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Abstract

This paper addresses the question whether patients have a higher risk of death
if they are admitted to a hospital during the night rather than during the day.
Since hospital resources and staffing are reduced at nights, both numerically
and with regard to available expertise on site, there is a theoretical channel,
explaining why night admissions might be more dangerous. However, since pa-
tients admitted during the night are special in terms of urgency and admission
time, simple comparisons of patients admitted at night- and daytime may be
misleading. To facilitate comparison, the empirical analysis compares patients
who suffer from specific diseases considered as emergency conditions, i.e. upper
gastrointestinal bleeding, or acute myocardial infarction and is based on regres-
sion adjusted propensity score matching as identification strategy. A full sample
of all inpatients in Germany for the years 2005 to 2007 is used. Although the
results show that patients admitted during the night have a higher risk of death,
sensitivity analyses suggest, that this result is likely to be driven by unobserved
patient heterogeneity.
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1 Introduction

Hospital services are required 24 hours a day, 365 days a year. Nevertheless, it is not possible

to maintain a constant number of employees throughout the whole day. Therefore, staffing

levels are reduced at night. Since patient numbers decrease at night because elective cases are

treated during the day, hospital work force reduction is an adaptation to this lower demand.

However, during the night unexpected cases – in particular emergencies – may arrive with

the same probability as during the day. These patients require the same adequate and often

specialized care no matter the time of the day.

This paper addresses whether the mortality risk increases due to being admitted to a

hospital at night. There are several possible reasons why patients admitted at different times

of the day have different outcomes. First, overall staffing levels are lower at night. This

includes specialized staff (Barba et al., 2006). Second, access to resources is reduced, e.g.

to laboratory or radiology (Barba et al., 2006), which can diminish adequate treatment.

Third, treatment mistakes may increase at night because of a disturbed biorhythm and a

reduced concentration of the hospital staff (Kuhn, 2001). Prior studies have already focused

on weekend admissions and some on night admissions. Both admission times belong to the

‘off-hour’, and the reasons for worse patient outcomes are similar since staffing levels are

reduced and access to resources is limited during these times. In addition to weekends, the

risk of medical errors can increase at night due to fatigue and sleep deprivation, which lead

to more cognitive errors and decreases memory performance and coordination skills (Kahol

et al., 2008; Kuhn, 2001). Consequently, it is necessary to investigate weekend and night

effect separately.

Former studies on the ‘off-hour’ effect, i.e. on the weekend or on the night effect, range

from single conditions like birth related diagnoses (e.g. Gould et al., 2003), stroke (e.g. Bray

et al., 2014), upper gastrointestinal bleeding (e.g. Jairath et al., 2011), and heart attack

(e.g. Becker, 2007) over to whole departments such as the intensive care unit (e.g. Barnett

et al., 2002). The results are mixed. Some studies find a higher risk for patients admitted

during ‘off-hours’ (e.g. Barba et al., 2006; Bell and Redelmeier, 2001; Becker, 2007; Kostis

et al., 2007; Reeves et al., 2009). Others do not find any effect (e.g. Barnett et al., 2002;

Berger et al., 2008; Gould et al., 2003; Magid et al., 2005). Some find an ‘off-hour’ effect
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but conclude that this effect can be driven by unobserved patient heterogeneity, i.e. weekend

patients and/or night patients are unobserved sicker which leads to an overestimation of the

‘off-hour’ effect (Barnett et al., 2002; Bray et al., 2014).

Most studies rely on logistic regressions to analyze the ‘off-hour’ effect. Doing so, they pay

no attention to potential biased estimates resulting from unobserved patient heterogeneity.

This is of special importance as many studies use administrative data without any clinical

information. Patients admitted during the night are potentially sicker than patients admitted

during daytime, which may remain unobserved. Therefore, it appears to be important to

address the problem of unobserved heterogeneity.

An adequate consideration of unobserved patient heterogeneity and its effects on the

result is one of the main goals of this paper. So far, two studies already try to account

for unobserved heterogeneity. Becker (2007) finds that weekend hospitalization for heart

attack patients lead to a 0.38 percentage point increase in 1-year mortality. However, by

including hospital fixed effects he only controls for time-invariant differences in unobservable

characteristics across hospitals. Unobserved heterogeneity within hospitals and over time

may still drive the results. Schwierz et al. (2009) examine the weekend effect using German

administrative data. They consider unobserved heterogeneity with a selection index1 but

they do not focus on specific diagnoses. The authors find that the coefficient of the selection

index is not significant, i.e. they do not find any indications for unobserved heterogeneity.

Although their results show that patients admitted on weekends have a higher mortality risk,

the quantitative effect is small.

The main identification problem is that day and night patients are not directly com-

parable. Patients admitted at night are special in terms of urgency and admission time.

Night patients have more severe and acute problems which cannot wait until the next day.

By contrast, many elective patients are admitted during the day along with many acute

patients. Hence, the main objective is to use statistical methods to make patients as simi-

lar as possible beforehand to ensure comparability. The only remaining difference between

individuals should be the admission time. For this reason, I focus on specific emergency

1The selection index measures the difference between the number of admissions each day and the
number of expected admissions per day, which are assumed to be evenly distributed throughout the
week.
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conditions: upper gastrointestinal bleeding because of ulcers (UGIB) and acute myocardial

infarction (AMI). I use a full-sample of all inpatients recorded for an administrative data

set from Germany for the years 2005 to 2007 and apply propensity score matching methods

in combination with regression adjustment to account for any observable differences. While

administrative data offers the benefit that a full sample of the patient population is available,

it is not ensured that every patient characteristic which influences outcome and admission

time is observable. Yet this is the main assumption of propensity score matching. Therefore,

I use two sensitivity analyses, which implement a potential binary confounder to assess the

robustness of the treatment effect. My basic results show that night admissions lead to an

increase in mortality. In the sensitivity analysis I find that it is very likely that unobserved

heterogeneity can drive the results. Accounting for this unobserved heterogeneity can lead

to insignificance of the night effect.

I contribute to the literature in the following ways: First, I use a full-sample of all

inpatients in Germany and I am the first with an analysis of the night effect using German

data. Second, I use a regression adjusted propensity score matching approach and include

robustness checks to test whether unobserved heterogeneity influences the results. While some

papers discuss potential unobserved patient heterogeneity, to the best of my knowledge, there

is no paper trying to quantify its potential impact so far.

The remainder of this paper is organized as follows: Section 2 describes the data set and

the main variables of interest. Section 3 presents the empirical strategy and explains the

sensitivity analysis. Section 4 reports the results, and Section 5 concludes.

