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Abstract: The human intestinal microbiota plays a fundamental role in host health and is
associated with many diseases when the homeostasis is disturbed. Although recent achievements
in metagenomic sequencing have begun to reveal the variety of microbial composition associated
with healthy and disease states, species-specific interactions and systematic dynamics still pose a
great challenge to resolve the complexity of human microbiota. Using Clostridium difficile infection in
human intestinal microbiota as an example, we apply evolutionary game theory to gain a fundamental
understanding of the phenotypic variability and dynamic progression of microbiota. Here, microbiota
dynamics are determined by the frequency-dependent fitness of each phenotypic population in the
presence of the others. More specifically, the fitness is a function of phenotypic composition of
the microbiota. We show how the phenotypic variability of microbiota can be explained by game
theoretical approach. Knowledge of this study provides a new perspective in administrating antibiotic
when dealing with pathogenic invasion. Instead of solely targeting to pathogens, therapies should
aim at the whole ecosystem by reducing the fitness of pathogens compared to that of commensal
microbes. In this case, the system will eradicate the pathogens by itself.
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1. Introduction

The human intestinal microbiota contains at least 1011 bacteria per gram of intestinal content [1]
(p. 9), which play a key role in development and maintenance of systematic homeostasis. The mutually
beneficial relationship between the host and microbiota is constantly modulated by the production
of metabolites by microbes and these complex and dynamic interactions greatly influence the host’s
susceptibility to disease [2] (p. 9). Based on metagenomics measurements, over 80% of human
intestinal bacteria fall into two phyla: Firmicutes (37% to 48%) and Bacteroidetes (49% to 56%) [3]
(p. 9). The composition of microbiota is complex because (1) each phylum includes thousands of
strains of bacteria, and (2) even among healthy people, different diet habits and other factors result
in significantly different composition of microbiota [4] (p. 9). Previous work based on principal
component analysis of metagenomics data has shown that two principle components, one represents
antibiotic-sensitive phenotype and the other represents antibiotic-tolerant phenotype, can account
for 70% of variations [3] (p. 9) of intestinal microbiota during antibiotic treatment. Therefore, in a
previous model, composition of the symbiotic microbiota has been simplified to antibiotic-sensitive
and antibiotic-tolerant bacteria [5] (p. 9).

When the intestinal microbial community loses its homeostasis due to perturbation, a state of
dysbiosis can emerge and that is associated with a number of diseases such as obesity, diabetes and
inflammatory bowel diseases [6] (p. 9). One of the intestinal dysbiotic diseases induced by a single
strain of bacteria is Clostridium difficile (recently reclassified to Peptoclostridium difficile [7] (p. 9)) infection,
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which causes nearly half a million cases of diarrhea and colitis, resulting in approximately 14 thousands
of deaths in the United States per year [8] (p. 9). C. difficile are resistant to fluoroquinolone antibiotics
such as ciprofloxacin and levofloxacin. It is widely believed that antibiotic treatment can deplete
intestinal commensal bacteria and provides C. difficile with a growth advantage, after which C. difficile
can release its toxins to inhibit susceptible microbiota [9] (p. 9). Unfortunately, even though antibiotic
treatment using metronidazole or vancomycin is initially effective at treating C. difficile infections,
relapse often occurs within 3 months. Over 80% of such recurrent C. difficile infections can be cured
using a novel probiotic therapy called fecal microbiota transplantation (FMT) [10,11] (p. 9). Which
shifts the microbiota composition of the recipient toward that of the donor [12] (p. 9). The effectiveness
of such probiotic therapy also indicates the importance of intestinal microbial composition on the
maintenance of human health.

Another essential characteristic of microbiota is the interactions among various types of
community microbes. Such interactions determine future changes of microbial composition. From a
biomolecular point of view, interspecies exchange of metabolites should play an important role in the
evolution and dynamics of intestinal microbial communities [13] (p. 9). This results in species-specific
commensal, parasitic, mutualistic, or competitive interactions [14] (p. 9). Commensal bacteria
constantly compete with pathogenic bacteria for attachment sites on the surface of intestinal epithelial
cells and nutrients for optimal proliferation; they can even directly inhibit each other by secreting
antimicrobial compounds [15] (p. 9). Given this complexity, a theoretical framework summarizes
individual behavior into the community-level is needed.

