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Abstract: We consider a two-dimensional model of three species in rock-paper-scissors competition
and study the self-organisation of the population into fascinating spiraling patterns. Within our
individual-based metapopulation formulation, the population composition changes due to cyclic
dominance (dominance-removal and dominance-replacement), mutations, and pair-exchange of
neighboring individuals. Here, we study the influence of mobility on the emerging patterns
and investigate when the pair-exchange rate is responsible for spiral waves to become elusive
in stochastic lattice simulations. In particular, we show that the spiral waves predicted by the
system’s deterministic partial equations are found in lattice simulations only within a finite range of
the mobility rate. We also report that in the absence of mutations and dominance-replacement, the
resulting spiraling patterns are subject to convective instability and far-field breakup at low mobility
rate. Possible applications of these resolution and far-field breakup phenomena are discussed.

Keywords: Rock-Paper-Scissors; cyclic dominance; pattern formation; spiral waves;
diffusion; phase diagram; individual-based modelling; stochastic lattice simulations; complex
Ginzburg-Landau equation

PACS: 87.23.Cc, 05.45.-a, 02.50.Ey, 87.23.Kg

1. Introduction

Understanding the mechanism allowing the maintenance of species coexistence is an issue of
paramount importance [1]. Evolutionary game theory [2–4], where the success of one species depends
on what the others are doing, provides a fruitful framework to investigate this question by means of
paradigmatic schematic models. In this context, cyclic dominance is considered as a possible motif
enhancing the maintenance of biodiversity, and models of populations in cyclic competition have
recently received significant attention.

The rock-paper-scissors (RPS) game—in which rock crushes scissors, scissors cut paper, and paper
wraps rock—and its variants are paradigmatic models for the cyclic competition between three species.
Examples of RPS-like dynamical systems can be Uta stansburiana lizards, and communities of
E. coli [5–9], as well as coral reef invertebrates [10]. In the absence of spatial degrees of freedom
and mutations, the presence of demographic fluctuations in finite populations leads to the loss of
biodiversity with the extinction of two species in a finite time, see, e.g., [11–16]. However, in nature,
organisms typically interact with a finite number of individuals in their neighborhood and are able
to migrate. It is by now well established both theoretically and experimentally that space and mobility
greatly influence how species evolve and how ecosystems self-organize, see, e.g., [17–22]. Of particular
relevance is the in vitro experiments with Escherichia coli of [5–8] showing that, when arranged on a Petri
dish, three strains of bacteria in cyclic competition coexist for a long time while two of the species go
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extinct when the interactions take place in well-shaken flasks. On the other hand, in vivo experiments
of Ref. [23] with bacterial colonies in the intestines of co-caged mice have shown that mobility allows
the bacteria to migrate between mice and to maintain their coexistence. These observations illustrate
that mobility can both promote and jeopardize biodiversity in RPS games, as argued in Refs. [24–26]: In the
experiments of Ref. [23], biodiversity is maintained only when there is migration, whereas in Ref. [6]
species coexistence is lost in well-shaken flasks corresponding to a setting with a high mobility rate.

These considerations have motivated a series of studies aiming at investigating the relevance
of spatial structure and individual’s mobility on the properties of RPS-like systems. For instance,
various two-dimensional versions of the model introduced by May and Leonard [27], characterized
by cyclic “dominance removal” in which each species “removes” another in turn (see below), have
received much attention [24–26,28–31]. It has been shown that species coexist for a long time in these
models with pair-exchange among neighboring individuals: below a certain mobility threshold species
coexist by forming intriguing spiraling patterns below a certain mobility threshold, whereas there
is loss of biodiversity above that threshold [24–26]. Another popular class of RPS models are those
characterized by a zero-sum cyclic interactions (via “dominance replacement”) with a conservation
law at mean-field level (“zero–sum” games) [32–40] and whose dynamics in two-dimensions also
leads to a long–lasting coexistence of the species but not to the formation of spiraling patterns, see,
e.g., [28,31,37]. Recent studies, see, e.g., [41–47], have investigated the dynamics of two-dimensional
RPS models combining cyclic dominance removal and replacement, while various generalization
to the case of more than three species have also been considered, see, e.g., [48–50]. In [43–47] we
studied the spatio–temporal properties of a generic two–dimensional RPS-like model accounting
for cyclic competition with dominance–removal and dominance–replacement, along with other
evolutionary processes such as reproduction, mutation and mobility via hopping and pair–exchange
between nearest neighbors. By adopting a metapopulation formulation and using a multiscale and
size-expansion analysis, combined with numerical simulations, we analyzed the properties of the
emerging spatio–temporaldynamics. In particular, we derived the system’s phase diagram and
characterized the spiraling patterns in each of the phases and showed how non-linear mobility can
cause the far-field breakup of spiral waves. In spite of the predictions of the theoretical models,
it is still unclear under which circumstances microbial communities in cyclic competition would
self-arrange into spiraling patterns as those observed in other systems such as myxobacteria and slime
molds [51,52].

