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Abstract: This paper considers a population of agents that are engaged in a listening network.
The agents wish to match their actions to the true value of some uncertain (exogenous) parameter
and to the actions of the other agents. Each agent begins with some initial information about
the parameter and, in addition, is able to receive further information from their neighbors in the
network. I derive a closed expression for the (interim) social welfare loss that depends on the initial
information structure and on the possible pieces of information that can be gathered under the
network. Then, I explore how changes in the network may affect social welfare for extreme levels of
complementarity in the agents’ actions. When the level of complementarity is very high, efficiency
is achieved regardless of the network structure. For very low levels of complementarity in actions,
efficiency can be either associated to more sparse or denser networks, depending on the size of the
induced informative gains. The implications of this paper are relevant in security environments
where agents are naturally interpreted as analysts who try to forecast the value of a parameter that
describes a threat to security.

Keywords: networks; information aggregation; beauty-contests; strategic complementarity;
social welfare

JEL Classification: C72; D83; D84; D85

1. Introduction

In many environments of social, economic, or political interest, decision-makers seek to match
their actions both to some unknown underlying variable and to the actions chosen by others.
While the first motive is typically regarded as a “fundamental motive,” the second motive is purely
a “coordination motive”1. The canonical framework that captures both types of motives in strategic
scenarios is that of “beauty contest” games2. Beauty contests are particularly suitable to capture
environments where security issues are a main concern. A typical example is that of a group of analysts
who independently try to predict the value of an exogenous variable that describes a threat to security.
Each of the analysts wishes to follow an action appropriate for the true value of the uncertain variable.
In addition, since coordination helps prevent (or at least mitigate) security threats, the analyst wishes

1 For example, suppose that the profitability of some investment activity depends on an uncertain exogenous state of the
world and on the aggregate investment. Here, investors would like to pick investment strategies that match both the
exogenous variable and the other investors’ strategies as well.

2 The “beauty contest” terminology comes originally from a well-known parable by ([1], Chapter 12). Following the seminal
contribution of [2], “beauty contest” games have been extensively used to explore a wide range of phenomena in a number
of settings, including investment games ([3,4]), financial markets ([5]), monopolistic competition ([6]), or models of political
leadership ([7]), among others.
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to follow a course of action similar to the other analysts’ actions as well3. In these beauty contest
scenarios, decision-makers wish to collect information that helps them resolve their uncertainty about
the underlying variable and the likely actions of the others.

In practice, the presence of networks is ubiquitous in contexts where agents collect information.
When decision-makers can only interact locally through a network, the architecture of the network
places restrictions on the ways in which they can aggregate their pieces of private information.
The typical approach considers that decision-makers can only obtain information from their neighbors
in the network. Often, security analysts are involved in networks where their neighbors are other
forecasters. In many real-world situations, a network of security analysts encompasses formal
connections between different organizations as well as more informal connections based on friendship,
family, or informal online relationships. In these environments, efficiency insights provide particularly
useful recommendations for the design of teams of analysts, as well as for the appropriateness of
establishing collaboration links between different security organizations.

This paper considers a (relatively large) population of decision-makers (or security analysts)
that have access to some private signals about the underlying state and that, in addition, can receive
(locally, according to their connections in a network) the information that others obtain from their
own signals. For this framework, the main contribution of this paper is to derive a closed form for the
(interim) social welfare loss function (in Proposition 1) that depends, among other primitives, on the
informativeness of the signals and on the collection of subsets of signals that the agents can aggregate
under the network.

More specifically, each agent receives initially an informative signal about the uncertain variable
and, in addition, he is able to add up to it other signals that were initially provided to his (direct)
neighbors in the network. In this way, the network induces a collection of different subsets of signals
that can be finally observed within the population. Intuitively, finer collections of subsets of signals
are associated to more spare networks whereas denser networks induce coarser collections. Using the
welfare loss function derived in Proposition 1, I then explore how efficiency relates to changes in the
collection of pieces of information that can be aggregated under the network, and how efficiency is
affected by extreme values of the “coordination motive.” The efficiency benchmark used in this paper
considers interim utilities. Thus, the central planner is able to access the information available to
the agents upon receiving their signals. This seems a reasonable approach in many environments.
For security contexts, it is certainly appealing when one considers that the central planner is some
central institution that coordinates the teams of analysts that constitute the network.

To investigate this normative question in the context of networks, one must understand the forces
behind two different mechanisms. First, how does the informative content of the available signals
change as the collection of subsets of signals induced by the network varies? Secondly, how does
social welfare depend on the informative content of the collection of subsets of signals induced by the
network? The first question refers to the scale properties of information aggregation within sets of
signals. To answer the second question, one needs to investigate the social value of information when
both a fundamental motive and a coordination motive are present4.

3 For example, under a terrorist attack threat, the analyst wishes to assess which is the most likely location of the attack but
also wants to come up with locations not very distant from those predicted by other analysts. In this way, counterterrorism
measures could be more effective to prevent the attack.

