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Abstract

This algorithm extends Ljungqvist and Sargent (2012) algorithm of Stackelberg
dynamic game to the case of dynamic stochastic general equilibrium models includ-
ing exogenous forcing variables. It is based Anderson, Hansen, McGrattan, Sargent
(1996) discounted augmented linear quadratic regulator. It adds an intermediate
step in solving a Sylvester equation. Forward-looking variables are also optimally
anchored on forcing variables. This simple algorithm calls for already programmed
routines for Ricatti, Sylvester and Inverse matrix in Matlab and Scilab. A final
step using a change of basis vector computes a vector auto regressive representa-
tion including Ramsey optimal policy rule function of lagged observable variables,
when the exogenous forcing variables are not observable.

JEL classification numbers: C61, C62, E47, E52, E5S8.

Keywords: Ramsey optimal policy, algorithm, forcing variables, augmented
linear quadratic regulator.

1 Introduction

Ljungqvist and Sargent (2012, chapter 19) offer an elegant algorithm of Stackelberg dy-
namic game used for Ramsey optimal policy. All dynamic stochastic general equilibrium
(DSGE) models include exogenous auto-regressive forcing variables, which are not in-
cluded in their algorithm. This algorithm extends Ljungqvist and Sargent (2012, chapter
19) algorithm of dynamic Stackelberg game to the case of DSGE models including ex-
ogenous forcing variables.

We use Anderson, Hansen, McGrattan, Sargent (1996) discounted augmented linear
quadratic regulator. After the usual algorithm for solving the Riccati equation of the
linear quadratic regulator (Amman (1996)), this algorithm adds another step in solving
a Sylvester equation for completing the policy rule. It also adds a term for the optimal
initial anchor of forward-looking variables on the predetermined forcing variables.

This algorithm is easy to code and check. It is simple because it only calls already
optimized routines solving Ricatti and Sylvester equations and inverse matrix in Matlab
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and Scilab. A final step using a change of basis vector computes a vector auto regressive
representation of Ramsey optimal policy. In this representation of the Ramsey optimal
policy rule, policy instruments respond to lagged observable variables if all the exogenous
forcing variables are not observable.

2 A Simple Algorithm

2.1 The Stackelberg problem

We refer to Ljungqvist and Sargent (2012), chapter 19, step by step. The Stackelberg
leader is the government and the Stackelberg follower is the private sector.

Let k; be an n; x 1 vector of controllable predetermined state variables with initial
conditions kg given, x; an n, x 1 vector of endogenous variables free to jump at ¢ without
a given initial condition for xg, and u; a vector of government policy instruments. Let
y: = (k}',x1)T be an (ny + n,) x 1 vector.

Our only addition to Sargent and Ljungvist (2012) Stackelberg problem is to include
z;, which an n, x 1 vector of non-controllable, exogenous forcing state variables such as
auto-regressive shocks. All variables are expressed as absolute or proportional deviations
about a steady state.

Subject to an initial condition for ko and zg, but not for xj, a government wants to
maximize:

12
=528 (v Quy: + 29/ Qo7 + ui Ruy) (1)
t=0

where [ is the policy maker’s discount factor and her policy preference are the relative
weights included matrices Q,R. Q,, > 0 is a (ng + ny) X (ng + n,) positive symmetric
semi-definite matrix, R > 0 is a p X p strictly positive symmetric definite matrix so that
policy maker’s has at least a very small concern for the volatility of policy instruments.
The cross-product of controllable policy targets with non-controllable forcing variables
y; Q,.z; is introduced by Anderson, Hansen, McGrattan and Sargent (1996). To our
knowledge, it has always been set to zero Q,. = 0 so far in models of Ramsey optimal
policy. This simplifies the Sylvester equation in step 3.

The policy transmission mechanism of the private sector’s behavior is summarized by
this system of equations written in a Kalman controllable staircase form:

Etyt—H _ Ayy Ayz Y By
< Ziy1 ) N < Ozy Azz Z + Oz t <2)

A is (ng +ng +n.) X (ng + ng + n,) matrix. B is the (ng + n, + n,) X p matrix of
the marginal effects of policy instruments u; on next period policy targets y;.1.

The government minimizes his discounted objective function by choosing sequences
{ut,xt,ktﬂ,ztﬂ};og subject to the policy transmission mechanism (2) and subject to
2(ng + ng + n,) boundary conditions detailed below.

The certainty equivalence principle of the linear quadratic regulator (Simon (1956))
allows us to work with a non stochastic model. " We would attain the same decision rule
if we were to replace xy.1 with the forecast Fyxyy1 and to add a shock process Ce,yq to
the right hand side of the private sector policy transmission mechanism, where ;.1 is an



i.i.d. random vector with mean of zero and identity covariance matriz." (Ljungqvist and
Sargent, 2012 p.767).