Here, we continue our investigation of the generic two–dimensional RPS-like model of [43–45] by
focusing on the influence of pair-exchange between nearest-neighbors, as simplest form of migration,
on the formation of spiraling patterns in two-dimensional lattice simulations. In particular, we
demonstrate a resolution issue: on a finite grid spiral waves can be observed only when the migration is
within a certain range. We also show that in the absence of mutations and dominance-replacement,
e.g., as in [24–26,41], the spiraling patterns emerging from the dynamics are subject to convective
instability and far-field breakup at low mobility rate.

This paper is structured as follows: The generic metapopulation model [44,53] is introduced
in Section 2 and, building on [43,45], the main features of its description at mean-field level and in
terms of partial differential equations (PDEs) are outlined. Section 3 is dedicated to a summary
of the characterization of the system’s spiraling patterns in terms of the underlying complex
Ginzburg-Landau equation (CGLE). Section 4 is dedicated to our novel results concerning the
resolution issues in finite lattices and the far-field breakup and convective instability under low mobility.
Finally, we conclude by summarizing and discussing our findings.

2. Model

As in [43,45], we consider the generic model of cyclic dominance between three competing species
defined on an L× L periodic square lattice of patches, L being the linear size of the grid, where each
node of the grid is labelled by a vector ` = (`1, `2). As illustrated in Figure 1, each patch consists of
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a well-mixed population of species S1, S2, S3 and empty spaces ∅ and has a limited carrying capacity N:
In each patch ` there are therefore at most N individuals Ni(`) of species Si (i = 1, 2, 3), and there
are also N∅(`) = N − NS1(`)− NS2(`)− NS3(`) empty spaces. Within each patch `, the population
composition evolves according to the most generic form of cyclic RPS according to the following
schematic reactions:

Si + Si+1
σ−→ Si + ∅ Si + Si+1

ζ−→ 2Si (1)

Si + ∅
β−→ 2Si Si

µ−→ Si±1, (2)

where the index i ∈ {1, 2, 3} is ordered cyclically such that S3+1 ≡ S1 and S1−1 ≡ S3. The reactions
(1) describe the generic form of cyclic competition, that comprises dominance–removal with rate σ and
dominance–replacement with rate ζ [43,45,46]. The processes (2) allow for the reproduction of each
species (with rate β) independently of the cyclic interaction provided that free space (∅) is available
within the patch. The biological interpretation of the mutations Si −→ Si±1 (with rate µ) is, e.g., that they
mimic the fact that side–blotched lizards Uta stansburiana undergo throat–color transformations [9],
while from a mathematical perspective they yield a supercritical Hopf bifurcation at mean-field
level, see [54,55], about which a multiscale expansion is feasible, see below and [43,45,46]. Since we
are interested in analyzing the spatio–temporal arrangement of the populations, in addition to the
intra–patch reactions (1)–(2), we also allow individuals to migrate between neighboring patches ` and
`′ via pair exchange, according to

[
X
]
`

[
Y
]
`′

δ−→
[
Y
]
`

[
X
]
`′ , (3)

where X 6= Y ∈ {S1, S2, S3, ∅}.

Figure 1. (Color online). Cartoon of the metapopulation model: L × L patches (or islands) are
arranged on a periodic square lattice (of linear size L). Each patch ` = (`1, `2) can accommodate
at most N individuals of species S1, S2, S3 and empty spaces denoted ∅. Each patch consists
of a well–mixed population of NS1 individuals of species S1, NS2 of type S2, NS3 of type S3 and
N∅ = N − NS1 − NS2 − NS3 empty spaces. The composition of a patch evolves in time according
to the processes (1) and (2). Furthermore, migration from the focal patch (dark gray) to its four
nearest–neighbors (light gray) occurs according to the process (3), see text. Adapted from [45].

