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Abstract

In this paper we study evolutionarily stable strategy (ESS) in con-
tests where participation is stochastic. We find under ESS players
exert more effort than under Nash for given participation probabili-
ties. We show that with ESS there is ex-ante overdissipation for suf-
ficiently large participation probability and sufficiently high discrimi-
native power of the contest success function. With costly endogenous
entry, players are also more likely to enter the contest, and hence they
incur higher total cost and obtain lower absolute payoff under ESS than
Nash. Ex-ante overdissipation also occurs for concave impact func-
tions. From a contest designer’s point of view, implementing ESS in-
duces players to exert higher total effort and thus yields higher total
expected revenue.
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1 Introduction

In many situations, a player in a contest does not know the number of op-
ponents. For example, in a job interview, an applicant may not know the
number of short-listed interviewees. Likewise, a lobbyist may not know
how many others he/she is lobbying against. Animals competing for food
or mating opportunities may not be able to perceive the actual number of
competitors or to tune their effort level according to the number of contes-
tants. In this paper, we consider a situation where players are drawn to play
stochastically without knowing the actual number of opponents.

Differing from the standard Nash solution concept employed in the liter-
ature, in this paper, we investigate the evolutionarily stable strategy (ESS)
in such contests. The reason is twofold. Firstly, compared to Nash equi-
librium, ESS focuses on the behaviour itself rather than on the choice of
behaviour by the players. Thus ESS demands neither players’ rationality
nor the consistency between behaviour and beliefs, an essential element to
Nash equilibrium.1 Secondly, insofar as the behaviour itself is concerned,
the concept of ESS in finite population, as noted in Schaffer (1988), amounts
to a (symmetric) Nash equilibrium with relative payoff maximization in the
standard rational choice paradigm. Hence, a study of ESS in finite popu-
lations will also shed light on equilibrium outcomes with rational players
whose preferences display a concern for relative payoff.2

We consider two scenarios. First, we study stochastic contests with exoge-
nous participation probabilities. For this case, we show that findings in
Hehenkamp et al. (2004) on the ESS in deterministic contests, where play-
ers participate with certainty, generalize to stochastic contests, where other
players’ participation is uncertain. In particular, we show that the ESS in

1See e.g. Perea (2012) for an excellent textbook treatment on the subject of epistemic game
theory.

2Seminal contributions on the this type of preferences are e.g., Messick and Thorngate
(1967) as well as Bolton and Ockenfels (2000) and Fehr and Schmidt (1999) among many
others.
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stochastic contests has each potential contestant exerting a higher level of
effort than in Nash equilibrium. More precisely, individual effort in the ESS
is exactly n/n−1 of its Nash counterpart in a contest with n potential contes-
tants.

Naturally, ex-ante total expected spending increases in the number of play-
ers as well as in the participation probability. While Lim and Matros (2009)
demonstrate that under Nash equilibrium overdissipation is only possible
ex-post, we show that under the economic evolutionary approach, the ESS
entails ex-ante as well as ex-post overdissipation for sufficiently large partic-
ipation probability and sufficiently high discriminative power of the contest
success function.

To further understand the role of uncertainty on effort expenditure, one can
compare contests of the same (expected) number of players. It is known
that under Nash equilibrium the expected total expenditure is lower when
participation is stochastic rather than deterministic (Lim and Matros, 2009).
That is, within the same equilibrium concept, uncertainty about the actual
number of contestants reduces total effort. However, across equilibrium
concepts and for the same (expected) number of players, the expected to-
tal expenditure under stochastic participation can be higher under the ESS
than the total expenditure under Nash equilibrium in the corresponding
deterministic contest. This suggests that when participation is stochastic, a
contest designer could try to induce ESS behaviour to mitigate the loss in
revenue caused by uncertainty.3

Second, we consider endogenous entry. We find that, for a given entry cost,
ESS participation probabilities strictly exceed Nash participation probabili-
ties whenever the latter fall strictly below one, i.e. when endogenous entry
is truly stochastic in Nash equilibrium. Otherwise, endogenous entry is
deterministic under both concepts otherwise. Ex-ante total expenditure as
well as total entry costs are also higher under ESS. Accordingly, players be-
have more aggressively under ESS than under Nash along both dimensions,
entry and effort.

3To this end, insights gained from experimental economics could be used. For instance,
Huck et al. (1999) show that information on strategies and profits induces imitative and
hence more competitive behaviour in a Cournot oligopoly. There, the ESS corresponds to
(symmetric) Walrasian equilibrium. See e.g. Vega-Redondo (1996).
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The papers most closely related to the present one are Lim and Matros
(2009), Fu et al. (2015), and Hehenkamp et al. (2004). Lim and Matros
(2009) (LM henceforth), characterize the Nash equilibrium of stochastic con-
tests with exogenous participation probabilities. They show that individ-
ual spending is single-peaked in the participation probability while total
spending is monotonically increasing in the participation probability and
the number of players. We establish a precise relationship between Nash
spending and ESS spending in stochastic contests and show that these prop-
erties of Nash equilibrium spending are also present in ESS.

Fu et al. (2015) (hereafter FJL) study contests with endogenous entry em-
ploying the Nash solution concept. The authors show that a Tullock contest
can be optimal for the contest designer and identify the conditions under
which the optimum can be achieved by solely setting the right discrimina-
tory power in a Tullock contest with a single fixed prize.4 In contrast, we
investigate the evolutionarily stability of entry probabilities and effort lev-
els in Tullock contests.

Hehenkamp et al. (2004) (hereafter HLP) use the ESS concept in a finite pop-
ulation to study deterministic Tullock contests and demonstrate the possi-
bility of rent overdissipation. We establish that their results on ESS existence
and overdissipation extend to stochastic contests both under exogenous and
under endogenous entry.

