
Zhang, Chao et al.

Article

Keeping pace with criminals: An extended study of
designing patrol allocation against adaptive opportunistic
criminals

Games

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Zhang, Chao et al. (2016) : Keeping pace with criminals: An extended study of
designing patrol allocation against adaptive opportunistic criminals, Games, ISSN 2073-4336, MDPI,
Basel, Vol. 7, Iss. 3, pp. 1-27,
https://doi.org/10.3390/g7030015

This Version is available at:
https://hdl.handle.net/10419/167977

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/g7030015%0A
https://hdl.handle.net/10419/167977
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


games

Article

Keeping Pace with Criminals: An Extended Study of
Designing Patrol Allocation against Adaptive
Opportunistic Criminals

Chao Zhang 1,*, Shahrzad Gholami 1, Debarun Kar 1, Arunesh Sinha 1, Manish Jain 2,
Ripple Goyal 2 and Milind Tambe 1

1 Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA;
sgholami@usc.edu (S.G.); dkar@usc.edu (D.K.); aruneshsinha@gmail.com (A.S.); tambe@usc.edu (M.T.)

2 Armorway. Inc., Los Angeles, CA 90291, USA; manish@armorway.com (M.J.); ripple@armorway.com (R.G.)
* Correspondence: zhan661@usc.edu; Tel.: +1-213-880-8925

Academic Editors: Karl Tuyls and Simon Parsons
Received: 13 March 2016; Accepted: 19 June 2016; Published: 27 June 2016

Abstract: Game theoretic approaches have recently been used to model the deterrence effect of patrol
officers’ assignments on opportunistic crimes in urban areas. One major challenge in this domain is
modeling the behavior of opportunistic criminals. Compared to strategic attackers (such as terrorists)
who execute a well-laid out plan, opportunistic criminals are less strategic in planning attacks and
more flexible in executing well-laid plans based on their knowledge of patrol officers’ assignments.
In this paper, we aim to design an optimal police patrolling strategy against opportunistic criminals
in urban areas. Our approach is comprised by two major parts: learning a model of the opportunistic
criminal (and how he or she responds to patrols) and then planning optimal patrols against this
learned model. The planning part, by using information about how criminals responds to patrols,
takes into account the strategic game interaction between the police and criminals. In more detail,
first, we propose two categories of models for modeling opportunistic crimes. The first category
of models learns the relationship between defender strategy and crime distribution as a Markov
chain. The second category of models represents the interaction of criminals and patrol officers as a
Dynamic Bayesian Network (DBN) with the number of criminals as the unobserved hidden states.
To this end, we: (i) apply standard algorithms, such as Expectation Maximization (EM), to learn the
parameters of the DBN; (ii) modify the DBN representation that allows for a compact representation
of the model, resulting in better learning accuracy and the increased speed of learning of the EM
algorithm when used for the modified DBN. These modifications exploit the structure of the problem
and use independence assumptions to factorize the large joint probability distributions. Next, we
propose an iterative learning and planning mechanism that periodically updates the adversary model.
We demonstrate the efficiency of our learning algorithms by applying them to a real dataset of
criminal activity obtained from the police department of the University of Southern California (USC)
situated in Los Angeles, CA, USA. We project a significant reduction in crime rate using our planning
strategy as compared to the actual strategy deployed by the police department. We also demonstrate
the improvement in crime prevention in simulation when we use our iterative planning and learning
mechanism when compared to just learning once and planning. Finally, we introduce a web-based
software for recommending patrol strategies, which is currently deployed at USC. In the near future,
our learning and planning algorithm is planned to be integrated with this software. This work was
done in collaboration with the police department of USC.

Keywords: security games; optimization; game theory
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1. Introduction

Urban crime plagues every city across the world. A notable characteristic of urban crime,
distinct from organized terrorist attacks, is that most urban crimes are opportunistic in nature,
i.e., criminals do not plan their attacks in detail; rather, they seek opportunities for committing
crime and are agile in their execution of the crime [1,2]. In order to deter such crimes, police officers
conduct patrols in an attempt to prevent crime. However, by observing the actual presence of patrol
units, criminals can adapt their strategy by seeking crime opportunity in less effectively-patrolled
locations. The problem of where and how much to patrol is, therefore, important.

Previously, two broad approaches have been used to attempt to solve this problem. The first
approach is to manually determine patrol schedules through use of human planners. This approach is
used in various police departments, including the University of Southern California (USC). However, it
has been demonstrated in other related scenarios, such as the protection of airport terminals [3]
and ships in ports [4], that manually planning patrols is not only time consuming, but is also
highly ineffective. The second approach is to use automated planners to plan patrols against urban
crime. This approach has either focused on modeling the criminal explicitly [1,2] (rational, bounded
rational, limited surveillance, etc.) in a game model or learning the adversary behavior using machine
learning [5]. However, the proposed mathematical models of criminal behavior have not been validated
with real data. Furthermore, prior machine learning approaches have only focused on the adversary
actions, ignoring their adaptation to the defenders’ actions [5].

Hence, in this paper, we tackle the problem of generating patrol strategies against opportunistic
criminals. We propose the following novel approach: aim to progressively learn criminal behavior
using real data. We do so by using two approaches to model the interaction between the criminal
and patrol officers: the Markov chain model (MCM) and the Dynamic Bayesian Network (DBN) model
(DBNM). More specifically, MCM directly relates crime to observed data, such as past crime and
patrols. This model category follows concepts from prior literature; e.g., capturing crime phenomena,
such as “crime predicts crime”.

DBNM represents the interaction between the criminal and patrol officers as a Dynamic Bayesian
Network (DBN) with the number of criminals as the unknown (or latent) state. As far as we know,
we are the first to use a DBN model that considers the temporal interaction between defender and
adversary in the learning phase. Given a DBN model, we can use the well-known Expectation
Maximization (EM) algorithm to learn unknown parameters in the DBN from given learning data.
However, using EM with the basic DBN model has two drawbacks: (1) the number of unknown
parameters scales exponentially with the number of patrol areas and, in our case, is much larger than
the available data itself; this results in over-fitting; (2) EM cannot scale up due to the exponential growth
of runtime in the number of patrol areas. We demonstrate these two drawbacks both theoretically and
empirically. Therefore, we propose a sequence of modifications of the initial DBN model resulting in
a compact representation of the model. This leads to better learning accuracy and increased speed
of learning of the EM algorithm when used for the compact model. This sequence of modifications
involves marginalizing states in the DBN using approximation techniques from the Boyen–Koller
algorithm [6] and exploiting the structure of this problem. In the compact model, the parameters
scale polynomially with the number of patrol areas, and EM applied to this compact model runs in
polynomial time.

Our next contributions are two planning algorithms that enable computing the optimal officers’
strategy. First, we present a dynamic programming-based algorithm that computes the optimal plan in
our planning and updating process. While the dynamic programming approach is optimal, it may be
slow. Hence, we also present a fast, but sub-optimal greedy algorithm to solve the planning problem.
Further, the criminal’s behavior would change as he or she observes and reacts to the deployment
of a new strategy. Hence, the optimal strategy with respect to the learned behavior may not be
effective for a long time, as the adversary behavior may change. Thus, we propose to frequently update
our adversary model as we obtain new training data from a new deployment of defender strategy.
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By repeating the planning and updating process, we recommend a more effective officer strategy that
benefits from adaptation.

Next, as part of our collaboration with the police department of USC, we obtained criminal
activity and patrol data covering a range of three years. This collaboration not only helped us validate
our learning approach, but it also provided insights about the sequence of modifications that could
be made for Markov chain models, as well as the basic DBN model. In fact, we project a significant
reduction in crime rate using our approach as opposed to the current patrolling approach (see Section 6).
More broadly, by introducing a novel framework to reason about urban crimes along with efficient
learning and planning algorithms, we open the door to a new set of research challenges.

Finally, we build a web-based software that is a patrol schedule recommendation system.
In addition, our system collects and analyzes crime reports and resource (security camera, emergency
supplies, etc.) data, presenting them in various user-friendly forms. The software is currently deployed
for use by the USC police department around their Los Angeles, CA, campus. In future, there are plans
to incorporate our learning and planning approach with this software.

2. Related Work

We categorize the related work into five overarching areas. First, recent research has made
inroads in applying machine learning and data mining in the domain of criminology to analyze crime
patterns and support police in making decisions. A general framework for crime data mining is
introduced in [5]. In [7], data mining is used to model crime detection problems and cluster crime
patterns; in [8], data mining approaches are applied in criminal career analysis; in [9], the authors
apply machine learning techniques to soft forensic evidence and build decision support systems for
police. However, this area of research considers only crime data and does not model the interaction
between patrol officers and criminals.

The second line of work we compare with is Pursuit-Evasion Games (PEG). PEG models a
pursuer(s) attempting to capture an evader, often where their movement is based on a graph [10].
However, in common settings of pursuit evasion games, an evader’s goal is to avoid capture, not to
seek opportunities to commit crimes, while a pursuer’s goal is to capture the evader, not to deter the
criminal. Thus, common PEG settings are different from those associated with our work.

