ

)T
)

−2γ
(

g
Rh
ystateǫ

− g
R f

ystateǫ

)

(

Inystate ⊗ Σ
(

g
Ch
ǫ − g

C f
ǫ

)T
)

+ 2γ2g
Ch

ystate

(

g
Ch
ǫ Σ

(

g
Rh
ǫ − g

R f
ǫ

)T
)

− 2γ2g
C f

ystate

(

g
C f
ǫ Σ

(

g
Rh
ǫ − g

R f
ǫ

)T
)

− γ
(

g
Ch
ystate − g

C f

ystate

)

(

g
Rh
ǫ Σg

Rh
ǫ

T
− g

R f
ǫ Σg

R f
ǫ

T
)

− γ
(

g
Ch

ystate − g
C f

ystate

)

(

g
Rh
σσ − g

R f
σσ

)

− γ
(

g
Ch
ystate − g

C f

ystate

) (

g
Rh
ǫǫ − g

R f
ǫǫ

)

vec(Σ)

H̄nlma
σσystate = −2γ

(

g
Ch
ystateǫ

− g
C f
xǫ

)

(

Inystate ⊗ Σ
(

g
Rh
ǫ − g

R f
ǫ

)T
)

−2γ
(

g
Rh

ystateǫ
− g

R f

ystateǫ

)

(

Inystate ⊗ Σ
(

g
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ǫ − g
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ǫ

)T
)

+ 2γ2g
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ystate

(

g
Ch
ǫ Σ

(
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− γ
(
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)
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Rh,σσ − R f ,σσ

)

− γ
(

g
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ystate − g

C f

ystate

) (

g
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ǫǫ − g

R f
ǫǫ

)

vec(Σ)

The green box points to the difference across the bifurcation approaches. BIF is represented

on the left-hand side whereas the right panel shows the corresponding derivative under BIFN.

The only difference between the two approaches is the second-order risk adjustment term of the

excess rate of return on home assets. BIF includes one-step ahead risk adjustment given by state

space methods. By contrast, BIFN considers the cumulative risk correction that can be linked to

the stochastic steady state.

The red boxes highlight terms included also by DS. Why does the difference exist?

Devereux and Sutherland (2010) eliminate the remaining terms by exploiting the second-order

approximation of the expected future excess return:

Et

[

R̂
(2)
xt+1

]

= −
1

2

(

gRh
ǫ ΣgRh

ǫ
T
− g

R f
ǫ Σg

R f
ǫ

T
)

+
1

2
γ
(

gCh
ǫ + g

C f
ǫ

)

Σ
(

gRh
ǫ − g

R f
ǫ

)T
(42)

18Note that derivatives of a policy function, that has been shifted one period into the future, with respect to σ do
not only include the risk correction term but also the coefficients on ǫt+1 as the latter is scaled by σ. However, I will
slightly abuse the notation by letting gσ j and yσ j denote only the risk correction in order to simplify the exposition.
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Note that (42) implies that Et

[

R̂xt+1

]

is a constant up to a second-order accuracy. In general, this

condition is not fulfilled by the state space approximate solution. To see this consider the pruned

second-order approximation of R̂x:

R̂
(2)
xt+1 =

(

gRh

ystate − g
R f

ystate

)

ŷ
(2),state
t +

(

gRh
ǫ − g

R f
ǫ

)

σǫt+1 +
1

2

(

gRh
σσ − g

R f
σσ

)

σ2 (43)

+
1

2

(

gRh

ystateystate − g
R f

ystateystate

)

ŷ
(1),state
t ⊗ ŷ

(1),state
t +

1

2

(

gRh
ǫǫ − g

R f
ǫǫ

)

σ2ǫt+1 ⊗ ǫt+1

+
(

gRh

ystateǫ
− g

R f

ystateǫ

)

σŷ
(1),state
t ⊗ ǫt+1

(43) can be also rewritten in terms of approximation increments (Lan and Meyer-Gohde, 2014a):

R̂
(2)
xt+1 = dR̂

(1)
xt+1 + dR̂

(2)
xt+1 (44)

dR̂
(1)
xt+1 =

(

gRh
ǫ − g

R f
ǫ

)