Stochastic participation in contest has also been featured in Myerson and
Wärneryd (2006), Münster (2006) and Fu et al. (2011). Myerson and Wärn-
eryd (2006) study contests in which a player is uncertain about the actual
size of the contest. They do not assume a particular distribution of the con-
test size and it can potentially be infinitely large. In Münster (2006), the size
of a contest follows a binomial distribution as in the current paper. How-
ever, Münster (2006) compares risk-neutral players with CARA players. Fu
et al. (2011) study how an effort-maximizing contest organizer should dis-
close the information on the actual number of contestants in a contest with
stochastic participation. The present paper departs from these papers and
from LM by exploring a different equilibrium concept, viz. evolutionary
stable strategies.

4Fu and Lu (2010) study the optimal choice of prize size and entry fee/subsidy under a
fixed budget when the contest designer maximizes effort and entry is endogenous.
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ESS in finite population and relative payoff maximization are closely re-
lated, and the latter has been used to explain overbidding compared to the-
oretical Nash predictions one observes in laboratory settings. For instance,
Herrmann and Orzen (2008) report evidence that can attribute subjects’ in-
vestment decisions to spiteful preferences rather than fairness or reciprocity.
Mago et al. (2016) present a behavioural model that incorporates a non-
monetary utility of winning and relative payoff maximization that explains
significant overexpenditure of effort in their controlled laboratory experi-
ment.5

That preferences with a concern for relative payoff are relevant to the analy-
sis of contests has also been argued from the perspective of the so-called in-
direct evolutionary approach (Güth and Yaari, 1992). Examining determin-
istic Tullock contests of the type investigated in HLP, Guse and Hehenkamp
(2006) show that contestants with a relative payoff concern (so-called status-
seekers) earn strictly higher payoff than do their counterparts who follow
absolute payoff maximization. This gives them a material advantage so
that status-seekers should prevail in the long-run. Leininger (2009) rounds
off the indirect evolutionary approach by deriving the evolutionarily sta-
ble type of preferences for Tullock contests, which, as it turns out, displays
a relative payoff concern. Both papers strongly warrant an analysis where
contestants exhibit relative payoff concerns.

We proceed as follows. Section 2 introduces the model and presents the
analysis for the case of exogenous entry. Section 3 is devoted to the case of
endogenous entry. Finally, Section 4 concludes.

2 Stochastic contests with exogenous entry

We consider a stochastic contest of n ≥ 2 potential players as in LM. Each
potential player is drawn to play, i.e., becomes active, with an independent
probability p ∈ (0, 1]. All active players compete for a single prize of value
V > 0 by selecting an effort level Xi ∈ [0,+∞).

Conditional on being active, player i’s probability of winning the contest is
5For an excellent survey on experimental studies on contests see Dechenaux et al. (2015).

5



given by

Pi(Xi;M) =


1

|M |+1 if Xi = 0 and Xj = 0 for all j ∈M ,
Xr
i

Xr
i +

∑
j∈M Xr

j
otherwise,

where 0 < r ≤ n/n−1, M is the set of active players except player i, and |M |
denotes the cardinality of M . The payoff of inactive players is 0.

Before studying the ESS outcome, we note the below unique Nash equilib-
rium in this stochastic contest.

Theorem 1. There exists a unique symmetric pure-strategy Nash equilib-
rium where each active player’s equilibrium expenditure is

XNash(r, V, n, p) = rV

[
n−1∑
i=1

Cn−1
i pi(1− p)n−1−i i

(i+ 1)2

]
, (1)

where the binomial coefficient Cn−1
i = (n−1)!

i!(n−i−1)! .

Proof: Lim and Matros (2009) establish this result for 0 < r ≤ 1. For 1 <

r ≤ n/(n−1) see Gu and Hehenkamp (2016).

2.1 Evolutionary stable strategy with stochastic participation

We now proceed to characterise the evolutionarily stable strategy. For this
purpose, we first adapt Schaffer’s 1988 evolutionary stable equilibrium con-
dition for games with stochastic participation.

Let us consider a finite population of n ≥ 2 players each being drawn to
play with an independent probability p ∈ (0, 1]. Instead of playing a fixed
size contest, an active player in our context may face k = 0, . . . , n− 1 active
opponents. Thus the (expected) payoff of an active mutant playing s̄ when
the rest of the population playing sESS , π̄, is the sum of the payoffs when s̄
playing against k = 0, . . . , n− 1 ESS strategists weighted by the probability
of each case. On the other hand, for an active ESS strategist, with a proba-
bility p the mutant will be present and (1 − p) not. In the former case, the
ESS strategist faces the mutant and possibly also k = 0, . . . , n− 2 other ESS
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strategists while in the latter only other ESS strategists. The (expected) pay-
off of an ESS strategist, πESS is thus the weighted average of the payoffs in
those individual cases. For sESS to be evolutionary stable, following Smith
and Price (1973) and Schaffer (1988), we need p · πESS ≥ p · π̄.6

We now apply this adapted definition to Tullock contests with stochastic
participation. Let X denote the candidate strategy for an ESS and X̄ de-
note the mutant strategy. We consider invasions by a single mutant, say
w. l. o. g. player 1. When being active, the expected payoff of player 1 is

Π1(X̄,X, . . . ,X) = V

 ∑
M∈PN1

p|M |(1− p)|N1\M | · X̄r

X̄r + |M |Xr

−X̄, (2)

where N1 is the set of player 1’s possible opponents and PN1 is the set of
all subsets of N1.

The expected payoff of an ESS strategist conditional being active, say player
2, is

Π2(X̄,X, . . . ,X)

=p V

 ∑
M∈PN2

p|M |(1− p)|N2\M | · Xr

X̄r +Xr + |M |Xr


︸ ︷︷ ︸

The mutant being active

+(1− p)V

 ∑
M∈PN2

p|M |(1− p)|N2\M | · Xr

Xr + |M |Xr


︸ ︷︷ ︸

The mutant being inactive

−X, (3)

whereN2 is the set of player 2’s possible opponents except the mutant player
1, and PN2 is the set of all subsets of N2.