The third area of work we compare with is Stackelberg Security Games (SSG) [11], which model the
interaction between defender and attacker as a game, then recommend patrol strategies for defenders
against attackers. SSG has been successfully applied in security domains to generate randomized
patrol strategies, e.g., to protect flights [11], for counter-terrorism and fare evasion checks on trains [12].
While the early work on SSG assumed a perfectly rational attacker, recent work has focused on attackers
with bounded rationality and learning the parameters of the bounded rationality model using machine
learning methods, such as maximum-likelihood estimation. An example of this approach is the
PAWSmodel [13]. PAWS addresses the problem of learning poacher behavior within a game-theoretic
interaction between defenders and poachers. Recent research has also made progress in designing
patrol strategies against adversaries in graph settings [14]. In [15], patrol strategies against various
types of adversaries are designed.

However, including various extensions, security games include an explicit model of the adversary,
such as bounded rationality models and limited observation models. In general, in security games,
a lack of sufficient data makes learning models of defender adversary interactions challenging.
Distinct from these approaches, we do not model the adversary’s decision making explicitly; rather,
we learn the adversary interaction with the defender using real-world data. In our case, these are how
the adversary moves from one patrol area to another and his or her probability of committing a crime
given some patrol officers’ presence.

A fourth thread of recent research combines machine learning with game theory. In [16],
the defender’s optimal strategy is generated in an SSG by learning the payoffs of potential attackers
from their best responses to defender’s deployments. An inherent problem with such an approach
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is that the defender strategy is geared towards learning the adversary payoff and not exploiting the
improved knowledge of the adversary payoff as the game progresses.

The last area of work we compare with is on modeling opportunistic criminals. In [1], burglars’
movement is modeled as a random walk, and in [2], a more general model of opportunistic criminals
was proposed with algorithms for the optimal strategy against such criminals. Again, these papers
include explicit models of the criminals and lack real-world data to learn the interactions.

3. Motivating Example

3.1. Domain Description

The motivating example for this study is the problem of controlling crime on a university campus.
Our case study is about the American University, USC. USC has a Department of Public Safety (DPS)
that conducts regular patrols, similar to police patrols in urban settings. As part of our collaboration
with USC’s DPS, we have access to the crime report as well as patrol schedule on campus for three years
(2011 to 2013). USC is a large enough university that we can claim that our methods are applicable to
other campuses similar in size, for example malls.

USC’s campus map is divided into five patrol areas, which is shown in Figure 1. DPS patrols in
three shifts per day. Crime data are exclusively local, i.e., no crime happens across two patrol areas or
patrol shifts. At the beginning of each patrol shift, DPS assigns each available patrol officer to a patrol
area, and the officer patrols this area in this shift. At the same time, the criminal is seeking for crime
opportunities by deciding which target they want to visit. Discussions with DPS reveal that criminals
act opportunistically, i.e., crime is not planned in detail, but occurs when an opportunity arises and
there is insufficient presence of DPS officers.

B

A

C

E

D

Figure 1. Campus map.

There are two reports that DPS shared with us. The first is about criminal activity that includes
the details of each reported crime during the last three years, including the type of crime and the
location and time information about the crime. We show a snapshot of these data in Figure 2a. In this
paper, we do not distinguish between the different types of crime, and hence, we consider only the
number of crimes in each patrol area during each shift. Therefore, we summarize the three-year crime
report into 365× 3× 3 = 3285 crime data points, one for each of the eight-hour patrol shift. Each crime
data point contains five crime numbers, one for each patrol area.

The second dataset contains the DPS patrol allocation schedule. Every officer is allocated to
patrolling within one patrol area. We show a snapshot of these data in Figure 2b. We assume that
all patrol officers are homogeneous, i.e., each officer has the same effect on criminals’ behavior. As a
result, when generating a summary of officer patrol allocation data, we record only the number of
officers allocated to each patrol area in each shift.

Table 1 shows a sample of the summarized crime data, where the row corresponds to a shift, the
columns correspond to a patrol area and the numbers in each cell are the number of crimes. Table 2
shows a sample of the summarized officer patrol allocation data, where rows correspond to shifts,
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columns correspond to patrol areas and the numbers within a cell represent the number of patrol
officers present. For example, from Table 2, we know that in Shift 1, the number of officers in area A is
two, while the number of officers in areas B, C, D and E is one; while from Table 1, we know that in
Shift 1, there was one crime each in areas A and B and two crimes each in C, D and E. However, we
do not know the number of criminals in any patrol area in any patrol shift. We call the patrol areas the
targets and each patrol shift a time step.

Table 1. Crime data for 3 shifts.

Shift A B C D E

1 1 1 2 2 2
2 1 1 1 2 1
3 2 1 1 3 1

Table 2. Patrol data for 3 shifts.

Shift A B C D E

1 2 1 1 1 1
2 1 1 2 2 2
3 2 1 1 3 1

(a) Sample crime report (b) Small patrol schedule for one shift

Figure 2. Sample data for (a) crime and (b) patrol respectively.

3.2. Problem Statement

Given data such as the real-world data from USC, our goal is to build a general learning and
planning framework that can be used to design optimal defender patrol allocations in any comparable
urban crime setting. In the first cut, we model the learning problem as a Markov chain. Next, we use a
DBN to model criminals’ behavior and also present a compact form of DBN that leads to improved
prediction. The DBN approach yields better results than the Markov chain approach. Finally, we
present methods to find the optimal defender plan for the learned model with the frequent update of
the criminal model.

4. Learning Model

As stated earlier, we propose two approaches to learn the interaction between criminals and
defenders: MCM and DBNM, which we explain in detail in the next two sub-sections. Both approaches
are Markov process, but the first approach MCM learns the crime distribution using only observed
data, while DBNM uses the number of criminals as an unobserved (hidden or latent) state. As a
consequence, the learning algorithm for MCM uses simple maximum likelihood estimation, while
DBNM uses the expectation maximization.
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4.1. Markov Chain Models (MCM)

The models presented can be divided into three sub-categories: (1) crime as a function of crime
history; (2) crime as a function of defender allocation; and (3) crime as a function of crime history
and defender allocation jointly. One motivation for this classification is to figure out the correlation
between previous-time crime and previous or current-time defenders in the targets and to find out if
the presence of patrol officers affects the pattern of crime or not. We discuss these modeling approaches
in the following sub-sections.

4.1.1. Crime Predicts Crime

In the first model shown in Figure 3a, we investigate the prediction of crime based on the crime
distribution at the previous time step at the same target. This correlation is suggested based on the
“crime predicts crime” ideas introduced in the criminology literature [17]. The desired correlation can
be defined with the following mathematical function for all targets n: Yn,t+1 = f (Yn,t).

(a) M1 (b) M2 (c) M3 (d) M4 (e) M5 (f) M6 (g) M7 (h) M8 (i) M9

Figure 3. Markov chain model (MCM) structures.

To define and formalize the correlation and a pattern for crime prediction from history, we define
a transition matrix, A, that represents how crime occurrences change from one time step to the next one
and apply maximum likelihood estimation to obtain it. In particular, A(Yn,t, Yn,t−1) = P(Yn,t|Yn,t−1).

For this model, the probability for a sequence of events, i.e., Yn, which refers to number of crimes
over a sequence of time steps, can be calculated as follows:

P(Yn; A) = P(Yn,t, ..., Yn,0; A) = ∏
1≤t≤T

P(Yn,t|Yn,t−1; A) = ∏
1≤t≤T

A(Yn,t, Yn,t−1) (1)

In the above equations, n indicates the target number, and A is the parameter to be estimated.
The log likelihood for the above model for target i can be written as the following:

l(A) = log P(Yn; A) =
|SY |

∑
i=1

|SY |

∑
j=1

T

∑
t=1

1{Yn,t = Si ∧Yn,t−1 = Sj} log Aij (2)

where Si and Sj indicate different values that Y can take and SY indicates the total possible number of
values that Y can take; one is the indicator function. As previously mentioned, in our case, we made a
binary assumption for variables, so they can take values of zero and one. The optimization problem
for maximizing the log-likelihood is:

max
A

l(A) subject to
|SY |

∑
i=1

Ai,j = 1 for j = 1...|SY|, Aij ≥ 0 for i, j = 1...|SY| (3)

The above optimization can be solved in closed form using the method of Lagrangian multipliers
to obtain:

Âij =
∑T

t=1 1{Yt = Si ∧Yt−1 = Sj}
∑T

t=1 1{Yt−1 = Sj}
(4)
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For each target, we find a similar transition matrix. For all other models in this section, the same
procedure for deriving the transition matrix is used. The model shown in Figure 3b includes the
number of crimes at all other targets. This approach can be described with the following mathematical
function: Yn,t+1 = f (Y1:n,t).

4.1.2. Defender Allocation Predicts Crime

In the second approach, we study the prediction of the crime based on the defender allocation.
Four cases are studied: in Figure 3c, Yn,t+1 = f (Dn,t+1), which means the effect of the defender
at the same target and time step is considered; in Figure 3d, Yn,t+1 = f (Dn,t), which means the
defender allocation at the previous step is considered; in Figure 3e, Yn,t+1 = f (Dn,t, Dn,t+1), which
means the defender allocation in both the current and previous time step is considered; in Figure 3f,
Yn,t+1 = f (D1:n,t, Dn,t+1), meaning the defender allocation at all other targets from the previous time
step and the defender allocation from the current time is considered. The same procedure as the
previous subsection is used to find the transition matrix for the above models.

