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Abstract

When should one pay the ferryman? When should one pay for delivery of a

good if there are no institutions or these are too costly to enforce contracts? We

suggest to break up the transaction into many small rounds of investment and pay-

ment. We show that the efficient investment can be implemented in an ε-subgame

perfect equilibrium for any given ε if the invest technology is concave and there are

sufficiently many rounds of investment. This shows that the holdup problem that

emerges from backwards induction in a finite horizon is not robust.
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1 Introduction

”Don’t pay the ferryman,

Don’t even fix a price,

Don’t pay the ferryman,

Until he gets you to the other side”

Chris de Burgh, 1982

Chris de Burgh’s 1982 pop song ’Don’t pay the ferryman’ is a reference to the ferryman

Charon from Greek mythology, who took the deceased from one side of the river Styx to

the other side, in exchange for a small fee (Nardo, 2002). When should one pay the

ferryman? According to Chris de Burgh, not until he gets you to the other side, since he

doesn’t have an incentive to continue once you paid.

A broad variety of economic problems, termed holdup problems, can be interpreted

as a very similar situation. One agent, say, the seller (she), has to make an upfront

investment in order to produce or deliver something valuable to another agent, the buyer

(he). Who should move first? If the irrevocable investment is made first, the seller

has no incentive to pay anymore - he is already at the side of the Styx, so why pay?

Alternatively, the payment could be made first. But then why should the seller still make

her investment? Indeed, the unique subgame-perfect equilibrium of games along these

lines is that no trade takes place.

The existing solutions to these problems fall into three categories. First, institutions

and enforceable contracts may solve the problem and recover the possibility for trade.

Second, repeated interaction and reputational concerns may create sufficiently strong in-

centives to build up a lasting relationship. Third, if the game’s duration is uncertain, both

sides may have an incentive to continue investing and paying until the game terminates

randomly (Pitchford and Snyder, 2004).

However, institutions may too costly or may not always be available, e.g., the invest-

ment is not observable by the court. Some economic interactions are not continuously

repeated with large probability, yet trade emerges. Finally, most trade is organized with

known transaction and delivery dates.

In this paper, we propose a novel solution to finite horizon holdup problems by splitting

up the total investment into smaller chunks and using the solution concept of ε-subgame

perfect equilibria (Mailath et al., 2005) instead of the standard subgame perfect equilib-

rium. A subgame perfect equilibrium (SPE) identifies situations in which each player can
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obtain strictly more by deviating. The concept of an ε-SPE makes a minor adjustment.

There is a constant ε, which is typically small, such that each player can obtain by deviat-

ing at most ε more than her equilibrium payoff. Intuitively, why bother about arbitrarily

small gains? The ε threshold can capture deliberation costs, embarrassment costs and

unmodeled uncertainty about play of the other.

The finite horizon holdup problem finds its origin in the final period. Lack of future

consequences make costly actions (such as investment or payment) in the last period non

optimal. Using the backwards induction logic, costly actions in earlier periods can also

not be sustained and the holdup problem occurs. However, the first step in this logic,

the behavior in the final period, is not necessarily compelling if the gains of deviation are

only small. This is the intuition behind our approach. We split up the total investment in

many small ones in order to make that last investment small and postulate an equilibrium

concept in which possibilities to only minorly improve payoffs are not followed.

Total investment x as well as the payment p are split up into sequences of T smaller

investments (xt)
T
t=1 and payments (pt)

T
t=1. We then look for sequences such that in each

round the seller continues to invest and the buyer continues to pay. However this would

not solve the problem if we use SPE as solution concept, as the original problem would

identify itself in the final period. This would then unravel back to the first.

When adapting ε-SPE instead as solution concept the problem is solved for any ε > 0.

By making both the final investment and payment small enough, no side has an incentive

to deviate, thus also allowing previous investments to take place. We also address the

following questions: Under which conditions does an equilibrium exist? What is the

optimal investment and payment schedule from the buyer’s or seller’s point of view?

Which shape do they have?

In the economic problems we consider, there is a single relationship between a seller

and a buyer, which may however be broken down into smaller pieces. In particular,

we rule out the possibility of future interaction and therefore any reputational concerns.

Moreover, we assume that no institutions enforcing any contractual arrangements exists,

based on the idea that efforts are either not observable, not verifiable, or enforcement is

simply too costly.