As noted by Schaffer (1988), a strategyX is an ESS if and only if the relative
payoff between a mutant and an ESS strategist, as a function of X̄ , reaches its
maximum value of zero when X̄ = X . Let φ(X̄,X) := Π1(X̄,X, . . . ,X) −

6Note that this definition differs from Schaffer’s (1988) in that the contest size is not only
variable but also stochastic.
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Π2(X̄,X, . . . ,X). As p > 0, the ESS strategy X should solve

max
X̄

φ(X̄,X). (4)

To determine the solution to (4), consider the corresponding first order con-
dition:

∂φ

∂X̄
= V

 ∑
M∈PN1

p|M |(1− p)|N1\M | · rX̄r−1|M |Xr

(X̄r + |M |Xr)2

− 1+

pV

 ∑
M∈PN2

p|M |(1− p)|N2\M | · rX̄r−1Xr

(X̄r +Xr + |M |Xr)2

 = 0.

By symmetry, we have

X =rV

 ∑
M∈PN1

p|M |(1− p)|N1\M | · |M |
(1 + |M |)2


+ prV

 ∑
M∈PN2

p|M |(1− p)|N2\M | · 1

(2 + |M |)2

 . (5)

Simplifying (5), verifying the second order condition, and comparing (5)
with (1), we obtain the following result on the existence of ESS and its rela-
tionship with the Nash outcome.

Theorem 2 (Individual Spending). There exists a unique ESS in a Tullock
contest with r ≤ n/n−1 where each potential player becomes active with
probability p ∈ (0, 1]. It is given by

XESS(r, V, n, p) =
n · rV
n− 1

[
n−1∑
i=1

Cn−1
i pi(1− p)n−1−i i

(i+ 1)2

]
. (6)

Moreover,
XESS(r, V, n, p) =

n

n− 1
·XNash(r, V, n, p). (7)

Proof: See Appendix A.1.
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Theorem 2 establishes the existence of the ESS strategy and characterises
the individual equilibrium spending in this stochastic contest. Firstly, it
generalizes the main insight in HLP. While in their paper XESS(r, V, n, p)

= n
n−1 ·X

Nash(r, V, n, p) is shown for p = 1, we find this precise relationship
holds much more generally, i.e., for all p ∈ (0, 1]. Thus, the relative aggres-
siveness of ESS behaviour is not affected by participation uncertainty.

Secondly, as expected, active players exert more effort when the prize size V
is larger and the discriminative power r of the contest technology is higher.
Due to the precise relationship (7), it follows from LM thatXESS(r, V, n, p) is
single-peaked in p. In other words, individual spending in general reaches
its maximum at a participation probability that lies strictly between 0 and
1.

Thirdly, when the population gets large, the difference between ESS and
Nash equilibrium individual spending gets smaller. In accordance to Craw-
ford (1990), as n goes to infinity, ESS converges to the Nash equilibrium
level.

2.2 Total spending

In the contest literature, a variable that has received considerable interest is
the equilibrium level of total effort because this variable may directly corre-
spond to a contest organizer’s objective. In this section, we therefore study
ex-ante expected total spending.

Let T ESS denote the ex-ante expected total expenditure. Note that the ex-
pected value of a random variable that follows the binomial distribution
B(n, p) is np. Consequently, ex-ante expected total ESS spending is given
by

T ESS(r, V, n, p) := np ·XESS(r, V, n, p)

=rV
n

n− 1

[
n∑
i=1

Cni p
i(1− p)n−i

(
1− 1

i

)]
.

It follows from Theorem 2 that the total ESS expenditure also corresponds to
n/n−1 of its counterpart under Nash equilibrium denoted by TNash(r, V, n, p).
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Thus, from a contest organizer’s point view, ESS yields strictly higher ex-
ante expected total expenditure, which is due to more aggressive individual
behaviour.

Although the relationship between individual spending and the partici-
pation probability p is non-monotonic, we find that ex-ante expected total
spending increases in both n and p.

Theorem 3. Suppose r and V are given. Then,

i) for any n ≥ 2, the expected total spending increases in p;

ii) for any p ∈ (0, 1], the expected total spending increases in n.

Proof: See Appendix A.4.

Part i) of Theorem 3 shows that total expected spending increases in players’
participation probability. This observation follows directly from LM and
intuitively the positive effect of p on the expected number of players, np,
dominates any potentially negative effect on individual spending.

That total spending increases in n is not straightforward because TNash in-
creases in n while the part n/n−1 decreases. Nevertheless, as Part ii) shows,
with an increasing number of potential contestants ex-ante ESS total spend-
ing also increases. In other words, the increase in total Nash equilibrium ex-
penditure dominates the decrease in players’ aggressiveness. Hence, from
the contest designer’s point view, a reduction in either the participation
probability or the number of potential players decreases expected total ex-
penditure.

From the players’ perspective, an important question is whether they gain
ex ante from playing the contest. In other words, whether the expected rev-
enue from winning the prize is more or less than the expected cost of effort.
In a Nash equilibrium, ex ante no player will incur effort costs that exceed
the expected revenue from winning the contest. The reason is that by ex-
erting zero effort the player can always break even ex-ante. This is however
not true when ESS is considered. As shown in deterministic contests by
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HLP, ex ante overdissipation is an equilibrium outcome when ESS is con-
sidered. The next result generalizes their result to stochastic contests where
the probability of participation is sufficiently high.

Theorem 4 (Ex ante overdissipation). For any given n ≥ 2 and r ∈ (1, n/n−1),
we have T ESS > V for p sufficiently large.

Proof: See Appendix A.5.

Theorem 4 shows that ex-ante overdissipation is present if both the discrim-
inative power of the contest technology, r, and the probability of participa-
tion, p, are sufficiently high. Like in deterministic contests, overdissipation
is a result of spiteful behaviour in the presence of increasing returns to ex-
penditures (r > 1). However, as total expenditure decreases with the proba-
bility of participation, p has to be large enough to entail overdissipation. As
it turns out, there is a substitution relationship between the discriminative
power of the contest technology and the participation probability, i.e. the
higher r ∈ (1, n/n−1], the larger the overdissipation interval (p, 1].

