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Abstract: Standard equilibrium concepts in game theory find it difficult to explain the
empirical evidence from a large number of static games, including the prisoners’ dilemma
game, the hawk-dove game, voting games, public goods games and oligopoly games. Under
uncertainty about what others will do in one-shot games, evidence suggests that people
often use evidential reasoning (ER), i.e., they assign diagnostic significance to their own
actions in forming beliefs about the actions of other like-minded players. This is best viewed
as a heuristic or bias relative to the standard approach. We provide a formal theoretical
framework that incorporates ER into static games by proposing evidential games and the
relevant solution concept: evidential equilibrium (EE). We derive the relation between a
Nash equilibrium and an EE. We illustrate these concepts in the context of the prisoners’
dilemma game.
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1. Introduction

A considerable body of evidence shows that the predictions of the standard equilibrium concepts
in game theory are not borne out by a significant fraction of experimental subjects. See Camerer [1]
for a book-length treatment. For prisoners’ dilemma games, see Lewis [2], Howard [3], Rapoport [4],
Shafir and Tversky [5], Cooper et al. [6], Croson [7], Li and Taplin [8], Acevedo and Krueger [9],
Busemeyer [10], Zhong et al. [11], Histrova and Grinberg [12] and Khadjavi and Lange [13]. For
oligopoly games, see Fouraker and Siegel [14], Huck et al. [15], Bosch-Domènech and Vriend [16]
and Duersch et al. [17]. For public goods games, see Dawes and Thaler [18], Fehr and Gächter [19]
and Gächter and Thöni [20]. For voting games, see Quattrone and Tversky [21], Grafstein [22],
Forsythe et al. [23], Rassenti et al. [24], Krueger and Acevedo [25], Koudenburg [26], Requate and
Waichman [27] and Delavande and Manski [28]. For p-beauty contests, see Moulin [29], Nagel [30]
and de Sousa et al. [31]. For auctions, see Ivanov [32]. For the hawk-dove game, see Rubinstein and
Salant [33]. For the give-some game, see Krueger [34]. For further results on these, and other games,
that present a challenge for both mainstream and behavioural game theory, see Lucas et al. [35].

In this paper, we are interested in static games of complete information. Examples include the
prisoners’ dilemma, the voting game, the public goods game, the hawk-dove game and oligopoly games.

Let us briefly note the nature of the violations of the standard equilibrium concepts in some static
games of interest. A more detailed treatment is given in the main body of the paper. More than half the
subjects in the prisoners’ dilemma game play the dominated action “cooperate”. Voters vote in elections
when it is clear to them that they will not be pivotal. Under traditional preferences, if there is a cost to
voting, the act of voting is dominated by not-voting. The dominant action in public goods games is to
free-ride. Yet, we can elicit near first-best levels of contributions with like-minded players.1

The evidence from the publications cited above suggests the following stylized facts that any
reasonable theory of static games may aspire to explain. We consider the empirical evidence behind
these claims in more detail in the main body of the paper.

S1. A significant fraction of players behave in a manner that is consistent with the predictions of
classical game theory. For instance, many players defect in a prisoners’ dilemma game; many
people abstain from voting; and many people do not contribute at all in public goods games.

S2. An even larger fraction of players violates the predictions of classical game theory, and they often
seem to behave in an apparently non-strategic manner. For instance, the action “cooperate” in a
prisoner’s dilemma game is a dominated action, but these actions by players, jointly, lead to higher
payoffs. These findings are fairly robust even in the other static games that we do not consider in
this paper.

S3. In environments where players think that they are playing with other like-minded players, evidence
shows that they impute diagnostic significance to their own actions when forming beliefs about the
actions of others. For instance, those who cooperate (respectively defect) in prisoners’ dilemma
games think that the vast majority of other players will also cooperate (respectively defect).

1 In Bayesian games, like-minded players are often used to denote the case where players share the same priors. However,
in this paper we use like-mindedness in its more general psychological sense.
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Similarly, despite publicly-available information on election polls, those who vote Democrat
(respectively Republican) in the U.S. Presidential elections believe that a significant majority of
other voters will also vote Democrat (respectively Republican).

Each of the static games that we consider has an exceedingly simple structure. Hence, we believe
that the anomalies relative to the predictions of classical game theory are less likely to arise from
mistakenly playing the incorrect action. For this reason, our focus is not on behavioural alternatives,
such as quantal response equilibrium (QRE) in which players play a noisy best response, but otherwise
have consistent beliefs.