Numerous ecological models have been used to study the complex dynamics of the human
microbial systems [16,17] (p. 9). Here we choose evolutionary game theory [18,19] (p. 9) to explore an
intriguing nature of human microbiota: the growth rate of each member of the microbial community
is often influenced by the abundance of other members of the community. To address a real world
application of game theory, we demonstrate how prior biomedical knowledge helps us in defining
the game of microbiota. Focusing on a model of C. difficile infection, we discuss various scenarios
that depend on the nonlinear interactions among three bacterial phenotypes to predict dysbiotic
progression and the emergence of disease state.

2. Methods: Model Description

Here we propose a minimal model to capture the dynamics of the human gut microbiota
challenged with C. difficile infection. As with previously described models the commensal microbiota
has been simplified into two phenotypic groups: antibiotic-sensitive bacteria (denoted as CS) and
antibiotic-tolerant bacteria (denoted as CT) [5] (p. 9). In addition, we consider a third phenotypic
group of pathogenic bacteria (denoted as PA) to represent the possible presence of C. difficile. The PA
bacteria are normally kept in low numbers unless the balance of intestinal microbiota is perturbed.
In each scenario, we assume that the model parameters are constants in time and that the populations
are well-mixed.

Based on the evolutionary game theory, the presence of each phenotypic group affects each
group’s growth rate. In other words, the fitness (growth rate) of each phenotype depends on the
frequency of each phenotype, with the coefficient also known as the payoff. In this 3-player game,
the payoffs can be denoted as a 3 by 3 matrix describing the effect of pairwise interactions on each
phenotype’s growth rate. The payoff is in unit of fitness (relative production rate).

We denote by xi (t) the frequencies of each phenotype: x1 (t) (CS cells), x2 (t) (CT cells) and x3 (t) (PA
cells), with x1 (t) + x2 (t) + x3 (t) = 1. If we assume a linear relationship between the growth rate of each
phenotype and the frequencies, the equations describing the time variation of the frequencies become:

.
xi = xi (t) [Fi (x1, x2, x3)− 〈F〉] (1)
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where the fitness (growth rate) of each cell type is determined by a game payoff matrix Aik by

Fi (x1, x2, x3) =
3

∑
k=1

Aikxk (2)

and the average fitness of the population is:

〈F〉 =
3

∑
i=1

3

∑
k=1

xi Aikxk (3)

The payoff matrix Aik is shown in Table 1:

Table 1. The payoff matrix.

CS CT PA

CS 0 c e
CT a 0 f
PA b d 0

Where the diagonal elements of the payoff matrix are zero because we assume that each phenotype
has neutral effect on its own growth rate.

Based on previous work discussed above, and to simplify the set of possible 3-player games to
those that capture the essential dynamics of interest here, we consider games with the following rules
and assumptions:

1. Over 40% of intestinal microbes cannot be grown in isolated laboratory cultures because it is
very difficult to provide all of the appropriate bacteria-secreted growth factors for the complex
intestinal microbiota community. Therefore, we assume CS and CT bacteria depend on each
other for optimal proliferation, resulting in positive values for “a” and “c” in the payoff matrix.
The resulting 2-player game, with just CS and CT phenotypes, is similar to a Snowdrift game.
In a Snowdrift game, individuals gain direct benefits from cooperative acts, resulting in an
evolutionary stable strategy state (coexistence). This is consistent with the observation that if the
fraction of PA cells is negligible, there is a stable coexistence between CS and CT cells [5] (p. 9).

2. Regarding the pairwise interaction between CS and PA: without antibiotics administration, CS
population usually inhibits PA population. However, PA population takes over CS population
when antibiotics were administrated. The resulting 2-player game is very similar to a Prisoner’s
Dilemma, in which the two strategies (or players) do not stably coexist. In other words, only
one evolutionary stable strategy can exist. Therefore, we assume one player gains while the other
loses, represented by the payoffs of CS vs. PA (“e”) and PA vs. CS (“b”) with opposite signs.