3 Stochastic contests with Endogenous Entry

In this section we let effort spending as well as participation probabilities
be subject to evolutionary forces. The entry-bidding game is formulated as
follows. There are n ≥ 2 potential contestants. A strategy of player i is
an ordered pair (pi, Xi) where pi ∈ [0, 1] is the entry probability and Xi ∈
[0,+∞) the effort level.7 The payoffs are as before except that now to enter
the contest a player has to pay a fixed cost of entry of 0 < c < V .

3.1 (Bayesian) Nash Equilibrium

For convenience, here we restate the symmetric Nash equilibrium outcome
which is studied in detail in FJL.

7For brevity, we do not consider mixed effort levels; according to FJL, the existence of
pure strategy Nash equilibrium effort is ensured given the parameter values in the current
paper.
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Theorem 5 (Fu et al., 2015). There exists a unique symmetric equilibrium
with pure-strategy bidding of the entry-bidding game in which (a) if c ≤
(n − r(n − 1))V/n2 the entry probability is pNash = 1; (b) otherwise it is
implicitly determined by

V
1−

(
1− pNash)n
npNash −XNash

(
r, V, n, pNash

)
= c (8)

where individual spending XNash(r, V, n, p) is given by (1).

Proof: See Appendix B.1.

Intuitively, when the expected payoff from entering exceeds the entry cost,
it pays to enter, and hence the entry probability is 1. However, when the en-
try cost becomes high enough such that all players entering cannot be sus-
tained, equilibrium competitiveness of the contest has to decrease - achieved
by a reduced entry probability - to keep it worthwhile for players to play the
contest. On the other hand, the equilibrium entry probability cannot be too
low as this will lead to all players entering with probability 1. Thus, in equi-
librium all players should be indifferent between entering and abstaining,
and the required symmetric entry probability is implicitly determined by
(8). This intuition indeed applies in the ESS case except that players would
be concerned of relative payoff rather than absolute payoff.

3.2 ESS Outcome

Consider now a mutant, say player 1, which enters with probability q and
spends X̄ . Conditional on entering, the mutant’s expected payoff from the
contest is given by (2) as before. The expected payoff of an ESS strategist
conditional on entering, say player 2, now depends on the mutant’s entry
probability q:

Π2(X̄,X, . . . ,X; q)

=q V

 ∑
M∈PN2

p|M |(1− p)|N2\M | · Xr

X̄r +Xr + |M |Xr


︸ ︷︷ ︸

The mutant being active
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+(1− q)V

 ∑
M∈PN2

p|M |(1− p)|N2\M | · Xr

Xr + |M |Xr


︸ ︷︷ ︸

The mutant being inactive

−X.

The ex-ante relative payoff denoted by Φ - after taking into account entry
probabilities and entry cost - is

Φ(q, X̄; p,X; c) = q
[
Π1(X̄,X, . . . ,X)− c

]
− p

[
Π2(X̄,X, . . . ,X; q)− c

]
.

(9)
We note that exogenous entry represents a special case of the current setting
in that Φ(p, X̄; p,X; c) = pφ(X̄,X) for p > 0.

For a pair (p,X) to constitute an evolutionary stable strategy, no mutant can
invade or, in other words, can obtain a higher payoff than ESS strategists.
Thus, ESS requires Φ(q, X̄; p,X; c) ≤ 0 for all q ∈ [0, 1] and X̄ ∈ [0,+∞).
To identify the ESS under endogenous entry, we consider the maximization
problem

max
q,X̄

Φ(q, X̄; p,X; c). (10)

Applying symmetry to the first order condition with respect to X̄ , it reduces
to (5), provided that p > 0. On the other hand, the first order derivative with
regard to q is

∂Φ

∂q
=V

 ∑
M∈PN1

p|M |(1− p)|N1\M | · X̄
r

X̄r + |M |Xr

− X̄ − c
−pV

 ∑
M∈PN2

p|M |(1− p)|N2\M | · Xr

X̄r +Xr + |M |Xr


+pV

 ∑
M∈PN2

p|M |(1− p)|N2\M | · Xr

Xr + |M |Xr

 (11)

Similarly, symmetry implies

∂Φ

∂q
=

V

n− 1

[
1− (1− p)n

p
− (1− p)n−1

]
−X − c. (12)

These two necessary first order conditions identify the candidate ESS equi-
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librium with endogenous entry. The next theorem shows they are also suf-
ficient.

Theorem 6 (ESS with entry). An ESS strategist’s entry probability pESS is (a)
1 if c ≤ (n− r(n−1))V/(n(n−1)); (b) otherwise, it is implicitly determined
by

V

n− 1

[
1− (1− pESS)n

pESS − (1− pESS)n−1

]
−XESS(r, V, n, pESS) = c (13)

where ESS individual spending XESS(r, V, n, pESS) is given by (6).

Proof: See Appendix B.2

As in the Nash equilibrium case, when the entry cost is sufficiently small,
part (a) of the theorem says that all players enter with probability 1 in the
ESS. In this degenerated case, individual spending XESS(r, V, n, pESS = 1)

takes the value of rV/n. Although individual spending is higher in ESS than
in Nash, what matters in ESS is relative fitness and hence the marginal ad-
vantage of entering is higher. This can be seen as follows. Since r < n/n−1,
V/n−1− rV/n > V/n− (n−1)rV/n2, for a given entry cost c, full participation is
more likely under ESS than under Nash.

Consider part (b). In the proof, we establish that Φ(q, X̄; pESS, XESS; c) ≤ 0

for all possible pairs of (q, X̄). The intuition follows from the exogenous
case. Suppose, as a first step, that a mutant’s entry probability is exoge-
nously fixed at q. Then no other effort level than XESS(r, V, n, pESS) can give
the mutant a higher relative fitness. In other words, for any possible ex-
ogenously given mutant entry probability, XESS(r, V, n, pESS) leads to high-
est relative payoff. On the other hand, given that all other players are ESS
strategists, and the mutant is playing XESS(r, V, n, pESS), the mutant’s rel-
ative payoff stays at zero for all entry probabilities which means it cannot
obtain a higher absolute payoff than ESS strategists with any combinations
of q ∈ [0, 1] and X̄ ≥ 0.8

For a given entry cost, by comparing part (a) in Theorem 5 and Theorem
6 respectively, we know full participation (p = 1) is more likely under ESS

8We formally show these results as Lemma 2 in Section B.2.
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than Nash. The next theorem shows that for a given entry cost, the entry
probability is in general higher in ESS than Nash.

