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Abstract

Investment is central for business cycles and a defining characteristic of
investment is time to build. While existing business cycle models assume con-
stant time to build, I document that time to build is volatile and largest
during recessions. Motivated by this finding, I develop a heterogeneous firms
general equilibrium model in which time to build fluctuates exogenously. In
the model, investment is partially irreversible. The longer time to build, the
less frequently firms invest, and the less firm investment reflects firm produc-
tivity. As a result, an increase in time to build worsens the allocation of capital
across firms and decreases aggregate productivity. In the calibrated model, a
shock increasing time to build by one month lowers investment by 2% and
output by 0.5%. Structural vector autoregressions corroborate the quantita-
tive importance of time to build shocks.
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2 MATTHIAS MEIER

1. INTRODUCTION

Capital goods are complex and manufactured to the specific needs of an investing
firm. For example, an assembly line consists of many elements that need to fit
together; think of conveyor belts, robotic arms working along these belts, and the
concrete foundation that supports the machines. Further, an assembly line needs to
fit the specific good it produces. The complexity and specificity of capital cause a
time gap between the order of capital goods and their delivery. This time gap is
commonly referred to as time to build and is assumed constant in modern business
cycle theory.1 My paper first documents substantial variation in time to build, with
peak values in recessions. Second, I ask whether exogenous fluctuations in time to
build are of first-order importance for business cycles.
To address this question, I develop a dynamic stochastic general equilibrium

model. Firms in my model face persistent shocks to their own productivity. Their
investment is partially irreversible. The market for capital goods is characterized by
search frictions, which imply time to build. Variations in time to build immediately
result from changes in this friction. Calibrating the model to US manufacturing
data, I find that time to build fluctuations are quantitatively important. A one
month increase in time to build lowers investment by 2% and output by 0.5%.
A lengthening in time to build is contractionary. This is due to two channels.

First, later delivery of outstanding investment orders, as follows from longer time
to build, mechanically reduces contemporaneous investment and thus production.
Second, and this channel is both novel and quantitatively central, longer time to
build worsens the allocation of capital across firms. While the efficient allocation
dictates that more productive firms use more capital, longer time to build weakens
the alignment between capital and productivity. At the core of the mechanism, later
delivery of an investment order affects the ex-ante productivity forecasts for the
periods the investment good is used as well as the associated forecast uncertainties.
In turn, firms invest less frequently and, if they invest, their investment reacts less to
their contemporaneous productivity. A lengthening of time to build therefore means
capital is less well aligned with firms’ productivity, meaning aggregate productivity
is lower and so are output, investment, and consumption.
To measure time to build, I use the US Census M3 survey of manufacturing firms.

The Census provides publicly available time series for order backlog and shipment
1While Kydland and Prescott (1982) assume four quarters time to build, the standard assumption

in real business cycle models quickly shifted to one quarter, see Prescott (1986) for example.
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in the non-defense equipment goods sector since 1968. These time series allow me to
estimate time to build as the time span new capital good orders remain unfilled in
capital producers’ order books. I document that time to build exhibits substantial
variation. It fluctuates between three and nine months. Time to build tends to be
largest at the end of recession periods.2

The model I develop is a real business cycle model. Households consume and sup-
ply labor. The model distinguishes between firms that supply capital and firms that
demand capital. On the capital demand side, there are firms that produce consump-
tion goods combining labor with specific capital. To invest in specific capital, they
need to hire an engineering firm that devises a blueprint for the investment project.
Using the blueprint, the engineering firm searches for a capital supplier to produce
the required capital good. Production takes place when engineering firm and capital
supplier are matched and goods are delivered at the end of the period. Shocks to the
matching technology cause fluctuations in time to build. These shocks may be seen
as shortcut for changes in the capital supply network, which make it more difficult
to supply the required components. The model further features lumpy firm-level in-
vestment in line with the micro-level evidence on capital adjustment. The lumpiness
arises because investment is partially irreversible.
To evaluate the quantitative importance of shocks to the matching technology,

I calibrate the model to US data. The strategy is to jointly target moments of
the investment rate distribution and aggregate fluctuations in time to build. In the
calibrated model, shocks to the matching technology that raise time to build by one
month cause a sharp 2% drop in investment and a more gradual drop in output that
peaks after six quarters at 0.5%. I show that the direct effects of later delivery explain
the short-term responses while increased capital misallocation explain nearly all
of the persistent responses. Misallocation endogenously lowers measured aggregate
productivity. Using the calibrated model, I back out a time series of shocks to the
matching technology that explain the measured time to build fluctuations. The
model predicts that these shocks account for a third of the decline in output and
investment during the early 1990s recession and the Great Recession.
To solve the model, I build on the algorithms in Campbell (1998), Reiter (2009)

and Winberry (2016b). The conceptual idea is to combine global projection with

2This paper is not the first to document the countercyclicality of the backlog ratio, see, e.g.
Nalewaik and Pinto (2015). To the best of my knowledge, however, my paper is the first to relate
fluctuations in the backlog ratio to time to build in the context of modern business cycle models.
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local perturbation solution methods. Compared to Winberry (2016b), the model in
this paper is computationally more involved because the idiosyncratic state addition-
ally consists of outstanding capital good orders. Hence, I show that the algorithms
can be applied to solve more involved firm heterogeneity models.
To reassess the results of my business cycle model, I use time series techniques

to investigate the importance of time to build shocks. In particular, I fit an eight-
variable vector autoregression (VAR) including macroeconomic aggregates, prices,
and time to build. To be conservative, I restrict the identified shocks to matching
technology to contemporaneously only affect time to build. The restriction also
implies that all other shocks may affect time to build contemporaneously.3

The results of the structural VAR corroborate the quantitative findings of my
business cycle model. I find that adverse shocks to matching technology significantly
and persistently lower GDP, investment, and consumption. The identified shock
explains more than 20% of the forecast error variance of GDP and consumption. The
impulse response functions (IRFs) of output and investment are of similar magnitude
as the IRFs in the business cycle model. Moreover, the forecast error variance of
time to build explained by the identified shock is almost 50% and the identified
shocks are uncorrelated with conventional direct measures of business cycle shocks
(e.g., productivity, monetary policy, and tax shocks). This lends support to my
business cycle model’s assumption of exogenous shocks directly affecting time to
build. I further show that my results are robust to relaxing the equality restrictions
of the structural VAR by flexible elasticity bounds, using the methods suggested in
Gafarov, Meier, and Montiel Olea (2016).

Related Literature

This paper contributes to several literatures. First, this paper contributes to the
literature studying the macroeconomic implications of lumpy investment. There is
ample evidence for investment lumpiness, see Doms and Dunne (1998), and struc-
tural explanations are investment irreversibilities or fixed costs of capital adjust-
ment, see Cooper and Haltiwanger (2006). Recent work has investigated the macroe-
conomic implications of capital adjustment costs for the response to aggregate pro-
ductivity shocks, see Khan and Thomas (2008) and Bachmann et al. (2013), and, for
the response to uncertainty shocks, see Bloom (2009), Bachmann and Bayer (2013),

3The results are robust to the alternative restriction that only shocks to matching technology
affect all variables in the VAR contemporaneously.
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and Bloom et al. (2014). In my model, the interaction between time to build and
investment irreversibilities is key for the transmission of shocks to the matching
technology. The transmission mechanism shares the real options effect prominent in
the uncertainty literature, albeit without inducing the volatility effect that higher
uncertainty eventually realizes and leads to reversals and overshooting, see Bloom
(2009). To the extent that longer time to build increases the effective forecast un-
certainty, this paper also contributes to the endogenous uncertainty literature, see
Bachmann and Moscarini (2011) and Fajgelbaum et al. (2014).
Second, my paper relates to recent work studying the interaction between time

to build fluctuations and investment irreversibility. Studying time to build for resi-
dential housing, Oh and Yoon (2016) document a time series pattern fairly similar
to the one for equipment capital goods documented in this paper. In their model,
higher uncertainty increases time to build because residential construction occurs
in stages and each stage involves irreversible investment. Kalouptsidi (2014) studies
the bulk shipping industry and shows that procyclical fluctuations in time to build
dampen the volatility of investment into ships.
Third, in modeling a frictional market for capital goods, I build on the search

literature. Since Mortensen and Pissarides (1994) search frictions are popular in la-
bor market models. For capital markets, Kurmann and Petrosky-Nadeau (2007) and
Ottonello (2015) show that search frictions amplify business cycle shocks. Tightness
on the capital goods market governs the intensive margin of investments, while in
my setup search frictions also affect the extensive margin of investment. Shocks to
the matching technology in my model build on the labor market search and match-
ing literature, see Krause et al. (2008), Sedláček (2014), and Sedláček (2016) for
example.
The remainder of this paper is organized as follows: Section 2 documents time to

build. Section 3 presents the central model mechanism and Section 4 develops the
quantitative business cycle model. I discuss the calibration in Section 5 and results
in Section 6. Section 7 provides the SVAR evidence. Finally, Section 8 concludes.