2 Data

The following empirical analysis employs an administrative data set, which is a full sample

of all inpatients in Germany for the years 2005 to 2007,2 and includes information on the

patient, e.g. age, sex, diagnoses and procedure codes, ZIP code of residence, and admission

time. Hospital characteristics are also available, e.g. hospital identifier, ownership type and

2The administrative data of §21 KHEntgG was used as part of a cooperation agreement for the
further development of the DRG-system from April, 1st 2011 between the RWI and the BKK Federal
Association.

3



an indicator for university hospitals. I focus on patients who have either UGIB or AMI. Both

conditions need a rapid treatment and have been used in ‘off-hour’ studies before. I only

include patients who have one of the mentioned diagnoses coded as main diagnosis.3

UGIBs denote bleedings in the upper gastrointestinal tract. The main causes of these

bleedings are gastric ulcers and duodenal ulcers. I restrict the sample to these two causes of

the disease. The symptoms are vomiting of blood and a tarry stool. UGIBs are diagnosed

with an endoscopy to detect the source of bleeding. With the endoscopy it is also possible

to stop the bleeding. Additionally, medicaments are administered. If it is not possible to

stop the bleeding, an operation is necessary (Biecker et al., 2008). For the identification of

relevant patients in the data I use diagnoses and procedure codes of Wu et al. (2015) and

Abougergi et al. (2014) and include only patients who get an endoscopy.

An AMI occurs if a blood clot blocks a coronary vessel and, hence, stops the blood flow to

part of the heart. The symptoms can vary by person but the majority of patients experience

chest pain, nausea and shortness of breath. Therapy is realized by revascularization or by

medical management with a thrombolysis. Revascularization techniques comprise percuta-

neous transluminal coronary angioplasty (PTCA) or coronary artery bypass graft (CABG).

The first is a minimally invasive procedure, the latter an open surgery. Because there is a

selection of healthier patients into PTCA (Hentschker and Wübker, 2016), I only focus on

patients with PTCA with the purpose of having only patients with the same treatment in the

sample. Hence, I exclude patients treated with thrombolysis and who get a CABG. However,

CABG is only executed for 5% of the patients. To specify AMI patients in the data I use

diagnoses and procedure codes defined in the German inpatient quality indicators (Mansky

et al., 2011). The exact codes for both diagnoses can be found in Table A1 in the Appendix.

I exclude patients with missing information on patient characteristics, patients younger

than 19 years, and patients with an invalid ZIP code of residence. I also drop patients with

discharge reason transfer or admission reason transfer. In the first case it is not possible

to determine the outcome of the patient; in the second case it is not possible to obtain the

admission time. I further exclude patients admitted on weekends. Weekend patients admitted

on daytime are not comparable with patients admitted on the same time during the week

3The main diagnoses is defined as the main cause for the hospital stay.
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as personnel and other resources are also reduced on Saturdays and Sundays. The weekend

reflects therefore another ‘off-hour’ effect. To separate the pure night effect in comparison to

“normal” daily routine in a hospital, I exclude weekend admissions. Furthermore, I delete

patients who are treated in hospitals without night admissions. Hence, I reduce hospital

heterogeneity, since hospitals with only daytime admissions may treat less severe patients or

may be different in other respects.

I can further distinguish emergency admission and regular admissions in the data set.

It is possible to exclude patients with regular admission status and to focus on emergencies

only (e.g. Becker, 2007). I refrain from the exclusion of regular admissions as I can only

distinguish administrative emergencies. In my data set, a patient is coded as emergency if

he has reached the hospital without a doctor’s referral. This does not necessarily cover the

medical emergency completely, where urgent help is needed as soon as possible. This paper

focuses on conditions where it can be assumed that they are medical emergencies independent

from their admission status. Additionally, a separate estimation with only emergency cases

is executed in the robustness check.

My main variable of interest is admission at nighttime which is equal to 1 if the patient

is admitted between 7 pm and 7 am, and 0 otherwise. Several variations of this definition

are applied as robustness checks. Nighttime is a special time in a hospital since personnel

reductions occur. During the night, assistant doctors from each field are on stand-by for

emergency duties. They stay in the hospital, responding first to emergency admissions and

attending to patients already admitted if they need a doctor. Concurrently, a senior doctor

remains on call from home. If assistant doctors require help, they can call the senior doctor

who will then come to the hospital and handle immediate treatment if necessary. By contrast,

during the day doctors can ask other doctors about treatment options: the hospital is fully

staffed. During the night, assistant doctors must make more often individual decisions. It

may be a higher hurdle to call a senior doctor during the night than to consult him on-site

during the day. A second issue may be that if an urgent treatment is required that can only

be administered by a senior doctor on call, it takes time for the senior doctor to reach the

hospital.

5



As dependent variable I use a binary variable which is equal to 1 if the patient died in

hospital and 0 otherwise. Mortality is the most severe outcome and is often used in past

studies (e.g. Abougergi et al., 2014; Bell and Redelmeier, 2001). Due to data limitations, I

can only focus on in-hospital mortality, since I cannot track the patients after their hospital

stay. Figure 1 and Figure 2 show the distribution of admission time and mortality for each

diagnosis. There is a clear admission peak for both diagnoses between 9 am and 2 pm, going

along with a dip in mortality rate during this time span. The dip is greater for UGIB than for

AMI. On the one hand, this peak in admission time can be explained by the fact that during

this time everybody is awake and the risk of disease may be higher than during nighttime. On

the other hand, there may also be some less severe cases admitted to hospital. The number

of admitted patients decreases during the night with the least number of patients admitted

between midnight and 6 am. Table 1 summarizes the outcome variable by time of admission.

The share of night admissions is 23% (UGIB) and 26% (AMI). The unadjusted mortality rate

for UGIB patients is 4.9% at daytime and 6.5% at nighttime, i.e. patients admitted at night

have a 1.6 percentage points (pp) higher unadjusted mortality rate. For AMI patients the

unadjusted differences is smaller with 0.7 pp. Both differences are statistically significant.

Table 1: Descriptive statistics

Mortality Mortality Differ-
Share of
night ad-
missions

N
Sample Day Night ence

Mean SD Mean SD Mean SD
(1) (2) (3) (4) (5) (6) (5–3)

UGIB 0.053 0.223 0.049 0.216 0.065 0.246 0.016∗∗∗ 0.233 62,922
AMI 0.058 0.234 0.056 0.230 0.063 0.244 0.007∗∗∗ 0.263 136,483

Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

There are some different characteristics within each condition which can affect both ad-

mission time and outcome. I include these characteristics as covariates. For UGIB patients I

control for different types of the ulcer. Additionally, I include indicators whether the patients

get an operation and an indicator whether the ulcer is perforated. For AMI patients I include

an indicator for different AMI types, i.e. whether the patients had an ST-elevated myocardial

infarction (STEMI) or a Non-ST-elevated myocardial infarction (NSTEMI).