σǫt+1 (45)

dR̂
(2)
xt+1 =

(

gRh

ystate − g
R f

ystate

)

dŷ
(2),state
t +

1

2

(

gRh
σσ − g

R f
σσ

)

σ2 (46)

+
1

2

(

gRh

ystateystate − g
R f

ystateystate

)

dŷ
(1),state
t ⊗ dŷ

(1),state
t +

1

2

(

gRh
ǫǫ − g

R f
ǫǫ

)

σ2ǫt+1 ⊗ ǫt+1

+
(

gRh

ystateǫ
− g

R f

ystateǫ

)

σdŷ
(1),state
t ⊗ ǫt+1

Suppose now that we start in period t = 0 with dŷ
(1),state
0 = dŷ

(2),state
0 = 0. Then, because the risk

correction term is included in the recursion (see 46), it holds that E0

[

R̂
(2)
x1

]

6= E1

[

R̂
(2)
x2

]

. On the

other hand, Et

[

R̂
(2)
xt+1

]

implied by the nonlinear moving average is constant for all t.

As pointed by (Lan and Meyer-Gohde, 2014a), the state space approximation and the nonlin-

ear moving approximation are asymptotically identical up to a second order of accuracy. Thus,

the expected difference in log rates of return implied by the former is asymptotically constant.

Moreover, if we initialize the state space approximation at this asymptotic point, then it will yield

exactly the same predictions as the nonlinear moving average at every point in time. However,

this approach requires ex-ante knowledge of the stochastic steady state.
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Figure 3: Risk-Adjusted Portfolio Holdings. σ = 0 corresponds to the deterministic steady state whereas σ = 1
denotes fully stochastic environment. The ergodic mean of the global solution is taken from Rabitsch et al. (2015).

4.3 The Direct Effect of the Presence of Risk on Portfolio Holdings

One of the drawbacks of DS highlighted by Rabitsch et al. (2015) is the fact that it fails to

capture the direct effect of the presence of risk on gross asset positions. Thus, the question

arises whether higher-order risk correction may affect model implications in a significant way

and thereby improve the quality of the local approximation. To tackle this question, I extend the

first-order approximations of portfolio holdings, (33) and (39), by including the second-order risk

correction:

αt = ᾱ + g̃α
ystateŷ

(1),state
t +

1

2
g̃α

σσ (47)

and

αt = ᾱ + g̃α,nlma
ystate dŷ

(1),state
t +

1

2
ασσ (48)

In contrast to the first-order risk adjustment, the second-order term is in general not equal to zero,

even under the normality assumption, and its value depends on method being used. Figure

3 compares risk adjusted portfolio holdings for a particular size of risk, given that all state

variables take their steady state values. The ergodic mean of the global solution, reported by

24



Home Equity Share

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

BIFN

DS

BIF

Foreign Equity Share

-0.5 0 0.5 1 1.5 2

BIFN

DS

BIF

Figure 4: Ergodic Distributions of Portfolio Holdings (Home and Foreign assets) owned by the Home
Country. A proxy for the ergodic distribution is obtained by simulating 10 million of periods.

Rabitsch et al. (2015), is used as a benchmark.19 As the size of risk goes asymptotically to zero

and the bifurcation point is reached, home representative agent holds 26.7 % of home equity. This

foreign equity bias is caused by the positive correlation between domestic ”labor” and ”capital

income”. According to Figure 3, BIFN correctly captures the sign of the direct effect of risk. Since

the foreign country is subject to more volatile shocks, its precautionary motive is stronger and

thus its long position in the home equity becomes larger as σ increases. By contrast, BIF fails to

account for this effect and predicts that home country raises its holdings of the domestic equity.

The second-order accurate effect of risk on the ergodic distribution of asset holdings is visual-

ized by Figure 4. Due to the stronger precautionary motive in the foreign country, the distribution

under BIFN is slightly shifted to the left, compared to DS.

19Although ergodic mean and the risk-adjusted value are two distinct concepts, this comparison can determine
whether heterogeneous precautionary motives, reflected by the ergodic mean, are also accounted for at the starting
point of the approximation.
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Ergodic Mean of GS BIFN BIF DS plus Updating

-0.168 -0.2857 1.3021e-4 -6.19

Table 2: Risky NFA Positions. The ergodic mean of the global solution (GS) is taken from Rabitsch et al. (2015).
The value for NFA implied by the iterative DS procedure is taken from its working paper version. Entries for BIF
and BIFN represent second-order risk correction terms.