4 Ref. [4] have investigated in a very comprehensive way the social value of information in an ex-ante efficiency benchmark
without restrictions in the form of local interactions and where the agents have both private and public sources of information.
For that environment, they have shown that whether more informative content increases or decreases welfare depends on
whether equilibrium is efficient under both complete and incomplete information or only under incomplete information.
Their contribution highlights that understanding the social value of information depends crucially on the notion of efficiency
used. Without a well-specified efficiency benchmark, assessing the social value of information follows the folk theorem that
“everything goes” in a second-best world. Assessing the social value of information with complementarities in the presence
of networks remains a question far from understood.
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This paper provides a partial answer to the first question in Proposition 2, which shows that the
informative content of a given subset of signals increases monotonically as we split it into smaller
disjoint subsets. The paper’s insights on efficiency for extreme levels the coordination motive are
provided in Proposition 3. Efficiency is guaranteed, regardless of the network structure, for very high
levels of complementarity in actions. For very low levels of complementarity in actions, social welfare
increases as subsets of observed signals are split into smaller disjoint subsets if and only if the
informative gains induced are high enough. As Example 2 illustrates, the intuitive message here is
that, when agents are interested only in predicting the value of the uncertain variable, we want to have
more sparse networks if and only if the informativeness of the available set of signals allows for high
enough informative gains.

The rest of this paper is structured as follows. Section 2 lays out the model and Section 3 derives
the social welfare loss function. Section 4 provides the results on the informative content of the
information aggregated in the network and on efficiency. Section 5 concludes. While the derivation of
equilibrium is a crucial step to obtain our main result, and to investigate efficiency in the proposed
benchmark, it is also constructive. Therefore, the required technical details are included in the main
text. Other technical details, such as the proofs of Lemma 1, and of Propositions 2 and 3, are relegated
to the Appendix.

2. Model

There is a (measure–1) continuum of agents, indexed by i ∈ [0, 1], that wish to estimate
an unknown state of the world θ ∈ R. Each agent receives a utility according to a common (quadratic)
utility function u(a, θ) that depends on an action profile a : [0, 1]→ R, where a(i) is the action chosen by
agent i, and on the state θ. This model can be broadly applied to many contexts of strategic interaction
under uncertainty where both a fundamental and a coordination motive are present. For security
environments, we can think of agents as security analysts or forecasters that wish to estimate a variable
that describes a security threat.

2.1. Preferences and Information Structure

The main intuition is conveyed using a beauty contest game (as in [2,4,6–8]). Each agent i’s utility
is given by

u(a, θ) = −
(

a(i)− (1− λ)θ − λ
∫ 1

0
a(h)dh

)2

, (1)

where λ ∈ (0, 1) is a parameter that measures the degree of strategic complementarity in the agents’
actions. Intuitively, λ captures the relative importance of the coordination motive in the agent’s utility.
Higher values of λ indicate higher levels of strategic complementarity in actions.

The state of the world θ is unknown to the agents and the underlying information structure
is assumed to be Gaussian with θ ∼ N (0, σ2). Agents receive some (exogenous) information
about θ from a finite set of noisy signals S = {s1, s2, . . . , sn} throughout two periods t ∈ {0, 1}.
Although the set of agents is a continuum, the set of possible signals is assumed to be finite for
tractability reasons. Specifically, signals are (exogenously) assigned to agents according to a finite
partition N = {N1, N2, . . . , Nn} of the set of agents [0, 1], where N1 = [0, i1], Nj = (ij−1, ij] for each
j ∈ {2, . . . , n− 1}, and Nn = (in−1, 1]. Then, at t = 0, each agent i ∈ Nj receives a noisy signal
sj = θ + ε j, where ε j ∼ N (0, π−1

j ). Thus, πj measures the precision of the signal received by any

agent i ∈ Nj. Each noise term ε j is independent of the state θ and the noise terms
{

ε j
}n

j=1 are
independent from each other as well. Signals are assumed to be (conditional on the state) independent
(i.e., the conditional random variables

{
(sj | θ)

}n
j=1 are independent)5.

5 Of course, signals cannot be unconditionally independent because all of them depend on the state of the world.
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2.2. Network Structure

After receiving their initial information at t = 0, agents can listen to others at t = 1 according
to a (directed) network that locally allows them to receive other agents’ signals. Agents are engaged
in a pattern of listening connections or directed links, which determines the network. This paper
considers that information flows one way between directedly linked agents and it also assumes that
information cannot be transmitted to indirectly connected agents. Specifically, a network is a collection
of neighborhoods {g(i)}i∈[0,1] where agent i’s neighborhood g(i) is the set of agents to whom agent i has
a directed link. Thus, an agent’s neighborhood includes the agents that he is connected to through
a (single) directed link but not those agents that are connected through a path of (several) directed links.
In other words, an agent i cannot hear what a neighbor h ∈ g(i) listens from other agents l ∈ g(h) such
that l /∈ g(i). In this setup, a network can be conveniently specified using a neighborhood function

g : [0, 1]→ B[0,1],

where B[0,1] denotes the Borel σ-algebra on the interval [0, 1]. Each agent i can observe at t = 1 the
signals received at t = 0 by all agents in his neighborhood, h ∈ g(i). Each agent listens to himself,
i ∈ g(i).