Theorem 7. For a given 0 < c < V , pESS ≥ pNash. This inequality holds
strictly when V

n −
n−1
n2 rV < c < V , i.e., when pNash < 1.

Proof: See Appendix B.5.

The higher entry probability can also be explained by relative payoff maxi-
mization. Although when at the Nash probability level, entering results in
a net loss in absolute payoff but it reduces opponents’ even more. Therefore
under ESS equilibrium entry is more aggressive.

It is also true that the total effort expenditure under endogenous entry is
higher in ESS than in Nash.

Theorem 8. For a given 0 < c < V , T ESS(r, V, n, pESS) > TNash(r, V, n, pNash).

Proof: T ESS(r, V, n, pESS) ≥ T ESS(r, V, n, pNash) = n
n−1T

Nash(r, V, n, pNash)

where the inequality follows from Theorem 3 and that pESS ≥ pNash. Q.E.D.

The intuition behind Theorem 8 follows from two observations. First, play-
ers enter more often under ESS than under Nash. Second, for a given entry
probability players exert higher total effort in an ESS than in a Nash equilib-
rium. Thus although a priori it is not clear whether ESS total expected effort
is higher or lower than its Nash counterpart due to endogenous entry, with
the result of Theorem 7 and the monotonicity of total expected effort in par-
ticipation probability ESS players do exert higher total effort.

Total costs incurred by the players consist of total effort cost and total entry
costs. Theorems 7 and 8 together imply that players unequivocally spend
more in ESS than in Nash: not only do they exert more effort upon enter-
ing, they on average also incur more entry cost. We also note that each
player’s absolute payoff in a Nash equilibrium with a non-degenerated en-
try probability has to be zero because of the indifference condition on entry
choices. As a result, each player obtains a negative absolute payoff under
ESS when entry is truly stochastic. The pressure of “survival of the fittest”
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leads to more competitive behaviour and overall lower and absolute payoff
than “rationality”.

Remark 1. When there is mixed entry under Nash (0 < pNash < 1), then the
total cost of the players under ESS - including entry cost and effort cost - will
be larger than the prize V . The reason is that, since under Nash players will
just break even ex ante, under ESS their expected material payoff must be less
than zero. This represents a different version of ex-ante “over-dissipation”
result. than the one found in Hehenkamp et al. (2004). Interestingly, with
endogenous entry, ex-ante overdissipation also occurs for concave impact
functions Xr

i whenever r < 1 is sufficiently large. In two-player contests
overdissipation results for all r ∈ (0, n/(n− 1)).

4 Conclusion

In this paper we study evolutionarily stable behaviour in contests where
participation is stochastic. We established the relationship between ESS and
Nash equilibrium under exogenous stochastic entry as well as endogenous
costly entry. We find players exert more effort and enter more often un-
der ESS than Nash. In this sense, the evolutionary force of “survival of
the fittest” selects more competitive and more aggressive behaviour in sit-
uations of conflicts. However, this also results in lower absolute payoff for
players under ESS than under the “rational” Nash setting. This is instructive
to our understanding of rational behaviour under Nash equilibrium when
players are concerned of their relative payoff.

From a contest designer’s point of view, implementing ESS induces players
to exert higher total effort and thus yields higher total expected revenue. In
particular, implementing ESS can mitigate revenue losses from participa-
tion uncertainty.
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A Proofs - Exogenous entry

A.1 Proof of Theorem 2

The plan of the proof is as follows. We first simplify (5) and establish its
relationship with (1). Secondly, we verify that the solution to the first order
condition indeed maximises the relative payoff (4).

We first derive the symmetric effort level implied by the first order condition
(5):

X = rV

[
n−1∑
i=1

Cn−1
i pi(1− p)n−1−i i

(i+ 1)2
+

n−2∑
i=0

Cn−2
i pi+1(1− p)n−2−i 1

(i+ 2)2

]

= rV

[
n−1∑
i=1

Cn−1
i pi(1− p)n−1−i i

(i+ 1)2
+

n−1∑
i=1

Cn−2
i−1 p

i(1− p)n−1−i 1

(i+ 1)2

]

= rV

[
n−1∑
i=1

pi(1− p)n−1−i iC
n−1
i + Cn−2

i−1

(i+ 1)2

]
(14)

=
n

n− 1
rV

[
n−1∑
i=1

pi(1− p)n−1−iCn−1
i

i

(i+ 1)2

]
(15)

=
n

n− 1
·XNash

where from (14) to (15) we have used the identity Cn−2
i−1 = iCn−1

i /n−1. Indi-
vidual spending in Nash equilibrium, XNash, is given by Theorem 1.

We now proceed to show that, for 0 < r ≤ n/n−1, the first order condition
XESS as given by (15) indeed solves the maximisation problem (4). To this
end, consider the second order derivative (17) we derived in Appendix A.2
below.

Obviously, for r ≤ 1, (17) is negative and hence (4) is globally concave. Con-
sider the remaining case 1 < r ≤ n/n−1. To show that XESS solves the max-
imization problem (4) also in this case, we proceed in three steps. First,
note that the second order derivative is positive for X̄ close to 0. In fact this
holds if (r − 1)(k + 1)

(
XESS)r > (r + 1)X̄r for all k = 0, . . . , n − 2, i.e. for

X̄ < XESS r
√

(r−1)(n−1)/r+1.