The buyer obtains the irrevocable right to exclusively use or consume whatever the

seller produced up to period t. We allow for a general production technology f : R+ → R+

and normalize it such that the social surplus f(x)−x is maximized at x∗ = 1. For instance,

the example with the ferryman can be modeled using the production function f such that

f(x) = 0 for x = 1, and f(x) = 1 + s for x ≥ 1 where s is some parameter with s > 0.
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In an ε-SPE of the game, each player’s incentive compatibility constraints for con-

tinuation have to hold in each period t. Our model specification accommodates both

discounting at a factor δ ∈ (0, 1] and obtaining an outside payoff at any time. For sim-

plicity, we first present a set of results for the limiting case in which δ = 1. We show

that an ε-SPE exists in which the buyer obtains the entire social surplus plus an extra

ε if ε is sufficiently large. We also present the sequence of investments and payments

that implements this ε-SPE. In particular, we show that if the production function f is

concave, then the investments and payments are decreasing (except for a possibly larger

first and final investment).

Besides the ferryman example, there are a wide range of possible applications of this

principle. The key for a house or a car is handed over only once it was paid for. In

job order contracting, the entire contract is split up into many subcontracts, and each is

paid for upon completion. While these contracts frequently involve equal sized parts, our

analysis shows that this need not be the case. Gaining more importance recently due to

the rise of the Internet and online retailing, payments may be made on delivery. Shadow

markets definitely lack the legal enforceability aspect, so may well be characterized by our

framework. More broadly, all transactions involving either an up-front payment (tailor,

car mechanic, car purchase, car rental, ...), security deposit (long-term apartment rental,

booking hotel, ...) or registration fee (conference, job application - sunk costs of applying,

...) can be thought of along the lines of our idea.

The ability to achieve cooperation in finite horizons by considering only deviations

that ensure a minimal additional payoff was highlighted by Mailath et al. (2005) in the

context of a Prisoners’ dilemma. Note that in their paper, the ε can be taken small if

supergame payoffs are defined as average stage game payoffs. The strategic choice to split

up an investment into small parts to lower incentives to deviate was informally suggested

by Dixit and Nalebuff (1993). Note that our analysis shows that typically only the last

investments and payments need to be small.

In terms of the application, the closest paper to ours is by Pitchford and Snyder (2004)

who show how one can get around the holdup problem by splitting up the entire investment

into many small investments when the buyer seller relationship is indefinite. As in formal

models underlying the folk theorem, in their paper the relationship is assumed in each

round to continue with a sufficiently large probability. There is no fixed date for delivery

of a final product nor room for infrequent relationships with various different market

partners. Although the mechanisms for ensuring investment are very different, our paper

shares with theirs the decreasing investment. Note also that the efficient investment can
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be supported in our model with a known termination date, while in Pitchford and Snyder

(2004) it is only attained in the limit as the continuation probability tends to 1.

We lay out our main model in section 2. The special case without discounting, the

main results and a few examples are described in section 3. Finally, we discuss our results

and conclude in section 4.

2 Model

Consider an interaction between a buyer and a seller that lasts a given number of T

periods. In each period t the seller can make an investment xt and then the buyer can

make a payment pt.

Investments by the seller provide value to the buyer according to a production function

f : R+ → R+, where x is the sum of investments and f(x) is weakly increasing in x.

Assume f(x) = 0 for x = 0 and that the surplus f(x)− x is maximized at x∗ = 1.

Two types of production functions are of special interest. (i) The willingness of the

buyer to pay for each additional investment is larger than the cost for the seller for this

investment. Formally, f ′ (x) ≥ 1 for all x < 1. (ii) The maximal surplus exceeds the value

of any smaller investment. Formally, f (1) − 1 ≥ limx→1− f (x). We refer to this one as

the ferryman technology as the passage has no value until the passenger reaches the other

side.

We assume throughout that the buyer owns the property rights of any investment

made by the seller. In particular, in any period the value of the good to the buyer is given

by the sum of past investments.

Compensating the seller for his previous effort and to keep him motivated for future

effort, the buyer may choose to pay a certain, possibly negative, amount pt in each period.

We denote the sequence of investments and payments as (xt)
T
t=1 and (pt)

T
t=1.

Both the seller and the buyer discount payoffs between periods using a discount factor

δ where δ ∈ (0, 1]. Their outside options, which they may obtain anytime if they break up

the relationship while investments are still ongoing or at the end of the game otherwise,

are given by ws ≥ 0, wb ≥ 0 for the seller and the buyer respectively.