The main focus of our paper is on S3, which also allows us to shed light on S1 and S2. There is always
considerable uncertainty about what others will do in one-shot games. Think of being in an experiment
where you are playing a prisoner’s dilemma game, or a voting game, or a public goods game. How do
you infer what the other players are likely to play? Considerable evidence, which we shall review later,
suggests that people often use evidential reasoning (ER)2, i.e., they assign diagnostic significance to their
own actions in forming beliefs about the actions of other like-minded players. We stress that a player
using ER does not believe that his or her actions influence the actions of other players3. ER merely
influences a player’s own belief about which unobserved action other players are likely to take.

ER is best viewed as a heuristic or bias. In the early 1970s, Kahneman and Tversky proposed
the heuristics and biases approach. A substantial literature developed subsequently that identified
a rich range of heuristics and generated evidence that they are used by human subjects. See, for
instance, Kahneman et al. [36] and Kahneman [37]. ER, like these heuristics, is fast and frugal in
the use/processing of information and in cognitive requirements. As with all heuristics, players who
use ER may find ex post that their initial beliefs were incorrect. ER can lead to the violation of some
of the principles of classical decision theory, for example Savage’s sure thing principle (Savage [38]).
However, these violations have been well documented. For example, the sure thing principle is violated
in the Ellsberg paradox (Ellsberg [39]; which, however, is a non-game theoretic situation).

Evidence supports the interpretation of evidential reasoning as a heuristic. People who use evidential
reasoning are not aware of using it despite their behaviour being obviously consistent with evidential
reasoning. Evidential reasoning appears to arise as an automatic, rather than a deliberate effort or
intention, e.g., it does not require awareness. Evidence supporting this view comes from experiments
that show that evidential reasoning was not hampered by cognitive load or time required to complete
an action; see Krueger [40]. Furthermore, other evidence, also reported in Krueger [40], suggests that
considerable cognitive effort is required to suspend evidential reasoning. The evidence from Acevedo
and Krueger [9] indicates that evidential reasoning applies to human-human interaction, but not to
human-non-human interaction. Players using evidential reasoning do not believe that their actions cause
the action of others; it merely informs their belief about the actions taken by others. Another feature of
evidential reasoning is that individuals continue to behave in a self-interested manner.

2 Also known as social projection (see Krueger [34]).
3 According to Krueger ([34], p. 291) “... people use their own choices to predict the choices of others and then select the

strategy that is best for them”. Note well that Krueger uses the word predict, not cause.
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It might be useful to distinguish between to types of heuristics. The first involves no violation of
the standard assumptions of game theory. They propose extra conditions that are consistent with the
standard assumptions of game theory, but whose aim is to reduce the multiplicity of Nash equilibria.
Examples include payoff dominance and risk dominance (Harsanyi and Selten [41]). Note that
in some cases, these heuristics are in conflict (in some games, payoff-dominance could select one
equilibrium, but risk-dominance could select another). In fact, the whole program of refinements of Nash
(van Damme [42]) may be viewed in this light. We may call these conservative heuristics. The second
type, which we may call radical heuristics, involve relaxation of some of the standard assumptions of
game theory. Examples include Stackelberg reasoning (Colman and Bacharach [43]; Colman et al. [44]).
Evidential reasoning is firmly in the group of radical heuristics.

Section 2 gives a formal treatment of evidential reasoning and proposes several concepts that we will
find useful in the rest of the paper. An evidential game is simply a game where players use evidential
reasoning. An evidential equilibrium is one where each player chooses to optimize given his beliefs
about the behaviour of the other players (inferred from his own behaviour in accordance with evidential
reasoning). A consistent evidential equilibrium is an evidential equilibrium where beliefs turn out to be
correct. Our formulation of evidential reasoning yields causal reasoning, the mode of reasoning assumed
in the traditional framework in economics (and, indeed, generally) as a special case. If players use causal
reasoning, then a consistent evidential equilibrium corresponds to a Nash equilibrium in the ordinary
sense. We introduce the concept of a social projection function (SPF) and give formal definitions of
like-mindedness, ingroup and outgroup.

Section 3 argues that evidential reasoning is a useful heuristic rather than a valid method of inference.
Sections 4–6 show that evidential reasoning can answer the following questions: Why do people
voluntarily contribute to public goods? Why do people vote? Why is there so much cooperation in the
prisoners’ dilemma game? Section 7 examines the uniqueness of outcomes under evidential reasoning
in the context of the Nash demand game. Oligopoly games are considered in Section 8. In Section 9,
we argue that causal reasoning cannot adequately explain cooperation in the prisoners’ dilemma game.
Section 10 concludes.