Second, the second order derivative is negative if (r − 1)(k + 1)
(
XESS)r <

(r + 1)X̄r for all k = 0, . . . , n− 2, i.e. for X̄ > XESS r
√
r−1/r+1. Moreover, as
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shown in the next two paragraphs, the second order derivative is negative
when evaluated at the candidate ESS strategy and it switches sign only once
for X̄ ∈ (0, XESS). These two points imply (4) is first convex and then con-
cave, and hence in this range the only two candidates for a global maximum
of (4) are 0 and XESS.

To see these, we evaluate (17) when X̄ = XESS. Then (17) simplifies to

V rn
(
XESS

)−2
[
n−1∑
i=1

pi(1− p)n−1−iC
n−2
i−1 [(r − 1)(i+ 1)− 2r]

(i+ 1)3

]
. (16)

Note (r − 1)(i + 1) < 2r for i = 1 . . . n − 1 as long as r ≤ n/n−2. But the
latter holds true because r ≤ n/n−1. Thus we have just established that (16)
is negative.

Now we observe that because r − 2 ≤ 2−n/n−1 ≤ 0, (17) clearly decreases
monotonically in X̄ so long as (17) remains positive. On the other hand, by
inspection we know once X̄ becomes large enough to turn (17) negative, it
stays negative for all larger X̄ . Thus (4) is first convex and then concave in
the range of X̄ ∈ (0, X).

Third and finally, we show in Lemma 1 in Appendix A.3 that a mutant can-
not increase its relative fitness by playing 0. This completes the proof.

A.2 Second derivative of relative payoff w.r.t. effort

∂2φ

∂X̄2
(X̄,X)

= rV XrX̄r−2

 ∑
M∈PN1

p|M | (1− p)|N1\M | |M | (r − 1)
(
X̄r + |M |Xr

)
− 2r |M | X̄r(

X̄r + |M |Xr
)3



+ prV XrX̄r−2

 ∑
M∈PN2

p|M | (1− p)|N2\M | (r − 1)
(
X̄r + |M + 1|Xr

)
− 2rX̄r(

X̄r + (|M |+ 1)Xr
)3



= rV XrX̄r−2

[
n−1∑
k=1

Cn−1
k pk (1− p)n−1−k k

(r − 1)
(
X̄r + kXr

)
− 2rX̄r(

X̄r + kXr
)3

]
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+ prV XrX̄r−2

[
n−2∑
k=0

Cn−2
k pk (1− p)n−2−k (r − 1)

(
X̄r + (k + 1)Xr

)
− 2rX̄r(

X̄r + (k + 1)Xr
)3

]

= rV XrX̄r−2

[
n−2∑
k=0

Cn−1
k+1 p

k+1 (1− p)n−2−k (k + 1)
(r − 1)

(
X̄r + (k + 1)Xr

)
− 2rX̄r(

X̄r + (k + 1)Xr
)3

]

+ rV XrX̄r−2

[
n−2∑
k=0

Cn−2
k pk+1 (1− p)n−2−k (r − 1)

(
X̄r + (k + 1)Xr

)
− 2rX̄r(

X̄r + (k + 1)Xr
)3

]

= rV XrX̄r−2

[
n−2∑
k=0

Cn−2
k pk+1 (1− p)n−2−k (n− 1)

(r − 1) (k + 1)Xr − (r + 1) X̄r(
X̄r + (k + 1)Xr

)3
]

+ rV XrX̄r−2

[
n−2∑
k=0

Cn−2
k pk+1 (1− p)n−2−k (r − 1) (k + 1)Xr − (r + 1) X̄r(

X̄r + (k + 1)Xr
)3

]

= rnV XrX̄r−2

[
n−2∑
k=0

Cn−2
k pk+1 (1− p)n−2−k (r − 1) (k + 1)Xr − (r + 1) X̄r(

X̄r + (k + 1)Xr
)3

]
(17)

where the first equality represents a transformation from set-wise to com-
binatorial notation, the second equality an index transformation, the third
equality follows from inserting (k + 1)Cn−1

k+1 = (n − 1)Cn−2
k , and the final

equality results from taking the sum of the two previous expressions.

A.3 Relative payoff of zero-effort mutant

Lemma 1. Let p ∈ (0, 1], r ≤ n/n−1, andX be given by (6). Then φ(0, X) ≤ 0,
with strict inequality for n > 2 and p < 1.

Proof: Let p ∈ (0, 1] and r ≤ n/n−1 be arbitrary. Then φ(0, X) ≤ 0

if Π2(0, X, . . . ,X) ≥ Π1(0, X, . . . ,X) = V (1 − p)n−1. Using the identity
Cνκ/κ+1 = Cν+1

κ+1/ν+1 for κ ≤ ν this inequality can be equivalently rewritten as
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follows:

V

[
n−2∑
k=0

Cn−2
k pk(1− p)n−k−2 1

k + 1

]
≥ X + V (1− p)n−1

∑n−2
k=0 C

n−1
k+1 p

k+1(1− p)n−k−2

p(n− 1)
≥
rn
[∑n−1

k=1 C
n−1
k pk(1− p)n−k−1 k

(k+1)2

]
n− 1

+ (1− p)n−1

[
n−2∑
k=0

Cn−1
k+1 p

k+1(1− p)n−k−2

]
≥ r

[
n−1∑
k=1

Cnk+1p
k+1(1− p)n−k−1 k

k + 1

]
+ (n− 1)p(1− p)n−1

[
n−1∑
k=1

Cn−1
k pk(1− p)n−k−1

]
︸ ︷︷ ︸

=1−(1−p)n−1

≥ r

[
n∑
k=2

Cnk p
k(1− p)n−k k − 1

k

]
+ (n− 1)p(1− p)n−1.

The last inequality holds for all r ≤ n/n−1 if and only if it holds for r = n/n−1,
i.e. if

(n− 1)(1− (1− p)n−1) + n

[
n∑
k=2

Cnk p
k(1− p)n−k 1

k

]
≥ n

[
1− (1− p)n − np(1− p)n−1

]
+ (n− 1)2p(1− p)n−1

which reduces to[
n∑
k=2

Cnk p
k(1− p)n−kn

k

]
+ np(1− p)n−1 + (1− p)n ≥ 1. (18)

Because of n/k ≥ 1, for k = 2, . . . , n, the left hand side (LHS) is bounded
below by

n∑
k=0

Cnk p
k(1− p)n−k = 1. (19)

Thus, (18) represents a true statement. Moreover, the LHS of (18) strictly
exceeds either side of (19) if p < 1 and n > 2. Q.E.D.
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A.4 Proof of Theorem 3

Since T ESS(r, V, n, p) = n/n−1 · TNash(r, V, n, p), part i) follows directly from
Theorem 6 in LM.