The timing of the game is as follows. In each period t with 1 ≤ t ≤ T , the seller

moves first and decides between investing xt or breaking up the relationship and thereby

obtaining the outside option ws immediately. The cost of the investment is beared by the

seller at the beginning of the period. The benefits of the investment for the buyer are

realized at the end of the period. Future investments and payments are discounted at a
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rate δ by both players.

Reflecting the idea of holdup problems, the buyer observes whether the seller invested

or not. She then faces choice of paying pt or breaking up the relationship. In that case,

she obtains both the outside option wb as well as everything that was produced up to that

point, i.e., f
(∑t

i=1 xi
)
.

The game ends after T periods if no player chose the outside option before.

Assuming the game continues until period T , the seller’s equilibrium payoffs at the

beginning of period t are given by

uts(x1, x2, . . . , xT , p1, p2, . . . , pT ) = δ
T∑
i=t

δi−tpi −
T∑
i=t

δi−txi + δT−t+1ws (1)

and for the buyer

utb(x1, x2, . . . , xT , p1, p2, . . . , pT ) = −δ
T∑
i=t

δi−tpi + δT−t+1(f(1) + wb). (2)

Note that the unique subgame perfect equilibrium is that no investments take place at

all. After the last investment was made, the buyer doesn’t have an incentive to make

the final payment pT if pT > 0, since the project is already finished. Anticipating no

final payment, the seller of doesn’t want to make the final investment xT . By backwards

induction, we find that investments have to be 0 in all periods.

As we will show in the next section, employing ε-SPE instead radically changes our

insights.

2.1 Equilibrium

Our solution concept is ε-SPE (Mailath et al., 2005), which applies ε-Nash equilibrium to

all subgames. A player only deviates if he gains more than a given threshold ε. Denoting

as Ai the set of actions for player i and as σ∗−i the equilibrium strategy profile of the other

player, a strategy profile σ∗ is a ε-Nash equilibrium if ui(ai, σ
∗
−i) ≤ ui(σ

∗) + ε, ∀ai ∈ Ai,

∀i. A strategy profile σ∗ is a ε-subgame perfect equilibrium if it is a ε-Nash equilibrium

in every subgame.

Possible reasons why one might not want to deviate when the gains are small or

negligible include: i) switching costs (as compared to the status quo), ii) deliberation

costs, iii) costs from being embarrassed and iv) existence of possibility to prevent small

deviations (e.g., small retaliation is available).

6



In the following we will limit attention to equilibria in which any deviation is punished

by discontinuing the relationship. There is no loss of generality in this assumption when

searching for outcomes that are best for one of the two parties.

In order to check whether a given sequence of investments and payments constitute an

ε-SPE, we need to make sure that the incentive compatibility constraints hold for both

the seller and the buyer in every period.

We define
∑j

k=i hk = 0 for i > j.

In order for an investment xt to be incentive compatible (IC) for the seller in period

t, it has to hold that:

δpt − xt −
T∑

i=t+1

(
δi−txi − δi−t+1pi

)
+ δT−t+1ws ≥ −ε+ ws (3)

which we can rewrite in terms of the minimum price pt required s.t. the seller IC constraint

is satisfied:

pt ≥ p̂t := cs(t)−
T∑

i=t+1

δi−tpi

where cs(t) is independent of prices and defined as

cs(t) :=
1

δ
(ws − ε)− wsδ

T−t +
T∑
i=t

δi−t−1xi.

Since p̂t depends only on future investments and payments we can compute p̂T :

p̂T = cs (T ) =
xT − ε
δ

+

(
1

δ
− 1

)
ws.

Conversely, IC for the buyer requires that

−pt −
T∑

i=t+1

δi−tpi + δT−t(f(1) + wb) ≥ −ε+ wb + f

(
t∑

i=1

xi

)
(4)

or alternatively

pt ≤ pt := ε−
T∑

i=t+1

δi−tpi + δT−t(f(1) + wb)− wb − f

(
t∑

i=1

xi

)

= cb(t)−
T∑

i=t+1

δi−tpi

where cb(t) is independent of prices and defined as

cb(t) := ε+ δT−tf(1)−
(
1− δT−t

)
wb − f

(
t∑

i=1

xi

)
and therefore

pT = cb (T ) = ε.

We are now ready to state our first result:
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Proposition 1. An ε-SPE in which total investments equal to 1 exists if and only if

cs(t) ≤ cb(t) ∀t.