At an individual-based level, the model is defined by the Markov processes associated with the
reactions (1)–(3). The model’s dynamics is thus described by the underlying master equation, and the
stochastic lattice simulations performed using the Gillespie algorithm [56], as explained in [43,45,47].
The metapopulation formulation of the model makes it well-suited for a size expansion of the master
equation in 1/N [45,47,57–60]. Such an expansion in the inverse of the carrying capacity has been



Games 2016, 7, 24 4 of 12

detailed in Ref. [45] where we showed that to lowest order in the continuum limit (L� 1) on a square
domain of size S × S the system evolves according to the partial differential equations

∂tsi = D∆si + si[1− ρ− σsi−1] + ζsi[si+1 − si−1] + µ [si−1 + si+1 − 2si] , (4)

with periodic boundary conditions, and where si ≡ si(x, t), x = S`/L is a continuous variable, and
ρ = s1 + s2 + s3. Here and henceforth, without loss of generality we have rescaled time by setting
β = 1, and on average there are N microscopic interactions during a unit of time [45]. As usual, the
diffusion coefficient D and the migration rate δ are simply related by D = δ(S/L)2.

It is worth noting that contrary to the models of Refs. [43,45], here we do not consider non-linear
diffusion: Movement in (4) appears only through the linear diffusive terms D∆si. Furthermore, while
in Refs. [43,45] we focused on spatio-temporal patterns whose size exceeds that of the lattice unit
spacing and we mostly considered domains of size S = L so that D = δ, here we prefer to keep S
and L separate, and therefore D and δ, distinct. Equation (4) are characterized by an interior fixed
point s∗ = (s∗1 , s∗2 , s∗3) associated with the coexistence of the three species with the same density
s∗i = s∗ = 1/(3 + σ). In the absence of space (i.e., upon setting ∆si = 0 in (4)) and with no mutations
(µ = 0), s∗ is never asymptotically stable and the mean field dynamics yields heteroclinic cycles (when
µ = 0, σ > 0 and ζ ≥ 0, with ζ = 0 corresponding to the degenerate case) [27] or neutrally stable
periodic orbits (when µ = σ = 0 and ζ > 0) [2–4] and finite-size fluctuations always lead to the quick
extinction of two species [11–15]. However, quite interestingly when the mutation rate is non-zero, at
mean-field level a supercritical Hopf bifurcation (HB) occurs at µH = σ/[6(3 + σ)] and yields a stable
limit cycle when µ < µH [43] (see also [54,55]).

3. Spiraling Patterns and the Complex Ginzburg-Landau Equation

In [43,45] we showed that the dynamics in terms of the PDEs (4) yield spiraling patterns
whose spatio-temporal properties can be analyzed in terms of the system underlying complex
Ginzburg-Landau equation (CGLE) [62].

The latter is derived by introducing the “slow variables” (X, T) = (εx, ε2t), where
ε =

√
3(µH − µ) is the system’s small parameter in terms of which a multiscale expansion is performed

about the HB [61]. Details of the derivation can be found in Ref. [45] and brief accounts in [43,46].
Here we quote the system’s CGLE for the complex modulated amplitude A(X, T) which is a linear
combination of the rescaled species densities [43,45,46]:

∂TA = D∆XA+A− (1 + ic)|A|2A, (5)

where ∆X = ∂2
X1

+ ∂2
X2

= ε−2(∂2
x1
+ ∂2

x2
) and ∂T = ε−2∂t, and after having rescaled A by a constant,

we find the parameter.

c =
12ζ(6− σ)(σ + ζ) + σ2(24− σ)

3
√

3σ(6 + σ)(σ + 2ζ)
. (6)

As explained in [43,45], the CGLE (5) allows us to accurately characterize the spatio-temporal
spiraling patterns in the vicinity of the HB (for ε � 1 i.e., µ . µH) by using the well-known phase
diagram of the two-dimensional CGLE, see, e.g., [62], and to gain significant insight into the system’s
spatio–temporal behavior away from the HB (we here restrict σ and ζ into [0,3]):