3. Likewise, when CS population is suppressed by antibiotics, two scenarios may occur: (1) PA and
CT compete for resources so that the payoffs of PA vs. CT (“d”) and CT vs. PA (“f”) are both
negative; (2) PA exploits CT for resources so that the payoff of PA vs. CT (“d”) is positive and the
payoff of CT vs. PA (“f”) is negative. Therefore, in any case we assume that the CT population
declines in the presence of PA cells, with a negative payoff “f.”

We reduce the payoff matrix Aik to the minimal payoff matrix Bik (Table 2) by taking into
account that the nature of fixed points of evolutionary dynamics remains unaffected under a projective
transformation of the relative population frequencies. By rescaling the relative frequencies (x1, x2, x3),
we can change the location of the fixed points on the phase diagram, without changing their stabilities.
We can rescale Aik by a factor of (a, c, −f) (note that f is negative) such that β = −b/a = e/(−f) and
α = d/c. Then the minimal payoff matrix Bik becomes:
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Table 2. The minimal payoff matrix.

CS CT PA

CS 0 1 β

CT 1 0 −1
PA −β α 0

Where α and β can be either positive or negative numbers. The PA population may grow (or
decline) in the presence of CT bacteria if the sign of α is positive (or negative). Similarly, the CS bacteria
gain (or lose) fitness from PA bacteria depending on whether β is positive (or negative). In the minimal
payoff matrix, we assume CS population gains exactly what PA population loses in growth rate (β)
when they interact. A biological explanation is that one population may acquire the attachment sites
or metabolic resources from the other population, and which population will take over is determined
by the existence of antibiotics. However, each column in the minimal payoff matrix can be rescaled to
fit experimental or clinical data, which results in relocating the fixed points without loss of the nature
of their stability.

3. Results: Fixed Points and Stability Analysis

In the following sections, we will discuss four models focusing on the effects of CS and CT on
PA proliferation depending on the values of α and β. The model that PA bacteria benefit from CT but
are suppressed by CS, and the model that CT and CS both suppress PA are presented in Section 3.1.
The model that PA bacteria benefit from both CS and CT is presented in Section 3.2. Finally, we present
the model that PA population is suppressed by CT but benefited from CS in Section 3.3.

3.1. Single Healthy Stable Fixed Point (β > 0)

We first consider the scenario in which the PA population benefits from the presence of CT bacteria
(α > 0) but is inhibited by the presence of CS bacteria (β > 0). This system will have a single stable
fixed point, corresponding to a healthy coexistence between CS and CT bacteria with little or no PA
bacteria (Figure 1). The fixed points (x *1, x *2, x *3) of the dynamics include two vertices of the simplex
(1, 0, 0) and (0, 0, 1) as saddle points, and one vertex (0, 1, 0) as an unstable fixed point. If the PA
bacteria benefit only moderately from the CT bacteria (α < β + 1) the stable fixed point will be on the
edge of the simplex, at (1/2, 1/2, 0) (Figure 1a). If the PA bacteria benefit more strongly from the CT
bacteria (α > β + 1), this point becomes a saddle point (Figure 1b), and the stable fixed point moves to
the interior of the simplex at:(

(α (β + 1))− 1
(β + 2) (α + β− 1)

,
β (β + 2)

(β + 2) (α + β− 1)
,

α− β− 1
(β + 2) (α + β− 1)

)
(4)

The flow-field diagram of population frequencies as shown in Figure 1 provides an overview
of the dynamics of this scenario. In Figure 1, the solid lines indicate the dynamic progression of
three different starting populations versus time. The three starting points are chosen to correspond to
healthy human controls because pathogenic bacteria such as C. difficile is typically about 5% in clinical
samples [20] (p. 9). Near the equilibria, the progression of the dynamics becomes slower. From a
clinical perspective, the ideal goal is to eradicate pathogenic bacteria (PA) or at least reach stability
with low fraction of PA. Figure 1a shows an ideal condition (α < β + 1), in which PA-free coexistence of
CT and CS cells is a stable fixed point. When α > β + 1, the PA, CT, and CS cells coexist at equilibrium,
as shown in Figure 1b. This is an acceptable condition clinically since the ratio of three phenotypes
reaches a balance regardless to initial population fractions.