4.1.3. Crime and Defender Allocation Predicts Crime

In this sub-section, we study the effect of crime and defender distribution jointly and investigate
whether this combination improves the prediction. In Figure 3g, Yn,t+1 = f (Dn,t+1, Yn,t), which
means that the distribution of the crime at the previous step and the defender allocation at the
current step is considered; in Figure 3h, Yn,t+1 = f (Dn,t, Yn,t); this has a similar structure as the
previous one, except that it considers the defender allocation at the previous time step; in Figure 3i,
Yn,t+1 = f (Dn,t, Dn,t+1, Yn,t), that is the crime at that specific target is considered in addition to the
defender allocation at the previous and current step.

4.2. Dynamic Bayesian Network Models (DBNM)

The second approach is based on the Dynamic Bayesian Network (DBN) model. A DBN is
proposed in order to learn the criminals’ behavior, i.e., how the criminals pick targets and how likely
are they to commit a crime at that target. This behavior is in part affected by the defenders’ patrol
allocation. In this section, we assume that criminals are homogeneous, i.e., all criminals behave in the
same manner.

In every time step of the DBN, we capture the following actions: the defender assigns patrol
officers to protect N patrol areas, and criminals react to the defenders’ allocation strategy by committing
crimes opportunistically. Across time steps, the criminal can move from any target to any other, since a
time step is long enough to allow such a move. From a game-theoretic perspective, the criminals’ payoff
is influenced by the attractiveness of targets and the number of officers that are present. These payoffs
drive the behavior of the criminals. However, rather than model the payoffs and potential bounded
rationality of the criminals, we directly learn the criminal behavior as modeled in the DBN.

The DBN is shown in Figure 4: squares are observed states, where N white squares represent
input states (number of defenders at each target) and N black squares represent output states (number
of crime at each target), while N circles (number of criminals at each target) are hidden states. For ease
of exposition, we use C to denote the largest value that any state can take. Next, we introduce the
various parameters of this DBN.
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Figure 4. The Dynamic Bayesian Network (DBN) for games.

4.2.1. DBN Parameters

First, we introduce parameters that measure the size of the problem:

• N: Total number of targets in the graph.
• T: Total time steps of the training data.

Next, we introduce random variables for the observed state (input defender distribution and
output crime distribution in our case) and the hidden state. We use three random variables to represent
the global state for defenders, criminals and crimes at all targets.

• dt: Defender’s allocation strategy at step t: the number of defenders at each target in step t with
CN possible values.

• xt: Criminals’ distribution at step t with CN possible values.
• yt: Crime distribution at step t with CN possible values.

Next, we introduce the unknown parameters that we wish to learn.

• π: Initial criminal distribution: probability distribution of x1.
• A (movement matrix): The matrix that decides how xt evolves over time. Formally,

A(dt, xt, xt+1) = P(xt+1|dt, xt). Given the CN values for each argument of A, representing A
requires CN × CN × CN parameters.

• B (crime matrix): The matrix that decides how criminals commit crime. Formally,
B(dt, xt, yt) = P(yt|dt, xt). Given the CN values for each argument of B, representing B requires
CN × CN × CN parameters.

Next, we introduce variables that are used in the EM algorithm itself. These variables stand for
specific probabilities as illustrated below. We use dj

i (yj
i) as shorthand for di, . . . , dj (yi, . . . , yj):

• Forward prob.: α(k, t) = P(yt
1, xt = k|dt

1).
• Backward prob.: β(k, t) = P(yT

t+1|xt = k, dT
t+1).

• Total prob.: γ: γ(k, t) = P(xt = k|yT
1 , dT

1 ).
• Two-step prob.: ξ(k, l, t) = P(xt = k, xt+1 = l|yT

1 , dT
1 ).

We can apply the EM algorithm to learn the unknown initial criminal distribution π,
movement matrix A and output matrix B. However, EM applied to the basic DBN model above
results in practical problems that we discuss in the next section.
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4.2.2. Expectation Maximization

EM is a class of algorithms for finding maximum likelihood estimation for unknown parameters in
DBN [18]. The EM algorithm has an initialization step, the Expectation (E) step and the Maximization
(M) step. The initialization step chooses initial estimates for unknown parameters (π, A, B). The E step
computes α, β, γ, ξ using these estimates. The M step updates the estimates of π, A, B using values of
α, β, γ, ξ from the E step. By iteratively performing the E and M steps, the EM algorithm converges
to a local maxima of the likelihood function for parameters in the DBN. The particular mathematical
equations used in E and M depends on the underlying model [19].

Initialization Step: In our problem scenario, the EM algorithm is used to learn π, A and B
from the given data for the observed states. The initial estimates of the variables should satisfy the
following condition:

∑
i

π̂(i) = 1, ∑
xt+1

Â(dt, xt, xt+1) = 1, ∑
yt

B̂(dt, xt, yt) = 1 (5)

As EM only converges to local optima, we employ the standard method of running the algorithm
with several randomly-chosen initial conditions in our experiments.

Expectation Step: In the expectation step, we calculate α, β, γ and ξ based on the current estimate
of π, A and B, given by π̂, Â and B̂.

As is standard in inference in DBNs, α(k, 1) is calculated in a recursive manner. Hence, we first
calculate forward probability at Step 1, α(k, 1), which is shown in Equation (6). Next, we iteratively
compute forward probability from Step 2 to T, which is shown in Equation (7). A similar technique
works for backward probability: first, we calculate backward probability at Step T, β(k, T), which
is shown in Equation (8). Then, we recursively calculate backward probability from Step T − 1 to 1,
which is in Equation (9).

α(k, 1) = P(y1, x1 = k|d1) = B̂(d1, k, Y1) · π̂(k) (6)

α(k, t) = P(y1, y2, ..., yt, xt = k|d1, d2, ..., dt)

= ∑
xt−1

α(xt−1, t− 1)Â(dt−1, xt−1, xt)B̂(dt, k, yt) (7)

β(k, T) = 1 (8)

β(k, t) = P(yt+1, yt+2, ..., yT |xt = k, dt, dt+1, ..., dT) =

∑
xt+1

β(xt+1, t + 1)B̂(dt+1, xt+1, yt+1)Â(dt, k, xt+1) (9)

Given the forward probability and the backward probability at each step, the total probability
γ is computed as shown in Equation (10), and the two-step probability ξ is computed as shown
in Equation (11).

γ(k, t) = P(xt = k|y, d) =
α(k, t) · β(k, t)

∑k α(k, t) · β(k, t)
(10)

ξ(k, l, t) = P(xt = k, xt+1 = l|y, d)

=
α(k, t) · A(dt, k, l) · β(l, t + 1) · B(dt+1, l, yt+1)

∑k α(k, t) · β(k, t)
(11)

Maximization Step: In the maximization step, the estimate of π, A and B is updated using the
probabilities we derive in the expectation step, as follows:
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π̂(k) = γ(k, 1) (12)

Â(d, k, l) =
∑t 1dt=dξ(k, l, t)

∑t ∑l 1dt=dξ(k, l, t)
(13)

B̂(d, x, y) =
∑t 1yt=y,dt=dγ(x, t)

∑t 1dt=dγ(x, t)
(14)

where 1dt=d is an indicator function: 1dt=d = 1 when dt = d and zero otherwise. 1yt=y,dt=d is also
defined similarly. As a result, the new estimate of A(d, k, l) is the ratio of the expected number of
transitions from k to l given defender vector d to the expected total number of transitions away from
k given defender vector d. The updated estimate of B(d, x, y) is the ratio of the expected number of
times the output of crimes equals to y, while the defender is d, the criminal is x to the total number of
situations where the defender is d and the criminal is x. To find a local optimal solution, the E and M
steps are repeated, until π̂, Â, B̂ do not change significantly any more.

In the EM algorithm, the size of movement matrix A is CN × CN × CN , and the size of crime
matrix B is also CN ×CN ×CN . The number of unknown variables is O(C3N). The exponentially many
parameters make the model complex and, hence, results in over-fitting given limited data. In addition,
the time complexity, as well as the space complexity of EM depend on the number of parameters; hence,
the problem scales exponentially with N. In practice, we can reduce C by categorizing the number of
defenders, criminals and crimes. For example, we can partition the number of defenders, criminals and
crimes into two categories each: the number of officers at each station is one (meaning ≤1) or
two (meaning ≥2); the number of criminals/crimes is zero (no criminal/crime) or one
(≥1 criminal/crime). However, the number of unknown parameters is still exponential in N. As
a concrete example, at USC, N = 5, and the number of unknown parameters are more than 32,768,
even when we set C = 2. As we have daily data for three years, which is 365× 3× 3 = 3285 data
points, the number of parameters is much more than the number of data points. Therefore, we aim to
reduce the number of parameters to avoid over-fitting and accelerate the computing process.