The policy maker’s choice can be solve with Lagrange multipliers using Bellman’s
method (Ljungqvist and Sargent (2012)). It is practical (but not necessary) to solve the
policy maker’s choice by attaching a sequence of Lagrange multipliers 251 1,1 to the
sequence of private sector’s policy transmission mechanism constraints and then forming
the Lagrangian:

+o00
_lzﬁt Yi Quuyt + 2y7 Qy-z¢ + uf Ruy+ (3)
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The non-controllable variables dynamics can be excluded from the Lagrangian (Ander-
son, Hansen, McGrattan and Sargent (1996)). It is important to partition the Lagrange

e . - k
multipliers y; conformable with our partition of y; = [ xt ] , so that u;, = [ Hiot ] , Where
t x,t

et is an ny, X 1 vector of Lagrange multipliers of forward-looking variables.

The first order conditions with the policy transmission mechanism leads to the linear
Hamiltonian system of the discrete time linear quadratic regulator (Anderson, Hansen,
McGrattan and Sargent (1996)).

2(nz+ng+n,) boundary conditions determining the policy maker’s Lagrangian system
with 2(n, + ny +n,) variables (yy, i, z;) with p; the policy maker’s Lagrange multipliers
related to each of the controllable variables y; (table 1).

Table 1: 2(n, + ny + n,) boundary conditions

Number Boundary conditions

n, th—i-m Bz, = z* = 0, z; bounded
+ny + ng tl}inooﬂ yvi=y' =0& tl{inoo oy, = 0= tl}inooﬂ e, by bounded
+ni +n, ko and zq predetermined (given)

+ng X) = X; & g—fo = 0 = p% -0 predetermined

Essential boundary conditions are the initial conditions of predetermined variables k
and zy which are given.

Natural boundary conditions are such that the policy maker’s anchors unique optimal
initial values of private sectors forward-looking variables. The policy maker’s Lagrange
multipliers of private sector’s forward (Lagrange multipliers) variables are predetermined
at the value zero: [ix¢—o = 0 in order to determine the unique optimal initial value x¢ = x;
of private sector’s forward variables.

Bryson and Ho ((1975), p.55) explains natural boundary conditions as follows. "If z;
is not prescribed at t = to, it does not follow that ox(ty) = 0. In fact, there will be an
optimum value for x(ty) and it will be such that 0L = 0 for arbitrary small variations
of x(ty) around this value. For this to be the case, we choose % = g, = 0 (1)
which simply says that small changes of the optimal initial value of the forward variables
x(to) on the loss function is zero. We have simply traded one boundary condition: x(to)
given, for another, (1). Boundary conditions such as (1) are sometimes called "natural
boundary conditions" or transversality conditions associated with the extremum problem."

Anderson, Hansen, McGrattan and Sargent (1996) assume a bounded discounted
quadratic loss function:
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This implies a stability criterion for eigenvalues of the dynamic system such that
)(BAf)t < |BA?| < 1, so that stable eigenvalues are such that |\;| < 1//3 < 1/8. A
preliminary step is to multiply matrices by /Bas follows v/5A,, v/5B, in order to apply

formulas of Riccati and Sylvester equations for the non-discounted augmented linear
quadratic regulator (Anderson, Hansen, McGrattan and Sargent (1996)).

2.2 Preliminary step: Check if the system is stabilizable

Assumption 1: The matrix pair (v/5A,, v/3B,) is controllable (all forward-looking
variables are controllable).

The matrix pair (v/5A,, v/B,) is controllable if the Kalman (1960) controllability
matrix has full rank:

ngp+ng

rank (\/FB, fA,B, FA2B, .. BUTTARTB) =mtn, ()

Assumption 2: The system is stabilizable when the transition matrix A, for the
non-controllable variables has stable eigenvalues, such that |\;| < 1/v/5.

2.3 Step 1: Stabilizing solution of a linear quadratic regulator

"Step 1 and 2 seems to disregard the forward-looking aspect of the problem (step 3 will
take account of that). If we temporarily ignore the fact that the xoy component of the state
Yo 1S not actually a state vector, then superficially the Stackelberg problem has the form
of an optimal linear regulator." (Ljungqvist and Sargent (2012, p.769)).

When the forcing variables are set to zero z, = 0, a stabilizing solution of the linear
quadratic regulator satisfies:

Ht = Pth (6)

where P, solves the matrix Riccati equation (Anderson, Hansen, McGrattan and Sargent
(1996)):

/ AN 1 -1 /
P,—Q, + 8A,,P,A,, — §'A,P,B, (R+GB,P,B,) 5B,PA, (7)
The optimal rule of the linear quadratic regulator is:
u; = Fy}’t (8)

where F, is computed knowing P, (Anderson, Hansen, McGrattan and Sargent (1996)):

, —1
F, = (R+3B,P,B,) FB|P,A,, 9)

As demonstrated by Simon (1956) certainty equivalence principle and by Kalman
(1960) solution, the optimal rule parameters F, and P, of the linear quadratic regulator
are independent of additive random shocks and of initial conditions. This confirms that
it is correct to temporarily ignore the fact that xq is not a state vector.