• For µ . µH (close to the HB) [43]: There are four phases separated by the three critical values
(cAI, cEI, cBS) ≈ (1.75, 1.25, 0.845), as shown in the phase diagram of Figure 2: No spiral waves can
be sustained in the “absolute instability (AI) phase” (c > cAI ≈ 1.75); spiral waves are convectively
unstable in the Eckhaus instability (EI) phase with cEI ≈ 1.25 < c < cAI; stable spiral waves are
found in the bound state (BS) phase (cBS ≈ 0.845 < c < cEI); while spiral waves annihilate when
they collide in the spiral annihilation (SA) phase when 0 < c < cBS.
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• For µ� µH (away from the HB) [45]: The AI, EI and BS phases are still present even away from
the HB whose boundaries are essentially the same as in the vicinity of the HB, see Figure 3. At low
mutation rate, there is no spiral annihilation and the SA phase is generally replaced by an extended
BS phase (with far-field breakup of the spiral waves when σ� ζ).

Figure 2. Phase diagram of the two–dimensional rock-paper-scissors (RPS) system around the Hopf
bifurcation with contours of c = (cAI, cEI, cBS) in the σ− ζ plane, see text. We distinguish four phases:
spiral waves are unstable in absolute instability (AI), Eckhaus instability (EI) and spiral annihilation
(SA) phases, while they are stable in bound state (BS) phase. The boundaries between the phases have
been obtained using the CGLE parameter (6). Adapted from [45].

Figure 3. (Color online). Typical long-time snapshots in the BS (left), EI (middle) and AI (right)
phases from stochastic simulations at low mutation rate. As in the next figures, each color represents
one species (dark dots are regions of low density). The parameters are L = 128, N = 64,
(β, σ, µ, δ) = (1, 1, 0.001, 1), and ζ = 0.6 (left), 1.2 (middle), and ζ = 1.8 (right), see text. In all
panels, the initial condition is a random perturbation of the homogeneous state s∗, see text and [44].
Adapted from [47].

Away from the cores of the spiral waves, the solution to the CGLE (5) can be approximated
by the travelling-wave ansatz A(X, T) = Rei(k·X−ωT) of amplitude R(c), angular frequency ω and
wave number k [45]. As detailed in Ref. [45], the wavelength λ = 2π/(εk) of the spiraling patterns
in the BS and EI phases near the HB in the physical space (in lattice units) can thus be estimated by
λ ≈ λH , where

λH =
2πL
εS

√
D

1− R2(c)
=

2π

ε

√
δ

1− R2(c)
, (7)

where the amplitude R2(c) is a decreasing function of c in the BS and EI phases (see Figure 6 in [45])
and has been found numerically to be in the range 0.84–0.95 in the BS phase [45].
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In Ref. [45], we showed that the description in terms of the CGLE is not only valid and accurate
near the HB (µ . µH), but it is also insightful in the limit µ � µH of low mutation rate. In fact, we
showed that lowering the mutation rate µ below µH results in three regimes: the AI, EI and BS phases,
see Figure 3. We also found that reducing µ below µH results into shortening the wavelength λ of
the spiraling patterns in the BS and EI phases: The wavelength at low mutation rate satisfies a linear
relationship (see Figure 14 in Ref. [45]): λ ≈ λµ�µH , where

λµ�µH = (λH − λ0)
µ

µH
+ λ0, (8)

where the wavelength λ0 at µ = 0 is inferred from the numerical solution of the PDEs (4) and is
shorter than the wavelength λµH near µH ; typically λ0 ∈ [0.3λµH , 0.5λµH ] and it scales as λ0 ∼√

2δ(3 + σ)/σ [63]. For instance, when (β, σ, ζ, µ, δ) = (1, 1, 0.6, 0.01, 0.64), we have ε ≈ 0.308, R2 ≈ 0.9
and (7) yields λH ≈ 52 while we found λ0 ≈ 26 and therefore at µ = 0.01, the wavelength is
λµ=0.01 ≈ 32 which is in good agreement with lattice simulations, see Figure 4 (bottom, left).