On the other hand, the CT and CS bacteria might both suppress the growth of the PA bacteria
by producing toxins or through competition for attachment sites and nutrients. In this case, both the
CT bacteria and the CS bacteria inhibit the growth of the PA population (α < 0 and β > 0). Again, the
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system will have only one stable fixed point, on the edge of the simplex at (1/2, 1/2, 0), corresponding
to a healthy state with no PA bacteria present. The dynamic progression with various initial population
fractions is shown in Figure 2. Regardless of the initial population fractions, the system returns to a
healthy state with CS and CT dominating the community.

Games 2016, 7, 26  5 of 10 

population fractions is shown in Figure 2. Regardless of the initial population fractions, the system 
returns to a healthy state with CS and CT dominating the community. 

 

Figure 1. α > 0 and β > 0: (a) α < β + 1, α = 0.5, β = 0.2; (b) α > β + 1, α = 1.5, β = 0.2. The initial 
population fractions of commensal antibiotic-sensitive bacteria (CS), commensal antibiotic-tolerant 
bacteria (CT), and pathogenic (PA) cells (x10, x20, x30) = (0.5, 0.545, 0.05), (0.25, 0.7, 0.05), and (0.8, 0.15, 
0.05) are labeled with triangle markers. 

 
Figure 2. α < 0 and β > 0: α = −0.5, β = 0.2. In this case, the interior fixed point does not exist because 
the coordinates based on Equation (4) are outside the allowed range of the simplex (0 < xi < 1). The 
three vertices of the simplex at (1, 0, 0), (0, 1, 0), and (0, 0, 1) are saddle points. In addition, an unstable 
fixed point with the coordinates (0, 1/(1 − α), −α/(1 − α)) emerges. 

3.2. From Healthy to Dysbiotic States (α > 0 and β < 0) 

Here we consider the scenarios in which the PA population benefits from the presence of CT 
bacteria (α > 0) and from the presence of CS bacteria (β < 0). This would be the case, for example, if 
the PA bacteria require metabolites produced by both the CT and CS populations for optimal growth. 
In this case, the pure pathogenic vertex at (0, 0, 1) is a stable fixed point, and a persistent dysbiosis 
(PA dominance) can occur. 

Figure 1. α > 0 and β > 0: (a) α < β + 1, α = 0.5, β = 0.2; (b) α > β + 1, α = 1.5, β = 0.2. The initial
population fractions of commensal antibiotic-sensitive bacteria (CS), commensal antibiotic-tolerant
bacteria (CT), and pathogenic (PA) cells (x10, x20, x30) = (0.5, 0.545, 0.05), (0.25, 0.7, 0.05), and (0.8, 0.15,
0.05) are labeled with triangle markers.

Games 2016, 7, 26  5 of 10 

population fractions is shown in Figure 2. Regardless of the initial population fractions, the system 
returns to a healthy state with CS and CT dominating the community. 

 

Figure 1. α > 0 and β > 0: (a) α < β + 1, α = 0.5, β = 0.2; (b) α > β + 1, α = 1.5, β = 0.2. The initial 
population fractions of commensal antibiotic-sensitive bacteria (CS), commensal antibiotic-tolerant 
bacteria (CT), and pathogenic (PA) cells (x10, x20, x30) = (0.5, 0.545, 0.05), (0.25, 0.7, 0.05), and (0.8, 0.15, 
0.05) are labeled with triangle markers. 

 
Figure 2. α < 0 and β > 0: α = −0.5, β = 0.2. In this case, the interior fixed point does not exist because 
the coordinates based on Equation (4) are outside the allowed range of the simplex (0 < xi < 1). The 
three vertices of the simplex at (1, 0, 0), (0, 1, 0), and (0, 0, 1) are saddle points. In addition, an unstable 
fixed point with the coordinates (0, 1/(1 − α), −α/(1 − α)) emerges. 

3.2. From Healthy to Dysbiotic States (α > 0 and β < 0) 

Here we consider the scenarios in which the PA population benefits from the presence of CT 
bacteria (α > 0) and from the presence of CS bacteria (β < 0). This would be the case, for example, if 
the PA bacteria require metabolites produced by both the CT and CS populations for optimal growth. 
In this case, the pure pathogenic vertex at (0, 0, 1) is a stable fixed point, and a persistent dysbiosis 
(PA dominance) can occur. 