2. Evidential Equilibrium in Static Games of Complete Information

2.1. Elements of Standard Game Theory4

Consider the following standard description of a static game of complete information, {N,A,π}.
N = {1, 2, ..., n} is the set of players. Ai ⊆ R is the set of actions open to player i. We denote a typical
member of Ai by ai. A = ×n

i=1Ai gives all possible action profiles of the players. A−i ⊆ Rn−1 is the set
of vectors of actions open to the other players. Denote by Si the set of probability distributions over the
set of actions Ai. We denote a typical element of Si by si and call it a strategy. si (ai) is the probability
with which player i plays ai ∈ Ai, so si (ai) ≥ 0 and

∑
ai∈Ai

si (ai) = 1. In particular, if si (ai) = 1

(hence, si (a′i) = 0 for a′i 6= ai), then we call s a pure strategy, and we identify it with the action ai.

4 See, for example, Fudenberg and Tirole [45], Part I.
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A profile of strategies of all players is denoted by s= (s1, s2, ..., sn) ∈S, where S= ×ni=1Si is
the set of all possible profiles of strategies. A particular profile of strategies of other players is denoted
by s−i = (s1, ..., si−1, si+1, ..., sn) ∈S−i = ×j∈N−{i}Sj . The payoff to player i is a mapping
πi :S→ R. Let π be the vector of payoffs to all players. Given a strategy profile, s= (si, s−i) ∈S,
the payoff to player i is πi (si, s−i) ∈ R. The structure of the game, {N,A, π}, is common
knowledge among the players. In an experimental setup, common knowledge can be achieved by a
public announcement of {N,A, π}. This is the sense in which this is a game of complete information.
However, when each player, i, chooses his strategy, si, he does not know the strategies, s−i, that have
been, or will be, chosen by the other players. This is the sense in which this is a static game.

Definition 1. : s∗i ∈ Si is a dominant strategy for player i ∈ N if πi
(
s∗i , s−i

)
≥ πi (si, s−i) for

each si ∈ Si and each s−i ∈S−i. If πi
(
s∗i , s−i

)
> πi (si, s−i) for each si ∈ Si −

{
s∗i
}

and each
s−i ∈S−i, then s∗i is a strictly dominant strategy for player i.

Definition 2. (Nash [46,47]): A strategy profile s∗ =
(
s∗1, s

∗
2, ..., s

∗
n

)
∈S is a Nash equilibrium in the

game Γ = {N,A, π} if s∗i maximizes πi
(
si, s

∗
−i
)

with respect to si, given s∗−i, for each i ∈ N , i.e.,

πi
(
s∗i , s

∗
−i
)
≥ πi

(
si, s

∗
−i
)

for all si ∈ Si

Note that there is no role for beliefs about the strategies of others in the game {N,A, π}, nor in
the definition of a Nash equilibrium (Definition 2). Hence, we augment the game {N,A, π} with
a profile of “social projection functions”, P, that specify the beliefs of players; this is undertaken in
Section 2.2, below.

2.2. Social Projection Functions

We would like to define a function that captures the beliefs that a player has about the strategies of the
other players, conditional on his own strategy. We will call such a function a social projection function.5

Definition 3. (Social projection functions (SPF)): A social projection function for player i is a mapping
Pi: Si →S−i that assigns to each strategy, si ∈ Si, for player i, an n− 1 vector of strategies for the
other players. We write Pij (aj|si) for the subjective belief of player i that player j plays aj ∈ Aj ,
conditional on player i playing si ∈ Si. Hence, Pij (aj|si) ≥ 0 and

∑
aj∈Aj

Pij (aj|si) = 1. We
may write Pi (si) =se−i (si) to indicate that Pi (si) is the (n− 1) vector of strategies that player i
anticipates that the other players will follow if player i adopts the strategy si.

We now define causal reasoning, the mode of reasoning assumed in classical game theory. Then, we
define evidential reasoning.

Definition 4. (Causal reasoning): We say that player i uses causal reasoning if Pij (aj|si) is
independent of si for each aj ∈ Aj and each j 6= i, i.e., if Pi (si) = Pi

(
s′i
)

for all si, s′i ∈ Si.