4.4 Non-zero Net Foreign Asset Positions

Another issue raised by Rabitsch et al. (2015) refers to the fact, that the approximation of an

asymmetric two-country model is still computed at zero net foreign assets, although the presence

of asymmetries implies most likely non-zero positions. Alternatively, Devereux and Sutherland

(2009) propose an iterative procedure to update the value for net foreign assets at the approx-

imation point. However, Rabitsch et al. (2015) show that this procedure reduces the accuracy

of the local approximation. Constructing the approximation around a point with non-zero net

foreign assets (e.g. stochastic steady state) is beyond the scope of this paper. Nevertheless, it is of

interest to investigate whether BIFN can mitigate the problem by yielding correctly risk-adjusted

net foreign assets. In particular, I propose to start with net position equal to zero and let model’s

risk characteristics endogenously determine the risk-adjusted net foreign assets that are used as

a starting point for the approximation.

Table 2 gives risk-adjusted net asset positions implied by different methods. The ergodic mean

of the global solution reported by Rabitsch et al. (2015) is used again as a benchmark. Mean net

foreign liabilities of home country under the global solution represent 16.8 % of the steady state

domestic output.20 BIFN correctly captures the sign of the effect of risk and predicts a negative

home net foreign asset position caused by a stronger precautionary motive in the foreign country.

On the other hand, BIF yields slightly positive net assets. Though it is important to note that the

net position reported for BIF, consistently with the state space approach, accounts only for one-

step ahead constant risk correction and transits deterministically to the second-order accurate

stochastic steady state (see Lan and Meyer-Gohde, 2014a). In general, differences in the implied

gross assets between BIF and BIFN may lead to different values of net positions in the stochastic

steady state. Yet numerical exercises show that this difference can be neglected in the case of

20Steady state output is normalized to 1.
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GS BIFN BIF DS

mean st. dev. mean st. dev. mean st. dev. mean st. dev.

NFA -0.168 1.11 -0.1697 1.1569 -0.1686 1.2334 -0.1696 1.1569

θh
h 0.248 0.13 0.239 0.1379 0.2656 0.5622 0.2645 0.1379

θ
f
h 0.723 0.066 0.7278 0.0701 0.7346 0.3598 0.7357 0.0701

Table 3: Ergodic Moments. Mean and standard deviation of the global solution are taken from Rabitsch et al.
(2015). To obtain moments of local approximation methods, the model is simulated ten times. Each simulation
consists of 10 million periods.

our example model.21 Nevertheless, in short-run simulations, constant risk correction term still

differ.

According to DS with an updating procedure, home country’s debt adds up to 619 % of the

steady state output. Thus, the iterative algorithm overestimates the precautionary motive of the

Foreign country and yields net foreign positions that differ greatly from the implications of the

global solution.

4.5 Performance Evaluation

The analysis so far shows that BIFN can account for direct effects of the size of risk on both

net and gross asset positions. In the following, I investigate whether capturing these effects

improves the quality of the approximation. To this end, I compare ergodic moments implied by

the different methods and conduct the Euler equation error test to measure their accuracy.

4.5.1 Simulated Moments

This section reports the ergodic moments of gross and net asset holdings implied by the

three perturbation methods. As in the case of previous sections, the global solution, reported by

Rabitsch et al. (2015), is used as a benchmark.

To obtain moments of local approximation techniques, the model is simulated 10 times. Each

simulation contains 10 million observations. Table 3 reports the results of this exercise. First, as

already discussed, (both home and foreign) equity holdings of home country implied by BIF are

characterized by high volatility. The standard deviation of home equity share is more than four

21Still, BIF and BIFN yield different ergodic moments for net foreign position as presented in the next section.
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times greater than predicted by the global solution. This translates also into a higher volatility

of net foreign asset positions. On the other hand, DS and BIFN yield second moments for both

gross positions and the implied net foreign assets that are more in line with the global solution.