2. DOES TIME TO BUILD VARY OVER THE CYCLE?

My goal is to estimate time to build using survey data on the order books of
capital good producers. I show that time to build exhibits substantial variation
between three and nine months with peak values during recessions.
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I use US Census data collected in the Manufacturers’ Shipments, Inventories, and
Orders Survey (M3). The M3 covers two third of manufacturers with annual sales
above 500 million USD and some smaller companies to improve industry coverage.
M3 participants are selected from the Economic Census and the Annual Survey of
Manufacturers and the M3 is benchmarked against these datasets. US quarterly
investments are computed by the Bureau of Economic Analysis using the M3.4

The Census provides publicly available data for shipments and order backlog at
the sectoral level. Under the premise of excluding defense goods, I use the sector
category non-defense equipment goods, which is available at monthly frequency from
1968 through 2015.5 M3 data satisfies a stock-flow equation for equipment good
orders, where O denotes new orders net of cancellations, S shipments, and B the
beginning-of-period stock of order backlog6

Bt+1 = Bt +Ot − St.(2.1)

My baseline measure of time to build, also called backlog ratio, is

TTBt ≡
Bt
St
.(2.2)

It measures the intensity of flows (shipments) out of the stock of backlogged orders,
expressed in months. Figure 1 shows the evolution of time to build, which exhibits
substantial variation. Time to build tends to start increasing before recessions and
peaks at the end of recession periods. In Appendix A, I plot the component series
of (2.1) over time. The correlation of annualized real GDP growth with log time
to build is -0.3. Detrending the slow-moving trend from time to build using the
HP filter with a smoothing parameter of 810,000, the correlation increases to -0.4.
The finding of a countercyclical backlog ratio coincides with previous studies, see
Nalewaik and Pinto (2015) for example.
Under two conditions this time to build measure equals the expected waiting

time of a new equipment good order: First, the shipment protocol is first-in first-

4See Concepts and Methods of the U.S. National Income and Product Accounts (2014, ch. 3).
5Notice that for finer disaggregation of the equipment goods sector into two-digit sectors, the

distinction of defense and non-defense is not always available.
6A new order is defined as a legally binding intention to buy for immediate or future delivery,

and the survey does not ask separately for order cancellations. Shipments measure the value of
goods delivered in a given period, while order backlog measures the value of orders that have not
yet fully passed through the sales account.
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Figure 1: Time to Build
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Notes: Time to build is measured as the ratio of order backlog to monthly shipments, for non-defense
equipment goods. Shaded, gray areas indicate NBER recession dates.

out, i.e. new orders are shipped only after backlogged orders are shipped. Second,
shipments are expected to be unchanged in the future. While the first condition
is plausibly satisfied, the second one is roughly satisfied given that shipments are
highly persistent. In Appendix A, I show that an alternative measure of time to
build, based on ex-post shipment realizations, closely resembles my baseline measure.
Additionally, I provide the evolution of the individual component series defining the
order stock-flow equation.
A caveat of estimating time to build using the M3 is that it excludes structure

capital and imported equipment capital, which together account for no more than
35% of total non-residential private fixed investments in the US.7

Given the aggregate nature of the data I use, my measure is necessarily one of
macroeconomic time to build. If there are cross-sectional differences in time to build,
this will be different from the average micro-level time to build. Notice that within
the model I develop in Section 4, I will recompute the measure of time to build in
the exact same way and use that as calibration target.

7Out of total private non-residential fixed investment, structure capital constitutes on average
25% over the last 40 years, declining over time with 10% in 2015. Imported equipment capital is
on average 10% of total investments, increasing over time with 20% in 2015.
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3. FIRM-LEVEL INVESTMENT AND TIME TO BUILD

This section discusses a novel, and quantitatively central, mechanism of my paper.
In short, fluctuations in time to build affect how frequently firms invest, and, if they
invest, by how much. These changes in the investment policy hamper an efficient
reallocation of capital across firms and thereby depress real economic activity.
In general, two key determinants of a firm’s investment decision are expected fu-

ture productivity and uncertainty about future productivity. Higher expected future
productivity makes larger investments appear profitable. Higher uncertainty about
future productivity may induce the firm to postpone investments if investment is
partially irreversible.8 To understand the specific effects of time to build on a firm’s
investment decision, it is of central importance that longer time to build shifts the
expected usage period of the investment good into the future. Hence, longer time to
build affects the expected productivity, and the associated uncertainty, during the
usage period.
To illustrate the point, suppose firm productivity follows an AR(1) process

xt = ρxt−1 + σεt, εt ∼ N (0, 1).

Conditional on the firm’s period zero productivity x0, the forecast of productivity
in period τ > 0 and the associated forecast uncertainty are

x̂τ = ρτx0 and ŝ2
τ = σ2

τ∑
t=1

ρ2(t−1),

respectively. Consider τ the expected period of investment delivery and 0 < ρ < 1.
Longer time to build, that is larger τ , moves the forecast for productivity after de-
livery closer to the (zero) long-run mean of productivity and the associated forecast
uncertainty increases. Figure 2 illustrates the first and second moment effect of an
increase in time to build from one to three quarters.9

What are the implications of longer time to build for the firm’s investment policy?
First, longer time to build reduces the sensitivity of investment to contemporaneous
deviations of productivity from its long-run mean. This follows directly from mean-
reversion, and I refer to this intensive-margin change in the investment policy as

8Abel and Eberly (1996) show analytically that the inaction range, in which not adjusting capital
is optimal, expands in uncertainty when capital is partially irreversible.

9Longer time to build increases the relevant forecast uncertainty by shifting the relevant forecast
horizon, which is not captured by empirical estimates of forecast uncertainty as Jurado et al. (2015).
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Figure 2: Productivity forecasts and time to build
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Notes: Starting from an initial productivity level one unconditional standard deviation above zero,
the figure plots the productivity forecast, x̂τ , and its 90% confidence interval (CI), [x0−1.96ŝτ , x0 +
1.96ŝτ ], per forecast horizon, τ . The arrow illustrates a shift in time to build from one to three
quarters, roughly resembling the increase in time to build observed from 2006 to 2009. The figure
is based on the parameters for the firm-level productivity process calibrated in Section 5.

regression-to-the-mean effect. Second, higher time to build increases the uncertainty
about productivity after delivery. Assuming partial investment irreversibility, the
real option value of waiting increases. That is, the firm finds it optimal to tolerate
larger deviations of the current capital stock from its optimal size. In turn, the
adjustment frequency falls. I refer to this extensive-margin change in the investment
policy as wait-and-see effect.10,11

Increases in time to build have aggregate consequences because the altered invest-
ment policy hampers the efficient allocation of capital across firms with different
levels of productivity. Intuitively, more of the high productivity firms with low cap-
ital stocks do not invest or invest less. Increased capital misallocation endogenously
lowers measured aggregate productivity, output, investment, and consumption.

10The wait-and-see effect is also prominent to explain contractionary aggregate effects of exoge-
nous uncertainty shocks, see, e.g., Bloom (2009) and Bachmann et al. (2013). In my setup, however,
uncertainty is driven by changes in the expected delivery period. The volatility effect, leading to
fast reversals as discussed in Bloom (2009), is not present in my setup.

11If productivity shocks are permanent, ρ = 1, the regression-to-the-mean effect is turned off,
while the wait-and-see effect will be strengthened through larger effects on forecast uncertainty.
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4. MODELING CYCLICAL FLUCTUATIONS IN TIME TO BUILD

This section develops a model which extends the basic real business cycle model
in two ways. First, producers of consumption goods vary in their productivity and
use producer-specific capital. Second, investment in specific capital is partially irre-
versible and supplied through a frictional capital market giving rise to time to build.
Shocks to the matching technology cause fluctuations in time to build.

4.1. Households

Households value consumption and leisure. I assume the existence of a represen-
tative household with separable preferences

U(Ct, Lt) = C1−σ
t

1− σ − ψLt,(4.1)

where Ct is consumption and Lt labor supply in period t. σ denotes the intertem-
poral substitution elasticity, and ψ parametrizes the disutility of working. I suppose
the period utility function is the result of indivisible labor, see Hansen (1985) and
Rogerson (1988).12 The household owns all firms and receives aggregate profits de-
noted Πt. The problem of the household is

max
Ct,Lt

U(Ct, Lt) s.t. Ct ≤ wtLt + Πt,(4.2)

where wt is the wage. Due to household ownership, firms discount future profits by

Qt,t+1 = β
pt+1
pt

,(4.3)

with pt = C−σt the marginal utility of consumption. The household’s optimal labor
supply requires wt = ψ/pt.

4.2. Engineering firms and capital suppliers

To invest in specific capital, producers of consumption goods need to hire an
engineering firm that acts as an intermediary on the capital market. Engineering
firms search for a capital good producer to supply the required goods. When search
succeeds, the capital supplier produces all goods within one period.

12These preferences are common in related general equilibrium models with non-convex capital
adjustment frictions, see Khan and Thomas (2008) and Bloom et al. (2014) for example.
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Let me motivate the setup by the assembly line example in the introduction.
Since assembly lines are complex, the investing firm needs to hire an assembly line
producer (engineering firm). This producer, in turn requires a network of suppliers
that provide the various inputs that compose an assembly line. On top, assembly
lines are specific, and thus requires different supplier networks across orders. While
many individual business relationships are firmly established, the producer may need
to search for some new suppliers given a new assembly line orders. In my model, the
capital supplier is a shortcut for a supply network.

In detail, I assume a continuum of capital submarkets differentiated by cost param-
eter ξ, distributed by G. Consumption good producers randomly access a submarket
ξ. The remainder of this subsection focuses on an arbitrary submarket ξ. There is
a large mass of engineering firms (short: engineers) and capital suppliers. The mass
of active engineers be Et, and the mass of active capital suppliers St. Formally, the
matching technology between engineers and capital suppliers is

Mt = mtE
η
t S

1−η
t ,(4.4)

where mt is stochastic matching efficiency that follows an AR(1) process in logs

log(mt) = (1− ρm) log(µm) + ρm log(mt−1) + σmεmt , εmt
iid∼ N (0, 1).(4.5)

I define market tightness as θt = Et/St. The order filling probability for an engineer
is qt = mtθ

η−1
t , and the matching probability for a supplier is θtqt. Once matched,

the probability of match separation is χ.