For security environments, we can think of an agent’s neighborhood as a group of security analysts
or forecasters whom he consults for some security project. For a network described by a neighborhood
function g, agent i can observe at t = 1 the signals that all agents in his neighborhood (thus, including
himself) received at t = 0. In other words, agent i can observe all signals sj such that, for each neighbor
h ∈ g(i), we have h ∈ Nj for the element Nj of the partition N of agents. Thus, let

s(i) =
{

sj ∈ S : g(i) ∩ Nj 6= ∅ for Nj ∈ N
}

denote a restricted signal profile for agent i, which consists of the subset of signals observed by agent i at
t = 1, conditioned on his neighborhood g(i). Let Sg denote the collection of all the different subsets
of signals that can be observed within the population under the neighborhood function g so that
s(i) ∈ Sg for any agent i ∈ [0, 1]. Sometimes, I will simply say that the collection Sg is induced by
the neighborhood function g or by the network. Since the set of available signals S is finite, both the
collection of all subsets of signals Sg and any restricted signal profile s(i) ∈ Sg must be finite as well.
When no reference to a particular agent that observes a subset of signals needs to be made, I will use
s ∈ Sg to denote a generic signal profile observed within the population. In addition, for technical
reasons, we will consider throughout the paper any subset of signals s as an ordered string or vector
that contains the elements of the subset6.

As an antidote to the abstractness of the model, and to grasp better its functioning, the goal of the
following example is to illustrate how agents listen to others in a network.

Example 1. Consider a set of available signals S = {s1, s2, s3} which the agents are endowed with at t = 0
according to the partition N = {N1, N2, N3}, with N1 = [0, 1/3], N2 = (1/3, 2/3], and N3 = (2/3, 1].
Suppose that the network is specified according to the neighborhood function

g(i) =


[0, 3/10] if i ∈ [0, 1/4]

[2/10, 5/10] if i ∈ [1/4, 1/2]

[4/10, 8/10] if i ∈ [1/2, 3/4]

[6/10, 1] if i ∈ (3/4, 1].

6 For instance, suppose for some agent i, the profile s(i) = s ∈ Sg is the subset of signals {s1, s3, s7, s100}. Then, we will
consider s(i) = s = (s1, s3, s7, s100) for technical tractability.
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In this example, for each of the four neighborhoods, we can easily find another neighborhood with a non-empty
intersection, so that the network is minimally connected7. As to which signals the agents can observe at t = 1
under the network described by g, notice that

[0, 3/10] ∩ N1 = [0, 3/10], [0, 3/10] ∩ N2 = ∅, [0, 3/10] ∩ N3 = ∅;

[2/10, 5/10] ∩ N1 = [2/10, 1/3], [2/10, 5/10] ∩ N2 = (1/3, 5/10], [2/10, 5/10] ∩ N3 = ∅;

[4/10, 8/10] ∩ N1 = ∅, [4/10, 8/10] ∩ N2 = [4/10, 2/3], [4/10, 8/10] ∩ N3 = (2/3, 8/10];

[6/10, 1] ∩ N1 = ∅, [6/10, 1] ∩ N2 = [6/10, 2/3], [6/10, 1] ∩ N3 = (2/3, 1].

Therefore, the restricted signal profiles that can be observed within the population at t = 1 are given by

s(i) =


{s1} if i ∈ [0, 1/4]

{s1, s2} if i ∈ [1/4, 1/2]

{s2, s3} if i ∈ [1/2, 1],

so that the collection of subsets of signals observed by the agents, as induced by the neighborhood function g,
is Sg = {{s1} , {s1, s2} , {s2, s3}}.

For instance, notice that all agents i ∈ [1/2, 1] are able to observe signals s2 and s3 at t = 1. Here, the subset
of agents (2/3, 1] ⊂ [1/2, 1] were already able to observe s3 directly at t = 0; as such, a signal was initially
assigned to them. From this subset of agents (2/3, 1], we observe that the agents in (3/4, 1] are linked to the
agents in [6/10, 1] and, thus, through the agents in [6/10, 2/3] ⊂ [6/10, 1], they are able to observe s2 as well
at t = 1. In addition, from the subset of agents (2/3, 1], we note that the agents in (2/3, 3/4] are linked to the
agents in [4/10, 8/10] and, therefore, through the agents in [4/10, 2/3] ⊂ [4/10, 8/10], they are able to observe
s2 as well at t = 1. As to the remaining agents in [1/2, 2/3], they were already able to observe s2 directly at
t = 0 as they were initially endowed with such a signal. In addition, we observe that all the agents in [1/2, 2/3]
are linked to the agents in [4/10, 8/10]. Therefore, through the agents in (2/3, 8/10] ⊂ [4/10, 8/10], they
are able to observe s3 as well at t = 1. However, any agent 0 ≤ i < 1/2 is unable to observe s3. Such agents
can only observe at t = 0 either s1 (if 0 ≤ i ≤ 1/3) or s2 (if 1/3 < i < 1/2). In addition, they are linked with
agents 0 ≤ h ≤ 5/10 who cannot observe s3 themselves at t = 0.

2.3. Optimal Actions

Given the informational constraints imposed by the network, the agents are engaged in a game
where each agent i ∈ [0, 1] chooses at t = 1 an action a∗(i) so as to maximize his conditional expected
utility E

[
u(a, θ)

∣∣ s(i)
]
. Under the preference specification in (1), a Bayesian Nash equilibrium (BNE) is

a function a∗ : [0, 1]→ R such that each agent i ∈ [0, 1] solves the problem

min
a(i)∈R

E

[(
a(i)− (1− λ)θ − λ

∫ 1

0
a(h) dh

)2 ∣∣∣∣ s(i)

]
.