4.2.3. EM on the Compact Model

In this part, we modify the basic DBN model to reduce the number of parameters. In the
resultant compact model, the EM learning process runs faster and avoids over-fitting to the given data.
The improvement may be attributed to the well-established learning principle of Occam’s razor [20]
and our experimental results support our claims.

Compact model: We use three modifications to make our model compact. (1) We infer from the
available crime data that crimes are local, i.e., crime at a particular target depends only on the criminals
present at that target. Using this inference, we constructed a factored crime matrix B that eliminates
parameters that capture non-local crimes. (2) Next, we rely on intuition from the Boyen–Koller [6] (BK)
algorithm to decompose the joint distribution of criminals over all targets into a product of independent
distributions for each target. (3) Finally, our consultations with the DPS at USC and prior literature
on criminology [1] led us to conclude that opportunistic criminals by and large work independently.
Using this independence of behavior of each criminal (which is made precise in Lemma 1), we reduce
the size of the movement matrix. After these steps, the number of parameters is only O(N · C3).

Before describing these modifications in detail, we introduce some notations that aid in describing
the different quantities at each target: Yt = [Y1,t, Y2,t, ..., YN,t] is an N by one random vector indicating
the number of crimes Yi,t at each target i at step t. Dt is an N by one random vector indicating the
number of defenders Di,t at each target i at step t. Xt is an N by oen random vector indicating the
number of criminals Xi,t at each target i at step t.

Factored crime matrix: The number of crimes at one target at one step is only dependent on the
criminals and officers present at that target at that step. Therefore, we factor the crime matrix B to
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a matrix that has an additional dimension with N possible values, to represent how the criminals
and officers at one target decide the crime at that target. Therefore, instead of the original crime
matrix B of size CN × CN × CN , we have a factored crime matrix of size N × C × C × C. The first
dimension of the factored crime matrix represents the target; the second dimension represents the
number of defenders at this target; the third dimension represents the number of criminals; and the
fourth dimension represents the number of crimes. We still refer to this factored crime matrix as B,
where B(i, Di,t, Xi,t, Yi,t) = P(Yi,t|Di,t, Xi,t)

Marginalized hidden state: The BK algorithm presents an approximation method by keeping
the marginals of the distribution over hidden states, instead of the full joint distribution. Following the
BK intuition, we marginalize the hidden state, i.e., instead of considering the full joint probability of
criminals at all targets (with CN possible values), we consider a factored joint probability that is a
product of the marginal probability of the number of criminals at each target.

In the unmodified DBN, the distribution over all of the states at step t, P(xt) is a CN by one vector.
Additionally, the size of movement matrix A, which is the transition matrix from all of the input
and hidden state combinations at the current step to the state at next step, is CN × CN × CN .
After marginalization, the marginals for each target i in the hidden state are P(Xi = k, t), which
is a vector of size C. After we marginalize the hidden states, we only need to keep N marginals at each
step, i.e., consider only N parameters. At each step, we can recover the distribution of the full state
by multiplying the marginals at this step. Then, we get the marginals at the next step by evolving
the recovered joint distribution of the state at the current step. Therefore, A can be expressed as a
CN × CN × N × C matrix, where A(dt, xt, i, Xi,t+1) = P(Xi,t+1|dt, xt).

Pairwise movement matrix Am: Even with the marginalized hidden state, we still need to recover
the distribution of the full state in order to propagate to next step. Therefore, the movement matrix
size is still exponential with CN × CN × N × C. In order to further reduce the number of unknown
parameters and accelerate the computing process, we use the properties of opportunistic criminals.
Based on the crime reports and our discussion with DPS at USC, unlike organized terrorist attacks, the
crimes on campus are committed by individual opportunistic criminals who only observe the number
of defenders at the target they are currently at and do not communicate with each other. Therefore, at
the current step, the criminals at each target independently decide the next target to go to, based on
their target-specific observation of the number of defenders.

Based on the above observation, we can decompose the probability P(Xi,t+1 = 0|Dt, Xt) into a
product of probabilities per target m. Denote by Xm→i

t+1 the random variable that counts the number
of criminals moving from target m to target i in the transition from time t to t + 1. Lemma 1 proves
that we can represent P(Xi,t+1 = 0|Dt, Xt) as a product of probabilities P(Xm→i

t+1 = 0) for each m.
P(Xm→i

t+1 = 0) is a function of Dm,t, Xm,t.

Lemma 1. (Independence of behavior) For a N target learning problem, given the number of defenders
at each location Dt = [D1,t, ..., DN,t] and the number of criminals Xt = [X1,t, ..., XN,t], the probability
P(Xi,t+1 = 0|Dt, Xt) of the number of criminal being zero at location i at step t+ 1 is given by ∏N

j=1 P(X j→i
t+1 =

0).

Proof 1. Note that we must have Xm→i
t+1 ≥ 0. We have the total number of criminals at target i at

time step t + 1 as Xi,t+1 = ∑m Xm→i
t+1 , i.e, the number of criminals at target i at step t + 1 is the sum of

criminals that move from each target to target i. Clearly Xi,t+1 = 0 iff XDm,t ,Xm,t
i,t+1 = 0. Therefore, we have

P(Xi,t+1 = 0|Dt, Xt) = P(X1→i
t+1 = 0, . . . , XN→i

t+1 = 0). Since the criminals’ decisions at each target are
independent, we have P(X1→i

t+1 = 0, ..., XN→i
t+1 = 0) = ∏N

m=1 P(Xm→i
t+1 = 0). �

When C = 2 and Xi,t ∈ {1, 2}, we can construct the whole movement matrix A using P(Xm→i
t+1 = 0)

(pairwise transition probabilities) by utilizing the fact that P(Xi,t+1 = 1|Dt, Xt) = 1− P(Xi,t+1 = 0|Dt, Xt).
Therefore, instead of keeping A, we keep a transition matrix Am where Am(i, Di,t, Xi,t, j, Xj,t+1) = P(Xi→j

t+1).
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The number of parameters in Am is N× 2× 2× N = 4N2. We do not consider the range of Xj,t+1,
because we only need one parameter to store the two cases of Xj,t+1 = 1 and Xj,t+1 = 0 since
Am(i, Di,t, Xi,t, j, Xj,t+1 = 1) = 1− Am(i, Di,t, Xi,t, j, Xj,t+1 = 0). When C > 2, the number of variables
in Am are C2(C− 1)N2; we can extend Lemma 1 to any number of criminals at the next step using the
concept of permutations; e.g., if there is one criminal at the next step, this means that there is only one
station m where Xm→i

t+1 = 1, and for all other stations, n 6= m, Xn→i
t+1 = 0. One simple example is when

Xi,t ∈ {0, 1, 2}; we can apply Lemma 1 to derive:

P(Xi,t+1 = 0|Dt, Xt) = ∏N
j=1 P(Xi,t+1 = 0|Dj,t, Xj,t)

P(Xi,t+1 = 1|Dt, Xt) = ∑N
j=1[P(Xi,t+1 = 1|Dj,t, Xj,t)

∏N
k=1,k 6=j P(Xi,t+1 = 0|Dk,t, Xk,t)]

P(Xi,t+1 = 2|Dt, Xt) = 1− P(Xi,t+1 = 0|Dt, Xt)

−P(Xi,t+1 = 1|Dt, Xt)

4.2.4. EMC2 Procedure

The EM on CompaCtmodel (EMC2) procedure applies the EM algorithm to the compact
DBN model. To learn the initial distribution πk,i = P(Xi,1 = k), matrix Am and matrix B,
we first generate initial estimates of these parameters that satisfy the condition ∑k π̂(k, i) = 1,
∑Xj,t+1

Âm(i, Di,t, Xi,t, j, Xj,t+1) = 1 and ∑Yi,t
B̂(i, Di,t, Xi,t, Yi,t) = 1.

Next, we define the intermediate variables used in the EM algorithm. These differ from the earlier
application of EM because of our changed model. We use the shorthand Yj

i to denote Yi, ..., Yj and Dj
i to

denote Di, ..., Dj:

• Forward prob.: α(i, k, t) = P(Yt
1, Xi,t = k|Dt

1).
• Backward prob.: β(i, k, t) = P(YT

t+1|Xi,t = k, DT
t ).

• Total prob.: γ(i, k, t) = P(Y, Xi,t = k|DT
1 ).

• Two-step prob.: ξ(i, k, j, l, t) =. P(Xi,t = k, Xj,t+1 = l|YT
1 , DT

1 ).

Next, the E and M steps are used with random restarts to learn the values of π, Am and B.
While the equations used in the E and M steps can be derived following standard EM techniques,
we illustrate a novel application of the distributive law for multiplication in the E step that enables
us to go from exponential time complexity to polynomial (in N) time complexity. Without going
into the details of the algebra in the E step, we just focus on the part of the E step that requires
computing P(Yt−1

1 , Xi,t = 0|Dt
1).