Furthermore, I control for other variables that may simultaneously influence admission

time and outcome, such as age, gender, and admission reason. In addition, I use the Elix-
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Figure 1: Distribution of admission time for UGIB
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Figure 2: Distribution of admission time for AMI
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hauser comorbidities for comorbidity risk adjustment (Elixhauser et al., 1998), i.e. diseases

which affect the patient besides the main diagnosis. This adjustment comprises 30 comorbid-

ity measures which are all specified as binary variables, e.g. hypertension, cardiac arrhythmia,

renal failure, and diabetes. To capture regional variation, I define a variable “city” to control

whether the patient lives in an urban or rural area. All patients living in counties with more

than 150 inhabitants per square kilometer and patients living in cities with more than 100,000

inhabitants are defined as living in urban areas. All other patients are defined as living in

rural areas. At the hospital level I control for ownership type with binary variables for public,

not-for-profit or for-profit hospitals, case volume, and whether it is a university hospital. I

add binary variables for each federal state to capture regional differences in emergency care.

3 Methods

To identify whether patients admitted at night have a higher risk of dying than those admitted

during daytime, I apply regression adjusted propensity score matching (Rubin, 1979), a

combination of matching and regression methods. I want to compare patients admitted at

night with day admissions who should only differ in the admission time conditional on the

control variables. I use the common notation of evaluation studies and assign the treatment

status as T = 1 if the patient was admitted between 7 pm and 7 am (night admission), while

T = 0 otherwise (day admission). As outcome (Y ) I use mortality which is equal to 1 if the

patient died in hospital and 0 otherwise.

I first estimate the propensity score, i.e. the probability that a patient is admitted during

the night based on all conditioning variables (see Section 2), using a probit model. Patients

with similar propensity scores in treatment and control group are possible matching partners.

I use Epanechnikov kernel matching with a bandwidth of 0.034 and restrict the sample to

the region of common support, i.e. treated observations with a propensity score below the

minimum or above the maximum of the control group are excluded. One advantage of kernel

matching is that all patients in the control group are included into the estimation but they are

assigned with different weights which reduces the variance (Caliendo and Kopeinig, 2008). At

the same time the matching bias can increase due to bad matches. I also use nearest-neighbor

4Different bandwidth choices (BW = 0.01 and BW = 0.06) do not change the results.
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matching and radius matching with different calipers as robustness check but this does not

change the results.

After the matching procedure I use the weights of the propensity score matching for the

regression adjusted matching approach to compute the average treatment effect of the treated

(ATT). This approach has also been applied by Marcus (2014) and Schmitz and Westphal

(2015). It is a weighted regression of mortality on nighttime admission and all covariates used

in the propensity score equation. The kernel weights of the propensity score matching are

included as weights in the regression. There is a discussion of whether to use bootstrapped

standard errors for the matching estimators (e.g. Caliendo and Kopeinig, 2008), but Marcus

(2014) and Schmitz and Westphal (2015) show that bootstrapped standard errors only lead

to slightly less conservative standard errors than standard errors from the regression. Hence,

I refrain from using bootstrap methods and use clustered standard errors at the hospital

level in the weighted regression. In a further regression, I add hospital fixed effects. These

mainly capture fixed quality differences between hospitals which can also be correlated with

the night admission variable. For example if more patients admitted at night are treated in

good quality hospitals, the night effect will be underestimated without hospital fixed effects.

It is also possible that fixed effects capture fixed differences in the level of patient sickness.

For example if hospitals with a good reputation also treat sicker patients on average at night,

it is not possible to determine the direction of the bias because the fixed quality and the fixed

sickness bias run in opposite directions. The fixed effect regression can only be estimated for

hospitals where at least one death occurred, i.e. variation is needed in the dependent variable

within hospitals.

Sensitivity analysis

The matching approach is based on the conditional independence assumption (CIA), i.e.

all variables which affect the treatment and the outcome must be observed. The CIA is

also known as selection on observables or unconfoundedness assumption. It implies that

if one has conditioned on all observed covariates there is no other (unobserved) variable

which simultaneously influences night admission and mortality. The CIA does not hold if

unobserved heterogeneity is an issue and, hence, estimation results will be biased. It is
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an untestable assumption but some sensitivity analysis show how unobserved heterogeneity

may influence the results. The main issue in my analysis is that I have administrative

data without any medical and socioeconomic characteristics. The question arises whether

unobserved characteristics may affect the results. In my case it is possible that I cannot fully

observe sickness. If unobserved sicker patients, who inherently have also a higher mortality

risk, are admitted relatively more often during the night, this will yield to an overestimation

of the night coefficient.

As first sensitivity analysis I use the bounding approach of Rosenbaum (2002) which

is for example applied by Caliendo et al. (2008) and Aakvik (2001). The initial point of

their analysis is the idea that there are two identical individuals (i and j) in observable

characteristics who only differ in the admission time. It is possible that these two individuals

differ in their unobserved characteristics, for example in unobserved sickness characteristics.

By introducing a hidden bias, the Rosenbaum bounds provide a measure on how large the

bias must be in order to change the results. The probability of being admitted at night is

given by

Pr(xi) = Pr(Ti = 1 | xi) = F (βxi + γui), (1)

where xi are the observed characteristics, ui the unobserved characteristics, and γ is the effect

of ui on the probability to be admitted at night. Given that F is the logistic distribution

function, the odds for individual i to be admitted at night are

(
Pr(xi)

1−Pr(xi)

)
= exp(βxi + γui). (2)

The odds ratio for patients i and j is obtained by setting equation (2) in relation for both

individuals (equation (3)). By assumption (due to the matching process) the individuals can

only differ in u but not in x, i.e. x cancels:

(
Pr(xi)

1−Pr(xi)

)
(

Pr(xj)
1−Pr(xj)

) =
Pr(xi)(1−Pr(xj))
Pr(xj)(1−Pr(xi)) =

exp(βxj+γuj)
exp(βxi+γui)

= exp{γ(ui − uj)}. (3)
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By taking u as a binary variable, equation (3) can be rewritten as

1
eγ ≤

Pr(xi)(1−Pr(xj))
Pr(xj)(1−Pr(xi)) ≤ e

γ . (4)

No selection bias occurs if u is not correlated with the probability of night admission

(γ = 0). But if for example eγ = 2, the individuals i and j are still similar in x but differ in

their odds of night admission by the factor 2 or 100%. This would be a very large difference.

With the Mantel and Haenszel test statistic it can be tested for which range of eγ the results

are stable by increasing values for eγ (1 ≤ eγ ≤ 2). The question is how large the unobserved

differences between individuals are allowed to be without changing the results. The null

hypothesis (H0) is that there is over- or underestimation of the treatment effect. As long as

H0 can be rejected the results are not influenced by the hidden bias. It seems to be reasonable

that only overestimation is an issue because there is a possible selection of unobserved sicker

patients in night admissions. However, also the case of underestimation can be tested.