5 We use the term social projection function because, on the one hand, it is obviously connected to social projection
and evidential reasoning and, on the other hand, to distinguish it from the term projection function as commonly used
in mathematics.
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Definition 5. (Evidential reasoning) We say that player i uses evidential reasoning if it is not necessarily
the case that Pi (si) = Pi

(
s′i
)

for all si, s′i ∈ Si.

Remark 1: (a)In a static game of complete information, players are uncertain of the actions taken by
others. Under evidential reasoning, player i resolves this uncertainty by assigning diagnostic significance
to his or her own choice of strategy, si, in inferring the strategies of the other players, s−i, using his or
her social projection function, Pi. For this reason, Definition 5 allows for Pi (.|si) to change as si
changes. However, it is crucially important to realize that there is no causal connection between si and
s−i. The choice of si by player i merely influences that player’s belief about the strategies, s−i, of the
other players. In particular, players who use evidential reasoning know that their own actions have no
causal effects in altering the actions of others when they change their own actions.
(b) An SPF (Definition 3) specifies the beliefs of a player for all possible actions of others, including
out-of-equilibrium actions. The beliefs of a player need not turn out to be fulfilled in equilibrium.
In this respect, ER is similar to other disequilibrium-in-belief models, such as the level-k model
(Example 3, below).
(c) If player i uses causal reasoning as in classical game theory (see Definition 4), then he or she assigns
no diagnostic significance to his or her own strategy, si, in inferring the strategies, s−i, followed by the
other players. Thus, under causal reasoning, Pi (si) remains fixed as si changes. From Definitions 4
and 5, causal reasoning is a special case of evidential reasoning.

In a dynamic game (under causal reasoning), if (say) Player 1 moves first, choosing the strategy s1,
followed by Player 2, who chooses strategy s2, having observed a realization of s1, then s2 may very
well depend on s1. When choosing s1, Player 1 will take into account the influence of his choice on the
future behaviour of Player 2. This should not be confused with evidential reasoning.

Many different types of social projection functions (SPFs) are possible. There are possibly various
degrees of like-mindedness. However, a particularly salient SPF is one where a player believes that
a like-minded player will play a strategy that is identical to his own. We call this the identity social
projection function. This SPF seems important when choices are low dimensional and players play
symmetric games. Examples include cooperate or defect in a prisoners’ dilemma game, vote Democrats
or Republicans in U.S. Presidential elections, coordinate or fail to coordinate in coordination games
or play hawk or dove in the hawk-dove game.

Definition 6. (Identity social projection function): Let M ⊆ N be a subset of players. Suppose that
all players in M have the same action set, i.e., Ai = Aj = A for all i, j ∈ M . Let Pi be the social
projection function for player i ∈ M . Recall that Pij (a|si) is the probability that player i assigns to
player j playing action a when the strategy of player i is given by si. If Pij (a|si) = si (a) for all
a ∈ A and all j ∈ M − {i}, then we say that Pi is an identity social projection function on M . If
M = N , then we say that Pi is an identity social projection function.

Example 1 (self-similarity in the hawk-dove game): Consider the following game between two
players. If both choose hawk (H), then each gets zero. If both choose dove (D), then each gets two. If
one chooses H (the hawk) and the other chooses D (the dove), then the hawk gets three and the dove
gets one. These payoffs are summarized by Table 1, where the row player plays D with probability



Games 2015, 6 643

p ∈ [0, 1], while the column player playsD with probability q ∈ [0, 1].

Table 1. A hawk-dove game.

D (q) H (1− q)

D (p) 2, 2 1, 3

H (1− p) 3, 1 0, 0

Under causal reasoning (Definition 4), the row player should use a constant social projection function.
However, the experimental results reported by Rubinstein and Salant [33] show that the higher the
probability, p, with which the row player plays D, the higher the probability, q, she or he thinks the
column player will play D. This can be formalized by the row player adopting the identity social
projection function (Definition 6):

P12 (D|p) = p (1)

2.3. Ingroups, Outgroups and Evidential Reasoning

Players need not impute diagnostic significance to their actions when others are perceived not to be
like-minded; the next definition formalizes this idea.

Definition 7. (Ingroups and outgroups): Suppose that players use evidential reasoning.
(a)Player i regards player j (j 6= i) as an outgroup member if Pij (aj|si) is independent of si, i.e., if
Pij (aj|si) = Pij

(
aj|s′i

)
for all si, s′i ∈ Si and all aj ∈ Aj . Otherwise, player i regards player j

(j 6= i) as an ingroup member.
(b) Let M ⊂ N be a non-empty set of players. If every player in M regards every other player in M
as an ingroup member, thenM is an ingroup.
(c) Let L ⊂ N and M ⊂ N be disjoint non-empty sets of players. Suppose every player in L regards
every player inM as an outgroup member. Then, we say thatM is an outgroup relative to L.