The following can be written from total law of probability:

P(Yt−1
1 , Xi,t = 0|Dt

1)

= ∑
Xt−1

P(Yt−1
1 , Xi,t = 0, Xt−1|Dt

1)

= ∑
Xt−1

P(Yt−1
1 |Dt

1, Xi,t = 0, Xt−1)P(Xi,t = 0|Dt
1, Xt−1)P(Xt−1|Dt

1) (15)

The above can be simplified using the Markovian assumptions of the DBN to the following:

∑
Xt−1

P(Yt−1
1 |Dt

1, Xt−1)P(Xi,t = 0|Dt−1, Xt−1)P(Xt−1|Dt
1) (16)

The first and third term can be combined (Bayes theorem) to obtain:

∑
Xt−1

P(Yt−1
1 , Xt−1|Dt

1)P(Xi,t = 0|Dt−1, Xt−1) (17)
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Using the Boyen–Koller assumption in our compact model, we get:

P(Yt−1
1 , Xt−1|Dt

1) = ∏
j

P(Yt−1
1 , Xj,t−1|Dt

1) (18)

Furthermore, using Lemma 1, we get:

P(Xi,t = 0|Dt−1, Xt−1) = ∏
j

P(Xj→i
t = 0) (19)

Thus, using these, we can claim that P(Yt−1
1 , Xi,t = 0|Dt) is:

∑
Xt−1

∏
j

P(Yt−1
1 , Xj,t−1|Dt

1)P(X
j→i
t = 0) (20)

Since the range of Xt−1 is CN, naively computing the above involves summing CN terms,
thus implying a time complexity of O(CN). The main observation that enables polynomial time
complexity is that we can apply the principles of the generalized distributive law [21] to reduce the
computation above. As an example, the three summations and four multiplication in ab + ac + bc + bd
can be reduced to two summations and one multiplication by expressing it as (a + b)(c + d). Using the
distributive law, we reduce the computation for P(Yt−1

1 , Xi,t = 0|Dt
1) by switching the sum and product:

∏
j

∑
Xj,t−1

P(Yt−1
1 , Xj,t−1|Dt

1)P(X
j→i
t = 0) (21)

The complexity of computing the above is O(NC). Applying this idea, we can calculate α, β, γ

and ξ from the estimated value of π̂, Âm and B̂ in the expectation step in time polynomial in N.
For the maximization step, we update the estimate of π, Am and B using the probabilities we

derive in the expectation step. The procedure is the same as Equations (7) to (9). In the following part,
we provide the detail of EMC2 procedure.

Initialization step: Set random initial conditions for criminal distribution π, transition matrix A
and output matrix B. See Appendix A for an example of one such initialization.

Expectation step: The main idea of the expectation step is to calculate the forward probability α

and backward probability β based on the estimation of π, A and B. This is explained below.
Step 1: Iteratively calculating forward probability
First, we calculate the forward probability at Step 1 (α(i, k, 1)) as:

α(i, k, 1) = P(Y1, Xi,1 = k|D1) = P(Yi,1, Xi,1 = k|Di,1)

= P(Yi,1|Xi,1 = k, Di,1) · P(Xi,1 = k|Di,1) = B(i, Di,1, k, Yi,1) ·π(k, i)

Then, we iteratively calculate the forward probability from Step 2 to T denoted as α(i, k, t).
We then apply dynamic programming to go one step forward. In order to do this, we use
P(Y1, Y2, ..., Yt−1, Xi,t|D1, D2, ..., Dt−1) as an intermediate variable. Details are in the Appendix A.

Step 2: Iteratively calculating backward probability
First, we calculate backward probability at step T(β(i, k, T)) as follows:

β(i, k, T) = 1

Then, we iteratively calculate the backward probability at each time step t (β(i, k, t)) from Step T-1
to 1. Detailed calculations are provided in Appendix A.

Step 3: Calculating total probability γ

The total probability γ(i, k, t) is then calculated. Detailed calculations are shown in the Appendix.
Step 4: Calculating two-step probability ξ
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Finally, we calculate the two-step probability ξ. We show the detailed calculations in the Appendix.
Maximization step: The main idea of the maximization step is to update the new estimation of π,

transition matrix A and output matrix B based on new-calculated forward/backward probability α

and β.
Step 1: Update the initial state distribution:

π(k, i) = γ(i, k, 1) (22)

by definition, π is γ at Step 1, which is the expected frequency of value k at Time 1.
Step 2: Update output matrix B:

B(i, di,t, xi,t, yi,t) =
∑t 1Yi,t=yi,t,Di,t=di,t

γ(i, xi,t, t)

∑t 1Di,t=di,t
γ(i, xi,t, t)

(23)

1Yi,t=yi,t,Di,t=di,t
=

{
1, Yi,t = yi,t, Di,t = di,t

0, otherwise

1Di,t=di,t
=

{
1, Di,t = di,t

0, otherwise

where 1Yi,t=yi,t,Di,t=di,t
is an indicator function and B(i, d, x, y) is the expected number of times the output

of crimes has been equal to y while the defender is d and the criminal is k over the expected total
number of times at target i.

Step 3: Update transition matrix A:

A(m, dm,t, xm,t, i, xi,t+1) =
∑t 1Dt=dt ξ(m, dm,t, xm,t, i, xi,t+1))

∑t ∑xi,t+1
1Dt=dt ξ(m, dm,t, xm,t, i, xi,t+1))

(24)

which is the expected number of transitions from xt to k given defender vector dt compared to the
expected total number of transitions away from xt given defender vector dt.

Repeat: Repeat the expectation step and the maximization step, which is π, A, B→ α, β, γ, ξ →
π, A, B, until π, A, B do not change anymore. This means we reach the local optimal solution.

Computational complexity analysis: EM on basic model: In the basic model, the time complexity
of the E step is O(C2NT). The time complexity for the M step is also O(C2NT). Thus, the computational
complexity for the EM algorithm is O(C2NT); EMC2 procedure: In the EMC2 procedure, the time
complexity for the E step is O(NC+1T). α and β in Equations 11 and 13 are O(NC). Since we have
to compute α(i, k, t) and β(i, k, t) for all i ∈ N, k = 1, 2 and t ∈ T, the computational complexity for
forward and backward probability is O(NC+1T). For Equation (14), the complexity is O(1), and the
complexity for γ is O(NT). For Equation (15), the complexity is O(N), and the complexity for ξ is
O(NC+1T). The total complexity for the E step is O(NC+1T + NT + NC+1T) = O(NC+1T). The time
complexity for the M step is O((C · N)2T). Thus, the computational complexity for the EM algorithm
is O(NC+1T + (C · N)2T). Therefore, the EMC2 procedure runs much faster than the EM in the basic
model when C is small.

5. Dynamic Planning

The next step after learning the criminals’ behavior is to design effective officer allocation strategies
against such criminals. In this section, we first introduce a simple online planning mechanism, in which
we iteratively update the criminals’ behavior model and plan allocation strategies. Next, we present a
slower optimal planning algorithm and a faster, but sub-optimal greedy algorithm.

Online planning mechanism: We first state our template for iterative learning and planning
before describing the planning algorithms. The criminal behavior may change when the criminal
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observes and figures out that the defender strategy has changed. Thus, the optimal strategy planned
using the learned parameters is no longer optimal after some time of deployment of this strategy,
as the parameters themselves change in response to the deployed strategy.

To address the problem above, we propose an online planning mechanism. In this mechanism, we
update the criminal’s model based on real-time crime/patrol data and dynamically plan our allocation
strategy. The first step is to use the initial training set to learn an initial model. Next, we use a planning
algorithm to generate a strategy for the next Tu steps. After executing this strategy, we can collect
more crime data and use them to update the model with the original training data. By iteratively
doing this, we generate strategies for the whole horizon of T steps. Algorithm 1 presents the details of
this mechanism.

Algorithm 1 Online planning (Train_data, Tu, T).

1: A, B, π← Learn(Train_data)
2: t = 0
3: while t < T do
4: [D1, ..., DTu ]← Plan(A, B, π)
5: [Y1, ..., YTu ]← Execute{D1, ..., DTu}
6: Train_data← Train_data∪ {D1, Y1, ..., DTu , YTu}
7: A, B, π← Update(Train_data, A, B, π)
8: t = t + Tu
9: end while

Compared to simply applying the planning algorithm for T steps, our online planning
mechanism updates the criminals’ behavior model periodically based on their response to the
currently-deployed strategy. In this online planning mechanism, three parts are needed: learning
algorithm, updating algorithm and planning algorithm. For the learning and updating algorithms, we
apply the EMC2 learning algorithm from Section 5. In addition, we also need a planning algorithm,
which we discuss next.

5.1. Planning Algorithms

5.1.1. The Planning Problem

In the planning problem, the criminals’ behavior is known or, more specifically, we already know
the criminals’ initial distribution π, movement matrix A and crime matrix B in the DBN model. Given
a pure defender patrol allocation strategy for Tu steps, we can plug those values for the input state
into the DBN and get the expected number of crimes in Tu steps. The goal of planning is to find the
defenders’ pure strategy that optimizes the defenders’ utility, which in our case is to minimize the total
expected number of crimes (in our framing, any randomized strategy, which is the combination of
pure strategies, results in a greater number of crimes than the optimal pure strategy). Thus, planning
against opportunistic criminals is a search problem in the defender’s pure strategy space. First, we
present the practical impossibility of a brute force search.