Nonetheless, we can restrict attention to symmetric BNE where all agents that observe the same subset
of signals optimally choose the same action. To see this, suppose that some agents h that observe
a common subset of signals s′ choose different optimal actions. Then, the expectation that other agents
who receive a subset of signals s have about the average optimal action followed by the agents that
observe s′ is

7 Formally, in the current content, the network is minimally (directedly) connected if for each neighborhood g(i) ∈ g([0, 1]) there
exists another neighborhood g(h) ∈ g([0, 1]) such that g(i) ∩ g(h) 6= ∅. I thank an anonymous referee for pointing out
an error in an earlier version of this definition. This notion of minimally connectedness is equivalent to having, for any two
different agents, at least a directed path in the network that connects them.
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E
[∫

h
a∗(h) dh

∣∣∣ s
]
=
∫

h
E [a∗(h) | s] dh.

This expectation depends on the restricted signal profile s but not on the names of the agents. All agents
that observe a common subset of signals aggregate the same information and obtain some common
posteriors on θ and on the actions chosen by other agents. In addition, since the loss function that
the agents are minimizing is strictly convex, the corresponding best-reply must be unique. Therefore,
we can write ∫

h
E [a∗(h) | s] dh = E

[
a∗(s′)

∣∣ s
]
,

where a∗(s′) indicates the optimal action chosen by any agent h that observes the subset of signals s′.
From here onwards, let us use for simplicity Es[·] and Vars[·] to indicate, respectively, the conditional
expectation E[· | s] and the conditional variance Var[· | s] operators. Given the previous observations,
for a network specified by g, an action function a∗ : Sg → R is a symmetric BNE if and only if each action
a∗(s) satisfies

a∗(s) = (1− λ)Es[θ] + λ ∑
s′∈Sg

Es
[
a∗(s′)

]
. (2)

3. Equilibrium and Social Welfare

Consider that, after period t = 0 and before period t = 1, a central planner can influence the
structure of the network by changing the neighborhood function g. This type of intervention makes
sense only if the social planner has access to the signals available to all agents in the population and
thus makes uses of the information available at the interim stage of the game. In this sense, the current
paper is addressing interim efficiency issues. The expected loss of all agents that observe a subset of
signals s ∈ Sg, under a symmetric BNE action function a∗, is

Es

(a∗(s)− (1− λ)θ − λ ∑
s′∈Sg

a∗(s′)
)2
 . (3)

The goal of this paper is to investigate how the network described by g influences the shape of the
social welfare loss function

L(g) = ∑
s∈Sg

Es

(a∗(s)− (1− λ)θ − λ ∑
s′∈Sg

a∗(s′)
)2
 . (4)

Since the technical details required to obtain the welfare loss function in this setup are constructive,
they are provided in the main text. Using such arguments, Proposition 1 then derives the relevant
welfare loss function for our environment with fundamental and coordination motives.

To address this central question, we need first to characterize the class of linear symmetric BNE of
the game that the agents play once they receive their signals at t = 1 under the restrictions imposed
by the network. As in the related literature (see, e.g., [2,4,6–8]), the existence of symmetric BNE is
guaranteed under the quadratic-Gaussian structure that the model assumes. To obtain a solution
to Equation (2), we must study how information is aggregated and how this influences the agents’
optimal actions. For a neighborhood function g and for a subset of signals s ∈ Sg, the pairs (θ, s) are
jointly normally distributed. Let us use Cov[θ, s] to denote the vector of covariances between the state
of the world and each of the signals in s and Var[s] to denote the variance–covariance matrix of the
signals in s. It follows from some basic results on normal distributions that

Es[θ] = Cov[θ, s]′ ·Var[s]−1 · s (5)
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and
Vars[θ] = σ2 −Cov[θ, s]′ ·Var[s]−1 ·Cov[θ, s]. (6)

Hence, normality ensures that the conditional expectations of the state are linear in the signals contained
in s. This implication allows us to focus the analysis of BNE on linear strategies. If the agents that
observe a signal profile s′ use a linear strategy with respect to such signals, then the optimal action of the
agents that observe another signal profile s must be also linear in such signals. While linear strategies
are in general fairly simple and intuitive to interpret, in the current context they are also robust.

Equation (2) reveals that the optimal action followed by the agents that observe a signal profile s
depend in a recursive way on the average posterior expectation over the true state. Hence, we need to
account for arbitrarily higher-order average posterior expectations over θ. To formalize these average
posterior expectations, let E[θ] = ∑s∈Sg Es[θ] be the average posterior expectation on the state over the
collection of possible subsets of signals8. We begin with the 0–order average posterior expectation.
Notice that the 0–order average posterior expectation must coincide with the true realization of the

state so that we set E(0)
[θ] = θ. Then, for the 1–order average posterior expectation, we have

E(1)
[θ] = E

[
E(0)

[θ]
]
= E[θ] = ∑

s∈Sg

Es[θ],

whereas for higher-order average posterior expectations, we use E(m)
[θ] = E

[
E(m−1)

[θ]
]

to indicate in
a recursive way the m–order average posterior expectation over θ, for m ≥ 2. With such higher-order
average posterior expectations in place, recursive application of Equation (2) allows us to express the
optimal action followed by the agents that observe s as

a∗(s) = (1− λ)
[

Es
[
E(0)

[θ]
]
+ λEs

[
E(1)

[θ]
]
+ λ2Es

[
E(2)

[θ]
]
+ · · ·

]
= (1− λ)

∞

∑
m=0

λmEs
[
E(m)

[θ]
]
.