The second sensitivity analysis is suggested by Ichino et al. (2008). The authors introduce

a synthetic binary confounder which was unobserved so far. If this confounder is included in

the matching process, the CIA will hold and otherwise fail. I introduce a binary confounder

S ‘sickness’ which is equal to 1 if patients are defined to be still sicker than others in addition

to the already included covariates and 0 otherwise. This variable can be seen as a residual

sickness which has not been accounted for so far. The sensitivity analysis shows how this

confounder influences the results by including it in the matching process, i.e. pretending as if

the confounder S is observable and use it as additional covariate. This results in a new ATT

which is, by definition, unconfounded or rather robust to the inclusion of the confounder. By

comparison with the basic ATT it is possible to show how the inclusion of the confounder

changes the results. If the confounder does not alter the results, unobserved heterogeneity

may be a negligible problem and the results can be interpreted as causal; otherwise the results

are prone to be biased.
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The distribution of the binary confounder S is specified by two parameters based on

treatment status (night admission) and outcome (mortality) which leads to four different

groups. With this, S is defined by the probability that S = 1 in each of the four groups:

p11 : Pr(S = 1 | T = 1, Y = 1),

p10 : Pr(S = 1 | T = 1, Y = 0),

p01 : Pr(S = 1 | T = 0, Y = 1),

p00 : Pr(S = 1 | T = 0, Y = 0).

Based on the chosen distribution of S, each patient receives a value for S. For example if

p11 = 0.4, 40% of patients who are admitted at night (T = 1) and died (Y = 1) are randomly

assigned with S = 1 and the others with S = 0. After the determination of S, S is included

in the matching and regression process. This estimation is repeated 10 times5 to obtain a

new estimate of the ATT. It is the average ATT over 10 iterations.

With the four groups it is possible to define the degree of influence of the confounder.

The main issue in this analysis is the potential overestimation of the night effect. This occurs

if the unobserved sicker patients are (i) mainly admitted during the night, which results in

a positive selection effect (p1. − p0. > 0)6, and (ii) if sicker patients have a higher mortality

(outcome effect), i.e. sickness is positively correlated with the outcome (p01− p00 > 0)7. The

outcome effect (d = p01−p00) measures the effect of the confounder on the control group, i.e.

how the confounder (sickness) influences the outcome of patients admitted during the day.

Larger values of d indicate that the share of sicker patients who are admitted during daytime

is higher in the group of patients who died. For example if d = 0.2 the share of sicker patients

(S = 1) is 20 pp higher in the group admitted during daytime and death (T = 0, Y = 1)

than in the group admitted during daytime and survival (T = 0, Y = 0). The selection effect

(s = p1. − p0.) measures the selection into treatment. The larger s the more selection into

treatment occurs, i.e. sicker patients are more likely to be admitted at night. For example if

5There is no clear defined value how many iterations should be used in the sensitivity analysis.
Ten repetitions are a quite low number but I checked for 10, 40, and 80 repetitions which only result
in marginal differences of the estimated ATT and standard errors.

6p1. – “.” stands for both outcomes, i.e. survived and died.
7This is also true for p11 − p10 > 0. But for the subsequent approach this term will be fixed

following the approach of Ichino et al. (2008).
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s = 0.2 the share of sicker patients at nighttime is 20 pp higher than at daytime. The higher

d and s the more distortion of the ATT can occur.

The generated ATT gives a hint on the possible influence of S on the outcome. Overly

strong influences of S might distort the results. However, too large influences of S seem

unlikely because the available data set can already control for many observable confounding

factors. There are two possibilities to determine the influence of S. The first possibility is

to take the distributions from the conditioning variables for the distribution of S with the

inherent assumption that S is at maximum as distorted as the observable variables in the data

set (Ichino et al., 2008). The second possibility is to specify values for d and s in ascending

order, i.e. the distortion and influence of S gets stronger by increasing the values for d and s.

Ichino et al. (2008) call these ‘killer confounders’ because at a certain point the confounder

will alter the results.

4 Results

Matching quality

The matching procedure has the goal to balance the distribution of covariates between treat-

ment and control group, i.e. the differences of covariates should not be significant after the

matching. Table 2 and Table 3 show the descriptive statistics before and after matching for

UGIB and AMI, respectively. With the standardized bias it is possible to determine the size

of the differences between treatment group and control group:

Standardized bias = 100·(x̄t−x̄c)√
(σ2
t−σ2

c )/2
,

where x̄ is the mean of treatment group t and control group c and σ2 is the variance of the

two groups (Caliendo and Kopeinig, 2008). After the matching, the standardized bias should

not exceed values of 3% to 5% which indicates a good balancing (Caliendo and Kopeinig,

2008). In the current case this requirement is fulfilled. In most cases, the standardized

bias is even lower than 1%. Before matching, patients admitted at night are younger, more
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often administrative emergency cases and differ in some disease-specific parameters. After

matching these differences disappear.

Table 2: Descriptive statistics towards treatment status (UGIB)

Treated Controls Mat. controls Stand. bias
Mean SD Mean SD Mean SD Unmat. Mat.

Patient characteristics
Age 68.19 16.40 70.38 14.82 68.40 15.69 -14.02 -1.35
Male 0.57 0.50 0.53 0.50 0.57 0.50 7.90 0.51
Admission reason: Emergency 0.77 0.42 0.49 0.50 0.77 0.42 60.68 0.34
City 0.73 0.45 0.71 0.45 0.73 0.45 2.61 -0.24
Driving time to hospital (minutes) 16.64 28.78 16.03 24.86 16.74 28.82 2.30 -0.35
Duodenal ulcer (K26) 0.41 0.49 0.40 0.49 0.41 0.49 2.51 -0.55
Peptic ulcer (K27) 0.01 0.09 0.01 0.08 0.01 0.09 1.15 0.30
Peptic ulcer jejunum (K28) 0.01 0.12 0.02 0.13 0.01 0.12 -2.17 0.02
Perforation 0.02 0.16 0.02 0.14 0.02 0.15 3.92 0.24
Gastric surgery (5-449) 0.27 0.44 0.22 0.41 0.27 0.44 11.50 -0.41
Excision (5-452) 0.02 0.15 0.04 0.18 0.02 0.15 -7.48 0.27
Bowel surgery (5-469) 0.15 0.36 0.13 0.33 0.15 0.36 6.55 -0.51
Comorbidities (selection)
Hypertension, uncomplicated 0.35 0.48 0.39 0.49 0.35 0.48 -8.38 -0.25
Fluid and electrolyte disorder 0.21 0.41 0.19 0.39 0.22 0.41 5.74 -0.93
Cardiac arrhythmias 0.18 0.38 0.19 0.39 0.18 0.38 -3.34 -0.58
Diabetes, uncomplicated 0.14 0.35 0.15 0.36 0.14 0.35 -2.27 -0.15
Renal failure 0.14 0.35 0.15 0.36 0.14 0.35 -3.33 -0.83
Congestive heart failure 0.14 0.34 0.15 0.35 0.14 0.35 -2.27 -0.45
Alcohol abuse 0.11 0.31 0.08 0.27 0.11 0.31 10.52 0.25
Liver disease 0.10 0.30 0.09 0.29 0.10 0.30 3.80 0.00
Hospital characteristics
Ownership: not-for-profit 0.36 0.48 0.37 0.48 0.36 0.48 -1.80 0.06
Ownership: for-profit 0.13 0.34 0.13 0.34 0.13 0.34 0.11 -0.47
University hospital 0.05 0.23 0.04 0.19 0.05 0.23 7.39 -0.12
ln case volume 3.89 0.51 3.94 0.47 3.90 0.45 -10.51 -1.41
Department gastroenterology 0.24 0.43 0.24 0.43 0.25 0.43 1.51 -0.32
Year 2006 0.33 0.47 0.33 0.47 0.33 0.47 1.55 0.32
Year 2007 0.33 0.47 0.34 0.47 0.33 0.47 -1.12 -0.31