5.1.2. Brute Force Search

A naive way to solve this problem is to try all possible allocation strategies and to pick the one
that leads to the least crimes in Tu steps. However, since at each step, the number of possible allocation
strategies is CN and there are Tu steps in total, the strategy space is CNTu . For example, for our specific
problem of patrolling in USC with five targets, two categories and the goal of planning for Tu = 300
steps, we need to search 21500 ≈ 10451 different strategies, which is impractical to solve.

5.1.3. Dynamic Opportunistic Game Search (DOGS)

First, we list some notation that will be used in the next two planning algorithms.
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• Dj
t indicates the j-th strategy for the defender from the CN different defender strategies at time

step t.
• Pj,t is the total number of crimes corresponding to the optimal defender strategy for the first t time

steps that has j as its final defender strategy.
• Xj,t is the criminals’ location distribution corresponding to the optimal defender strategy for the

first t time steps that has j as its final defender strategy.
• fY(Xt, D, B) is the expected number of crimes at all targets at t given the criminal location

distribution Xt and defender’s allocation strategy D at step t and output matrix B.
• fX(A, Xt, Dt) is the criminal location distribution at step t + 1 given the criminal location

distribution Xt and defender’s allocation strategy Dt at t and transition matrix A.

Algorithm 2 DOGS (A, B, π).

1: for each officer allocation Di
1 do

2: Pa[i, 1]← 0; Pi,1 ← fY(A, π, Di
1); Xi,1 ← π

3: end for
4: for t← 2, 3, ..., Tu do
5: for each officer allocation Dj

t do
6: F(i) = fY( fX(A, Xi,t−1, Di

t−1), Dj
t, B) + Pi,t−1

7: Pa[Dj
t, t]← argmini[F(i)]; Pj,t ← mini[F(i)]

8: Xj,t ← fX(A, X
Pa[Dj

t,t],t−1
, DPa[Dj

t,t]
t−1 )

9: end for
10: end for
11: index[T]← argmini Pi,T; D̂[T]← Dindex[T]

T
12: for t← T− 1, ..., 1 do
13: index[t]← Pa[Dindex[t+1]

t , t + 1]

14: D̂[t]← Dindex[t]
t

15: end for
16: return D̂

DOGS is a dynamic programming algorithm; hence, in order to find the optimal strategy for
t steps, we first find the optimal strategy for the sub-problem with t− 1 steps and use it to build
the optimal strategy for t steps. Given the values of π, A and B from our learning step, the optimal
defender allocation strategy D1, ..., DTu is given by the recurrence relations:

Pj,1 = fY(π, Dj
1, B)Pj,t = min

i
[ fY( fX(A, Xi,t−1, Di

t−1), Dj
t, B) + Pi,t−1] (25)

Retrieving the optimal allocation strategy requires remembering the allocation Di
t−1 that

minimizes the second equation, which is done by storing that information in the function Pa, as follows:

Pa[j, t] = argmin
i
[ fY( fX(A, Xi,t−1, Di

t−1), Dj
t, B) + Pi,t−1] (26)

As Pj,Tu is the total number of crimes for the optimal defender strategies for Tu time steps that
has j as the final strategy, the optimum strategy for time step Tu is given by DTu = argminj Pj,Tu .
Then, recursively, given optimal Dt, we find the optimal strategy in the previous time step using
function Pa: Dt−1 = Pa[Dt, t]. The complexity of the DOGS algorithm (Algorithm 2) is O(C2NTu).

5.1.4. Greedy Search

The dynamic programming-based algorithm can generate the optimal strategy, but takes time
O(C2NTu). We present a greedy algorithm that runs in O(CNTu) time, but the solution may be
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sub-optimal. In the greedy search, we split the strategy space into Tu slices. Each slice represents the
strategy at each step. Then, instead of searching the optimal strategy for Tu steps, we only look one step
ahead to search for the strategy that optimizes the defender’s utility at the current step (Algorithm 3).
It finds the optimal patrol allocation Dt at the current step by minimizing the expected number of
crimes at all targets at step t. For the next step, we compute the criminal’s distribution Xt+1 and
greedily search again. We keep iterating this process until we reach the Tu step. The complexity of
greedy search is O(CNTu).

Algorithm 3 Greedy (A, B, π = X1).

1: for t← 1, . . . , Tu do
2: Dt ← argminD fY(Xt, D, B); Xt+1 ← fX(A, Xt, Dt)
3: end for
4: return D = [D1, ..., DTu ]

6. Experimental Results

6.1. Experimental Setup

All of our experiments were performed on a machine with 2.4 GHz and 16 GB RAM. MATLAB
was our choice of programming language. There are two threads of experiments, one on learning and
the other on learning and planning. To avoid leaking confidential information of the USC Department
of Public Safety, all of the crime numbers shown in the results are normalized.

6.2. Learning (Setting)

Our first experiment is on evaluating the performance of the EMC2 algorithm in learning criminals’
behavior. We use the case study of USC in our experiments. We obtained three years of crime
reports and the corresponding patrol schedule followed at USC. Since the EMC2 algorithm and
the EM algorithm only reach the locally optimal solution, we run the algorithms for 30 different
randomly-chosen start points and choose the best solution from among these runs. These start points,
i.e., the values of A, B and π, are generated by sampling values from a uniform random distribution
over [0, 1] for all of the elements and then normalizing the probabilities so that they satisfy the initial
conditions. C is set to two by default, while the effect of varying C is compared in Figure 5e.
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The results shown in Figure 5a compare the estimated numbers of crimes using different learning
algorithms with the real number of crimes in one month. We divide the three-year data into four equal
parts of nine months each. For each part, we train on the first eight months data and test on the ninth
month’s data. That is why the estimated number of crimes for one month as the output by different
learning algorithms is compared to the real number of crimes in that month. The x-axis in this figure
indicates the index of the part of the data that we evaluate. The y-axis is the total number of crimes
in the ninth month. The closer this number is to the real number of crimes, the better the prediction
is. Three different algorithms are compared: (1) the Markov Chain (MC) algorithm, in which the
best performance among all eight models is shown; (2) the exact EM algorithm; and (3) the EMC2

algorithm. As can be seen, the prediction of EMC2 is much closer compared to those of the EM and
MC algorithms in all of the training groups. This indicates that the crime distribution is related to the
criminals’ location, and including the number of criminals at each target as a hidden state helps to
improve the performance. In addition, the EMC2 algorithm achieves better performance than EM by
reducing the number of unknown variables to avoid over-fitting.

For Figure 5b, we measure the learning performance for each individual target using a metric
that we call accuracy. To define this metric, let nit be the actual number of crimes at target i for time
step t; let n′it be the predicted number of crimes at target i at time step t. Then, accuracy at step t is
the probability of the event ∑N

i=1 |nit − n′it| ≤ 1. In other words, it is the probability that we make less
than one mistake in predicting crimes for all N targets. The reported accuracy is the average accuracy
over all t. In Figure 5b, the y-axis represents the accuracy. The higher accuracy is, the more accurate
our prediction is. We compare four different algorithms: the MC, EM and EMC2 algorithms and the
uniform random algorithm, which sets equal probability for all possible numbers of crimes at each
target. As expected, EMC2 outperforms all other algorithms in all training groups. In addition, even
though the accuracy of the algorithms varies in different training groups, which we attribute to the
noisy nature of the data in the field, the largest difference is within 15%. This indicates that accuracy of
the algorithms is data-independent.

We present additional results under this setting in Figure 5c,d. We compare the four approaches
for varying the size of training data; thus, the x-axis in both figures shows the number of training data
(in days of data) used in learning. Our test data are all of the data points from a 30-day period, and the
training data are the data points just before (in order of time) the test data points. For Figure 5c, the
EMC2 algorithm again outperforms all other algorithms for any number of training data in accuracy.
In addition, the more data we have for training, the better accuracy we achieve. In Figure 5d, the
y-axis shows the runtime in seconds on a log scale. The more data we have, the longer it takes for
each training method. The random algorithm is pre-generated and takes almost no time; hence, those
data are not shown in the figure; the runtime for MC is negligible because the number of states is
small (O(4N)), and we traverse all of the data points only once; the runtime for the EMC2 algorithm
is significantly better than that for the EM algorithm, as is expected by our complexity analysis in
Section 5.

In Figure 5e, we compare the four approaches by varying C. The x-axis shows the value of C.
We use 1100 data points for training, while 30 data points, which are just after the training data points,
are used for testing. The accuracy decreases as C increases. This is because when C increases, there are
more possible values of the number of crimes. Thus, the possibility of predicting an accurate number
decreases. However, when C increases from three to four, the decrease in accuracy is small in EMC2

due to the fact that data with a value of four rarely appear in both the crime and patrol dataset. This
indicates that a small C is a good approximation. In addition, the EMC2 algorithm again outperforms
all other algorithms for any C.