Suppliers and engineers need to hire ξ workers to participate in the market and
workers are mobile across sectors so the wage is equal across sectors. When matched
for any given investment order it, the capital supplier produces within the period
and delivers the order to the engineer for unit price pSt . Capital suppliers have unit
marginal costs to transform consumption goods into capital. Given the stochastic
discount factor in (4.3), the value of an unmatched and matched capital supplier is

V S
t = −ξwt + θtqtJ

S
t + (1− θtqt)Et[Qt,t+1V

S
t+1],(4.6)

JSt = pSt it − it + (1− χ)Et[Qt,t+1J
S
t+1],(4.7)

respectively. Engineers are hired on a spot market for investment orders, they can
perfectly commit and are perfectly competitive. A consumption good producer can
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only hire one engineering firm. Thus, the number of engineers equals the number
of orders. Conditional on delivery, engineers receive unit price pEt . To deliver, the
engineer needs to find a matching capital supplier. The value of an unmatched and
matched engineer is, respectively,

V E
t = −ξwt + qtJ

E
t + (1− qt)Et[Qt,t+1V

E
t+1],(4.8)

JEt = pEt it − pSt it + (1− χ)Et[Qt,t+1J
E
t+1].(4.9)

In equilibrium, engineers make zero profits on the spot market for investment orders,
and I assume that capital suppliers satisfy a free entry condition.

V E
t = V S

t = 0.(4.10)

When matched, engineer and capital supplier split the match surplus by Nash bar-
gaining over the unit price pSt , where φ is the engineer’s bargaining weight

max
pSt

(JEt − V E
t )φ(JSt − V S

t )1−φ.(4.11)

The two equations in (4.10) together with the solution to (4.11) jointly define the
equilibrium values of θt, pSt , pEt .

Assumption: Matches are formed for a single period, χ = 1.

The assumption considerably simplifies the problem and appears less strong when
reconsidering the capital supplier as shortcut for a supplier network. Under χ = 1,
the solution to (4.11) is pSt = φ + (1 − φ)pEt and the unit price engineers receive
becomes pEt = 1 + ξwt

φqt
1
it
. Thus, investment expenditure pEt it = it + ft consists of a

size-dependent component with unit price of one, and a fixed cost component

ft = ξwt
φqt

.(4.12)

It further follows that equilibrium tightness is constant

θt = φ

1− φ.(4.13)

Hence, lower matching efficiency mt unambiguously lowers delivery probability qt.
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4.3. Consumption good producers

The economy consists of a fixed unit mass of perfectly competitive consumption
good firms, indexed by j, that produce a homogeneous consumption good

yjt = ztxjtk
α
jt`

ν
jt,(4.14)

using firm-specific capital, kjt, labor, `jt, and subject to aggregate productivity, zt,
and idiosyncratic productivity, xjt. The production function has decreasing returns
to scale in the control variables, 0 < α+ ν < 1. Aggregate productivity has a deter-
ministic trend but throughout the paper, the model is formulated along the balanced
growth path. Both idiosyncratic and aggregate productivity follow an AR(1) process

log(zt) = ρz log(zt−1) + σzεzt , εzt
iid∼ N (0, 1),(4.15)

log(xjt) = ρx log(xjt−1) + σxεxjt, εxjt
iid∼ N (0, 1),(4.16)

respectively. Labor adjustment is frictionless and I define gross cash flow as

cfjt ≡ max
`jt∈R+

{
ztxjtk

α
jt`

ν
jt − wtljt

}
.(4.17)

Capital adjustment is not frictionless. Firm-specific capital evolves over time ac-
cording to γkjt+1 = (1 − δ)kjt + ijt, where δ denotes the depreciation rate, ijt is
investment, and γ denotes constant, aggregate growth of labor productivity.
Let me detail the capital adjustment frictions. First, to invest, consumption good

producers need to hire an engineering firm that searches for capital suppliers to sup-
ply the required capital goods. As a result of frictional capital markets, investment
orders are not delivered instantaneously, but with probability qt implying average
time to build of 1/qt. Second, investment entails a fixed cost, ft, see (4.12). The
fixed cost depends on capital submarket ξ. Which submarket the consumption good
producer can invest on is random and iid across firms and investment orders. Third,
re-adjusting an outstanding order before delivery is prohibitively costly. Fourth, I
assume resale losses of capital.13

In the dynamic firm problem, I distinguish between consumer good producers
with and without outstanding orders. For firms without outstanding orders, the

13I assume reselling is also subject to time to build: Disinvesting producers need to hire an
engineer that searches for a capital supplier that transforms the capital into consumption goods.
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idiosyncratic state is described by (kjt, xjt, ξjt) with probability distribution µV

defined for space SV = R+ × R+ × R+. For firms with outstanding order, the
idiosyncratic state consists of (kjt, iojt, xjt, ξjt), where iojt denotes the outstanding
investment order. The probability distribution is µW defined for space is SW =
R+ × R× R+ × R+. The cross-sectional distribution of all consumption good firms
over their idiosyncratic states is µt = (µVt , µWt ) defined for S = SV × SW . The
economy’s aggregate state is denoted by st = (µt, zt,mt). In the following, I drop
time and firm indices and use ′ notation to indicate subsequent periods. The value
of a firm without outstanding order is given by

V (k, x, ξ, s) = max
{
V A(k, x, ξ, s), V NA(k, x, s)

}
.(4.18)

Conditional on not ordering investment (not adjusting), the firm value is

V NA(k, x, s) = cf(k, x, s) + E
[
Q(s, s′)V ((1− δ)k/γ, x′, ξ′, s′)

∣∣x, k, s].(4.19)

Conditional on ordering investment (adjusting), the firm value is

V A(k, x, ξ, s) = max
io∈R

{
W (k, io, x, ξ, s)

}
,(4.20)

The resale loss of divestment is expressed by the investment price function pi(io),
which equals 0 ≤ p̄i ≤ 1 if investment io < 0, and which equals one if investment is
positive. Total investment expenditure is

ac(io, ξ, s) = (1− pi(io))io + f(ξ, s)(4.21)

The value of the consumption good firm with outstanding orders is

W (k, io, x, ξ, s) = cf(k, x, s)(4.22)

+ q(s)
[
− ac(io, ξ, s) + E

[
Q(s, s′)V

(
((1− δ)k + io)/γ, x′, ξ′, s′

) ∣∣x, s]]
+ (1− q(s))

[
E
[
Q(s, s′)W

(
(1− δ)k/γ, io/γ, x′, ξ, s′

) ∣∣k, io, x, s]].
The extensive margin of the capital adjustment decision is described by the threshold
value ξ̂(k, x, s) that satisfies

V A(k, x, ξ̂(k, x, s), s) = V NA(k, x, s).(4.23)
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Adjustment is optimal whenever fixed adjustment costs ξ < ξ̂(k, x, s). Note that
this formulation of the firm problem nests the conventional firm problem with one
period time to build whenever q(s) = 1 ∀s.

4.4. Recursive Competitive Equilibrium (RCE)

Before I define the equilibrium conditions, I define important macroeconomic ag-
gregates. The aggregate production of the consumption good is

Y (s) =
∫
S
zxkα`(k, x, s)νµ(d[k × io × x× ξ]),(4.24)

where `(k, x, s) is the solution to (4.17). Aggregate investment expenditure is

I(s) =
∫
SV

1{ξ<ξ̂(k,x,s)}q(s)ac(io(k, x, s), ξ, s)µV (d[k × x× ξ])(4.25)

+
∫
SW

q(s)ac(io, ξ, s)µW (d[k × io × x× ξ]).

1{·} is an indicator function, that equals one if the argument is true and zero oth-
erwise. I define aggregate order backlog as the total volume of investment orders at
the beginning of the period, after new orders have been made

B(s) =
∫
SV

1{ξ<ξ̂(k,x,s)}ac(i
o(k, x, s), ξ, s)µV (d[k × x× ξ])(4.26)

+
∫
SW

ac(io, ξ, s)µW (d[k × io × x× ξ]),

A RCE is a list of functions (w, f, q, `, io, ξ̂, C, L,Π, Q, V,W, µ′) that satisfies:
(i) Consumption good producers: Labor demand `, intensive and extensive margin

investment demand (io, ξ̂), and value function (V,W ) solve (4.17)–(4.23).
(ii) Engineering firms and capital good producers: Capital prices f and delivery

probability q satisfy (4.12) and (4.13).
(iii) Household: Consumption demand C and labor supply L solve (4.2).
(iv) Consistency:

(a) Π is consistent with profit maximization of consumption good firms.
(b) Q is given by (4.3).
(c) µ′, the law of motion of µ, is consistent with functions (q, io, ξ̂) describing
capital adjustment.
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(v) Labor market clearing: Labor supply L equals labor demand for consumption
good production ` and labor demand for fixed costs of engineers and suppliers,
described by ξ̂ and G, the distribution of ξ.

(vi) Goods market clearing: C = Y − I, with Y and I given by (4.24) and (4.25).