N 14,670 48,252 48,251

Note: Only comorbidities with a share of more than 10% shown.

Estimation results

Table 4 presents the results for the effect of night admission on mortality for both conditions.

In the first column the results of the regression adjusted matching are shown. For both con-

ditions mortality significantly increases by 0.71 pp and 0.53 pp for UGIB and AMI patients,

respectively, if the patient is admitted at night compared to daytime admission. In a further

regression I add hospital fixed effects which control for all (unobserved) hospital character-

istics which are fixed over time, for example quality differences or fixed unobserved patient

characteristics. To make the regressions comparable in observations, I execute the regression
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Table 3: Descriptive statistics towards treatment status (AMI)

Treated Controls Mat. controls Stand. bias
Mean SD Mean SD Mean SD Unmat. Mat.

Patient characteristics
Age 63.99 12.75 65.50 12.27 64.15 12.44 -12.12 -1.30
Male 0.71 0.45 0.71 0.45 0.71 0.45 -0.04 -0.24
Admission reason: Emergency 0.85 0.35 0.63 0.48 0.85 0.35 52.56 -0.02
City 0.75 0.43 0.74 0.44 0.75 0.43 4.01 0.32
Non-ST-elevated MI 0.36 0.48 0.38 0.49 0.36 0.48 -3.05 1.05
Comorbidities (selection)
Hypertension, uncomplicated 0.55 0.50 0.56 0.50 0.55 0.50 -1.95 -0.20
Congestive heart failure 0.29 0.45 0.27 0.44 0.28 0.45 2.98 0.44
Cardiac arrhythmias 0.22 0.42 0.21 0.41 0.22 0.41 2.52 0.06
Diabetes, uncomplicated 0.16 0.37 0.16 0.37 0.16 0.37 -0.64 0.06
Obesity 0.16 0.37 0.15 0.36 0.16 0.36 3.15 0.79
Renal failure 0.14 0.34 0.14 0.34 0.13 0.34 -0.17 0.22
Fluid and electrolyte disorder 0.13 0.34 0.11 0.31 0.12 0.33 6.67 1.72
Hypertension, complicated 0.11 0.31 0.11 0.31 0.11 0.31 0.55 0.24
Hospital characteristics
Ownership: not-for-profit 0.28 0.45 0.30 0.46 0.28 0.45 -4.79 -0.46
Ownership: for-profit 0.15 0.36 0.16 0.36 0.15 0.36 -1.64 0.14
University hospital 0.16 0.36 0.14 0.34 0.16 0.36 5.95 0.16
ln case volume 5.54 0.68 5.54 0.68 5.54 0.67 -0.09 -0.18
Year 2006 0.34 0.47 0.34 0.47 0.34 0.47 0.18 0.07
Year 2007 0.36 0.48 0.36 0.48 0.36 0.48 0.65 0.06

N 35,905 100,578 100,578

Note: Only comorbidities with a share of more than 10% shown.
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only with patients who are also kept in the fixed regression estimation, i.e. all patients in

hospitals where at least one death occurred (column 2). The coefficients do not strongly

deviate from the regression with the full sample. In the fixed effect regression (column 3)

the coefficients decrease but the differences to the baseline coefficients are rather small. I

conclude that time-invariant differences between hospitals do not drive the results.

Table 4: The effect of night admission on mortality

Basic Basic 2 Basic 2
+ FE

(1) (2) (3)

UGIB
Admission betw. 7 pm and 7 am 0.0071∗∗∗ 0.0076∗∗∗ 0.0062∗∗∗

(0.0023) (0.0025) (0.0019)
N 62,921 59,578 59,578
N (hospital clusters) 910 783

AMI
Admission betw. 7 pm and 7 am 0.0053∗∗∗ 0.0054∗∗∗ 0.0051∗∗∗

(0.0015) (0.0015) (0.0012)
N 136,483 135,284 135,284
N (hospital clusters) 438 405

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01; standard errors clusterd at the
hospital level except for column (3); ATTs of the regression adjusted match-
ing approach are reported; (1) shows the ATT for the basic specification, (2)
only include patients in hospitals where at least one patient died, (3) hospital
fixed effects (FE) are added to the basic specification (i.e. hospitals without
any deaths are omitted).

A 0.71 pp higher mortality for UGIB patients admitted at night corresponds to on average

35 additional deaths per year in Germany which occur only because of a night admission.8

This is a small effect in absolute terms. The overall picture changes if a relative basis is

used. The mean mortality rate for UGIB patients admitted during the day is 4.9%. This

results in an adjusted mortality rate of 5.6% for patients admitted at night. Hence, the 35

additional deaths relate to 3.3% of all deaths but account for 12.6% of all deaths at night.

This is similar for AMI. The higher mortality for AMI patients admitted at night of 0.53 pp

corresponds to on average 63 additional deaths per year.9 The mean mortality rate of AMI

862,922 patients were admitted to hospital because of an UGIB between 2005 and 2007 of whom
14,670 patients were admitted at night. Hence, 104 additional deaths within 3 years occurred at night
due to the higher risk of mortality of 0.07 pp (0.0071 · 14, 670).

9136,483 patients were admitted because of an AMI between 2005 and 2007 of whom 35,905 were
admitted at night. Due to the excess mortality of 0.53 pp at night, 190 additional deaths occur within
3 years (0.0053 · 35, 905).
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patients is 5.6% in the day time. The corresponding adjusted mortality rate is 6.1%. Hence,

63 additional deaths relate to 3.3% of all deaths and to 8.6% of all deaths at night.