2.4 Step 2: Stabilizing solution of an augmented linear quadratic
regulator

This is the additional step missing in Ljungqvist and Sargent (2012) algorithm. A stabi-
lizing solution of the augmented linear quadratic regulator satisfies (Anderson, Hansen,
McGrattan and Sargent (1996)):

pe = Pyy: + Pz, (10)
where P, solves the matrix Sylvester equation:
P.=Q,.+3(A,+B,F,)P,A,.+3(A,+BJF,)P.A,, (11)
The optimal rule of the augmented linear quadratic regulator is:
u =Fyy; + F.z (12)

where F, is computed knowing P.:

, —1
F. — (R+6ByPyBy> 5B! (P,A,. + P.A..) (13)

As demonstrated by Simon (1956) certainty equivalence principle and by Anderson,
Hansen, McGrattan and Sargent (1996) solution, the optimal rule parameters F, and P,
of the augmented linear quadratic regulator are independent of additive random shocks
and of initial conditions. This confirms that it is correct to temporarily ignore the fact
that x( is not a state vector, until step 3.

2.5 Step 3: Solve for z(, the optimal initial anchor of forward-
looking variables

The policy maker’s Lagrange multipliers on private sector forward-looking variables are
such that ji9, = 0, at the initial date. The optimal stabilizing condition is:

tor \ [ Pyr Py ko P., a
( Ho,z ) o ( Py,k:r Py,x Xo + Pz,z Zy = 0 (14)
This implies

Py,kxkO + Py,xXO + Pz,JJZO =0 (15)

Which provides the optimal initial anchor:

Xg = P;iPy’kxkO + P;iPZ,$Z0 (16)

The exogenous forcing variables adds the term P, 'P, ,z¢ with respect to Ljungqvist
and Sargent (2012) algorithm.



2.6 Step 4: Compute impulse response functions and optimal
loss function

The transmission mechanism is given. Computing F, and F, provides a reduced form of
the optimal policy rule. Computing P, and P, provides the missing initial conditions.

Etyt+1 — Ayy Ayz Yy + By u
Zit1 Ozy Azz Z Oz ‘
w =F)y; +F.z

1 -1 .
Xg = PWPymkg + P, P .20, ko and zg given

This information is sufficient to compute impulse response functions (the optimal path
of the expected values of variables y; z; and u;) and to sum up over time their value in
the the discounted loss function.

By contrast to other algorithms based on Miller and Salmon (1985) solution, it is not
necessary to compute all the values over time of all policy-makers Lagrange multipliers
1. These algorithms then add a step which is a change of vector basis for eliminating
Lagrange multipliers. Knowing the optimal path of variables (y; z;), one can compute
the Lagrange multipliers at the end of this algorithm:

pe = Pyy, + P.z, (17)

2.7 Step 5 (optional): An implementable representation of Ram-
sey optimal policy

Policymakers cannot implement a Ramsey optimal policy rule where policy instruments
responds to non-observable variables, such as the shocks u; or the Lagrange multipliers ji;.
They can implement an observationally equivalent representation of the Ramsey optimal
policy rule where policy instruments responds to lagged observable variables, including
the lags of the policy instruments. This is also a useful representation for testing Ramsey
optimal policy using vector auto-regressive system of equation.

EtytJrl . Ayy + ByFy Ayz + Bsz Yt 0
Zi41 B Ozy Azz Z + 1 o
(H)

u =Fyy; + F.z
Xg = P;;Py,lmkg + P‘;;Pz’xzo, ko and zg given

Etyt—l—l — M—l (A + BF) M Yy + Mfl 0 £y
N Uy uy 1
Zy — F;lut — F;leyt
Xg = P;;Py7kxk0 + P;;szxzo, ky and zy given

where
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In the estimation of dynamic stochastic general equilibrium model, the controllable
predetermined variables are usually set to zero at all periods. They are as many auto-
regressive forcing variables than controllable forward-looking variables. If the number of
policy instrument is equal to the number of controllable forward-looking policy targets, F,
is a square matrix which can be invertible. One eliminates forcing variables z; and replace
them by policy instruments u, in the recursive equation, doing a change of vector basis.
There is then of a representation of forward-looking variables and policy instruments
rule optimal policy dynamics in a vector auto-regressive model. This representation of
Ramsey optimal policy rule is such that policy instruments u; responds to lags of policy
instruments u;_; and of lags of the observable policy targets y; ;. This representation
can be implemented by policy makers. It can be estimated by econometricians (Chatelain
and Ralf (2017a)). .

2.8 Examples

Chatelain and Ralf (2017a) use this algorithm for the new-Keynesian Phillips curve as a
monetary policy transmission mechanism. They check that it is equivalent to Gali (2015)
solution who used the method of undetermined coefficients. They use the implementable
representation of step 5 to estimate structural parameters.

Chatelain and Ralf (2017b) use this algorithm for the new-Keynesian Phillips curve
and the consumption Euler equation as a monetary policy transmission mechanism. They
check the determinacy property of step 2 reduced form of the Ramsey optimal policy rule.

Chatelain and Ralf (2016) use this algorithm for Taylor (1999) monetary policy trans-
mission mechanism. They check whether Taylor principle applies to Ramsey optimal
policy.

3 Conclusion

This algorithm complements Ljungqvist and Sargent (2012) algorithm taking into account
forcing variables. It is easy to code, check and implement.
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