Proof: A sequence of payments {pi}Ti=1 constitute an ε-SPE in which total investments

equal to 1 if p̂t ≤ pt ∀t. By definition of p̂t and pt, this holds if and only if cs(t) ≤ cb(t),

irrespective of the sequence of payments. QED

Proposition 1 shows that for equilibrium existence, we need not be concerned about

possible prices. Equilibrium existence is entirely determined by primitives of the model

and the sequence of payments.

Note that 1 does not yet qualify possible prices; in particular, it doesn’t rule out the

possibility for negative prices. Nevertheless it will be useful in the following.

3 No discounting

Consider the extreme case in which δ = 1. As should be clear from Proposition 1, a whole

plethora of ε-SPE may exist. We thus focus on two extreme types of ε-SPE: one in which

the buyer’s most preferred payoffs are realized, and another in which the seller’s most

preferred payoffs are realized. Taking the production function f(x) and the number of

periods T as fixed, we first describe which payoffs the buyer (seller) receives in his most

preferred case. We proceed by constructing an ε-SPE such that these payoffs emerge, and

provide conditions on ε such that the sequence of investments and payments constitute

an ε-SPE.

In this section, we assume δ = 1 throughout. Note that δ = 1 implies that the outside

options wb and ws can be omitted in IC constraints, since they exactly cancel out.

3.1 Buyer’s favorite

Given a production function f and the number of periods T , what is the highest payoff

the buyer can possibly get in an ε-SPE? Mathematically speaking, we want to maximize

the buyer’s ex-ante payoff as given by equation (2) subject to the incentive compatibility

constraints (equations 3 and 4) in each period t, by choosing (xt)
T
t=1 and (pt)

T
t=1.

In Proposition 2 we first characterize an upper and a lower bound for the buyer’s

and the seller’s payoff, respectively. We show that given ε is sufficiently large, we can

characterize a ε-SPE that attains these payoffs. As we show, in this ε-SPE the IC for

both the seller and the buyer are binding in all periods, except for possibly the first period
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with actual investments. If ε is sufficiently large, there may be several periods without

any positive investments or payments before the project actually starts.

Proposition 2. Let δ = 1.

(a) In any ε-SPE we have that ub ≤ f(1)− 1 + ε+ wb =: ub and us ≥ −ε+ ws =: us.

(b) Given T , there exists εbT such that for any ε > εbT an ε-SPE with payoffs ub = ub and

us = us exists, and for any ε < εbT such an ε-SPE does not exist. For any ε > εbT ,

there exists a T ′ ≤ T such that the following investments and payments constitute an

ε-SPE with payoffs ub = ub and us = us:

xT = 2ε, pT = ε and

pt = xt =


f
(

1−
∑T

i=t+2 xi

)
− f

(
1−

∑T
i=t+1 xi

)
if 2 + T − T ′ ≤ t ≤ T − 1

1−
∑T

i=2 xi if t = T − T ′ + 1

0 if t ≤ T − T ′

.

(5)

Before proceeding with the proof, we introduce a useful lemma that later is used to

define εbT and describes an important property of εbT .

Lemma 1. Define ε̄ as

ε̄ = inf

{
ε s.t. f(1)− 1 ≥ −2ε+ f

(
1−

T∑
i=2

xi

)}
, (6)

where xi is as defined by (5) once we set T ′ = T . Then ε̄ is decreasing in T .

Proof. Showing that ε̄ decreases in T is identical to showing that 2ε− f
(

1−
∑T

i=2 xi

)
is

increasing in ε.

For 2 ≤ k ≤ T it holds that

T∑
i=k

xi = 2ε+ f(1)− f

(
1−

T∑
i=k+1

xi

)
.

We proceed by induction. Assume that we know that 2ε − f
(

1−
∑T

i=k+1 xi

)
is in-

creasing in ε, then so is
∑T

i=k xi.

Thus an increase in ε decreases
(

1−
∑T

i=k+1 xi

)
and therefore increases−f

(
1−

∑T
i=k+1 xi

)
.

Consequently 2ε− f
(

1−
∑T

i=k xi

)
is increasing in ε.

The start of the induction at k = T is given by 2ε+f(1)−f(1−0). This is increasing

in ε, as initially assumed, and thus the proof is completed.
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As we will show in the following, ε̄ as defined by (6) is the εbT to be used in Proposition

2. For continuous production functions f , there is always some ε̄ that solves (6) with

equality, but for discontinuous functions we need to allow for jumps in ε and therefore (6)

may never be solved with equality.