Second, among local approximation methods considered in this study, the mean of portfolio

holdings implied by BIFN is closest to its global solution counterpart. The largest discrepancy

among the available assets amounts to 3.63 %. By contrast, this figure is nearly twice as large for

DS.

4.5.2 Euler Equation Errors

The focus of this investigation lies on the importance of risk adjustment terms of portfolio

holdings. In the underlying model, there is no Euler equation embedding asset positions explic-

itly. Therefore, I use pseudo Euler equation errors, proposed by Kazimov (2012), to measure the

accuracy of local approximations. In particular, I directly introduce assets into Euler equations

as follows:

NFAHt = Et

[(

β(CHt)

(

CHt

CHt+1

)γ)

(RHt+1αt + RFt+1(NFAHt − αt))

]

(49)

NFAHt = Et

[(

β(CFt)

(

CFt

CFt+1

)γ)

(RHt+1αt + RFt+1(NFAHt − αt))

]

(50)

Equations (49) and (50) can be interpreted as home and foreign agent’s portfolio Euler equation.

The underlying idea is that the rate of return on an optimally constructed portfolio must obey

similar restrictions as individual asset returns. In the following, I use the common logarithm of

the absolute value of approximation errors as a measure of accuracy. According to this definition

an Euler equation error of -3 implies one dollar error for every thousand dollars spent. To obtain a

scalar measure of accuracy, I average the errors associated with (49) and (50). Figure 5 evaluates

the performance of local approximations within an interval based on the ergodic set (under

DS) of home ”capital income”, home net foreign asset and price of home equity, respectively.

All other state variables always take their steady state values. According to the figure, BIFN

performs uniformly better over the entire ergodic set of home ”capital income”, with maximal

improvement being roughly five orders of magnitude. On the other hand, the advantage of
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Figure 5: Euler Equation Errors Euler Equation Errors are computed within intervals based on the respective
ergodic sets under DS. All other state variables always take their steady state values. Each ergodic set is determined
by simulating 10 million periods and subsequently discretized by 1001 equidistant grid points.
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Average Errors Maximum Errors

DS BIF BIFN DS BIF BIFN

YKH -4.5018 -4.5024 -5.6531 -3.2887 -3.2896 -5.1536

NFA -5.5762 -4.5120 -5.5829 -5.0926 -4.0066 -5.0926

QH -6.4219 -4.5417 -6.4699 -5.8697 -4.4380 -5.3270

Table 4: Euler Equation Errors

BIFN is less pronounced for net foreign assets and price of home equity. Compared to DS,

BIFN performs significantly better in the immediate neighborhood of the deterministic steady

state. However, there exists also a small subset where DS is associated with lower approximation

errors. Table 4 shows that in case of net foreign assets and price of home equity, BIFN and

DS perform similarly on average. In the case of the home ”capital income”, BIFN leads to a

significant improvement.

On the other hand, it is apparent from Figure 5 and Table 4 that BIF is outperformed by

its competitors. This result reflects the excessive volatility of portfolio holdings implied by this

method. Therefore, the bifurcation theory should be applied together with an approximation

including risk correction at the stochastic steady state, e.g the nonlinear moving average approx-

imation.

5 Conclusion

I propose a combination of bifurcation methods and nonlinear moving average approximation

(BIFN) as a technique to solve asymmetric DSGE models with portfolio choice. The use of the

bifurcation theory overcomes the problem of indeterminacy of portfolio holdings, whereas the

nonlinear moving average accounts for risk correction at the stochastic steady state.

The main advantage of the proposed method is the fact that it can be used to compute higher-

order approximation of portfolio holdings. Thereby, it can account for the direct effect of the

presence of risk on both, gross and net asset holdings. This is reflected by the starting point

of the approximation as well as by the moments of the implied ergodic distribution. Moreover,

BIFN improves accuracy of the approximation measured by Euler equation errors relative to
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the workhorse routine developed by Devereux and Sutherland (2010, 2011). The biggest docu-

mented average accuracy gain is of one order of magnitude, whereas the maximum improvement

amounts to five orders.