In Figure 6, all of the Markov chain models are compared. The x-axis is the model index.
RP represents the uniform Random Predicting. M1 through M9 are the nine Markov chain models in
Figure 3. The y-axis represents the accuracy. We use four sets of data that are the same as Figure 5b to
test the performance. All of the Markov chain models give similar to accuracy, which outperforms RP
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significantly. However, as shown in Figure 5b, all of these models are outperformed by the EM and
EMC2 algorithms.
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Figure 6. Markov chain models.

6.3. Learning and Planning (Real-World Data)

Figure 5f compares DOGS to the actual deployed allocation strategy generated by DPS experts
at USC. Similar to the settings in Figure 5a, we divide the three-year data into four equal parts of
nine months. For each part, we train on the first eight months’s data using the EMC2 algorithm and
test different allocation strategies on the first 10 days of the ninth month’s data. When testing the
strategy, we assume the criminals’ behavior remains unchanged during these 10 days. Three different
scenarios are compared: (1) the real number of crimes, shown as real in Figure 5f; (2) the expected
number of crimes with the DPS strategy and learned criminal behavior, shown as real-E; and (3) the
expected numbers of crime with DOGS allocation and learned criminal behavior, shown as DOGS.
As shown in Figure 5f, the expected number of crimes with the DPS strategy is close to the real number
of crimes, which indicates that EMC2 captures the main features of the criminal behavior and provides
a close estimate of the number of crimes. In addition, the DOGS algorithm outperforms the strategy
generated by domain experts significantly. This demonstrates the effectiveness of the DOGS algorithm
as compared to the current patrol strategy. By using the allocation strategy generated by DOGS,
the total crime number reduces by ∼50% as compared to the currently-deployed strategy.

6.4. Learning and Planning (Simulated Data)

Next, we evaluate the performance of our online planning mechanism. We use simulations for
this evaluation. In the simulation, the criminal model is simulated using the model from an earlier
work on opportunistic criminals [2], in which the authors explicitly model an opportunistic criminal’s
behavior. However, the defender does not know the type of criminals in our experiments. Instead, the
defender starts by executing a random patrol schedule for 300 steps and collects the corresponding
crime report, which they use to learn an initial criminal behavior model. The criminal responds to
the defenders’ patrol schedule as predicted by the behavior model in [2]. Since the criminal behavior
in [2] is probabilistic, we run the experiment 30 times, and each data point we report in this part is an
average over these 30 instances. We fix the number of patrol officers to 2N − 2, where N is the number
of targets. This number is consistent with our real dataset numbers (eight officers for five targets),
where there were enough officers to allocate one officer to each target, but not enough to allocate two
officers to each target. We use the EMC2 algorithm as the learning algorithm.
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6.5. Learning and Planning Results

Figure 5g to Figure 7 present the results from our experiments about the online learning and
planning mechanism. The four planning mechanisms that we consider are as follows: first, a random
planning mechanism that randomly generates the allocation strategy with limited resources; second, a
pure planning mechanism, where we learn the criminal behavior model once and apply this model to
plan for the entire horizon T using the DOGS algorithm; third, an online planning mechanism with
a greedy planning algorithm that updates every Tu time steps; and the last mechanism is the online
planning mechanism with the DOGS algorithm that also updates every Tu time steps.
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Figure 7. Varying N.

In Figure 5g, the total planning horizon T is set to 600. In addition to the four planning
mechanisms, we also consider the worst case where the defender always protects the least valuable
targets. The x-axis shows the update interval Tu, which is the time interval after which we update
the criminals’ behavior model. The y-axis is the expected number of crimes that happen under the
deployed allocation strategy within 600 steps. The expected number of crimes under the pure planning
mechanism stays the same with different Tu, because it does not update the criminals’ model at all.
For the online mechanisms, the expected number of crimes increases as the update interval Tu increases.
This is because with infrequent updates of the criminals’ behavior model, we cannot keep up with
the real criminals’ behavior. In addition, with any size of the update interval, the DOGS algorithm
outperforms the greedy algorithm. In Figure 5h, we present the runtime of three mechanisms for
the same experiment. We do not show the runtime for the random planning mechanism, as it is
small and the same for any planning horizon T. The runtime decreases as the update interval Tu

increases. There is a runtime-quality trade-off in choosing Tu. Figure 7 shows the performance of
the four planning mechanisms, but with different numbers of targets in the model. The x-axis is the
number of targets in the graph, and the y-axis is the expected number of crimes under the deployed
strategy. We set T = 600, Tu = 2. The results here are similar to the results of Figure 5g.

These results lead us to conclude that online mechanisms outperform the baseline planning
mechanisms significantly in any settings. For the online mechanisms, DOGS achieves better
performance, while the greedy planning algorithm requires less runtime. Thus, based on the specific
problem being solved, the appropriate algorithm must be chosen judiciously.

7. Real World Implementation

In this section, we introduce web-based software with two contributions. First, our system
collects and analyzes crime reports and resources (security camera, emergency supplies, etc.) data,
presenting them in various forms. Second, our patrol scheduler incorporates the learning and planning
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algorithm we proposed before in a scheduling recommendation system. The software is currently
under deployment and testing at the USC campus in Los Angeles, USA.

7.1. Multi-User Software

Our multi-user web-based software is built for the Department of Public Safety at the University
of Southern California. It is composed of two main components: a data collector and a patrol scheduler.
A detailed demonstration of our software can be found here (https://dl.dropboxusercontent.com/u/
40377044/aamas_demo.pptx).

7.1.1. Data Collector

The data collector receives crime data from the police department and presents and analyzes them
in various fashions. There are three main tasks of the data collector: First, it visualizes crime data with
spatial and temporal information, as shown in Figure 8a, to help officers analyze the trend of crimes
around campus. As shown in Figure 8b, ‘hot’ areas indicate attractive targets for criminals to commit
crimes. As of now, the police department can cool down these hot spots by increasing patrol coverage
when assigning officers in the field. However, with our planning approach, the police allocation will be
more intelligent. As we also learn how criminals move in response to patrols, our approach does not
simply cover the hot spots, but also allocates officers to areas where criminals are expected to move.

Second, the data collector provides information to the officers in the field about various available
resources, such as emergency supplies and security cameras. As shown in Figure 8c, our software
indicates the location for all of the emergency supplies on campus. Figure 8d shows the (mock) location
of security cameras. To check certain locations, officers can use our software to watch the video from
any camera. Finally, the data collector provides input for the patrol scheduler. By reading the data
from the collector, the patrol scheduler can continuously learn and update criminals’ behavior.

(a) Crime analysis (b) Hot spot analysis

(c) Emergency supply (d) Security cameras

Figure 8. Data collector.

7.1.2. Patrol Scheduler

Patrol settings: At USC, our approach further divides the enforcement area (encompassing the
campus) into 18 patrol areas, which are shown in Figure 9. DPS patrols would be in shifts of 4 h each.
At the beginning of each patrol shift, our algorithm assigns each available patrol officer to a patrol area,
and the officer patrols this area in this shift.

https://dl.dropboxusercontent.com/u/40377044/aamas_demo.pptx
https://dl.dropboxusercontent.com/u/40377044/aamas_demo.pptx


Games 2016, 7, 15 22 of 27

Figure 9. Patrol area.

Schedule generator: As part of the integration of our learning and planning with the software,
we show the use of the EMC2 algorithm to learn the criminals’ behavior from previous crime and
patrol data and the DOGS algorithm to generate patrol schedules for DPS officers. We highlight the
recommended patrol area on the campus map, as shown in Figure 10.

Figure 10. Sample patrol schedule.

8. Conclusions and Future Work

This paper introduces a novel framework to design patrol allocation against adaptive
opportunistic criminals. First, we use Markov chain and DBN to model the interaction between
officers and adaptive opportunistic criminals. Next, we propose a sequence of modifications to the
basic DBN resulting in a compact model that enables better learning accuracy and running time.
Finally, we present an iterative learning and planning mechanism with two planning algorithms
to keep pace with adaptive opportunistic criminals. Experimental validation with real-world data
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supports our choice of model and assumptions. Further, our modeling assumptions were informed by
inputs from our collaborators in the DPS at USC. We project a ∼50% reduction in the crime rate using
our approach as opposed to the current approach followed by DPS.

In terms of future work, we would like to capture other patterns of crime using our Markov chain
and DBN, such as how crime is influenced by the time of day, day of the week, season or domain
factors, such whether or not USC classes are in session or whether it is football season, and other
such factors. Another line of future work would be to do a sensitivity analysis of our results by
considering various divisions of the three-year real-world data available at USC. Currently, we divide
the dataset into four sets of nine months each. However, comparisons and analysis of the results based
on three divisions of 12 months each or other divisions based on seasons and other factors would be
an interesting line of future research.
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Appendix A

Appendix A.1. EMC2 Procedure Initialization Step

Example 1. A simple way to do the initialization is to use the uniform distribution, which is:

π(0, 1) = 0.5, π(1, 1) = 0.5, π(0, 2) = 0.5, π(1, 2) = 0.5;

A(1, 1, 0, 1, 0) = 0.5, A(1, 1, 0, 1, 1) = 0.5, A(1, 1, 0, 2, 0) = 0.5, A(1, 1, 0, 2, 1) = 0.5;

...