To show Part ii), note that

1

rV

[
T ESS(r, V, k + 1, p)− T ESS(r, V, k, p)

]
=

1

rV

[
k
[
TNash(r, V, k + 1, p)− TNash(r, V, k, p)

]
k − 1

− TNash(r, V, k + 1, p)

k(k − 1)

]

=
k
∑k+1

i=2 C
k
i−1p

i(1− p)k−i+1 1
i(i−1)

k − 1
−
∑k+1

i=2 C
k+1
i pi(1− p)k+1−i i−1

i

k(k − 1)

=
1

k(k − 1)

k+1∑
i=2

Ck+1
i pi(1− p)k−i+1

(
1

i− 1

k2

k + 1
− i− 1

i

)

=
1

k(k − 1)

k+1∑
i=2

Ck+1
i pi(1− p)k−i+1

[
((k + 1)i− 1)(k + 1− i)

i(i− 1)

]
> 0,

where in the step from the second to the third line we used the result for[
TNash(r, V, k + 1, p)− TNash(r, V, k, p)

]
on page 596 in LM.

A.5 Proof of Theorem 4

We first show that ex-ante total spending is larger than the prize value V
under sure participation (p = 1) and high r. Then the claim holds true by
continuity. For this purpose let p = 1. The total spending is then

T ESS (r, V, n, 1) =
nrV

n− 1

(
1− 1

n

)
= rV,

which confirms the result in HLP. It follows that there is ex-ante overdissi-
pation when 1 < r ≤ n/n−1. By continuity, the same holds for p sufficiently
close to 1.
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B Proofs - Endogenous entry

B.1 Proof of Theorem 5

Firstly, we note that r0 and r̄ in FJL satisfy r̄ = n−1/n−2 and r0 > n/n−1, af-
ter using the parameters in the current paper.9 It follows then r ≤ n/n−1 ≤
min{r0, r̄}. By Theorem 4 in FJL, there exists a unique symmetric equilib-
rium with pure-strategy bidding of the entry-bidding game characterised
by their Lemma 2.

Secondly, it is verified that their break-even condition in Lemma 2 reduces to
(8) in the current paper.

B.2 Proof of Theorem 6

Part (a): Suppose c ≤ V/n−1 − rV/n. Note that XESS(r, V, n, p = 1) = rV/n.
Firstly, consider a mutant using strategy (q, X̄) = (0, 0). The mutant obtains
zero absolute payoff by staying out while ESS strategists - due to the absence
of the the mutant - obtains V/n−1−rV/n ≥ c. Thus, in terms of relative payoff,
the mutant cannot improve from the ESS strategy pair, p = 1, X = rV

n ,
which yields a zero relative payoff.

Now consider an arbitrary, (q, X̄). First note that we can decompose Φ(q, X̄; p,X; c)

as follows:

Φ(q, X̄; p,X; c) = qΦ(1, X̄; p,X; c) + (1− q)Φ(0, X̄; p,X; c).

This can be verified by using (9) and the observation that

Π2(X̄,X, . . . ,X; q) = qΠ2(X̄,X, . . . ,X; 1) + (1− q)Π2(X̄,X, . . . ,X; 0).

Note also that Φ(0, X̄; p,X; c) = Φ(0, 0; p,X; c). Then we have

Φ(q, X̄; 1, rV/n; c) = qΦ(1, X̄; 1, rV/n; c) + (1− q)Φ(0, 0; 1, rV/n; c)

≤ qΦ(1, rV/n; 1, rV/n; c) + (1− q)Φ(0, 0; 1, rV/n; c)

≤ q · 0 + (1− q) · 0 = 0,

9That is, α = 1, M = n and ∆ = c.
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where the first inequality follows that rV/n is ESS in the exogenous case and
the above discussion that a mutant cannot improve relative payoff by play-
ing (0, 0).

Part (b): Let (q, X̄) be an arbitrary mutant strategy and let the incumbents’
strategy (pESS, XESS) satisfy the first order conditions (6) and (13). We show
that the mutant’s relative payoff Φ(q, X̄; pESS, XESS; c) is indeed maximized
at 0 by playing (q, X̄) = (pESS, XESS) too. The proof consists of two steps:

Φ(q, X̄; pESS, XESS; c) ≤ Φ(q,XESS; pESS, XESS; c)

= Φ(pESS, XESS; pESS, XESS; c) = 0

The inequality is established in Lemma 2 below. The first equality holds
because relative payoff Φ(q,XESS; pESS, XESS; c) is constant in q, which fol-
lows form equations (11), (12) and (13). The second equality is implied by
symmetry.

Lemma 2. For arbitrary q ∈ (0, 1], we have

Φ(q, X̄; pESS, XESS; c) ≤ Φ(q,XESS; pESS, XESS; c), for all X̄ ≥ 0.