As a local approximation method, BIFN can be applied to investigate a variety of issues in

macro-finance within the DSGE framework with a large state space. In particular, it can be to

tackle economic questions that require at least third-order approximation of the non-portfolio

variables. One example is the analysis of channels through which time-varying risk affects coun-

try portfolios. There exists a large body of empirical literature documenting the importance

of changes in the global risk perception for international capital flows (Milesi-Ferretti and Tille,

2011; Forbes and Warnock, 2012; Ahmed and Zlate, 2014). A portfolio choice DSGE model can

then be employed to uncover the underlying economic mechanism and to conduct an welfare-

based evaluation of a range of possible policy responses.
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Appendix

A. Proof of the Bifurcation Theorem

Proof. The bifurcation theorem can be proven by dividing the H-function by its singularity (See

Zeidler, 1986 and Judd and Guu, 2001). Define the following function H̃:

H̃(y, σ) =











H(α,σ)
σ2 i f σ 6= 0

∂2 H(α,σ)
(∂σ)2 i f σ = 0

.

Since H is analytic, and H(α, σ) = 0 for all α, it follows that H(α, σ) = H̃(α, σ)σ2 and H̃ is analytic

in (α, σ). Implicit differentiation yields:

Hσσ|σ=0 = H̃|σ=0 (51)

Hσσα|σ=0 = H̃α|σ=0 (52)

Therefore, to obtain a root of H̃|σ=0, Hσσ|σ=0 must be set equal to the zero vector. Moreover, IFT

can be applied to H̃ if and only if det (Hσσα(α0, σ0)) 6= 0.

B. Computing Derivatives of the Portfolio Equation - State Space Approach

Bi. General Relationship

Recall the portfolio equation:

H
(

σ, αt, ystate
t , ǫt+1|g

α
guess

)

≡

Et

[

m
(

gµ
(

σ, αt, ystate
t , ǫt+1

∣

∣ gα
guess)

)

⊗ b
(

gr
(

σ, αt, ystate
t , ǫt+1|g

α
guess

))]

Furthermore, let H̃
(

σ, αt, ystate
t , ǫt+1|g

α
guess

)

be the function determined by the bifurcation theo-

rem. Then, the following holds:

H
(

σ, αt, ystate
t , ǫt+1|g

α
guess

)

= H̃
(

σ, αt, ystate
t , ǫt+1|g

α
guess

)

σ2 (53)
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The policy function for α is defined as:

H̃
(

σ, gα
(

σ, ystate
t

)

, ystate
t , ǫt+1|g

α
)

= 0 (54)

Bii. First-Order Coefficients

Implicit differentiation yields:

g̃α
ystate = − ¯̃H

−1

α
¯̃Hystate (55)

g̃α
σ = − ¯̃H

−1

α
¯̃Hσ (56)

To find the corresponding derivatives of H̃, I implicitly differentiate (53). As a result, the

following relationships are obtained: ¯̃Hσ = 1
6 H̄σσσ, ¯̃Hystate = 1

2 H̄σσystate, and ¯̃Hα = 1
2 H̄σσα. Inserting

these expressions into (55) and (56) yields (35) and (36).

In the last step, exact expressions of the respective derivatives of the H-function need to

be found. They will be pruned to avoid unnecessary higher-order terms that may lead to an

explosive behavior and thus, deteriorate accuracy of the approximation. In particular, to obtain

the first-order approximation of gross asset holdings, the derivatives will include only third-

order components. This approach follows the ideas of Samuelson (1970) and also underlies the

procedure of Devereux and Sutherland (2010, 2011).

Implicit differentiation and omitting components of order higher than three yields:

H̄σσσ = 3
[(

mµµ

(

g
µ
ǫ ⊗ g

µ
ǫ

))

⊗ (brgr
ǫ)
]

Σ3

+ 3
[(

mµg
µ
ǫ

)

⊗ (brr (gr
ǫ ⊗ gr

ǫ))
]

Σ3

+ 3
[(

mµg
µ
ǫǫ

)

⊗ (brgr
ǫ)
]

Σ3

+ 3
[(

mµg
µ
ǫ

)

⊗ (brgr
ǫǫ)
]

Σ3 (57)

where Σ3 ≡ Et

[

ǫ
⊗[3]
t

]

denotes a matrix of third moments of the underlying shock structure.
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Let p = [ystate, α]⊤ be a np × 1 vector, then