4.5. Solution

The recursive competitive equilibrium is not computable, because the solution de-
pends on the infinite-dimensional distribution µ. Instead, I solve for an approximate
equilibrium building on the algorithms in Campbell (1998) and Reiter (2009). The
general idea is to use global approximation methods with respect to the individ-
ual states, but local approximation methods with respect to the aggregate states.
I solve the steady state of my model using projection methods and perturb the
model locally around the steady state to solve for the model dynamics in response
to aggregate shocks.
Compared to the Krusell-Smith algorithm, see Krusell et al. (1998), the pertur-

bation approach does not require simulating the model with respect to aggregate
shocks (in order to update the parameters of the forecasting rules). Further it can
easily handle a large number of aggregate shocks. Terry (2015) compares the Krusell-
Smith algorithm with the Campbell-Reiter algorithm for a Khan and Thomas (2008)
economy. He finds that the Campbell-Reiter algorithm is more than 100 times faster.
Ahn et al. (2016) combine the Campbell-Reiter algorithm to compute aggregate dy-
namics for a general class of heterogeneous agent economies in continuous time. More
closely related to this paper, Winberry (2016a) uses (and extends) the Campbell-
Reiter algorithm to solve a variation of the Khan and Thomas (2008) economy.
My adaption of the Reiter method uses cubic B-splines with collocation to ap-

proximate the value functions. For the baseline calibration of the model, it takes
one minute to solve the steady state, aggregate dynamics, and compute the impulse
response functions. Appendix B contains the details of my solution method.

5. CALIBRATION

This section discusses the model calibration, which broadly follows the literature
on non-convex capital adjustment frictions in general equilibrium model, see Khan
and Thomas (2008) for example. I calibrate the model at quarterly frequency. I set
the discount factor β = 0.99 to match an annual risk-free rate of 4%. I assume log-
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utility in consumption, σ = 1. The parameter governing the household’s disutility
from work, ψ, is calibrated to match one third of time spent working.

TABLE I
quarterly model calibration

Description Parameter Value

Households
Discount factor β 0.990
Intertemporal elasticity σ 1.000
Preference for leisure ψ 2.400
Engineers and capital suppliers
Bargaining power φ 0.500
Mean matching efficiency µm 0.542
Persistence of matching efficiency ρm 0.959
Dispersion of matching efficiency σm 0.041
Consumption good producers
Capital share α 0.250
Labor share ν 0.580
Depreciation rate δ 0.025
Aggregate growth γ 1.004
Idiosyncratic persistence ρx 0.970
Idiosyncratic dispersion σx 0.065
Aggregate persistence ρz 0.950
Aggregate dispersion σz 0.007
Fixed adjustment cost ξ̄ 0.010
Resale loss p̄i 0.830

The parameters that describe the technology of consumption good producers are
set to α = 0.25 and ν = 0.58. These values are well within the range of estimates in
Cooper and Haltiwanger (2006) and Kehrig (2015), and similar to the values assumed
in Khan and Thomas (2008) and Bachmann et al. (2013).14 I assume δ = 0.025
consistent with an annual depreciation rate of 10%. Following Khan and Thomas
(2008), I calibrate γ to an annualized aggregate labor productivity growth of 1.6%.
On capital markets, I assume symmetric Nash bargaining between engineers and

suppliers, φ = 0.5. This implies delivery probability qt = mt, which is independent

14Interpreting the production function as revenue production function derived in a model of
monopolistic competition, the value for output elasticities would imply a markup of roughly 20%.
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of η. To calibrate mean, persistence, and variance of matching efficiency, I target the
corresponding first and second moments of the empirical baseline measure of time
to build, the backlog ratio. To this end, I use (4.26) to compute aggregate order
backlog. Since the delivery probability is state-independent and since shipments
equal investment in the model, the backlog ratio in the model is Bt/St = qt. I
set the mean matching efficiency to satisfy an average time to build of 5.5 months
corresponding to the mean of the backlog ratio. Given that the backlog ratio has
a weak, non-linear time trend, I detrend the monthly time series using a HP filter
with λ = 8, 100, 000 and fit persistence and standard deviations to the residual. This
yields ρm and σm for the quarterly matching efficiency process.
I assume that G, the distribution of ξ, is uniform with lower bound zero and upper

bound ξ̄. To calibrate ξ̄ and resale loss p̄i, I target the share of spike investment rates
in micro data. Since the idiosyncratic productivity process, described by ρx and σx,
also determines the investment rate distribution, it is key to calibrate these four
parameters jointly using the same dataset. I use manufacturing establishment-level
data from the Longitudinal Research Database. In particular, I use the estimates
in Cooper and Haltiwanger (2006) based on revenue function x̃kθ, which I take as
the production technology after maximizing out labor with θ = α/(1 − ν). Given
ν, I translate their estimates of the profitability process at annual frequency into
the parameters describing the quarterly process of x, where x = x̃1−ν . This yields
ρx = 0.97 and σx = 0.065. To calibrate adjustment cost parameters ξ̄ and p̄s I
target the share of positive and negative spike adjusters, documented in Cooper and
Haltiwanger (2006). The two model parameters can exactly match the 18.6% share
of positive spikes and the 1.5% share of negative spikes. The fixed cost is important
to generate fat tails, while the resale loss is particularly important in generating the
large difference between positive and negative spikes. Appendix C provides more
details and robustness on the calibration.

6. MACROECONOMIC EFFECTS OF SHOCKS TO MATCHING TECHNOLOGY

This section discusses the quantitative effects of shocks to the matching technol-
ogy. In short, shock to the matching technology that raises time to build by one
month lowers investment by 2 percent and output by 0.5 percent. These shocks ex-
plain up to one third of the decline in output and investment during the early 1990s
recession and the 2007-09 Great Recession.
In more detail, Figure 3 shows the responses to an adverse shock to the matching
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technology. The shock increases time to build by exactly one month, which is roughly
an increase by one standard deviation of the filtered time to build series. The shock
causes substantial fluctuations in output, investment, and consumption. Investment
is most directly affected by the match efficiency shocks. It falls by 2 percent on
impact and remains strongly depressed during the first two years after the shock.
Output falls by 0.3 percent on impact and reaches its trough of 0.55 percent five
quarters later. Measured aggregate total factor productivity declines gradually and
reaches its trough at 0.3 percent 5 quarters after the shock.
The aggregate effects of adverse shock to the matching technology are explained

by a direct and an indirect channel. The direct channel captures that longer time
to build delays delivery of outstanding investment orders and thus reduces invest-
ment and output. The indirect channel captures that longer time to build affects
firm-level investment policies: firms invest less frequently and, if they invest, their
investment reflect less their contemporaneous productivity. In turn, the alignment
between firm-level capital and productivity weakens. Thus, longer time to build low-
ers measured aggregate total factor productivity. A more detailed discussion of the
indirect channel is provided in Section 3.
To understand the relative quantitative importance of the two transmission chan-

nels, I suggest a simple exercise. While the indirect channel affects measured ag-
gregate total factor productivity, the direct channel has no impact on measured
productivity. To isolate the direct channel, I compute a series of exogenous shocks
to aggregate productivity that exactly offset the effects on measured aggregate pro-
ductivity. Measured aggregate productivity then remains at its steady state level.
The effects of the direct channel are the macroeconomic responses to the joint oc-
currence of the initial match efficiency shock and the series of productivity shocks.
The resulting ‘direct channel’ responses are shown as dotted lines in Figure 3. Note

that this exercise is an approximation, which gives an upward bias to the effects of
the direct channel. The reason is that the series of productivity shock only offsets
the effects on realized aggregate productivity, but not the effects on expected future
aggregate productivity. Even so, the direct channel is only central to understand
the immediate responses, while the medium-term effect is by and large explained by
the indirect channel operating through capital misallocation. The prominent role of
aggregate productivity in my model corresponds to the finding in Chari et al. (2007)
on the efficiency wedge.
The direct channel is most important on impact of the shock because in subsequent
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Figure 3: Responses to an adverse shock to the matching technology
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Notes: The impulse response functions are for a shock to the matching technology that decreases
time to build by one (unconditional) standard deviations starting from steady state and using the
baseline calibration. ‘Direct channel’ denotes the impulse responses when aggregate TFP changes
are eliminated through opposing aggregate productivity (z) shocks. Aggregate TFP is computed as
TFP = log(Yt)− α log(Kt)− ν log(Lt).

periods firms adjust their investment policies. Firms prepone investment orders as
delivery takes longer, see Figure 7 in Appendix D. Abstracting from the on-impact
effect, capital adjustment frequency falls consistent with wait-and-see behavior.
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Note that I evaluate the quantitative impact of shocks to the matching technol-
ogy in general equilibrium. Accounting for general equilibrium effects is important,
because household consumption smoothing motives may substantially dampen the
investment and output responses that would arise in partial equilibrium, see Khan
and Thomas (2008). The initial increase in consumption reflects a general equilib-
rium mechanism. Since prices are flexible in my model, the intratemporal household
optimality condition dictates that consumption has to increase initially in response
to the initial decrease in investment, because the capital input in production is
predetermined and labor demand falls.
As robustness to the results, I consider a model driven by an exogenous process

for the delivery probability qt. By contrast, shocks to the matching technology in
my baseline model also have an effect on fixed capital adjustment costs ft. Figure 9
in the Appendix shows that the responses are somewhat weaker, but overall, the
effects of time to build fluctuations remain quantitatively important.
The responses in Figure 3 show quantitatively important and persistent effects

of match efficiency shocks. Next, I assess the importance of time to build to un-
derstand past business cycles. To this end, I compute a matching technology shock
series that fits the empirical time to build series. This confines my analysis to the
period from 1968 through 2015. Using the model, I compute the time series for out-
put, investment, consumption, and employment. To be clear, fluctuations in these
series are only driven by shocks to the matching technology. To make the quarterly
series comparable to the data, I HP filter both the simulated series and their em-
pirical counterparts using the same low-frequency filter (λ = 100, 000) I use in the
calibration. More details on the empirical time series are provided in Section 7.
Figure 4 plots the model-implied time series against their empirical counterparts.