Table 5 shows the estimation results for night admissions for different subgroups. At

first, I exclude patients who are admitted on Friday night. These patients rather count to the

weekend effect but the results also stay robust without these patients. There is the possibility

that hospitals with different case volumes differ in care provision at night. For this reason, I

build three case volume categories for each condition and run separate regressions. For AMI

patients, the night effect disappears in small hospitals. This is a rather counterintuitive result.

For UGIB there is no clear tendency; the night effect for patients treated in medium-sized

hospitals disappears and is only significant at the 10%-level for patients treated in hospitals

with a low or high case volume. Hence, I cannot detect any clear correlation between case

volume and night admissions. University hospitals are maximum-care providers and might

have more resources available at night. This may be the reason that there is no significant

night effect observable in these hospitals in both conditions. I also execute separate regressions

for patients with different admission statuses. This is done by keeping in mind the restrictions

mentioned in the data section. It is striking that in all conditions the night effect decreases if

only (administrative) emergency cases are considered. These coefficients reflect lower bounds

of the night effect. At night nearly all patients are coded as emergencies. In the day some of

these patients would be coded as non-emergencies. These patients can be considered as less

severe cases because they can see a doctor beforehand. This is not obvious at night, i.e. all

are coded as emergency cases. If I consider now only patients with emergency admission, I

drop the less severe cases in the day. With this, the differences between night and day gets

smaller.

The classification of day- and nighttime admission is arbitrary. Therefore, Table 6 shows

different classifications for night admissions. The results stay robust. Interestingly, the night

effect appears already after 4 pm. At least for UGIB, the effect is driven by patients admitted

between 7 pm and 7 am. Patients admitted between 4 pm and 7 pm have no higher risk

of death compared with patients admitted between 7 am and 4 pm. For AMI patients this

is not the case. One explanation of the effect may be that in many hospitals the regular

working hours of the doctors end at 4 pm and the stand-by duty begins, i.e. personnel and

other resources are reduced.
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Table 5: The effect of night admission on mortality by subgroups

UGIB AMI
Coeff. S.E. N Coeff. S.E. N

Admission without Friday night 0.0068∗∗∗ 0.0025 61,175 0.0053∗∗∗ 0.0016 132,722
Case volume: low 0.0099∗∗ 0.0045 13,841 0.0026 0.0032 32,155
Case volume: middle 0.0047 0.0030 34,903 0.0051∗∗ 0.0020 66,473
Case volume: high 0.0101∗ 0.0053 14,171 0.0071∗∗ 0.0029 37,852
University hospital 0.0041 0.0103 2,648 0.0070 0.0047 19,315
No university hospital 0.0072∗∗∗ 0.0024 60,264 0.0047∗∗∗ 0.0016 117,163
Emergency admission 0.0059∗∗ 0.0027 34,868 0.0036∗∗ 0.0017 94,065

Notes: The table shows the effect of night admission on mortality for different subgroups for
UGIB and AMI. Each cell represents a separate ATT. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01; stan-
dard errors clustered at the hospital level; different case volume thresholds for the two conditions:
AMI (low: ≤ 100; middle: > 100 and ≤ 200; high: > 200), UGIB (low: ≤ 25; middle: > 25 and
≤ 50; high: > 50).

Table 6: The effect of night admission on mortality for different definitions of night admis-
sion

UGIB AMI
Coeff. S.E. N Coeff. S.E. N

Admission between 7 pm and 7 am 0.0071∗∗∗ 0.0023 62,921 0.0053∗∗∗ 0.0015 136,483
Admission between 8 pm and 6 am 0.0074∗∗∗ 0.0026 62,920 0.0041∗∗ 0.0016 136,483
Admission between 9 pm and 6 am 0.0080∗∗∗ 0.0027 62,922 0.0031∗ 0.0018 136,482
Admission between 4 pm and 7 am 0.0048∗∗ 0.0021 62,919 0.0046∗∗∗ 0.0013 136,483

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01; standard errors clustered at the hospital level; ATTs
of the regression adjusted matching approach are reported for different night definitions. Variation
of the sample size due to the common support assumption.
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Sensitivity analysis

The night coefficient may still be biased if unobserved variables are simultaneously correlated

with night admission and outcome. Sensitivity analyses show how the estimation results

react to the introduction of a confounder and, hence, assess the credibility of the CIA. As a

first sensitivity analysis I use Rosenbaum bounds. I am interested in the question whether

the night coefficient might be overestimated due to unobserved characteristics. Based on the

Mantel and Haenszel test statistic I find a critical value for UGIB patients of eγ = 1.25. If

two individuals which are identical in observables differ by more than 25% in unobservables,

the night effect will no longer be significant. For AMI patients the critical value is eγ = 1.1.

The night effect will disappear if the patients differ by more than 10% in unobservable

characteristics. The null hypothesis that the night effect is underestimated can always be

rejected which indicates that there is no problem with underestimation. The bounds are no

proof that unobserved heterogeneity exists (Becker and Caliendo, 2007), but they give a first

indication how large the influence of unobserved heterogeneity must be to alter the results.

In my case the UGIB results seem to be more robust to unobserved heterogeneity than the

AMI results.

The second sensitivity analysis of Ichino et al. (2008) has the advantage that it estimates

a new ATT which accounts for potential unobserved heterogeneity in form of a binary con-

founder S. The CIA only holds if the confounder S is included in the matching process in

addition to the other covariates. It is possible to observe the influence of S directly by com-

paring the basic ATT and the new ATT including S. First, I use distributions of S similar

to the distributions of my conditioning variables. Table 7 and Table 8 show the distribution

of confounder S, which is included into the matching process, and the corresponding ATT

for UGIB and AMI, respectively. For both conditions, most of the data set confounders show

an outcome effect that is below 0.2, in most cases even below 0.1. The same is observable

for the selection effect, which is mainly below 0.1. One exception is the conditioning variable

emergency. Both, outcome and selection effect are positive and lead to an insignificant ATT

if a variable similar to emergency would be unobserved. For all other confounders the size of
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the ATT is similar to the basic estimate without including the confounder. The ATTs also

stay significant.10

As described in Section 3, only confounders that have a positive outcome and selection

effect (d and s) matter. To determine the distribution of S (p11, p10, p01, p00) with the

resulting outcome and selection effect, I fix two parameters. I set Pr(S = 1) = 0.4 and

p11−p10 = 0. The former characterizes the share of ‘sicker’ patients in the whole data set. By

setting the required values for d and s, p01 and p00 can be calculated.11 Table 9 and Table 10

show ATTs if the influence of d and s is increasing. In each row d is fixed and in each column

s is fixed. It is obvious that even with small outcome and selection effects, the ATT rapidly

becomes zero or even negative. The negative effect would lead to the conclusion that patients

will have an even better outcome if they are admitted at night. However, I only test the

hypothesis that the night effect is overestimated but not underestimated. Hence, the results

should not be over-interpreted. The crucial point is that already with outcome and selection

effect of 0.1 the night effect significantly decreases and disappears already for outcome and

selection effects of 0.2. These are sobering results in terms of the influence of unobserved

heterogeneity, but keeping in mind that no medical and socioeconomic characteristics are

available, my conditioning variables might not be sufficient to capture all characteristics

influencing both night admission and mortality. Another explanation for this result is that

the ‘killer confounders’ are working mechanically, i.e. the ATT becomes insignificant at a

certain point. For rather small treatment effects this can occur at an early stage because the

method is quite severe against small ATTs (Origo, 2009). Hence, the results have to be seen

in the overall context.