(7)

Under the assumed information structure, we have Cov[θ, s] = σ21, where 1 is a vector of ones with
the same dimension as the number of signals contained in the restricted profile s. Furthermore, recall
that sj = θ + ε j, where Es[ε j] = 0 for all signals j = 1, . . . , n. Take a given realization of the state θ.

Then, using the expression in Equation (5), we obtain that Es
[
E(0)

[θ]
]
= Es[θ], for the 0–order average

posterior expectation, and

Es
[
E(1)

[θ]
]
= Es

σ2 ∑
s∈Sg

1′ ·Var[s]−1 · 1

 θ


=

σ2 ∑
s∈Sg

1′ ·Var[s]−1 · 1

 Es[θ],

for the 1–order average posterior expectation. Here again, 1 is a vector of ones whose dimension equals
the number of signals in the profile s. Let us use

ωg = σ2 ∑
s∈Sg

1′ ·Var[s]−1 · 1

8 Since this is an average over all subsets of signals, E[θ] equivalently indicates the average posterior expectation on θ over
all agents.



Games 2017, 8, 15 8 of 14

to denote the average of the inverses of the posterior variances of the state across signal profiles in the
network. Given this notation for the average across (the inverse of) posterior variances, we can write

E[θ] = ωgθ and iterate to obtain that E(m)
[θ] = ωm

g θ for each m ≥ 0. Thus, we can express the equality
in Equation (7) as

a∗(s) = (1− λ)
[
1 + λωg + λ2ω2

g + · · ·
]

Es[θ]

=

(
1− λ

1− λωg

)
Es[θ],

(8)

where Es[θ] satisfies the equality in Equation (5). Now, if we average the expression above over all
possible subsets of signals observed in the network, we obtain

∑
s∈Sg

a∗(s) =
(

1− λ

1− λωg

)
∑

s∈Sg

Es[θ]

=

(
1− λ

1− λωg

)
ωg.

Therefore, in a BNE, each agent that observes a subset of signals s wishes to match his action
to the objective

(1− λ)θ + λ ∑
s∈Sg

a∗(s) =
(

1− λ

1− λωg

)
θ. (9)

By plugging the expressions in Equations (8) and (9) into the expected loss function given by
Equation (3), we obtain:

Es

[(
(1− λ)Es[θ]

1− λωg
− (1− λ)θ

1− λωg

)2
]
=

(
1− λ

1− λωg

)2
Vars[θ],

where the conditional variance Vars[θ] is given by the expression in Equation (6). By combining this
with the expression in Equation (4), we obtain the the social welfare loss function is given by

L(g) =
(

1− λ

1− λωg

)2

∑
s∈Sg

Vars[θ].

A closing argument is needed to complete the analysis. Recall that our derivation of symmetric
BNE has made use of the law of large numbers to average expectations on the state over subsets of
signals. Therefore, we must consider that the number of possible subsets of signals is sufficiently large
for our formal arguments to be appealing in the environment that we are studying. The analysis of
higher-order beliefs used in this paper builds on the approach followed, among others, by [2,4,6,7].
As in these papers, the formal analysis used here also invokes the law of large numbers9. With this last
consideration in place, the arguments provided in this section show that the welfare loss function has
the form described by the following proposition.

9 For applications where one considers instead a relatively small number of subsets of signals, the law of large numbers cannot
be reasonably invoked to compute averages of expectations on the state. In these cases, keeping track of the higher-order
beliefs that are required to characterize equilibria follows a completely different approach. In particular, under certain
conditions, one can make use of the iterated application of a knowledge index matrix. The idea of using a knowledge index
matrix to track individual arbitrarily higher-order beliefs in a network was originally proposed by [9]. An application of the
knowledge index matrix to information acquisition problems in small populations has been recently provided by [8].
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Proposition 1 (Welfare Loss Function). Suppose that the cardinality of Sg is relatively large. Then, under the
stated assumptions on preferences, the information structure, and the network of listening links, the social
welfare loss function is given, as a function only of the model’s primitives, by the expression

L(g) =
(

1− λ

1− λωg

)2

∑
s∈Sg

Vars[θ], (10)

where
ωg = σ2 ∑

s∈Sg

1′ ·Var[s]−1 · 1. (11)

In this context, the social planner wishes to affect the neighborhood function g so as to minimize
the welfare loss described by Equations (10) and (11) above.

4. Informative Content of Signal Profiles and Efficiency

This section derives some results about the informative content of the signal profiles s ∈ Sg and
about how this informative content affects the social welfare under the network described by g.