4. How Does Pair-Exchange Influence the Formation of Spiral Waves on a Grid?

We have seen that near the HB the RPS dynamics is generally well described in terms of the
PDEs (4) and CGLE (5) when N � 1. Accordingly, the effect of space and individuals’ mobility is
accounted by linear diffusion. In this setting, rescaling the mobility rate δ→ αδ (α > 0) boils down to
rescale the diffusion coefficient and space according to D → αD and x → x/

√
α. Hence, the size of

the spatial patterns increases when the individuals’ mobility is increased, and it decreases when the
mobility is reduced [24–26,45]. Furthermore, according to the description in terms of the CGLE, the
mobility rate and diffusion coefficient do not affect the stability of the spiraling patterns near the HB
but only change their size. Below, we discuss the cases of very small or large mobility rate and show
that this may result in spiral waves being elusive and/or unstable even in regimes where the PDEs (4)
and CGLE (5) predict that they would exist and be stable.

4.1. Resolution Issues

In this section, we focus on resolution issues and show that while the description of the dynamics
in terms of the PDEs (4) predict the formation of spiral waves these cannot be observed on finite lattice
due to resolution issues. In other words, we report that, even when the PDEs (4) and CGLE (5) predict
that the dynamics leads to stable spiraling patterns (BS phase), these may be elusive when the mobility
rate is too low or too high as illustrated in Figure 4.

In order to determine the range of the mobility rate δ within which stable spiral waves can
be observed on a two-dimensional grid, we distinguish three regimes, see Table 1: (i) λ ∼ o(1);
(ii) 1� λ� L; (iii) λ & O(L). In regime (i), the PDEs (4) predict a myriad of tiny spirals of wavelength
of the order of one unit lattice space. Clearly, the resolution of any finite lattice is insufficient to allow to
observe spiraling patterns of such a tiny size (of order of one pixel) on the grid, see Figure 4 (top). In this
situation, instead of spiral waves lattice simulations lead to apparently clumps of activity. As shown
in Figure 4, this phenomenon does not stem from demographic noise since it is present even when
N is very large, as shown in Figure 4 (where N = 1024). Yet, due to their small size, these emerging
incoherent spatio-temporal structures are prone to be affected by demographic fluctuations and result
in being noisy. In regime (ii), the spiral waves’ wavelengths, λH (7) near the HB and λµ�µH (8) at low
mutation rate, are much larger than the inter-patch space and smaller than the domain size. Hence,
stable spiraling patterns fit within the lattice and are similar to those predicted by the PDEs (4), see
Figure 4 (bottom left). In regime (iii), the predicted λH and λµ�µH outgrow the lattice and the arms
of the resulting large spirals appear like planar waves, see Figure 4 (bottom right). Interestingly,
planar waves have been found in the model of Ref. [42] without mutations (µ = 0) at sufficiently high
pair-exchange rate.
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Figure 4. Typical snapshots of stochastic simulations of the model with (β, σ, ζ, µ) = (1, 1, 0.6, 0.01),
N = 1024 and L = 64 and different mobility rates after a time t = 200. The mobility rate and predicted
wavelength are from left to right: (δ, λ) = (0.000625, 1) and (δ, λ) = (0.005625, 3) in the top row, and
(δ, λ) = (0.64, L/2) and (δ, λ) = (1.44, 3L/4) in the bottom row, see text. Adapted from [47].

In order to estimate the boundaries between these regimes, we can use the relations (7) and (8)
in the BS phase. According to those, λ = κ

√
δ/ε, where κ = 2π/

√
1− R2(c) is a constant such

15.7 . κ . 28.1. Hence, the regime (i) corresponds to low mobility rates of order δ ∼ o(ε2); in regime
(ii) we have ε2 � δ . (Lε/κ)2 (intermediate mobility rate); while in regime (iii) δ & (Lε/κ)2 (high
mobility rate), as summarized in the following table where we have also included the corresponding
diffusion coefficient D = δ/L2 on a domain of unit size (S = 1):

Table 1. Spatio-temporal patterns emerging in three different regimes, at low (i), intermediate (ii) and
high (iii) mobility rate.