Proof of Proposition 2.

(a) Since δ = 1, period t IC constraint for the seller reduces to

pt − xt −
T∑

i=t+1

(xi − pi) ≥ −ε. (7)

Buyer optimality demands that this holds with equality in every period, since higher

payments decrease buyer’s payoff and he strictly prefers not to pay more then seller IC

requires. Moreover, given that δ = 1, payments above the IC constraint relax earlier

constraints by exactly the same amount, which the buyer can always compensate for

by an equivalent payment in an earlier period.

At t = 1, making (7) bind is equivalent to

T∑
i=1

pi =
T∑
i=1

xi − ε. (8)

Thus we have that

ub = −
T∑
i=1

pi + f

(
T∑
i=1

xi

)
+ wb

= −
T∑
i=1

xi + ε+ f

(
T∑
i=1

xi

)
+ wb.

Using the fact that f(x)− x is maximized at x = 1, we have that in any ε-SPE

ub ≤ f(1)− 1 + ε+ wb = ub

and by (8) that

us =
T∑
i=1

(pi − xi) + ws ≥ −ε+ ws = us.

(b) We first show that our sequence of investments and payments constitute a ε-SPE

if ε > εbT where εbT is defined by (6), i.e., that both the seller’s and the buyer’s IC

constraints are satisfied in all periods.
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Consider first the case where ε is such that εbT−1 > ε > εbT , and in that case let T ′ = T .

For δ = 1, seller’s period t IC constraint reduces to

pt − xt −
T∑

i=t+1

(xi − pi) ≥ −ε.

For rewriting buyer’s IC constraint we can use the fact
∑T

i=1 xi = 1 or equivalently∑t
i=1 xi = 1−

∑T
i=t+1 xi and therefore

−pt −
T∑

i=t+1

pi + f(1) ≥ −ε+ f

(
t∑

i=1

xi

)
and hence

−pt −
T∑

i=t+1

pi + f(1) ≥ −ε+ f

(
1−

T∑
i=t+1

xi

)
.

Thus in period T where xT = 2ε and pT = ε both IC constraints are binding.

Moreover, by construction of pt and xt, in all periods 2 ≤ t ≤ T−1 both IC constraints

are binding.

Finally, first period investment and payment p1 = x1 = 1−
∑T

i=2 xi imply that seller’s

IC constraints is also binding in period 1, and therefore in all periods.

We thus are left with showing that these payments are also IC for the buyer in period

1:

−p1 −
T∑
i=2

pi + f(1) ≥ −ε+ f

(
1−

T∑
i=2

xi

)

which can be expanded to

−

(
1−

T∑
i=2

xi

)
−

T∑
i=2

xi + ε+ f(1) ≥ −ε+ f

(
1−

T∑
i=2

xi

)

and therefore

f(1)− 1 ≥ −2ε+ f

(
1−

T∑
i=2

xi

)
.

Since also the investments depend on ε, the minimal ε (if it exists) that satisfies this

is implicitly defined via
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f(1)− 1 ≥ −2εbT + f

(
1−

T∑
i=2

xi

)
(9)

because the right-hand side of (9) is decreasing in ε as shown in the proof of Lemma

1. If no ε solves (9) with equality, the IC constraint holds for ε > εbT .

If εbT−1 > ε > εbT then the IC constraints are satisfied in all periods both for the seller

and the buyer and thus an ε-SPE exists.

Finally, payoffs in this ε-SPE are given by

ub = −
T∑
i=1

pi + f(1) + wb

= −x1 −
T∑
i=2

pi + f(1) + wb

= −(1−
T∑
i=2

xi)−
T∑
i=2

pi + f(1) + wb

= −1 +
T∑
i=2

pi + ε−
T∑
i=2

pi + f(1) + wb

= f(1)− 1 + ε+ wb = ub

and

us =
T∑
i=1

(pi − xi) + ws = −ε+ ws = us.

Consider now the case where ε ≥ εbT−1. In that case, let T ′ be the largest integer

such that ε ≥ εbT ′ . This implies that 0 < T ′ < T as εbT decreases in T by Lemma 1.

Therefore, the subgame starting from period T − T ′ + 1 is identical to the previous

case and therefore investments and payments are IC for both the seller and the buyer.