H̄σσp = 2
[(

mµµ

(

g
µ
p ⊗ g

µ
ǫ

))

⊗ (brgr
ǫ)
] [

Inp ⊗ vec(Σ)
]

+ 2
[(

mµg
µ
ǫp

)

⊗ (brgr
ǫ)
] [

Inp ⊗ vec(Σ)
]

+ 2
[(

brgr
ǫp

)

⊗
(

mµg
µ
ǫ

)

]

[

Inp ⊗ vec(Σ)
]

+
[(

mµg
µ
p

)

⊗ (brr (gr
ǫ ⊗ gr

ǫ))
] [

Inp ⊗ vec(Σ)
]

+
[(

mµg
µ
p

)

⊗ (brgr
ǫǫ)
] [

Inp ⊗ vec(Σ)
]

+
[(

mµg
µ
p

)

⊗ (brgr
σσ)
]

(58)

where Inp stands for the identity matrix of dimension np × np and Σ denotes the variance-

covariance matrix of the underlying shock structure. Note that combining (56) with the above

derivatives yields the expression for the first-order risk correction term presented in (37) with the

skew tolerance given by:

τ = 3H̄
−1

σσα

[(

mµµ

(

g
µ
ǫ ⊗ g

µ
ǫ

))

⊗ (brgr
ǫ)

+ 3
(

mµg
µ
ǫ

)

⊗ (brr (gr
ǫ ⊗ gr

ǫ))

+ 3
(

mµg
µ
ǫǫ

)

⊗ (brgr
ǫ)

+ 3
(

mµg
µ
ǫ

)

⊗ (brgr
ǫǫ)
]

Biii. Second-Order Risk Correction

Given the normality assumption, the second-order risk correction term can be computed as:

g̃α
σσ = − ¯̃H

−1

α
¯̃Hσσ (59)

To find the second derivative of H̃ with respect to σ, I implicitly differentiate (53). As a result,

the following relationship is obtained: ¯̃Hσσ = 1
12 H̄σσσσ. Furthermore, applying the procedure

described in the previous section yields:
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H̄ = 4
[(

mµµ (Knmu,nmu + 2Inmu2)
(

g
µ
ǫ ⊗ g

µ
σσ

))

⊗ (brgr
ǫ)
]

vec (Σ)

+ 12
[(

mµg
µ
σσǫ

)

⊗ (brgr
ǫ)
]

vec (Σ)

+ 6
[(

mµµ

(

g
µ
ǫ ⊗ g

µ
ǫ

))

⊗ (brgr
σσ)
]

vec (Σ)

+ 6
[(

mµg
µ
σσ

)

⊗ (br (gr
ǫ ⊗ gr

ǫ))
]

vec (Σ)

+ 6
[(

mµg
µ
ǫǫ

)

⊗
(

brg
µ
σσ

)]

vec (Σ)

+ 6
[(

mµg
µ
σσ

)

⊗
(

brg
µ
ǫǫ

)]

vec (Σ)

+ 6
(

mµ ⊗ br

) (

g
µ
σσ ⊗ g

µ
σσ

)

+ 4
[(

mµg
µ
σσ

)

⊗ (brr (Knr,nr + 2Inr2) (gr
ǫ ⊗ gr

σσ))
]

vec (Σ)

+ 12
[(

mµg
µ
ǫ

)

⊗ (brgr
σσǫ)

]

vec (Σ) (60)

with In denoting an n × n identity matrix and Kn,n being a commutation matrix with dimension

n2 × n2 (Magnus and Neudecker, 1979).

C. Computing Derivatives of the Portfolio Equation - Nonlinear Moving Average

Ci. General Relationship

Recall the following relationship:

Hnlma (σ, αt, ǫt+1, ǫt, ǫt−1, ...) = H
[

σ, αt, ystate
t (σ, ǫt, ǫt−1, ...) , ǫt+1

]

(61)

Moreover, note that the function determined by the bifurcation theorem is defined by:

Hnlma
(

σ, αt, ǫt+1, ǫt, ǫt−1, ...|αguess

)

= H̃nlma
(

σ, αt, ǫt+1, ǫt, ǫt−1, ...|αguess

)

σ2 (62)