Wavelength λ Mobility Rate δ Diffusion Coefficient D (S = 1) Patterns on Grid

λ ∼ O(1) δ ∼ o(ε2) D ∼ o((ε/L)2) Clumps of activity
1� λ . L ε2 � δ . (Lε/κ)2 (ε/L)2 � D . (ε/κ)2 Stable spirals

λ & L δ & (Lε/κ)2 D & (ε/κ)2 Planar waves

This means that stable spirals of wavelength given by (7) or (8) can be observed in the BS phase in
the range of mobility rate ε2 � δ . (Lε/κ)2 that grows with L. Hence, when L is sufficiently large
lattice simulations will lead to the formation of stable spiral waves almost for any finite mobility rate.
However, as the size of plates used in most microbial experiments rarely exceeds L = 100 [6], it is
interesting to consider the case where L is not too large. In particular, when the ratio L/κ = O(1), the
range ε2 � δ . (Lε/κ)2 is finite and spiral waves outgrow the lattice even for a finite mobility rate
δ & (Lε/κ)2. For instance, in Figure 4, we have L = 64 and (β, σ, ζ, µ, δ, N, L) = (1, 1, 0.6, 0.01, 1024)
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which yields ε ≈ 0.3, c ≈ 1.0, R2 ≈ 0.9 [45,47], and Lε/κ ≈ 0.92. In this example, with (7) and (8)
we find λ(δ = 0.64) = L/2 and λ(δ = 1.44) = 3L/4. According to the above discussion we expect
to find visible spiral waves for δ = 0.64 and patterns resembling planar waves when δ = 1.44 which
is confirmed by the bottom row of Figure 4. For the example of Figure 4, the PDEs (4) predict the
formation of small spiral waves of wavelength λ = 1 and λ = 3 for δ = 0.000625 and δ = 0.005625
respectively, which result in the noisy clumps of activities on the lattice of the top panel of Figure 4.

4.2. Far-Field Breakup of Spiral Waves under Weak Pair-Exchange Rate

Variants of the two-dimensional RPS model (1)–(3) without mutation (µ = 0) have received
significant interest and many authors have studied under which circumstances the dynamics leads
to the formation of stable spiraling patterns, see, e.g., [24–26,28,30,32,35–38,41]. In Refs. [24–26],
where only the dominance-removal was considered, it was found that the cyclically competing
populations moving under pair-exchange always form persisting spiraling patterns under a critical
mobility threshold whereas no such coherent patterns were found in a similar system where the cyclic
competition was implemented according to the dominance-replacement process, see, e.g., [28,31,37].
By means of an approximate mapping onto a CGLE, the authors of Ref. [28] concluded that while
the model with dominance-removal (σ > 0, ζ = 0) can sustain spiral waves, this is not the case of
models with dominance-replacement (σ = 0, ζ > 0). In Ref. [41], it is found that the combination
dominance-removal and dominance-replacement processes can lead to stable spiraling patterns as well
as to convectively unstable spiral waves. This picture was complemented and unified in our recent
work [43,45–47] where these questions were considered in the presence/absence of a small mutation
rate and nonlinear mobility (pair-exchange and hopping processes were divorced). In particular, we
showed that when the mutation rate is low or vanishes, nonlinear mobility alters the stability of the
spiral waves and is responsible for their far-field breakup.

In this section we report that a similar intriguing phenomenon also occurs in the case where the
mobility of the individuals is implemented by the simple nearest-neighbor pair-exchange (3) which
result in linear diffusive terms in the corresponding PDEs (4). To characterize this novel phenomenon
we have implemented the cyclic dominance by considering only dominance-removal, i.e., we have
set σ = β = 1 and ζ = µ = 0, and let the pair-exchange rate δ vary. This variant of the model is
therefore the metapopulation version (here N = 1024) of the model considered, e.g., in [24–26,28]
(where N = 1). Based on these previous works, see, e.g., [24–26,28,43,45], we would anticipate that the
dynamics of such a variant of the model would be characterized by the formation of stable spiral waves.
As shown in Figure 5 (top, left), this is indeed the case when the pair-exchange is sufficiently high
(δ = 0.4). However, when δ is lowered the spiral waves become far–field unstable, see Figure 5, after the
shortening of their wavelength according to the scaling λ ∼