Let us use γg =
∣∣Sg
∣∣ to indicate the number of possible subsets of signals that can be observed

within the population under the network described by g. Let us use ks to indicate the number of
signals included in the profile s. In addition, in accordance with the earlier notation, I will use πj(s)
to indicate the inverse of the variance of the noise term associated to the coordinate sj of the string
s, for each j = 1, . . . , ks. Intuitively, πj(s) indicates the precision of the j-th signal in the profile s.
The informative content of the signals contained in s can be conveniently described by the number

w(s) := σ21′ ·Var[s]−1 · 1,

which identifies the sum of all the entries of the inverse of the variance–covariance matrix of the
signal profile s (weighted using the variance of the state of the world). Notice that we can express
the average of the inverses of the posterior variances of the state in the network as ωg = ∑s∈Sg w(s).
Intuitively, each w(s) is simply a scalar that gives us some information about the joint precision of the
signal profile s. Higher values of w(s) are associated with lower degrees of noise in the corresponding
signals and, therefore, to more informative signal profiles. The following lemma provides formally
this implication.

Lemma 1. The scalar w(s) = σ21′ ·Var[s]−1 · 1 lies in the interval (0, 1/σ2) and it increases (strictly) with
the sum of the precision of all the signals contained in the profile s, ∑ks

j=1 πj(s).

To explore how welfare depends on the subset of collections of signals Sg, we need to understand
how the informative content of the available signals S changes as the collection of subsets of signals
Sg varies. On the one hand, the informative content of a group of signals naturally increases as its
size increases or, in other words, as we add more signals to the set. This can be derived directly from
Lemma 1 and it is very intuitive: enlarging a subset of signals increases its informative content. On the
other hand, in principle, it is unclear how the informative content of a subset of signals changes when
such a profile of signals is split into several (smaller) disjoint subsets. Proposition 2 below offers a type
of “diminishing returns” result under which the final informative content increases monotonically
as we split a signal profile into smaller disjoint subsets. Conversely, adding up two sets of signals
decreases their informative content. Larger subsets seem to feature a type of “congestion” to aggregate
information. The message conveyed here for security environments is that we want to provide agents
with a higher number of (smaller) subsets of signals if we are interested in increasing the overall
informative content of the sources of information available in the set of signals S.
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Proposition 2. The informative content of a profile of signals s ∈ Sg is strictly smaller than the aggregation of
informative contents obtained by splitting the subset s into two disjoint subsets, that is, w(s) < w(s1) + w(s2)

for any s1, s2 such that s = s1 ∪ s2 with s1 ∩ s2 = ∅.

The result of Proposition 2 is useful to propose ways to minimize the welfare loss function
obtained in Proposition 1 as it establishes that the overall informative content described by the term
ωg always increases by separating signal profiles into smaller disjoint subsets of signals. Of course,
adding up subsets of signals or splitting subsets of signals into smaller disjoint subsets are not the only
ways in which changes in the neighborhood function g affect the collection of profiles Sg. For instance,
one can propose changes in the neighborhood function g such that a subset s ∈ Sg becomes split
instead into two non-disjoint subsets s1 and s2, where s = s1 ∪ s2. Unfortunately, for those complex
cases, what one can say about efficiency depends very much on the various precisions πj of the
signals involved.

However, restricting attention to interventions that split signal profiles into disjoint sets does
allow for some interesting insights on efficiency. When we move from a neighborhood function g
to another g′ such that a given signal profile s ∈ Sg is split into two disjoint subsets s1, s2 ∈ Sg′

(with s = s1 ∪ s2 and s1 ∩ s2 = ∅), then we naturally have that g′ specifies a more sparse network than
the network specified by g. This is very intuitive as denser networks allow agents to have access to
higher numbers of signals. Building up on Example 1, the following example illustrates this point.

Example 2. As in Example 1, consider a set of available signals S = {s1, s2, s3} which the agents are
endowed with at t = 0 according to the partition N = {N1, N2, N3}, with N1 = [0, 1/3], N2 = (1/3, 2/3],
and N3 = (2/3, 1]. Now, suppose that the network is specified instead according to the neighborhood function

g′(i) =


[0, 3/10] if i ∈ [0, 1/4]

[2/10, 5/10] if i ∈ [1/4, 1/2]

[4/10, 2/3] if i ∈ [1/2, 2/3]

(2/3, 1] if i ∈ (2/3, 1].

Notice that there is a neighborhood, (2/3, 1], which is disjoint to any other neighborhood so that the network
is not minimally connected. In addition, we observe that g′ gives us a network more sparse than the network
associated to the neighborhood function g analyzed in Example 1. In particular, the agents i ∈ [1/2, 2/3] are
now linked to a smaller set of agents, [4/10, 2/3], compared to the one they were linked to under g, [4/10, 8/10].
In addition, the agents i ∈ (2/3, 1] are now linked to a smaller set of agents, (2/3, 1], compared to the one they
were linked to under g, [6/10, 1].

As to which signals the agents can observe at t = 1 under the network described by g′, notice that

[0, 3/10] ∩ N1 = [0, 3/10], [0, 3/10] ∩ N2 = ∅, [0, 3/10] ∩ N3 = ∅;

[2/10, 5/10] ∩ N1 = [2/10, 1/3], [2/10, 5/10] ∩ N2 = (1/3, 5/10], [2/10, 5/10] ∩ N3 = ∅;

[4/10, 2/3] ∩ N1 = ∅, [4/10, 2/3] ∩ N2 = [4/10, 2/3], [4/10, 8/10] ∩ N3 = ∅;

(2/3, 1] ∩ N1 = ∅, (2/3, 1] ∩ N2 = ∅, (2/3, 1] ∩ N3 = (2/3, 1].