Moreover, pt = xt = 0 in all periods t ≤ T − T ′ are IC for both the seller and the

buyer given that future investments and payments are unaffected. Finally, payoffs are

unaffected too, and therefore also for ε ≥ εbT−1 we always have a ε-SPE with payoffs

ub = ub and us = us.

We now show that ε < εbT an ε-SPE with ub = ub and us = us does not exist.

Note that the investments and payments are such that both the seller and the buyer

IC constraints are binding in each period if ε = εbT (or in every period except the first
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if ε > εbT , but εbT is still the minimal ε that solves (6) if such a solution exists). An

investment and payment schedule such that the seller’s IC constraint is not binding

in every period t, i.e., for some t it holds that

pt >

T∑
i=t+1

(xi − pi) + xt − ε,

cannot deliver payoffs ub = ub with a smaller ε, because doing so reduces ub from (2).

If the reduction in ub is compensated by an equivalent reduction in payments in some

other period t′, payoffs and investments are simply shifted across periods, because for

δ = 1 all future payments enter with a coefficient of 1 into the IC constraints for the

seller and buyer in equations (3) and (4) respectively.

Similarly, an investment and payment schedule such that the buyer’s IC constraint

is not binding in any period cannot deliver payoffs ub = ub with a smaller ε, because

that would tighten the seller’s IC constraint in previous periods and thus leave more

investment for the first period, increasing the necessary ε to satisfy the period 1 buyer

IC.

Thus there cannot be another sequence of investments and payments that attains ub

with a lower ε, and consequently ε < εbT implies that an ε-SPE with ub = ub and

us = us does not exist.

Investments and payments in Proposition 2 are obtained in a backwards-induction

manner. In the final period T , the IC payment is bounded from above by ε. Given

that, the IC investment is bounded from above by 2ε, and so on. Thus, given pT = ε

and xT = 2ε, the seller already foregoes the maximum ε relative to his optimal payoff.

Consequently, payments have to be larger or equal to investments in all previous periods.

As we move further towards the beginning, terms in the distant in the future cancel out

and the neat representation from expression (8 remains. Anticipating future investments

and payments on the equilibrium path, the seller invests the value the project will have

after two periods from t, minus the value the project will have after one period from

t. This makes both seller and buyer IC bind in all periods, except possibly the initial

periods.

We now present some conditions that allow us to characterize the sequence of invest-

ments, and then we conclude the section with a few examples.
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Note that if f is concave then f ′(x) ≥ 1 for all x ∈ [0, 1). The reason is as follows.

Given that f(x) − x is maximized for x = 1 on x ≤ 1, it needs to be the case that

f ′(1) ≥ 1. By concavity we have that f ′(x) is decreasing and hence f ′(x) ≥ f ′(1) ≥ 1 for

all x ∈ [0, 1).

Proposition 3. Let δ = 1 and f ′(x) ≥ γ for all x ∈ [0, 1) and γ > 0. Then for

the sequence of investments as specified in Proposition 2(b) it holds that xt ≥ γxt+1 for

2 + T − T ′ ≤ t ≤ T − 1.

Proof. f ′(x) ≥ 1 implies that f(y) − f(x) ≥ γ(y − x). Note that xT = 2ε and therefore

1−
∑T

t′+1 xi is strictly smaller than 1 for all t′ with 2 + T − T ′ ≤ t′ ≤ T − 1. Thus for t

such that 2 + T − T ′ ≤ t ≤ T − 1 we have that

xt = f

(
1−

T∑
i=t+2

xi

)
− f

(
1−

T∑
i=t+1

xi

)
≥ γ

((
1−

T∑
i=t+2

xi

)
−

(
1−

T∑
i=t+1

xi

))
= γxt+1.

Proposition 3 shows in particular that if f ′(x) ≥ 1 holds for all x ∈ [0, 1), then

xt ≥ xt+1 and therefore investments are gradually decreasing over time, i.e., a form of

gradualism. The reason is that as the project continues, refusing to pay for the last

progress and consuming what was already built becomes more and more attractive for

the buyer. Alternatively speaking, the seller’s threat of not continuing to invest becomes

less harmful the more the project has progressed already. Therefore, the seller has to

gradually invest less and less such that the buyer is still willing to pay for a marginal

improvement.

Another interpretation is that, if f is concave, then so is f(x)− x, which means that

for each additional amount invested, the added value for the buyer is decreasing up to

the efficient total investment of x = 1, suggesting gradually decreasing payments.