Two observations stand out. First, the official recession periods (grey-shaded areas)
are relatively well matched by periods where shocks to the matching technology
induce below-trend output growth. However, the figure also reveals some phase
shifts for the timing of expansions and contractions in aggregate production. This
may not be surprising given that this paper does not claim shocks to the matching
technology are the sole driver of business cycles and other business cycle shocks may
follow distinct time patterns. Second, shocks to the matching technology explain
an important share of the observed business cycle variations. These shocks alone
explains a drop in investments of more than 5% during the Great Recession and the
early 1990s recession, compared to a drop of 16% in the data. For output, the model
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also explains more than a third of the empirically observed drop during these two
recessions and for consumption it is almost a quarter.

Figure 4: Role of time to build in understanding past business cycles
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Notes: These time series are computed matching the empirically observed (filtered) movements in
time to build through shocks to the matching technology and otherwise using the baseline model
calibration. Grey-shaded areas indicate NBER recession dates.

Finally, Table V in Appendix D reports business cycle moments for both the
empirical data and based on simulations of the model. The model generates auto-
correlation in the detrended series for output, consumption, investment, and employ-
ment close to the empirical estimates. Further, the volatility of investment relative
to output in the model is very similar to the data. The magnitudes of fluctuations
generated by the model are between five and ten times lower than in the data. This
reflects the observation that time to build exhibits large fluctuations only in two
of the seven recessions for which data is available. Conversely, while shocks to the
matching technology account for an important share of the early 1990 recession and
the Great Recession, these shocks are less important for other recessions.
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7. TIME SERIES EVIDENCE ON SHOCKS TO TIME TO BUILD

In this section, I assess the importance of structural time to build shocks using
vector autoregressions. The identification requires few assumptions and I compare
the identified shocks to the shocks to matching technology in my general equilibrium
model. The qualitative effects of time to build shocks are similar to the effects of
matching technology shocks, and the quantitative effects are even larger. In addi-
tion, the identified shocks are largely uncorrelated with various external measures
of business cycles, which supports the notion that time to build is driven by an
independent source of variation.

7.1. Baseline model

I estimate a medium-scale, eight-variable vector autoregression (VAR) that allows
for rich dynamic interactions between the baseline time to build measure, see Sec-
tion 2, and several macroeconomic series, prominent in both structural and empirical
business cycle models. The vector of endogenous variables is:

Y =



Time to Build
Real GDP

Real Consumption
Real Investment
Consumer Prices

Real Wage
Federal Funds Rate
Labor Productivity


I use data at quarterly frequency that covers 1968Q1 through 2014Q4. All macroe-

conomic series except time to build are sourced from FRED.15 All variables but the
federal funds rate are transformed by the natural logarithm. Notice that I use non-
durable consumption goods, because durable consumption goods include equipment
goods that time to build shocks may directly affect. Similarly, my preferred invest-
ment time series is nonresidential investments because only firms invest in my model.

15The FRED series names are GDPC96 (Real GDP), DNDGRA3Q086SBEA (Real Personal Con-
sumption Expenditures: Nondurable goods), B008RA3Q086SBEA (Real Private Fixed Investment:
Nonresidential), CPI, AHETPI/CPI (Average Hourly Earnings of Production and Nonsupervisory
Employees: Total Private; deflated by CPI ), FEDFUNDS (Effective Federal Funds Rate), PAYEMS
(All Employees: Total Nonfarm Payrolls). Labor productivity is real GDP over employment.
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The results are robust against using total consumption and total investment instead.
The baseline structural VAR model is in levels with linear time trend (D)

Yt = A0 +Dt+
4∑
j=1

AjYt−j +But, Cov(ut) = I8, Σ = Cov(But) = BB′,(7.1)

where But denotes reduced-form shocks and ut structural shocks. The covariance
matrix of ut is the identity matrix of dimension eight, I8. I assume the match effi-
ciency shock is the last element in vector ut. The structural impulse responses of Yt
to the match efficiency shock are identified by the last vector in B, denoted B8.

7.2. A conservative identification scheme

The baseline identification assumption is that time to build increases in response
to a structural time to build shock while all other macroeconomic time series do not
respond contemporaneously, i.e. B8 = [0, . . . , 0, b88]′. Combining this identification
restriction with BB′ = Σ, it follows that b88 =

√
e′8Σ−1e8, where ei is the i-th

column of I8. B8 is point-identified by the identification restriction.
This identification scheme is conservative in the following sense. Except for the

time to build shock, all structural shocks may affect time to build contemporane-
ously, while the time to build shock may affect all variables except time to build
only through a one-quarter lag.16 The identification is also conservative relative to
the general equilibrium model where all variables are contemporaneously affected by
shocks to the matching technology. I also reassess the importance of time to build
shocks using a model-consistent identification scheme.
Figure 5 shows the impulse responses to a positive time to build shock that raises

time to build by one month at peak. I have chosen the size of the shock to mimic the
exercise in the general equilibrium model. The magnitude of the shock corresponds
to five standard deviations of the time to build shock. The shock has a persistent,
significant effect on time to build. More interestingly, GDP and its two main com-
ponents, investment and consumption, significantly fall in response to the match
efficiency shock. Not only are the responses statistically significant, but their mag-
nitudes are also economically relevant: GDP and consumption fall by up to 2%, and
investment by up to 6% within the first three years.
To get a sense of the role of time to build shocks to explain variation in macroe-
16The identification strategy resembles Christiano et al. (2005) for monetary policy shocks.



TIME TO BUILD AND THE BUSINESS CYCLE 25

Figure 5: Impulse responses to a one month time to build shock
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Notes: Solid, blue lines show (selected) responses to a match efficiency shock, under the baseline
identification scheme. Shaded, gray areas illustrate the associated 90% confidence intervals.

TABLE II
Forecast error variance decomposition

1 year 2 years 3 years 4 years 5 years ∞
GDP 0.2 7.6 18.1 22.6 23.4 18.2
Investment 0.3 0.9 2.8 4.9 6.6 6.7
Consumption 0.8 9.8 22.2 26.9 28.2 24.6
Time to build 73.4 57.0 48.8 44.8 42.2 31.1

Note: The shares of forecast error variance explained by time to build shocks are ex-
pressed as percentages for different forecast horizons ranging from 1 year to infinity.

conomic, Table II shows the shares of forecast error variance explained by time to
build shocks. Albeit conservatively identified, the time to build shock explains an
important fraction of macroeconomic fluctuations: more than 20% of GDP and con-
sumption, and 7% of investment. This provides further evidence in support of this
paper’s suggestion that time to build fluctuations are important for a better under-
standing of business cycle fluctuations. Importantly, at business cycle frequency the
time to build shock explains almost 50% of the forecast error variance of time to
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build itself. That is, other structural shocks explain only 50%. This supports the
modeling choice of the general equilibrium model, in which time to build is directly
driven by a shock to the matching technology, and not by a conventional business
cycle shock, such as a shock in aggregate productivity.
The importance of time to build shocks could potentially reflect other structural

shocks that are not well identified in my model. To address this concern, I corre-
late my identified time to build shock series with various business cycles shocks,
constructed in a number of papers outside my empirical framework. These business
cycles shocks include direct estimates of productivity shocks and numerous policy
shocks. Table III provides the correlation of the time to build shock series with
leads and lags of the external business cycle shock series. By and large, I find time
to build shocks uncorrelated with external shocks. This finding further supports to
the importance of exogenous shocks to time to build.

TABLE III
Correlogram of time to build shocks with external business cycle shocks

quarterly lags/leads
-4 -3 -2 -1 0 +1 +2 +3 +4

TFP -0.07 -0.05 0.00 0.00 -0.03 -0.04 -0.07 -0.08 0.00
UA-TFP -0.09 -0.13∗ 0.04 0.07 -0.05 -0.06 -0.04 0.00 0.07
UA-TFP-I -0.03 -0.15∗∗ 0.02 0.11 0.03 -0.03 0.03 0.00 0.05
UA-TFP-C -0.10 -0.08 0.04 0.03 -0.09 -0.07 -0.07 0.00 0.05
MP 0.02 0.08 0.04 0.02 -0.01 0.06 0.04 0.09 0.11
Oil -0.01 0.00 -0.02 -0.02 0.01 0.00 0.01 0.09 -0.04
Defense -0.12 -0.15∗∗ -0.02 -0.03 -0.16∗∗ -0.04 -0.08 -0.01 -0.10
Tax 0.02 -0.06 0.02 0.04 0.01 -0.13 0.09 0.04 -0.02

Note: The table shows the correlation of time to build shocks with various shock series at
lags/forwards between -4 and +4 quarters. */**/*** denote 10%/5%/1% significance levels, re-
spectively. Productivity shock series are from Fernald (2014): TFP, Utilization-Adjusted (UA) TFP,
UA-TFP in equipment and durables, and UA-TFP in non-durables. Monetary policy shocks (MP)
are based on Romer and Romer (2004) and Coibion (2012). Oil price shocks are based on Ramey
and Vine (2010). Surprise defense expenditures as fiscal shocks are from Ramey and Shapiro (1998),
and tax shocks from Mertens and Ravn (2011).

The identified time to build shock series appears not to reflect investment-specific
productivity shocks along the lines of Justiniano et al. (2010) and Justiniano et al.
(2010). Beyond the evidence in Table III, this conclusion is supported by the find-
ing that extending my VAR model by the relative price of investment goods only
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marginally affects the results presented here. By the same argument, identified time
to build shocks appear not to reflect uncertainty shocks. The identified shocks further
do not appear to reflect changes in aggregate financial conditions. This conclusion is
based on the following result. The VAR exercise in Gilchrist et al. (2014) finds that
uncertainty shocks are crucially transmitted through credit spreads. When replacing
uncertainty by time to build, I do not find evidence for the transmission of time to
build shocks through credit spreads.