Proof: Let q ∈ (0, 1] be arbitrary. Using (21) in Appendix B.3 below, we can
write the first order condition with respect to effort as

q

[
∂Π1

∂X̄
(X̄,X, . . . ,X)− ∂Π2

∂q∂X̄
(X̄,X, . . . ,X)

]
= 0. (20)

As q > 0, it follows that (20) is equivalent to the first order condition of (4)
with entry probability being exogenously given at pESS. Since the first and
higher order derivatives of (10) wrt. X̄ with a fixed q represent multiples of
the corresponding derivatives of maximizing (4), the remainder of the proof
can be established along the lines of Theorem 2. The only difference to be
taken into account is when we evaluate the relative fitness of the zero effort
mutant. To compare the relative payoff of X̄ = 0 with that of X̄ = XESS,

Lemma 3 in Appendix B.4 below shows that Φ(q, 0; pESS, XESS; c) ≤ 0,which
completes the proof. Q.E.D.
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B.3 Derivatives with respect to effort

As it turns out, maximizing (10) wrt. X̄ is equivalent to maximizing (4)
wrt. X̄ . To show this, we start with deriving the corresponding first order
conditions:

∂Φ

∂X̄
= q

∂Π1(X̄,X, . . . ,X)

∂X̄
− p∂Π2(X̄,X, . . . ,X; q)

∂X̄
,

where

∂Π1(X̄,X, . . . ,X)

∂X̄
= V

 ∑
M∈PN1

p|M | (1− p)|N1\M | |M | rX̄r−1Xr(
X̄r + |M |Xr

)2
− 1

∂Π2(X̄,X, . . . ,X; q)

∂X̄
= qV

 ∑
M∈PN2

p|M | (1− p)|N2\M | rX̄r−1Xr(
X̄r + (|M |+ 1)Xr

)2


Note that ∂Π2(X̄,X,...,X;q)
∂X̄

is linear in q. In particular,

∂Π2(X̄,X, . . . ,X; q)

∂X̄
= qV

 ∑
M∈PN2

p|M | (1− p)|N2\M | rX̄r−1Xr(
X̄r + (|M |+ 1)Xr

)2


=
q

p

∂Π2(X̄,X, . . . ,X)

∂X̄
,

where Π2(X̄,X, . . . ,X) is defined in (3) with entry probability being given
exogenously at p.

We can hence rewrite

∂Φ

∂X̄
= q

∂Π1(X̄,X, . . . ,X)

∂X̄
− q∂Π2(X̄,X, . . . ,X)

∂X̄

= q

[
∂Π1(X̄,X, . . . ,X)

∂X̄
− ∂Π2(X̄,X, . . . ,X)

∂X̄

]
, (21)

such that the term in brackets is the first order derivative for (4). This im-
plies that all results of the exogenous entry case that relate to the sign of
the first and higher order derivatives of (4) wrt. effort level X̄ extend to the
endogenous entry case, where (10) is to be maximized.
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B.4 Relative payoff of zero effort mutant

Lemma 3. Let r ≤ n/n−1 and suppose (p,X) are given by (13) and (6).
Then Φ(q, 0; p,X; c) ≤ 0. More specifically, we have

(a) Π1(0, X . . . ,X) ≤ c and

(b) Π2(0, X . . . ,X) = c

where (a) holds strictly if n > 2 and p < 1.

Proof: Let r ≤ n/n−1 and suppose (p,X) are given by (13) and (6). Then
Φ(q, 0; p,X; c) ≤ 0 follows from (a) and (b).

We start with showing (a), which is equivalent to V (1 − p)n−1 ≤ c. Using
(13), we can equivalently write this as

V (1− p)n−1 ≤ V

n− 1

(
1− (1− p)n

p
− (1− p)n−1

)
−X.

Multiplying with p(n−1)/V and inserting (6), this reduces to

(n− 1)p(1− p)n−1 ≤ 1− (1− p)n − p(1− p)n−1

− prn

[
n−1∑
k=1

Cn−1
k pk(1− p)n−1−k k

(k + 1)2

]
.

Inserting nCn−1
k /k+1 = Cnk+1 and rearranging terms, we obtain

r

[
n−1∑
k=1

Cnk+1p
k+1(1− p)n−1−k k

k + 1

]
= r

[
n∑
k=2

Cnk p
k(1− p)n−k k − 1

k

]
≤ 1− (1− p)n − np(1− p)n−1

This inequality holds for arbitrary r ≤ n/n−1 if it holds for r = n/n−1, i.e. if

n

[
n∑
k=2

Cnk p
k(1− p)n−k k − 1

k

]
≤ (n− 1)

[
1− (1− p)n − np(1− p)n−1

]︸ ︷︷ ︸∑n
k=2 C

n
k p

k(1−p)n−k

or equivalently
[

n∑
k=2

Cnk p
k(1− p)n−k

]
≤

[
n∑
k=2

Cnk p
k(1− p)n−kn

k

]
.
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Because n/k ≥ 1, for k = 2, . . . , n, the above inequality is satisfied. Moreover,
it holds strictly if n > 2 and p < 1.

To establish(b), we first rewrite (b) using (3):

X + c = V

[
n−2∑
k=0

Cn−2
k pk(1− p)n−k−2 1

k + 1

]

=
V

n− 1

1− (1− p)n−1

p
, (22)

where the second equality can be established along the lines of Lemma 1.
On the other hand, the first order condition (13) implies that

X + c =
V

n− 1

1− (1− p)n − p(1− p)n−1

p
. (23)

Note that the right hand sides of (22) and (23) coincide (as do the left hand
sides). Thus, (23) implies (22), which shows (b). Q.E.D.

B.5 Proof of Theorem 7

Let c > V/n− n−1/n2rV . Then from Theorem 5 we know pNash < 1 and

1− (1− pNash)n

pNash = n
c+XNash(r, V, n, pNash)

V
.

Evaluating (12) at p = pNash leads to

V

n− 1

[
n
c+XNash

V
− (1− pNash)n−1

]
− n

n− 1
XNash − c

=
c− V (1− pNash)n−1

n− 1
> 0,

where the last inequality holds because c is equal to the expected equilib-
rium surplus by biddingXNash and V (1−pNash)n−1 is a deviation to bidding
0. The inequality indeed holds strictly by equation (22) on page 594 in LM.
It thus follows that pESS > pNash.

If c ≤ V/n − n−1/n2rV , then pNash = 1. Note that r ≤ n/n−1, it is readily
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verified that
V

n
− n− 1

n2
rV ≤ V

n− 1
− n

n− 1

n− 1

n2
rV.

Thus, c ≤ V/n−1 − XESS(r, V, n, p = 1) and by Theorem 6, pESS = 1. This
concludes the proof.
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