Moreover, if γ > 1 in Proposition 3, this shows that the investments decrease at least

at a geometric rate. In particular they are not constant. Therefore, T need not be large

even if ε is small and γ > 1. Finally, this shows that even parts need not be optimal.

In Proposition 2 we take T as given, and provide a necessary condition for ε-SPE

existence in terms of ε. In Proposition 4 we show also the opposite holds: Given any ε,

an ε-SPE with buyer-optimal payoffs exists if T is sufficiently large.

Proposition 4. Let δ = 1 and f ′(x) ≥ 1 for all x ∈ [0, 1). Then for any ε > 0, there

exists some Tε such that for all T̂ ≥ Tε an ε-SPE with ub = ub and us = us exists.
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Proof. We proof the statement by showing that the last term of (6) converges to 0 as

T goes to infinity, which is identical to showing that
∑T

i=2 xi goes to 1 as T becomes

sufficiently large.

By Proposition 3 we have that xt is decreasing in t. For any T it holds that xT−1 > 0.

Therefore, for any T̂ ≥ Tε it holds that

T̂∑
i=2

xi ≥
Tε∑
i=2

xi ≥ (Tε − 3)xTε−1 ≥ 1

once Tε satisfies Tε ≥ 1/xTε−1 + 3.

Next we establish for the ferryman technology that only two periods are needed.

Proposition 5. Assume that f (1) − 1 ≥ limx→1− f (x) . For any ε > 0 we have that

T = 2 and εb2 = ε satisfies the statement of Proposition 2(b).

Proof. The proof follows immediately from noticing that (6) is equivalent to f (1)− 1 ≥
f (1− 2ε)− 2ε.

We now present a few examples. Table 1 shows εbT for different f(x), which directly

pins down the minimum T required for buyer’s maximum payoff (Table 2). We then

present the sequence of investments and payments for some prominent values of ε at the

minimum T (Figure 1).

We discuss four different production functions: a concave function 2
√
x, a linear func-

tion 1.1 · max(x, 1), a continuous convex function 2 · max(x2, 1), and the discontinuous

convex function 1.1 · 1x≥1, already known as ferryman example from the introduction.

As shown already by Lemma 1, εbT decreases in T (see Table 1), irrespective of the

production function chosen. The column with εbT for the ferryman production function is

omitted, because even for T = 2, any ε > 0 allows to implement ub = ub.

In Table 2, we present the minimal T required to implement ub = ub and us = us in

an ε-SPE, given ε = 0.05 or ε = 0.1. As εbT decreases in T , equivalently the minimal T

decreases as ε increases. As pointed out above, the extremely convex ferryman production

function requires only T = 2 for any ε > 0.

Finally, in Figure 1 we show the sequence of investments that implements ub = ub for

ε = 0.1 and T = 4 and ε = 0.05 and T = 7 for f(x) = 2
√
x. As shown by Proposition 3,

xt decreases for 2 ≤ T ≤ T −1. However, for ε = 0.05, the first investment is smaller then

the second, and vice-versa for ε = 0.1. In both cases, the final payment is the smallest.
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T εbT for 2
√
x εbT for 1.1 ·max(x, 1) εbT for 2 ·max(x2, 1)

2 0.232051 0.238095 0.109612

3 0.141322 0.151057 0.027964

4 0.097091 0.107735 0.007132

5 0.071553 0.081899 0.001799

6 0.055250 0.064804 0.000451

7 0.044117 0.052703 0.000113

8 0.036134 0.043722 0.000028

Table 1: εbT given T for various production functions.

ε minT for 2
√
x minT for 1.1 ·max(x, 1) minT for 2 ·max(x2, 1) minT for 1.1 · 1x≥1

0.05 7 8 3 2

0.1 4 5 3 2

Table 2: Smallest T given ε for various production functions to attain buyer’s favorite.

Figure 1: Investments for f(x) = 2
√
x.
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4 Conclusion

We find that it is much easier to get paid for relation specific investments than standard

theory predicts. One only has to split up the interaction into parts and drop the assump-

tion that all marginally profitable deviations will be undergone. Typically the investments

will not be constant but instead will decrease geometrically. Accordingly, even if the min-

imal gain needed to trigger deviations is small the total number of investments will not

be that large. In particular, SPE as a solution concept is not robust if one assumes that

marginally profitable deviations are never followed. In a simiilar vein one can also obtain

cooperation in a linear public goods game.
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