7.3. Robustness

Appendix E provides robustness for the empirical results. First, I evaluate the im-
portance of the linear time trend assumption by estimating the VAR under the same
identification restrictions but expressing all variables in first differences. The results
are broadly robust. Within the first three years, GDP, investment, and consumption
respond significantly to a time to build shock, and the magnitudes are similar to
the baseline model in levels. Second, I compare the role of my identification scheme
by suggesting an alternative identification scheme, in which time to build shocks
can affect all variables contemporaneously, but no other structural shock can affect
time to build contemporaneously. Importantly, this restriction is consistent with the
restrictions imposed in the general equilibrium model. The responses to a time to
build shock tend to be stronger under the alternative restriction, albeit the differ-
ences are small. Third, I suggest a new robustness for frequentist, point-identified
structural VARs. Based on the findings in Gafarov, Meier, and Montiel Olea (2016),
I replace zero restrictions by elasticity bounds. To provide robustness for time to
build shocks, I replace the contemporaneous zero restrictions of the baseline re-
striction by constraining the elasticity of the contemporaneous response of variables
other than time to build to be bounded by ±1%. I do find my baseline results to be
robust against such relaxation of identification restrictions.
Beyond the robustness in Appendix E, the results are also robust against estimat-

ing a monthly VAR, in which I replace GDP by IP and investment by new orders
for non-defense capital goods. Further, the results are not solely driven by the Great
Recession period. The VAR results are robust against cutting the sample from 2008.
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8. CONCLUSION

This paper contributes to our understanding of business cycles by addressing a
novel question: What are the business cycle implications of fluctuations in time to
build? To address this question, I develop a dynamic stochastic general equilibrium
model, in which capital good markets are characterized by search frictions. Fluctu-
ations in time to build are driven by shocks to the matching technology. Calibrating
the model to US data, I show that the empirically observed fluctuations in time
to build are quantitatively of first-order importance for business cycles. Of particu-
lar quantitative importance is the interaction of time to build and firm investment
policies leading to capital misallocation. To corroborate the model-implied results, I
provide time series evidence on the importance of structural time to build shocks. I
find that the effects of time to build shocks are even stronger than in the structural
model.
An important follow-up question is to better understand the micro-foundations

behind fluctuations in time to build. In particular, it may be useful to study capital
good supply networks. Small changes at critical points in such networks, for example
the exit of an important supplier, could have non-trivial aggregate implications for
time to build. A complementary explanation may revolve around trade credit. While
the empirical evidence rejects an important role for aggregate financial conditions,
trade credit in capital good production networks might be important to understand
the observed time to build fluctuations. For example, suppose capital suppliers pro-
duce subject to cash-in-advance constraints. During recessions short-run liquidity in
the form of trade credit may become scarce. As a result, suppliers may need to slow
down production despite long order books.
The long-run time series pattern of time to build shows that it has become more

volatile since the mid-1980s. In fact, this coincides with the Great Moderation period
from the mid-1980s until 2007. The Great Moderation is characterized by less volatile
business cycles. One popular explanation for the decline in volatility is ‘just-in-time’
inventory practices, which mitigates inventory volatility. Possibly, the flip side of
lower inventory volatility is larger volatility in order backlog, and thus time to build.
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APPENDIX A: TIME TO BUILD FLUCTUATIONS

My ex-post measure of time to build captures the time which new orders remain in the capital
good producers’ order books using ex-post realizations of shipments (instead of current shipments).
To be precise, I compute the lowest number of future periods required to deplete the given order
backlog

T̃ TBt ≡ min
τ

( bτc∑
j=1

St+j + (τ − bτc)(St+bτc+1 − St+bτc)−Bt

)2

,

where b·c denotes the floor function. The second term in above formula captures a linear inter-
polation of shipments between two periods, by which the ex-post time to build measure becomes
continuous.

Figure 6 compares my baseline measure with the ex-post measure of time to build. Differences
between the two series are barely visible, which mainly reflects the high auto-correlation of monthly
shipments.

Figure 6: Time to Build
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Notes: Time to build is measured as the ratio of order backlog to monthly shipments, for non-defense
equipment goods. Shaded, gray areas indicate NBER recession dates.

The two panels of Figure 7 show the individual series defining the order stock-flow equation. The
series are plotted in nominal values because the stock-flow equation is defined over nominal values.
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Figure 7: Responses of investment orders to an adverse match efficiency shock
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Notes: The time series for order backlog, shipments, and new orders refer to the non-defense equip-
ment goods sector and are expressed in nominal values. Shaded, gray areas indicate NBER recession
dates.
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APPENDIX B: SOLUTION ALGORITHM

B.1. Simplified consumption good firm problem

To solve the model most efficiently, I rewrite the firm problem. First, I transform the firm problem.
Instead of io, the investment order, I let firms choose ko, the new capital stock upon delivery.
Computationally, this transformation has the advantage that I can use the same grid for ko as
for k, and this grid can be tighter than the one for io. To leave the firm problem unchanged, ko

needs to evolve over time to guarantee the implicitly defined investment order satisfies io′ = io

γ
.

Using the identity, io = γko + (1 − δ)k, the evolution of ko over time (conditional on no delivery)
according to ko′ = ko

γ
− δ(1−δ)k

γ2 . Second, in slight abuse of notation, I drop the aggregate state
s and instead use time subscripts for functions that depend on the aggregate state. I express the
firm value functions in utils, see Khan and Thomas (2008), and redefine the value function such
that the expectation with respect to idiosyncratic productivity does not have to be computed
within the maximization problem. This raises computational efficiency and it tends to smooth the
value functions. More precisely, I define Ṽt(k, x, ξ) = ptExEξV (k, x′, ξ′), Ṽ At (k, x, ξ) = ptV

A
t (k, x, ξ),

Ṽ NAt (k, x) = ptV
NA(k, x), W̃t(k, x, ξ) = ExW̄t(k, x′, ξ), W̄t(k, x, ξ) = ptWt(k, x, ξ), where Ex (Eξ)

denotes the expectation with respect to x′ (ξ′) conditional on x (ξ) and pt = C−σt as before. Then
equations (4.19), (4.18), (4.20), and (4.22) can be rewritten as:

Ṽt(k, x, ξ) = ExEξ max
{
Ṽ At (k, x′, ξ′), Ṽ NAt (k, x′)

}
Ṽ NAt (k, x) = ptcft(k, x) + βEt

[
Ṽt+1((1− δ)k/γ, x, ξ)

]
Ṽ At (k, x, ξ) = max

ko
t
∈R+

{
W̄t(k, kot , x, ξ)

}
W̄t(k, ko, x, ξ) = ptcft(k, x)

+ qt

[
− pt[(1− pi(k, ko))(γko − (1− δ)k) + fEt (ξ)] + βEt

[
Ṽt+1 (ko, x, ξ)

]]
+ (1− qt)

[
βEt
[
W̃t+1

(
(1− δ)k/γ, ko/γ − δ(1− δ)k/γ2, x, ξ

) ]]
W̃t(k, ko, x, ξ) = ExW̄t(k, x′, ξ)

where Et denotes the expectation with respect to aggregate state st+1 conditional on st. The
net present value of the fixed adjustment cost can be expressed by factξ, where fact is defined
recursively

fact = qtpt
wt
φqt

+ (1− qt)βEtfact+1.
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In turn, this allows me to simplify the firm problem as

Ṽt(k, x) = ExEξ max
{
Ṽ At (k, x′)− factξ′, Ṽ NAt (k, x′)

}
fact = qtpt

wt
φqt

+ (1− qt)βEtfact+1

Ṽ NAt (k, x) = ptcft(k, x) + βEt
[
Ṽt+1((1− δ)k/γ, x)

]
Ṽ At (k, x) = max

ko
t
∈R+

{
W̄t(k, kot , x)

}
W̄t(k, ko, x) = ptcft(k, x)

+ qt

[
− pt(1− pi(k, ko))(γko − (1− δ)k) + βEt

[
Ṽt+1 (ko, x)

]]
+ (1− qt)

[
βEt
[
W̃t+1

(
(1− δ)k/γ, ko/γ − δ(1− δ)k/γ2, x

) ]]
W̃t(k, ko, x) = ExW̄t(k, x′)

Importantly, this allows me to compute the extensive margin adjustment policy in closed form,

ξ̂t = Ṽ At (k, x′)− Ṽ NAt (k, x′)
fact

.

Next, I approximate firm values using collocation where Φ denotes basis functions in matrix repre-
sentation and c denotes vectors of coefficients

Ṽt(k, x) 'ΦV (k, x)cVt
W̃t(k, ko, x) 'ΦW (k, ko, x)cWt

The approximations are exact at the nk collocation nodes k1, ..., knk and ko1 , ..., konk . In practice, I
choose the same collocation nodes for k and ko.

As baseline we use cubic B-splines to approximate the firm value functions. This does not only
have the advantage of being computationally fast, but also conditional on the coefficients we know
the Jacobian in closed form. In particular, I can write down the optimality condition for intensive
margin capital adjustment (kot ) as

qtptp
s(k, kot )γ =qtβEtΦVk (kot , x)cVt+1 + (1− qt)βEtΦWko((1− δ)kt/γ, kot , x)cWt+1,

where ΦVk = (∂ΦV )/(∂k) and ΦWko = (∂ΦW )/(∂ko).
I approximate the AR(1) process of idiosyncratic productivity using Tauchen’s algorithm. I denote

the discrete grid points of x by x1, ..., xnx consisting of nx grid points and the transition probability
from state xj to state xj′ one period later by πx(xj′ |xj).