Therefore, the restricted signal profiles that can be observed within the population at t = 1 are given by

s(i) =


{s1} if i ∈ [0, 1/4]

{s1, s2} if i ∈ [1/4, 1/2]

{s2} if i ∈ [1/2, 2/3]

{s3} if i ∈ (2/3, 1],
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so that the collection of subsets of signals observed by the agents, as induced by the neighborhood function
g′, is Sg′ = {{s1} , {s1, s2} , {s2} , {s3}}. Thus, by moving from neighborhood function g of Example 1 to
neighborhood function g′, we are able to split the profile {s2, s3} into two disjoint profiles, {s2} and {s3}.

To obtain some insights about efficient information aggregation networks, I turn now to derive
a more tractable expression for the welfare loss function. From the expression in Equation (6), and under
our normality assumptions, it follows that the average of posterior variances of the state across signal
profiles is given by

∑
s∈Sg

Vars[θ] = σ2
(

γg − ∑
s∈Sg

w(s)
)
= σ2 (γg −ωg

)
.

Finally, as to the term w(s) = σ21′ ·Var[s]−1 · 1, the proof of Lemma 1 above derives

w(s) =
∑ks

j=1 πj(s)

1 + σ2 ∑ks
j=1 πj(s)

∈ (0, σ−2).

Therefore, the expressions obtained in Equations (10) and (11) for the social welfare loss can be
rewritten as

L(g) = σ2(1− λ)2 (γg −ωg)

(1− λωg)2 , where ωg = ∑
s∈Sg

 ∑ks
j=1 πj(s)

1 + σ2 ∑ks
j=1 πj(s)

 . (12)

The social planner would like to influence the neighborhood function g so as to induce a collection of
signal profiles Sg that minimizes the expression in Equation (12) above.

On the one hand, from the expression for the welfare loss derived in Proposition 1, which is
rewritten in Equation (12) above, we observe that the welfare loss is always minimized as λ tends
to 1, regardless of the collection of profiles induced by the network structure. Since the welfare loss
function L(g) is continuous in λ ∈ (0, 1), it follows that when the level of complementarity in actions
is very high, interim efficiency does not depend substantially on the network structure.

On the other hand, to explore some insights when complementarity in actions is very low, let us
consider two different neighborhood functions g and g′ such that, moving from g to g′ only implies
that some profile s ∈ Sg is split into two disjoint profiles s1, s2 ∈ Sg′ . Specifically, (i) for some given
s ∈ Sg, we have s1, s2 ∈ Sg′ , where s = s1 ∪ s2 and s1 ∩ s2 = ∅; whereas (ii) for each s ∈ Sg \ {s},
we have s ∈ Sg′ . Then, following some earlier arguments and, in particular, the result of Proposition 2,
I ask how splitting one signal profile into two disjoint subsets affects the welfare loss when the level of
complementarity in actions is very low. Proposition 3 below shows that the answer to this question
depends on the size of the informative gain derived from splitting the selected signal profile.

Proposition 3. Consider a collection of signal profiles Sg that contains a relatively high number of profiles and
split some given signal profile s ∈ Sg into two disjoint subsets, s1 and s2. Let Sg′ denote the collection of signal
profiles Sg′ =

{
s ∈ Sg : s 6= s

}
∪ {s1, s2} which results from splitting the chosen profile s. Suppose that

complementarity in actions is very low, λ → 0. Then, under the stated assumptions on preferences,
the information structure, and the network of listening links, it follows that L(g′) < L(g) if and only if[
w(s1) + w(s2)

]
− w(s) > 1.

Proposition 3 states that, for very low levels of complementarity in actions, splitting a signal
profile into two disjoint subsets is welfare-improving if and only if the induced informative gain is
sufficiently high. In other words, as illustrated by Example 2, when the agents wish to follow a course
of action very close to the fundamental parameter, more sparse networks increases social welfare
whenever the induced informative gains are high enough. Splitting a signal profile into disjoint signal
profiles always increases the informative content (as shown by Proposition 2). However, if the gain in
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informative content is not sufficiently high, then denser networks are associated with higher social
welfare for very low levels of complementarity in actions.

5. Conclusions

This paper has proposed a benchmark to explore (interim) efficiency issues in environments where
decision-makers are connected through a listening network and where both a fundamental motive and
a coordination motive are present in their preferences. Investigating this topic is of interest when one
uses an interim efficiency benchmark. Using the ex-ante efficiency approach instead, one would obtain
directly that a network is efficient if and only if it allows all agents to receive all available signals.
The reason behind this implication is that, for the case of beauty contest preferences, ex-ante efficiency
requires the central planner to solve the same problem that faces each agent. As a consequence,
any additional source of information would be welfare-improving.