Cii. First-Order Coefficients

The starting point for the computation of the first-order coefficients on state variables is the

derivation of the coefficients on current shock realizations. According to the bifurcation theorem,
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the first-order coefficients on ǫt−j are given by:22

αj = −Φ ¯̃Hnlma
j (63)

where Φ denotes the inverse of ¯̃Hnlma
α . Implicit differentiation of (62) yields ¯̃Hnlma

j = 1
2 H̄nlma

σσj and

¯̃Hnlma
α = 1

2 H̄nlma
σσα . Moreover, differentiating (61) leads to:

H̄nlma
σσj = H̄σσystateystate

j + H̄ystateystate

(

Inystate ⊗ ystate
σσ

)

ystate
j (64)

Combining (63) and (64) as well as exploting the fact that H̄σσα = H̄nlma
σσα yields:

αj = − ¯̃H
−1

σσα

[

H̄σσystate + H̄ystateystate

(

Inystate ⊗ ystate
σσ

)

]

ystate
j (65)

Since we are interested in first-order coefficients, (65) has to be equal to gα,nlma
ystate ystate

j . Thus,

gα,nlma
ystate = − ¯̃H

−1

σσα

[

H̄σσystate + H̄ystateystate

(

Inystate ⊗ ystate
σσ

)

]

= − ¯̃H
−1

σσα
¯̃Hnlma

σσystate (66)

with

¯̃Hnlma
σσystate = 2

[(

mµµ

(

g
µ

ystate ⊗ g
µ
ǫ

))

⊗ (brgr
ǫ)
]

[

Inystate ⊗ vec(Σ)
]

+ 2
[(

mµg
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ǫystate

)

⊗ (brgr
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Inystate ⊗ vec(Σ)
]
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ǫystate
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mµg
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ǫ
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]

[

Inystate ⊗ vec(Σ)
]
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mµg
µ

ystate

)

⊗ (brr (gr
ǫ ⊗ gr

ǫ))
]

[

Inystate ⊗ vec(Σ)
]

+
[(

mµg
µ

ystate

)

⊗ (brgr
ǫǫ)
]

[

Inystate ⊗ vec(Σ)
]

+
[(

mµg
µ

ystate

)

⊗ (brrσσ)
]

(67)

The first-order risk correction can be obtained by:

ασ = −Φ ¯̃Hnlma
σ (68)

22Note that αt does not depend on realizations of ǫt+1.
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Implicit differentiation of (62) yields ¯̃Hnlma
σ = 1

6 H̄nlma
σσσ and ¯̃Hnlma

α = 1
2 H̄nlma

σσα . Differentiating (61)

and exploiting the certainty equivalency of first-order approximation (yσ = 0) yields:

H̄nlma
σσσ = H̄σσσ (69)

Therefore, both BIF and BIFN yield the same first-order risk adjustment term, i.e. ασ = gα
σ.

Ciii. Second-Order Risk Correction

Applying the procedure from the previous sections leads to the following expressions, given

normally distributed shocks:

ασσ = −Φ ¯̃Hnlma
σσ (70)

¯̃Hnlma
σσσσ =

1

12
H̄nlma

σσσσ (71)

H̄nlma
σσσσ = H̄σσσσ + 6H̄σσystateystate

σσ + 3H̄ystateystate

(

ystate
σσ ⊗ ystate

σσ

)

(72)

Combining the three equations yields:

ασσ = gα,nlma
σσ + gα,nlma

ystate ystate
σσ = gα

σσ + ∆ + gα,nlma
ystate ystate

σσ (73)

with

∆ ≡ −Φ
[(

(

hµµ

(

g
µ
ǫ ⊗ g

µ
ǫ

))

⊗ (brgr
ystate)

)

vec(Σ) + (hµg
µ
σσ)⊗ (brgr

ystatey
state
σσ )

+
(

(hµg
µ
ǫǫ)⊗ (brgr

ystatey
state
σσ )

)

vec(Σ) + 2
(

(hµg
µ
ǫ )⊗ (brr(gr

ystatey
state
σσ ⊗ gr

ǫ))
)

vec(Σ)
]

∆ accounts for the transition from the first to the second order of accuracy as excess returns do

not depend on state variables up to first-order approximation.
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