10However, the significance is not so important in this case. The focus should be on the comparison
of the point estimates (Nannicini, 2007).

11For a detailed methodological approach, see Ichino et al. (2008).
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Table 7: Effect of possible data set confounders (UGIB)

Distribution of S = 1 d s ATT S.E.

p11 p10 p01 p00

No confounder 0.00 0.00 0.00 0.00 0.00 0.00 0.0070 0.0023
Neutral confounder 0.50 0.50 0.50 0.50 0.00 0.00 0.0070 0.0023
Confounder (S) similar to:
Patient characteristics
Age 0.76 0.52 0.80 0.59 0.22 -0.06 0.0096 0.0023
Male 0.50 0.57 0.48 0.53 -0.06 0.04 0.0075 0.0023
Admission reason: Emergency 0.79 0.77 0.59 0.48 0.11 0.28 0.0007 0.0027
City 0.71 0.73 0.71 0.71 -0.01 0.01 0.0070 0.0023
Duodenal ulcer (K26) 0.53 0.40 0.54 0.39 0.15 0.01 0.0067 0.0023
Peptic ulcer (K27) 0.00 0.01 0.01 0.01 0.00 0.00 0.0070 0.0023
Peptic ulcer jejunum (K28) 0.01 0.01 0.01 0.02 -0.01 0.00 0.0069 0.0023
Perforation 0.10 0.02 0.08 0.02 0.07 0.01 0.0060 0.0023
Gastric surgery (5-449) 0.35 0.26 0.31 0.21 0.10 0.05 0.0055 0.0024
Excision (5-452) 0.01 0.02 0.01 0.04 -0.03 -0.01 0.0064 0.0023
Bowel surgery (5-469) 0.28 0.14 0.28 0.12 0.16 0.02 0.0055 0.0024
Comorbidities (selection)
Congestive heart failure 0.32 0.12 0.34 0.14 0.20 -0.01 0.0079 0.0023
Cardiac arrhythmias 0.27 0.17 0.32 0.18 0.14 -0.01 0.0077 0.0023
Hypertension, uncomplicated 0.25 0.36 0.28 0.40 -0.12 -0.04 0.0061 0.0023
Diabetes, uncomplicated 0.16 0.14 0.16 0.15 0.01 -0.01 0.0070 0.0023
Renal failure 0.22 0.14 0.27 0.15 0.12 -0.01 0.0075 0.0023
Fluid and electrolyte disorder 0.35 0.20 0.38 0.18 0.19 0.02 0.0056 0.0023
Hospital characteristics
Ownership: not-for-profit 0.38 0.36 0.36 0.37 -0.01 -0.01 0.0070 0.0023
Ownership: for-profit 0.14 0.13 0.14 0.13 0.01 0.00 0.0070 0.0023
University hospital 0.05 0.05 0.04 0.04 0.00 0.02 0.0069 0.0023
Department gastroenterology 0.21 0.25 0.22 0.24 -0.02 0.01 0.0070 0.0023

Notes: Table shows the influence of confounder U on the ATT. The distribution of U is specified
based on the distribution of the conditioning variables in the data set. Age is transformed into
a binary variable with the threshold at the median.
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Table 8: Effect of possible data set confounders (AMI)

Distribution of S = 1 d s ATT S.E.

p11 p10 p01 p00

No confounder 0.00 0.00 0.00 0.00 0.00 0.00 0.0049 0.0015
Neutral confounder 0.50 0.50 0.50 0.50 0.00 0.00 0.0049 0.0015
Confounder (S) similar to:
Patient characteristics
Age 0.74 0.47 0.75 0.53 0.22 -0.06 0.0074 0.0015
Male 0.62 0.72 0.62 0.72 -0.10 0.00 0.0049 0.0015
Admission reason: Emergency 0.86 0.85 0.72 0.63 0.09 0.22 0.0004 0.0016
City 0.76 0.75 0.74 0.73 0.00 0.02 0.0049 0.0015
Non-ST-elevated MI 0.16 0.38 0.17 0.39 -0.22 -0.01 0.0042 0.0015
Comorbidities (selection)
Congestive heart failure 0.48 0.27 0.43 0.26 0.17 0.01 0.0043 0.0015
Cardiac arrhythmias 0.45 0.21 0.43 0.20 0.23 0.01 0.0042 0.0015
Hypertension, uncomplicated 0.34 0.56 0.35 0.57 -0.23 -0.01 0.0045 0.0015
Hypertension, complicated 0.08 0.11 0.07 0.11 -0.04 0.00 0.0049 0.0015
Diabetes, uncomplicated 0.18 0.16 0.17 0.16 0.00 0.00 0.0049 0.0015
Renal failure 0.22 0.13 0.22 0.13 0.09 0.00 0.0049 0.0015
Obesity 0.10 0.16 0.09 0.15 -0.06 0.01 0.0051 0.0015
Fluid and electrolyte disorder 0.26 0.12 0.23 0.10 0.13 0.02 0.0033 0.0015
Hospital characteristics
Ownership: not-for-profit 0.27 0.28 0.28 0.30 -0.02 -0.02 0.0048 0.0015
Ownership: for-profit 0.15 0.15 0.17 0.16 0.01 -0.01 0.0049 0.0015
University hospital 0.19 0.15 0.17 0.13 0.03 0.02 0.0046 0.0015

Notes: Table shows the influence of confounder U on the ATT. The distribution of U is specified
based on the distribution of the conditioning variables in the data set. Age is transformed into
a binary variable with the threshold at the median.