To render the infinite-dimensional distribution µt tractable, I approximate it with a discrete
histogram. That is, µt measures the share of firms for each discrete combination of capital stock
ki1 , outstanding order koi2 (both correspond to the collocation nodes), and productivity xj . A further
distinction is useful: Let µVt denote the cross-sectional distribution of firms without outstanding
orders over idiosyncratic states (ki, xj) and µWt the distribution of firms with outstanding orders
over (ki1 , koi2 , xj). It holds that µt = (µVt , µWt ).



38 MATTHIAS MEIER

B.2. Campbell-Reiter algorithm

Using the preceding approximation and simplification steps, the model equilibrium is described
by the following non-linear equations:

ΦV (k, x)cVt = ExEξ max
{
Ṽ At (k, x′)− factξ′, Ṽ NAt (k, x′)

}
(B.1)

ξ̂t(k, x) = (Ṽ At (k, x)− Ṽ NAt (k, x))/fact
Ṽ NAt (k, x) = ptcft(k, x) + βEtΦV ((1− δ)k/γ, x)cVt+1

Ṽ At (k, x) = W̄t(k, kot , x)

W̄t(k, ko, x) = ptcft(k, x)

+ qt

[
− pt(1− pi(k, ko))(γko − (1− δ)k) + βEtΦV (ko, x)cVt+1

]
+ (1− qt)

[
βEtΦW ((1− δ)k/γ, ko/γ − δ(1− δ)k/γ2, x)cWt+1

]
cft(kt, xt) = (1− ν) (ν/wt)ν/(1−ν) (ztxt)1/(1−ν)k

α/(1−ν)
t

wt = ψ/pt

qt = mt(φ/(1− φ))η−1

ΦW (k, ko, x)cWt = ExW̄t(k, x′)(B.2)

fact = qtpt
wt
φqt

+ (1− qt)βEtfact+1(B.3)

qtptp
s(k, kot )γ = qtβEtΦVk (kot , x)cVt+1 + (1− qt)βEtΦWko((1− δ)kt/γ, kot , x)cWt+1(B.4)

1
pt

= Yt − It(B.5)

Yt =
∑
i1,i2,j

µt(ki1 , ki2 , xj) (ν/wt)ν/(1−ν) (ztxj)1/(1−ν)k
α/(1−ν)
i1

It =
∑
i,j

µVt (ki, xj)G(ξ̂t(ki, xj))qtps(ki, kot (xj)) [γkot (xj)− (1− δ)ki]

+
∑
i1,i2,j

µWt (ki1 , k
o
i2 , xj)qtp

s(ki1 , k
o
i2 ) [γkoi2 − (1− δ)ki1 ]

µVt+1(ki′ , xj′) =
∑
i,j

πx(xj′ |xj)µVt (ki, xj)[ωV,V,At (i, i′, j) + ωV,V,NAt (i, i′, j)](B.6)

+
∑
i1,i2,j

πx(xj′ |xj)qtµWt (ki1 , k
o
i2 , xj)ω

W,V
t (i1, i2, i′, j)

µWt+1(ki′1 , ki′2 , xj′) =
∑
i,j

πx(xj′ |xj)µVt (ki, xj)ωV,Wt (i, i′1, i′2, j)(B.7)

+
∑
i1,i2,j

πx(xj′ |xj)µWt (ki1 , ki2 , xj)ω
W,W
t (i1, i2, i′1, i′2, j)

log(mt+1) = (1− ρm) log(µm) + ρm log(mt)(B.8)

log(zt+1) = ρz log(zt)(B.9)
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With the following auxiliary equations for the law of motion of the distribution:

ωV,V,At (i, i′, j) =


G(ξ̂t(ki, xj))qt ki′−k

o
t (xj)

ki′−ki′−1
if kot (xj) ∈ [ki′−1, ki′ ]

G(ξ̂t(ki, xj))qt k
o
t (xj)−ki′
ki′+1−ki′

if kot (xj) ∈ [ki′ , ki′+1]

0 else

ωV,V,NAt (i, i′, j) =


[1−G(ξ̂t(ki, xj))] ki′−(1−δ)ki/γ

ki′−ki′−1
if (1− δ)ki/γ ∈ [ki′−1, ki′ ]

[1−G(ξ̂t(ki, xj))] (1−δ)ki/γ−ki′
ki′+1−ki′

if (1− δ)ki/γ ∈ [ki′ , ki′+1]

0 else

ωV,Wt (i, i′1, i′2, j) =



G(ξ̂t(ki, xj))(1− qt)
ki′1
−(1−δ)ki/γ

ki′1
−ki′1−1

ki′2
−kot (xj)

ki′2
−ki′2−1

if kot (xj) ∈ [ki′2−1, ki′2 ] and (1− δ)ki/γ ∈ [ki′−1, ki′ ]

G(ξ̂t(ki, xj))(1− qt)
(1−δ)ki/γ−ki′1
ki′1+1−ki′1

ki′2
−kot (xj)

ki′2
−ki′2−1

if kot (xj) ∈ [ki′2−1, ki′2 ] and (1− δ)ki/γ ∈ [ki′ , ki′+1]

G(ξ̂t(ki, xj))(1− qt)
ki′1
−(1−δ)ki/γ

ki′1
−ki′1−1

kot (xj)−ki′2
ki′2+1−ki′2

if kot (xj) ∈ [ki′2 , ki′2+1] and (1− δ)ki/γ ∈ [ki′−1, ki′ ]

G(ξ̂t(ki, xj))(1− qt)
(1−δ)ki/γ−ki′1
ki′1+1−ki′1

kot (xj)−ki′2
ki′2+1−ki′2

if kot (xj) ∈ [ki′2 , ki′2+1] and (1− δ)ki/γ ∈ [ki′ , ki′+1]

0 else

ωW,Vt (i1, i2, i′, j) =


qt

ki′−ki2
ki′−ki′−1

if ki2 ∈ [ki′−1, ki′ ]

qt
ki2−ki′
ki′+1−ki′

if ki2 ∈ [ki′ , ki′+1]

0 else

ωW,Wt (i1, i2, i′1, i′2, j) =


(1− qt)

ki′1
−(1−δ)ki1/γ

ki′−ki′1−1
if (1− δ)ki1/γ ∈ [ki′1−1, ki′1 ] and i2′ = i2

(1− qt)
(1−δ)ki1/γ−ki′1
ki′1+1−ki′1

if (1− δ)ki1/γ ∈ [ki′1 , ki′1+1] and i2′ = i2

0 else

Labeled equations (B.1)–(B.9) are the main equations, and all other unlabeled equations are aux-
iliary in defining the model equilibrium. Given nk collocation nodes and nx discrete grid points of
x, equations (B.1)–(B.9) are nf = 2n2

knx + 3nknx + 4. I organize these equations in

Et[f(xt,xt+1,yt,yt+1)] = 0,(B.10)

where εt = (εmt , εzt ) ∈ R2 denotes the vector of aggregate shocks. xt denotes predetermined state
variables and yt denotes non-predetermined state variables

xt = [µt; log(mt); log(zt)] ∈ Rnx≡n
2
k
nx+nknx+2,(B.11)

yt = [cVt ; cWt ; log(act); log(kot ); log(pt)] ∈ Rny≡n
2
k
nx+2nknx+2.(B.12)
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The non-stochastic steady state is defined as f(x̄, x̄, ȳ, ȳ) = 0. In the general case, the model
solution is given by

yt = g(xt, ζ),(B.13)

xt+1 = h(xt, ζ) + ζσ̃εt+1,(B.14)

where ζ is the perturbation parameter and g : Rnx × R+ → Rny and f : Rnx × R+ → Rnx .
The exogenous shocks are collected in εt+1 ∈ Rnε , and σ̃ ∈ Rnx×nε attributes shocks to the right
equations while also scaling them (by σm, σz). To solve the two policy functions, I use a first-
order approximation. I follow the perturbation algorithm in Schmitt-Grohe and Uribe (2004). This
requires to compute the Jacobians of function f (locally) at steady state. Importantly, the algorithm
in Schmitt-Grohe and Uribe (2004) checks for existence and uniqueness of a model solution.

B.3. Krusell-Smith algorithm

This subsection suggests how the model can be solved using the Krusell-Smith algorithm. Fol-
lowing Krusell et al. (1998), and the adaption for heterogeneous firms by Khan and Thomas (2008),
I assume agents in my model only observe a finite set of moments, informative about the entire
distribution, instead of observing µ directly. The agents approximate equilibrium prices and the
evolution of the observed moments by a log-linear rule.