√
δ. Hence, as the wavelength is reduced

under low mobility, it appears that the core of the spirals can sustain its arms only for a few rounds
before a convective instability starts growing, very much like in the EI phase, and eventually cause the
far-field breakup of the spiral waves. While the detailed mechanism of this far-field breakup has still
to be elucidated, we believe that it stems from the nonlinear nature of the problem since demographic
noise is not at its origin (for N = 1024 fluctuations are here negligible). We also think that a spiral
far-field breakup always arises when ζ ≈ 0 and µ = 0, but depending on the mobility rate δ it occurs
outside the lattice (high mobility rate) or within the grid (low mobility rate). In fact, a careful analysis
of the PDEs (4) explains this phenomenon of far-field breakup with µ = 0: For fixed σ > 0, spiral
waves exhibit far-field breakup when ζ & σ/2 or when ζ is close to zero. However, this analysis is
beyond the scope of this paper and will be given elsewhere [63].
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Figure 5. (Color online). Typical snapshots of stochastic lattice simulations of the model with
(β, σ, ζ, µ) = (1, 1, 0, 0), N = 256 and L = 512 and different mobility after a time t = 800. In each panel,
the initial condition (geometrically ordered and partially visible in the bottom right panel) is the same.
The mobility rate is from left to right: δ = 0.4 and δ = 0.2 in the top row, and δ = 0.1 and δ = 0.05 in
the bottom row. Adapted from [47].

5. Summary and Conclusions

We have studied the influence of a simple form of mobility, modeled by a pair-exchange between
nearest neighbors, on the spatio–temporal patterns emerging in the generic two-dimensional model
of [43,45] for the cyclic rock-paper-scissors competition between three species. The underlying
evolutionary processes are cyclic dominance–removal and cyclic dominance–replacement interactions,
reproduction, migration (pair-exchange), and mutation. While various properties of this system,
formulated as a metapopulation model, were investigated in [43,45] by combining multiscale and
size expansions with numerical simulations, here we have analyzed the influence of the simple
pair-exchange process on the properties of the spiraling patterns characterizing the dynamics of
this system.

First, we have highlighted resolution issues that arise on finite lattices: While the description of
the dynamics in terms of the underlying partial differential equations predict the formation of spiraling
patterns in the so-called “bound-state phase”, spiral waves may simply be elusive in the simulations
on a finite lattice if the mobility rate is too low. More precisely, when the size of the lattice is finite
and comparable to the size of experimental plates, we show that well-defined spiral waves can be
observed only when the mobility rate is within a finite range: When the mobility rate is too low, the
PDEs predict the emergence of spiral waves of wavelength of order of the lattice spacing which cannot
be resolved, whereas when the mobility rate is sufficiently high the resulting spiraling patterns have a
wavelength of the order of the lattice size and appear like planar waves. Spiral waves can be observed
in lattice simulations when the mobility rate is between these two values. In fact, building on the
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analysis carried out in Refs. [43,45] in terms of the system’s complex Ginzburg-Landau equation, we
have estimated the critical value of the mobility rate. While the range within which spiral waves in
bound-state phase grows with the size of the system, we have found that such a range may be finite
and therefore spiraling patterns too small to be resolved and observable on lattices of a size comparable
to the plates used in most experiments (96-well plates, see, e.g., [8]). We believe that these “resolution
issues” may therefore be particularly relevant when one tries to interpret experimental results and can
explain why spiral waves appear to be elusive in microbial experiments as those of [6,8].

Second, we have focused on the version of the model with cyclic dominance–removal and without
mutations that has received significant attention in the recent years, see, e.g., [24–26]. While previous
works reported that in this case the underlying rock-paper-scissors dynamics (with ζ = µ = 0) leads to
well-defined spiraling patterns, here we show that spiraling patterns become convectively unstable
and that a far-field breakup occurs when the mobility rate is lowered (with the other rates kept
constant). We have verified that the mechanism underlying this phenomenon does not originate from
demographic fluctuations and refer to the future work for a detailed analysis of its mechanism in terms
of the system’s partial differential equations [63].

While we have specifically discussed the biologically-relevant case of the two-dimensional
metapopulation model, this analysis can be readily extended to one-dimensional and three-dimensional
lattices on which we would respectively expect traveling and scroll waves instead of spiral waves.
It would also be interesting to study whether similar phenomena would arise to the oscillating patterns
characterizing some RPS games on small-world networks [64–66].
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