Figure 2. α < 0 and β > 0: α = −0.5, β = 0.2. In this case, the interior fixed point does not exist because
the coordinates based on Equation (4) are outside the allowed range of the simplex (0 < xi < 1). The three
vertices of the simplex at (1, 0, 0), (0, 1, 0), and (0, 0, 1) are saddle points. In addition, an unstable fixed
point with the coordinates (0, 1/(1 − α), −α/(1 − α)) emerges.

3.2. From Healthy to Dysbiotic States (α > 0 and β < 0)

Here we consider the scenarios in which the PA population benefits from the presence of CT
bacteria (α > 0) and from the presence of CS bacteria (β < 0). This would be the case, for example, if
the PA bacteria require metabolites produced by both the CT and CS populations for optimal growth.
In this case, the pure pathogenic vertex at (0, 0, 1) is a stable fixed point, and a persistent dysbiosis (PA
dominance) can occur.
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If the PA bacteria benefit only moderately from the CT bacteria (α < β + 1), there is an additional
stable fixed point at (1/2, 1/2, 0), as shown in Figure 3a. This indicates that the system can tolerate
a certain level of PA infection. If PA fraction is low, eventually PA bacteria will be extinguished in
favor of a stable community consisting only of CS and CT. If the PA fraction is too high, however,
PA bacteria will eventually dominate the community. If the PA bacteria benefit strongly from the CT
bacteria (α > β + 1), the vertex at (0, 0, 1), representing a dysbiotic state, is the only stable fixed point;
and the point at (1/2, 1/2, 0) is a saddle point (Figure 3b). PA will eventually dominate the community,
regardless of the initial population fraction.
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The dynamic progressions for different starting populations are shown as the solid lines in
Figure 3. In addition to the starting points corresponding to healthy states, an additional starting point
with population fractions of CS, CT, and PA cells (x10, x20, x30) = (0.05, 0.15, 0.8) is labeled with light
blue in Figure 3. This starting point is chosen as an extreme case when C. difficile fraction exceeds 70%,
which has been shown to occur under the misusage of metronidazole or lacticin antibiotics [20] (p. 9).

3.3. Two Stable Fixed Points: Healthy and Dysbiotic (α < 0 and β < 0)

Now we discuss the scenario in which the PA population is inhibited by the presence of CT
bacteria (α < 0) but benefits from the presence of CS bacteria (β < 0). In this scenario, there are always
two stable fixed points: the vertex at (0, 0, 1), representing the dysbiotic state; and a second stable fixed
point on or near the edge of the simplex, representing a healthy coexistence of CT and CS bacteria with
little or no PA bacteria (Figure 4).

If the three phenotypic groups are weakly interacting (α < β + 1 and α (β + 1) < 1), the healthy
stable point is on the edge of the simplex at (1/2, 1/2, 0) (Figure 4a). The dynamic behavior is
similar to Figure 3a, which may tolerate certain level of PA infection. Low level of PA will be
extinguished regardless the fractions of CS or CT. High level of PA will take over the microbial
community. The difference is that, in this case there is an unstable fixed point at the edge (PA-CT) so
that the tolerance of PA infection is higher than the case in Figure 3a.

If CT bacteria moderately inhibit PA bacteria (α > β + 1 and α (β + 1) > 1), the stable fixed
point moves to the interior of the simplex (Figure 4b). With the PA frequency starting at a low level
(0.05), which stable fixed point the system flows to will depend on the CT frequency. If the CT
frequency is high enough (>0.4), the system flows toward the healthy state with coexistence of the
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three phenotypes. Otherwise, the system flows toward the dysbiotic state and PA will eventually
dominating the population.

If CT bacteria strongly inhibit PA bacteria (α < β + 1 and α (β + 1) > 1), the healthy stable point is
on the edge of the simplex at (1/2, 1/2, 0), as shown in Figure 4c. The system exhibits a certain level of
tolerance to PA infection. With a starting PA frequency of 0.05, as long as CT level is above 0.15, the PA
cells will be extinguished. Otherwise, PA cells will dominate the whole population.
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until fluoroquinolone antibiotics gradually eradicate most antibiotic-sensitive CS bacteria. When CS 
is weakened (β < 0), two possible scenarios may occur: (1) PA strongly exploits CT (α > β + 1 > 0), 