I approximate the distribution µ by the aggregate capital stock,

Kt =
∫
S

kdµ,(B.15)

and the stock of investments outstanding from the preceding period

Iot =
∫
SW

(γko − (1− δ)k)dµW .(B.16)

If time-to-build dropped to zero q = 1, Iot would constitute the investments activated in addition
to new orders. I suggest the following log-linear forecast rules

logKt+1 = β0
k(zt,mt) + β1

k(zt,mt) logKt + β2
k(zt,mt) log Iot ,(B.17)

log Iot+1 = β0
i (zt,mt) + β1

i (zt,mt) logKt + β2
i (zt,mt) log Iot ,(B.18)

and the log-linear pricing rule

log pt = β0
p(zt,mt) + β1

p(zt,mt) logKt + β2
p(zt,mt) log Iot .(B.19)

The forecasting and pricing rules are described by coefficients that depend on the exogenous aggre-
gate shock. For discretized processes of z and m, the equilibrium under bounded rationality with
the above rules becomes computable. I use these rules to solve for the optimal policy functions and
then simulate the economy and compute equilibrium prices pt in every period t. The simulated
economy allows price series are then used to update the coefficients of the log-linear rules. I stop
the procedure when the coefficients have converged.
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APPENDIX C: ADDITIONAL INFORMATION ON THE MODEL CALIBRATION

Cooper and Haltiwanger (2006) targets the spike investment shares, but also persistence of in-
vestment rates and the correlation of investment rates with idiosyncratic productivity, when es-
timating a richer specification of capital adjustment costs including convex adjustment costs. I
exclude the latter two moments because they may depend sensitively on the specific time to build
setup. Nonetheless, the model matches these moments reasonably well with a persistence of 1.6%
(empirically 5.8%), and a productivity correlation of 24% (empirically 14%).

An alternative strategy to calibrate adjustment costs is to target cross-sectional skewness and
kurtosis of investment rates, see Bachmann and Bayer (2013). In fact, our calibrated model closely
matches these moments in the data: skewness/kurtosis in the model are 5.1/48.3, while in a bal-
anced panel of Census data these are 6.5/67.4 for total investment and 5.5/47.9 for equipment
investment, see Kehrig and Vincent (2016). Since skewness and kurtosis monotonically increase in
the adjustment cost parameters, this indicates the calibrated adjustment costs may be too low.

TABLE IV
calibration targets

Model Data

Targeted (LRD)
Positive spikes 18.6% 18.6%
Negative spikes 1.5% 1.5%

Non-targeted (LRD)
Persistence 0.016 0.058
Productivity correlation 0.14 0.24

Non-targeted (Census)
Skewness 5.1 6.5
Kurtosis 48.3 67.4

Notes: All moments relate to annual investment rates
computed as I/K. Positive and negative spikes de-
note the share of investment rates larger than 20%
and smaller than -20%, resp. LRD moments are from
Cooper, Haltiwanger (2006), Census moments are
from Kehrig, Vincent (2016).

Alternative data sources used to calibrate and estimate similar models are the IRS tax data,
see, e.g., Winberry (2016b), and Compustat data, see, e.g., Bloom (2009). Both datasets are at
the firm-level. The IRS does includes only positive investments, and Compustat is biased to large
private firms. The main disadvantage of the LRD dataset is that it covers manufacturing only.
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APPENDIX D: ADDITIONAL RESULTS FROM THE MODEL SIMULATION

Figure 8: Responses of investment orders to an adverse match efficiency shock
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Notes: The impulse response functions are based on a decrease in match efficiency by one (uncondi-
tional) standard deviations starting from steady state and using the baseline calibration. Inaction
measures the share of firms without outstanding orders that do not make a new order in a given
period. The order backlog is the total of investments outstanding for delivery.

TABLE V
Business cycle statistics

Data Model

Volatility of output (%) 2.37 0.31
Volatility of consumption (%) 2.08 0.16
Volatility of investment (%) 7.27 1.23
Volatility of employment (%) 2.11 0.24

Autocorrelation of output 0.94 0.96
Autocorrelation of consumption 0.94 0.87
Autocorrelation of investment 0.96 0.89
Autocorrelation of employment 0.97 0.89

Correlation of consumption with output 0.86 0.61
Correlation of investment with output 0.72 0.92
Correlation of employment with output 0.71 0.89

Note: All series, from data and model simulations, are expressed in logs
and HP-filtered with a quarterly smoothing parameter of 100,000.



TIME TO BUILD AND THE BUSINESS CYCLE 43

Figure 9: Responses under alternative fixed adjustment costs:
f(ξ, s) = ξw(s

φq̄ with q(s) = q̄ in steady state
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Notes: The impulse response functions are based on a decrease in match efficiency by one (uncondi-
tional) standard deviations starting from steady state and using the baseline calibration. ‘Direct ef-
fect’ are the impulse responses when aggregate TFP changes are eliminated through opposing aggre-
gate productivity (z) shocks. Aggregate TFP is computed as TFP = log(Yt)−α log(Kt)−ν log(Lt).



44 MATTHIAS MEIER

APPENDIX E: ROBUSTNESS OF THE STRUCTURAL VAR RESULTS

E.1. Alternative identification scheme and first differences

First, I investigate the results under an alternative identification assumption. While the baseline
identification scheme tends to be conservative, its restrictions are stronger than the restrictions of
the general equilibrium model. As alternative identification, I suggest to have the time to build
shock ‘ordered first’. This term refers to the ordering of variables in the VAR. It means that time
to build shocks can contemporanously affect all other variables in the VAR, but no shock other
than time to build shocks can affect time to build contemporaneously. Figure 10 shows that the
baseline identification implies smaller macroeconomic respones to time to build shocks compared
to the alternative identification, albeit the differences are not large. Impulse responses under the
alternative identification remain significant.

Figure 10: Impulse responses to a one standard deviation time to build shock
(model in levels with linear time trend, alternative identification schemes)
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Notes: Solid lines show (selected) impulse responses to a time to build shock under the baseline
identification scheme. Dashed lines show the impulse responses under the alternative identification
scheme, in which time to build is ‘ordered first’. Shaded, gray areas illustrate the 90% confidence
intervals associated with the alternative identification scheme.

Figure 11 shows the cumulative impulse responses when estimating a VAR, in which all variables
enter in first differences and the linear time trend is dropped. At the same time, the figure compares
the two identification schemes. The differences of the impulse responses across identification schemes
appears negligible. The important finding is that the impulse responses are similar to the ones in
Figure 10. While I assumed a linear time trend for the latter, the findings on time to build shocks
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appear robust to non-linear time trends.

Figure 11: Cumulative impulse responses to a one standard deviation time to build
shock (model in first differences, two alternative identification schemes)
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Notes: Solid lines show (selected) cumulative impulse responses to a time to build shock under
the baseline identification scheme. Dashed lines show the impulse responses under the alternative
identification scheme, in which time to build is ‘ordered first’. Shaded, gray areas illustrate the 90%
confidence intervals associated with the alternative identification scheme.

E.2. Elasticity bounds

In this subsection, I propose a new approach to provide robustness for point-identified structural
VAR models in a frequentist setup. Structural VAR models, such as Gali (1999), Christiano et al.
(2005), and Bloom (2009), impose various zero restrictions on contemporaneous and long-run re-
sponses to obtain point identification. As robustness, I propose to replace some or all of the zero
restrictions by bounds on the elasticity with respect to the shock of interest.17 For example, instead
of assuming an uncertainty shock does not contemporaneously affect GDP, as robustness I would
restrict the elasticity of GDP with respect to a change in uncertainty due to an uncertainty shock to
be bounded between ±c%. This nests the point-identified model in the limit case when all bounds
are zero (c = 0). The structural VAR model is no longer point-identified when replacing a zero
restriction with strictly positive bounds on the elasticities (c > 0).

17Elasiticity bounds have recently gained popularity in the Bayesian structural VAR literature,
see, e.g., Kilian and Murphy (2012) and Baumeister and Hamilton (2015).
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I implement this robustness exercise using the results in Gafarov, Meier, and Montiel Olea (2016),
which provide inference for set-identified structural VAR models. Formally, to apply their results,
I need to assume that for a given IRF either the lower and upper elasticity bound may not hold
jointly. Notice that confidence sets are estimated based on Delta method inference. In fact, bootstrap
inference is not necessarily valid here because the endpoints of the identified sets are not fully
differentiable.

The suggested robustness is similar to Conley et al. (2012) which proposes as robustness to
relax the exclusion restriction when using IV methods. I suggest the following robustness for the
conservative baseline identification. Instead of zero restrictions on contemporaneous responses, I
constrain the elasticity of all variables (except for the backlog ratio) with respect to the match
efficiency shock to be between -1% and +1%, see Table VI. For an increase in the backlog ratio of
2.5%, the contemporaneous responses are bound to be between -0.025% and +0.025%.

TABLE VI
identification schemes: constraints on contemporaneous elasticities

TTB GDP Inv Con CPI Wag FFR LaP

Baseline + 0 0 0 0 0 0 0
Robustness + ±1% ±1% ±1% ±1% ±1% ±1% ±1%

Notes: +/0/±1% indicate that the elasticity is constrained to be positive/exactly
zero/between -1% and +1%, respectively. The contemporaneous elasticity of variable
i and time to build in response to time to build shocks is given by (e′iB1)/(e′1B1),
where ei is the i-th column of the identity matrix I8. TTB: Time to build, GDP: Real
GDP, Con: Real Consumption, Inv: Real Investment, CPI : Consumer Prices, Wag:
Real Wage, FFR: Federal Funds Rate, LaP: Labor Productivity.

Figure 12 shows the resulting impulse responses under the robustness identification scheme.
Instead of a single impulse response, there is an interval with admissible impulse responses (dotted
lines). The confidence set is adjusted accordingly based on Gafarov, Meier, and Montiel Olea (2016).
Notice that the main findings of the baseline model in Figure 12 are ‘robust’ in the sense that the
declines in GDP, investment, and consumption remain significant.
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Figure 12: Impulse responses to a one standard deviation time to build shock
(model in levels with linear time trend, two alternative identification schemes)
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Notes: Solid lines show (selected) responses to a time to build shock under the baseline identification
scheme. Dashed lines show the bounds of the identified set under elasticity constraints, see Table VI.
Shaded, gray areas illustrate the 90% confidence intervals for the identified sets.
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