A(2, 2, 1, 1, 0) = 0.5, A(2, 2, 1, 1, 1) = 0.5, A(2, 2, 1, 2, 0) = 0.5, A(2, 2, 1, 2, 1) = 0.5;

B(1, 1, 1, 0) = 0.5, B(1, 1, 1, 1) = 0.5, B(1, 1, 2, 0) = 0.5, B(1, 1, 2, 1) = 0.5;

...

B(2, 2, 0, 0) = 0.5, B(2, 2, 0, 1) = 0.5, B(2, 2, 1, 0) = 0.5, B(2, 2, 1, 1) = 0.5;

Appendix A.2. EMC2 Procedure Expectation Step

Forward probability:

First, we calculate P(Y1, Y2, ..., Yt−1, Xi,t|D1, D2, ..., Dt−1) using α(m, k, t− 1):
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P(Y1, Y2, ..., Yt−1, Xi,t|D1, D2, ..., Dt−1) = ∑
Xt−1

P(Y1, Y2, ..., Yt−1, Xt−1, Xi,t|D1, D2, ..., Dt−1)

= ∑
Xt−1

P(Y1, Y2, ..., Yt−1|Xi,t, Xt−1, D1, D2, ..., Dt−1)P(Xi,t|Xt−1, Dt−1)P(Xt−1)

= ∑
Xt−1

P(Y1, Y2, ..., Yt−1|Xt−1, D1, D2, ..., Dt−1)P(Xi,t|Xt−1, Dt−1)P(Xt−1)

= ∑
Xt−1

P(Y1, Y2, ..., Yt−1, Xt−1, D1, D2, ..., Dt−1)P(Xi,t|Xt−1, Dt−1)

i f Xi,t = 0

= ∑
Xt−1

∏
m

α(m, Xm,t−1, t− 1)∏
m

P(Xi,t = 0|Xm,t−1, Dm,t−1)

= ∏
m

∑
Xm,t−1

α(m, Xm,t−1, t− 1)P(Xi,t = 0|Xm,t−1, Dm,t−1)

i f Xi,t = 1

= ∑
Xt−1

∏
m

α(m, Xm,t−1, t− 1)[∏
m

∑
xi,t

P(Xi,t = xi,t|Xm,t−1, Dm,t−1)−∏
m

P(Xi,t = 0|Xm,t−1, Dm,t−1)]

= ∏
m

∑
Xm,t−1

α(m, Xm,t−1, t− 1)∑
xi,t

P(Xi,t = xi,t|Xm,t−1, Dm,t−1)

−∏
m

∑
Xm,t−1

α(m, Xm,t−1, t− 1)P(Xi,t = 0|Xm,t−1, Dm,t−1)

The complexity is this step is O(N2) to calculate the whole intermediate vector. Next, we calculate
α(i, k, t) using P(Y1, Y2, ..., Yt−1, Xi,t|D1, D2, ..., Dt−1).

α(i, k, t) = P(Y1, Y2, ..., Yt, Xi,t = k|D1, D2, ..., Dt)

= ∑
Xt :Xi,t=k

P(Y1, Y2, ..., Yt, Xt|D1, D2, ..., Dt)

= ∑
Xt :Xi,t=k

P(Y1, Y2, ..., Yt|Xt, D1, D2, ..., Dt)P(Xt|D1, D2, ..., Dt)

= ∑
Xt :Xi,t=k

P(Y1, Y2, ..., Yt−1|Xt, D1, D2, ..., Dt)P(Yt|Xt, D1, D2, ..., Dt)P(Xt|D1, D2, ..., Dt)

= ∑
Xt :Xi,t=k

P(Y1, Y2, ..., Yt−1|Xt, D1, D2, ..., Dt)P(Yt|Xt, D1, D2, ..., Dt)P(Xt|D1, D2, ..., Dt)

= ∑
Xt :Xi,t=k

P(Y1, Y2, ..., Yt−1, Xt|D1, D2, ..., Dt−1)P(Yt|Xt, Dt)

= ∑
Xt :Xi,t=k

∏
j

P(Y1, Y2, ..., Yt−1, Xj,t|D1, D2, ..., Dt−1)∏
j

P(Yj,t|Xj,t, Dj,t)

= ∏
j 6=i

∑
Xj,t

P(Y1, Y2, ..., Yt−1, Xj,t|D1, D2, ..., Dt−1)P(Yj,t|Xj,t, Dj,t)

· P(Y1, Y2, ..., Yt−1, Xi,t = k|D1, D2, ..., Dt−1)P(Yi,t|Xi,t = k, Di,t)

The complexity to calculate each element is O(N), and the total complexity is still O(N2).
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Backward probability:

β(i, k, t) = P(Yt+1, ..., YT |Xi,t = k, Dt, ..., DT)

= ∑
Xt+1

P(Yt+1, Yt+2, ..., YT , Xt+1|Xi,t, Dt, Dt+1, ..., DT)

= ∑
Xt+1

P(Yt+1, Yt+2, ..., YT |Xt+1, Xi,t, Dt, Dt+1, ..., DT)P(Xt+1|Xi,t, Dt)

= ∑
Xt+1

P(Yt+1, Yt+2, ..., YT |Xt+1, Dt, Dt+1, ..., DT)P(Xt+1|Xi,t, Dt)

= ∑
Xt+1

P(Yt+2, ..., YT |Xt+1, Dt, Dt+1, ..., DT)P(Yt+1|Xt+1, Dt, Dt+1, ..., DT)P(Xt+1|Xi,t, Dt)

= ∑
Xt+1

∏
m
(P(Yt+2, ..., YT |Xm,t+1, Dt, Dt+1, ..., DT)P(Ym,t+1|Xm,t+1, Dm,t+1)P(Xm,t+1|Xi,t, Dt))

= ∏
m

∑
Xm,t+1

(P(Yt+2, ..., YT |Xm,t+1, Dt, Dt+1, ..., DT)P(Ym,t+1|Xm,t+1, Dm,t+1)P(Xm,t+1|Xi,t, Dt))

= ∏
m

∑
Xm,t+1

(β(m, Xm,t+1, t + 1)B(m, Dm,t+1, Xm,t+1, Ym,t+1)A(i, Di,t, Xi,t, m, Xm,t+1))

This step is similar to calculating forward probability. The complexity is still O(N).

Total probability:

γ(i, k, t) = P(Xi,t = k|Y, D)

= ∑
Xt :Xi,t=k

P(Xt|Y, D)

= ∑
Xt :Xi,t=k

P(Y|Xt, D) · P(Xt, D)

P(Y, D)

= ∑
Xt :Xi,t=k

P(Y1, ..., Yt|Xt, D) · P(Yt+1, ..., YT |Xt, D) · P(Xt, D)

P(Y, D)

= ∑
Xt :Xi,t=k

P(Y1, ..., Yt|Xt, D) · P(Yt+1, ..., YT , Xt|D) · P(D)

P(Y, D)

= α(i, k, t) · β(i, k, t)∏
j 6=i

∑
Xj,t

α(j, Xj,t, t)β(j, Xj,t, t) · P(D)

P(Y, D)

=
α(i, k, t) · β(i, k, t)

∑k α(i, k, t) · β(i, k, t)

In this step, we still use the transformation of the conditional probability.
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Two-step probability:

ξ(m, xm,t, i, xi,t+1, t) = P(Xm,t = xm,t, Xi,t+1 = xi,t+1|Y, D)

= P(Y|xm,t, xi,t+1, D) · P(xi,t+1|xm,t, D) · P(xm,t, D)

= P(Y1, .., Yt|xm,t, xi,t+1, D) · P(Yt+1, ..., YT |xm,t, xi,t+1, D) · P(xm,t, D)P(xi,t+1|xm,t)

= P(Y1, .., Yt, xm,t, D) · P(Yt+1, ..., YT |xi,t+1, D)P(xi,t+1|xm,t)

= P(Y1, .., Yt, xm,t, D) · ∑
Xt+1 :Xi,t+1=xi,t+1

P(Yt+2, ..., YT |Xt+1, D)P(Yt+1|Xt+1, D)P(xi,t+1|xm,t)

= P(Y1, .., Yt, xm,t, D) · P(Xi,t+1|Xm,t)P(Yt+2, ..., YT |Xi,t+1, D)P(Yi,t+1|Xi,t+1, D)

∏
j 6=i

∑
Xj,t+1

P(Yt+2, ..., YT |Xj,t+1, D)P(Yj,t+1|Xj,t+1, D)P(Xj,t+1|Xm,t)

= α(m, xm,t, t) · A(i, Di,t, Xi,t, m, Xm,t+1)β(j, Xi,t+1, t + 1)

∏
j 6=i

∑
Xj,t+1

(β(j, Xj,t+1, t + 1)B(j, Dj,t+1, Xj,t+1, Yj,t+1)A(i, Di,t, Xi,t, j, Xj,t+1)) (A1)

This calculation is similar to the way we calculate γ. From the second line to the third line, we use
the conditional independence of Y1, .., Yt and Yt+1 and Yt+2, ..., YT given Xt, Xt+1, D. Again, we use the
normalization to represent 1

P(Y,D)
.
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