Figure 4. α < 0 and β < 0: The two vertices of the simplex at (1, 0, 0) and (0, 1, 0) are unstable and saddle
points, respectively. There are two fixed points at the edges of the simplex: (1/2, 1/2, 0) (coexistence
of CS and CT cells) and (0, 1/(1 − α), −α/(1 − α)) (coexistence of CT and PA cells). (a) α < β + 1
and α (β + 1) < 1, α = −0.5, β = −0.2; (0, 1/(1 − α), −α/(1−α)) is an unstable fixed point, and the
interior fixed point is a saddle point; (b) α > β + 1and α (β + 1) > 1, α = −1.1, β = −2.2; the points at
(1/2, 1/2, 0) and (0, 1/(1 − α), −α/(1 − α)) are saddle points; (c) α < β + 1 and α (β + 1) > 1, α = −1.5,
β = −2; (0, 1/(1 − α), −α/(1 − α)) is an unstable fixed point.

4. Discussion

We have discussed various scenarios based on the relative gain or loss of fitness of the PA
phenotype represented by the values of α and β. In Figure 5, we summarize the results, indicating
regions of the α vs. β phase diagram with a single stable fixed point (solid markers), and those with
bistability (open markers) in the dynamical system. The question of whether there is one or two stable
fixed points is important because that will determine how much perturbation of microbial composition
can be tolerated by the host system. The parameters α and β together with population composition
determine if the system is able to recover from an abrupt dysbiotic state caused by pathogenic invasions
or antibiotic disturbance [21] (p. 9).
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Figure 5. The payoffs in each figure are shown in α vs. β plane. The regions where α (β + 1) > 1 is
shaded with pink color, and the regions where α > β + 1 is shaded with blue color. The overlapped
region (α (β + 1)>1 and α > β + 1) is purple. The scenarios with bistability are labeled with open
markers. The scenarios with unique stability are labeled with solid markers.

If fluoroquinolone antibiotics were administrated, the balance of microbial system would be
perturbed. Pathogens such as C. difficile are usually inhibited by commensal bacteria (especially CS)
until fluoroquinolone antibiotics gradually eradicate most antibiotic-sensitive CS bacteria. When CS
is weakened (β < 0), two possible scenarios may occur: (1) PA strongly exploits CT (α > β + 1 > 0),
then C. difficile infection will arise; (2) CT competes with PA (α < 0). If CT sufficiently inhibits PA in
the competition among CT and PA bacteria, then C. difficile infection may not occur. Therefore, the
outcome of the competition can be determined by the value of α.

Although the model concerns a well-mixed population without spatial structure, it still provides
some potential therapeutic insights. The stable fixed point is the state of least energy that the system
will inhabit for an indefinite length of time. When the system has only one stable fixed point, there is a
unique “absolutely stable” state that the system will return to after perturbations. When the system
has two stable fixed points, it is important to consider whether the dysbiotic fixed point is globally
stable or merely metastable, and what clinical interventions will shift the system to a state that will
flow toward the desired healthy fixed point. Such nonlinear characteristics are usually neglected in
clinical practice, which in general follows the strategy of “immediately administrate antibiotics when
pathogen infection is observed.” Better understanding of the population dynamics could help reduce
the overuse of antibiotics and the resulting emergence of antibiotic resistance [22] (p. 10). In the highly
simplified scenario described by our model, if we could effectively tune the system parameters α and
β by readjusting host biochemical environment, or the population composition by taking probiotics,
the system could be made to eradicate PA cells with the help of CS and CT cells.

The validation of theoretical models for microbial community dynamics will require
measurements of mixed population composition with high temporal resolution. Recent top-down
approaches in molecular “omics” such as 16s RNA sequencing provide abundant information about the
composition of microbial cells in nature [23] (p. 10). However, there are few time-course metagenomic
analyses, which require a lot of resources but can be helpful in unraveling the microbial community
dynamics [24] (p. 10). A bottom-up synthetic approach would be to mix additional types of microbes
one at a time, creating tightly controlled experimental model systems [14] (p. 9). Such model systems
can exhibit complex community interactions such as cooperative digestion or by-product exchange,
but are tractably limited to a small number of strains that can be cultured in the lab. We hope this
study would inspire more experimental and modeling works which may help bridge the gap between
top-down systems approach and bottom-up synthetic approach toward an understanding of complex
microbial systems.
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