Table 9: Effect of confounders with positive outcome and selection effect (UGIB)

Selection effect (s)
s = 0.1 s = 0.2 s = 0.3 s = 0.4 s = 0.5 s = 0.6

O
u

tc
o
m

e
e
ff

e
c
t

(d
)

d = 0.1 0.0051 0.0030 0.0008 −0.0015 −0.0061 −0.0090
(0.0024) (0.0025) (0.0026) (0.003) (0.0032) (0.0038)

d = 0.2 0.0045 −0.0002 −0.0051 −0.0103 −0.0163 −0.0234
(0.0024) (0.0025) (0.0027) (0.003) (0.0033) (0.004)

d = 0.3 0.0013 −0.0021 −0.0097 −0.0166 −0.0256 −0.0335
(0.0025) (0.0025) (0.0028) (0.0032) (0.0032) (0.0042)

d = 0.4 −0.0033 −0.0124 −0.0222 −0.0279 −0.0334 −0.0452
(0.0025) (0.0027) (0.003) (0.0031) (0.0032) (0.0037)

d = 0.5 −0.0040 −0.0149 −0.0275 −0.0403 −0.0541 −0.0695
(0.0025) (0.0028) (0.003) (0.0034) (0.0036) (0.004)

d = 0.6 −0.0027 −0.0165 −0.0303 −0.0454 −0.0618 −0.0788
(0.0025) (0.0027) (0.0031) (0.0033) (0.0042) (0.0045)

Notes: Table shows simulated ATTs for different outcome and selection effects (standard
errors in parentheses).
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Table 10: Effect of confounders with positive outcome and selection effect (AMI)

Selection effect (s)
s = 0.1 s = 0.2 s = 0.3 s = 0.4 s = 0.5 s = 0.6

O
u

tc
o
m

e
e
ff

e
c
t

(d
)

d = 0.1 0.0033 0.0011 −0.0009 −0.0036 −0.0089 −0.0135
(0.0015) (0.0016) (0.0017) (0.0018) (0.0022) (0.0027)

d = 0.2 −0.0015 −0.0056 −0.0102 −0.0158 −0.0207 −0.0265
(0.0016) (0.0017) (0.0019) (0.0021) (0.0022) (0.0027)

d = 0.3 −0.0028 −0.0095 −0.0157 −0.0237 −0.0315 −0.0400
(0.0016) (0.0017) (0.0019) (0.002) (0.0022) (0.0027)

d = 0.4 −0.0039 −0.0117 −0.0205 −0.0299 −0.0403 −0.0513
(0.0016) (0.0018) (0.0019) (0.0022) (0.0024) (0.0026)

d = 0.5 −0.0036 −0.0136 −0.0243 −0.0354 −0.0469 −0.0600
(0.0016) (0.0017) (0.002) (0.0021) (0.0023) (0.0027)

d = 0.6 −0.0026 −0.0144 −0.0270 −0.0535 −0.0686 −0.0856
(0.0016) (0.0017) (0.0019) (0.0026) (0.0027) (0.003)

Notes: Table shows simulated ATTs for different outcome and selection effects (standard
errors in parentheses).

5 Conclusion

This paper addresses the question whether patients admitted to a hospital at night have a

higher mortality risk than patients admitted during the day. The analysis is based on a full-

sample of all inpatients in Germany for the years 2005 to 2007 and focuses on patients with

upper gastrointestinal bleeding and acute myocardial infarction because they are emergency

conditions. Applying a regression adjusted propensity score matching approach, the basic

results show a 0.71 pp and 0.53 pp increase in mortality for UGIB and AMI patients, respec-

tively. In absolute numbers the effects seem to be small with 35 and 63 additional deaths

per year in the whole population because of a night admission. However, in relative num-

bers this accounts for 3.3% of all deaths in each condition, which is already a sizable effect.

Nevertheless, the estimates can only be seen as an upper bound of the night effect. Both

sensitivity analyses show that the results are sensitive to unobserved patient heterogeneity.

Since the night effect disappears already for small selection and outcome effects, it is possible

that patients admitted at night are unobserved sicker which drives the effect.

However, the magnitude of unobserved heterogeneity is unknown. Both, the night effect

– ignoring any unobserved factors – and the potential for a higher share of high risk patients

at night highlight the importance of having enough personnel and resources available for

night admissions. To find the causal effect of night on mortality, it might be necessary to
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use other data in addition to administrative data. If the night effect is still significant, one

possibility would be to improve access to resources and increase the availability of personnel.

However, this increase must be in due proportion to the growing costs. Considering the lower

case volume at night, it might not be reasonable to increase the resources in all hospitals.

Hence, a second possibility would be the centralization of nighttime health care. Since there

are mainly emergencies at night, reaching the hospital in an adequate time frame must be

guaranteed.

Although the results of this study are not clearly verified, the matching approach can

take into account observable heterogeneity and the sensitivity analyses show how large the

problems resulting from unobserved heterogeneity can be. Previous studies with similar data

sets only qualitatively – not quantitatively – mention the problem of unobserved heterogeneity

(e.g. Barba et al., 2006; Bell and Redelmeier, 2001). In contrast to Schwierz et al. (2009), I

find that omitted variables can influence the results in administrative data.
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105(5): 85–93.

Bray, B. D., Ayis, S., Campbell, J., Cloud, G. C., James, M., Hoffman, A., Tyrrell, P. J.,
Wolfe, C. D. A. and Rudd, A. G. (2014). Associations between stroke mortality and
weekend working by stroke specialist physicians and registered nurses: prospective mul-
ticentre cohort study, PLoS medicine 11(8): e1001705.

Caliendo, M., Hujer, R. and Thomsen, S. L. (2008). The employment effects of job-creation
schemes in Germany: a microeconometric evaluation, in T. Fomby, R. C. Hill, D. L.
Millimet, J. A. Smith and E. J. Vytlacil (eds), Advances in econometrics, Volume 21:
Modelling and evaluating treatment effects in econometrics, Jai Press, Oxford, Amster-
dam, pp. 383–430.

Caliendo, M. and Kopeinig, S. (2008). Some practical guidance for the implementation of
propensity score matching, Journal of Economic Surveys 22(1): 31–72.

Elixhauser, A., Steiner, C., Harris, D. R. and Coffey, R. M. (1998). Comorbidity measures
for use with administrative data, Medical Care 36(1): 8–27.

Gould, J. B., Qin, C., Marks, A. R. and Chavez, G. (2003). Neonatal mortality in weekend vs
weekday births, The Journal of the American Medical Association 289(22): 2958–2962.
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A Appendix

Table A1: Diagnosis and procedure codes for UGIB and AMI

Condition Incl./Excl. Diagnosis Codes Procedure Codes

UGIB Incl. K25.0; K25.2; K25.4; K25.6; 1-630.*; 1-631; 1-632; 1-635;
K26.0; K26.2; K26.4; K26.6; 1-636.*; 1-638.*; 1-63a; 1-63b
K27.0; K27.2; K27.4; K27.6;
K28.0; K28.2; K28.4; K28.6

Excl. C*

AMI Incl. I21.0; I21.1; I21.2; I21.3; I21.4 8-837.*

Notes: The included diagnosis code is related to the coded main diagnosis. The exclusion
restriction for the diagnosis code is related to the secondary diagnosis. A patient is only
included in the sample if additionally to the diagnosis code a procedure code is coded. “*”
stands for all possible subcategories.
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