This paper has derived a closed form for the welfare loss function that depends on the
informativeness of the available signals and on the way in which the network enables the agents
to gather information. Efficiency is achieved for very high levels of complementarity in actions,
regardless of the network structure. For very low levels of complementarity in actions, the central
planner wishes to induce finer collections of possible subsets of observed signals if and only if
the derived informative gains are sufficiently high. The implications of this paper are useful to
provide efficiency recommendations for networks of security analysts that are coordinated by a central
institution under the requirement that such an institution can access the pieces of private information
available to the analysts.

A natural extension of the setting explored here would be that of considering substitutive actions
as well. This possibility seems reasonable in certain contexts, but it is perhaps not very appealing in
security environments where coordination helps to prevent security threats. At a more general level,
understanding the social value of information when information can be aggregated only locally within
neighborhoods in networks, under different efficiency benchmarks and preference specifications,
remains an interesting and rather unexplored question.
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Appendix

Proof of Lemma 1. Under our normality assumptions, we have

Var[s] =


σ2 + π−1

1 (s) σ2 · · · σ2

σ2 σ2 + π−1
2 (s) · · · σ2

...
...

. . .
...

σ2 σ2 · · · σ2 + π−1
ks

(s)

 = σ21 · 1′ + D,

where D is the diagonal matrix D = diag
(

π−1
j (s)

)
j=1,...,ks

that contains the variances of the noises of

the signals in the profile s. Notice that

D−1 =


π1(s) 0 · · · 0

0 π2(s) · · · 0
...

...
. . .

...
0 0 · · · πks(s)

 .
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Using a version of the Sherman–Morrison’s formula to compute the inverse of a sum of matrices,
(see, e.g., [10,11]), we obtain

Var[s]−1 = D−1 − σ2

1 + σ21′ · D−1 · 1

[
D−1 · 1 · 1′ · D−1

]
.

It follows that
σ2

1 + σ21′ · D−1 · 1
=

σ2

1 + σ2 ∑ks
j=1 πj(s)

and

[
D−1 · 1 · 1′ · D−1

]
=


π2

1(s) π1(s)π2(s) · · · π1(s)πks(s)
π2(s)π1(s) π2

2(s) · · · π2(s)πks(s)
...

...
. . .

...
πks(s)π1(s) πks(s)π2(s) · · · π2

ks
(s)

 .

By doing the algebra, it then follows that

Var[s]−1 =
1

1 + σ2 ∑ks
j=1 πj

×


π1 + σ2 ∑j 6=1 π1πj −σ2π1π2 · · · −σ2π1πks

−σ2π2π1 π2 + σ2 ∑j 6=2 π1πj · · · −σ2π2πks
...

...
. . .

...
−σ2πks π1 −σ2πks π2 · · · πks + σ2 ∑j 6=ks πks πj

 ,

where the arguments (s) have been conveniently dropped to simplify the expression. Therefore,
in order to obtain a closed expression for the scalar w(s) = 1′ ·Var[s]−11, we need to aggregate all the
entries of the matrix obtain above. We obtain

w(s) =
∑ks

j=1 πj(s)

1 + σ2 ∑ks
j=1 πj(s)

∈ (0, σ−2). (A1)

We observe directly that higher values of the (additive) aggregation of the precision of the signals
∑ks

j=1 πj(s), contained in the signal profile s, determine higher values of the scalar w(s).

Proof of Proposition 2. Let us use πs = ∑ks
j=1 πj(s) as a shorthand notation for the sum of the precision

of the signals contained in a signal profile s ∈ Sg. Consider a signal profile s and suppose that we
split it into two disjoint subsets of signals s1, s2. Thus, we are considering s = s1 ∪ s2 with s1 ∩ s2 = ∅.
First, notice that πs = πs1 + πs2 . Secondly, it follows from expression (A1) obtained in the proof of
Lemma 1 that[

w(s1) + w(s2)
]
− w(s) =

πs1

1 + σ2πs1

+
πs2

1 + σ2πs2

− πs1 + πs2

1 + σ2(πs1 + πs2)

=
σ2πs1 πs2(2 + σ2πs1 + σ2πs2)

(1 + σ2πs1)(1 + σ2πs2)[1 + σ2(πs1 + πs2)]
> 0,

as stated.

Proof of Proposition 3. For the selected signal profile s ∈ Sg, let us use α = ∑s∈Sg\{s} w(s) as
shorthand notation for the informative content of all profiles different from s in the collection Sg. Using
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the expression for the welfare loss obtained in Equation (12), it follows that the sign of the difference
L(g)− L(g′) coincides with the sign of the expression

(1− λα)2 ([w(s1) + w(s2)
]
− w(s)− 1

)
+

λ2
(
(γg − α)

[[
w(s1) + w(s2)

]2 − w(s)2
]
− w(s)2 − w(s)

[
w(s1) + w(s2)

][[
w(s1) + w(s2)

]
− w(s)

])
−

2λ(1− λα)
(
(γg − α)

[[
w(s1) + w(s2)

]
− w(s)

]
− w(s)

)
.

Notice that the welfare loss specified in Equation (12) is continuous in λ ∈ (0, 1). Then, for λ → 0,
we obtain that the the sign of the difference L(g)− L(g′) coincides with the sign of

[
w(s1) + w(s2)

]
−

w(s)− 1. For very low levels of complementarity in actions (λ→ 0), it then follows that L(g′) < L(g)
if and only if

[
w(s1) + w(s2)

]
− w(s) > 1, as stated.
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