Remark 2: Player i plays action ai ∈ Ai with probability si (ai) and believes that player j will play
action aj ∈ Aj with probability Pij (aj|si) (the latter is conditional on si). Hence, player i believes
that the joint probability of ai and aj being played is Pij (ai, aj|si) = si (ai)Pij (aj|si). Suppose
that player i regards player j as an outgroup member. Then (and only then), Pij (aj|si) is independent
of si ∈ Si. Hence, in this case, Pij (ai, aj|si) = si (ai)Pij (aj|si). Thus, if player i regards player
j as an outgroup member, then player i believes that the probability with which he or she (player i) plays
ai ∈ Ai is independent of the probability that he or she believes j will play aj ∈ Aj . In particular, if
player i uses causal reasoning, then he or she regards all others as outgroup members, and hence, he or
she believes that his or her actions are independent of the actions of all other players.

Definition 8. (Perfect ingroups): Let M ⊆ N be a subset of players. Suppose that all players in M
have the same action set, i.e.,Ai = Aj = A for all i, j ∈M . Let Pi be the social projection function
for player i ∈ M . If Pi is an identity social projection function on M , for each player i ∈ M , then
M is a perfect ingroup.
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Definition 9. (Evidential game): Consider the static game of complete information, {N,A, π}. Let
P = (P1,P2, ...,Pn) be a profile of social projection functions, where Pi is the social projection
function of player i ∈ N (Definition 3). Then, we denote the game augmented with the vector of social
projection functions, P, by Γ = {N,A, π,P}, and we call it an evidential game. We say that players
in such a game use evidential reasoning.

Definition 10. If each Pi (si) is independent of si, then we say that Γ is a causal game.

Remark 3: (a)From Definition 9, a causal game is a special case of an evidential game.
(b) Suppose Pi (si) is independent of si, for each player, i, so that Γ = {N,A, π,P} is a causal
game. Γ is still richer than the static game of complete information, {N,A, π}, because Γ incorporates
players’ beliefs about other players’ actions, as given by P.

Example 2 (Matching pennies): Consider the matching pennies game.

H T

H −1, 1 1,−1

T 1,−1 −1, 1

The set of players is N = {1, 2}. The action sets are A1 = A2 = {H,T}. Player 1, the row
player, playsH and T with respective probabilities p, 1− p. Player 2, the column player, playsH and
T with respective probabilities q, 1 − q. The sets of possible strategies are S1 = {p : 0 ≤ p ≤ 1}
for Player 1 and S2 = {q : 0 ≤ q ≤ 1} for Player 2. If Player 1 plays H (say) and Player
2 plays T , then the payoff is one to Player 1 and −1 to Player 2. For any profile of strategies
(p, q), p, q ∈ [0, 1], the payoff functions of the players are π1 (p, q) = − (1− 2p) (1− 2q)

and π2 (p, q) = (1− 2p) (1− 2q). The following are examples of social projection functions:{
P12 (H | p) = p, for all p ∈ [0, 1]

P21 (H | q) = 0.5, for all q ∈ [0, 1]
(2)

According to Equation (2), Player 1, who uses evidential reasoning, believes that if he or she (Player
1) playsH with probability p, then so will Player 2 for any p ∈ [0, 1]. Hence, Player 1 has an identity
social projection function. It is critical to note that these are the “beliefs” of Player 1. There is no
presumption that these beliefs will turn out to be justified ex post. Player 2, who uses causal reasoning,
believes that Player 1 will play H with probability 0.5, whatever strategy, q, Player 2 chooses. Hence,
Player 1 regards Player 2 as an ingroup member, but Player 2 regards Player 1 as an outgroup member,
so N = {1, 2} fails to be an ingroup. On the other hand, if both players had identity social projection
functions, thenN = {1, 2} would be an ingroup (in fact, a perfect ingroup). By contrast, if in Equation
(2) we had, say,P12 (H | p) = 0.3 for all p ∈ [0, 1], then both players would exhibit causal reasoning;
and this example would become a causal game.

Example 3 (An application of the level-k model to the p-beauty contest6): A large number of
contestants are asked to choose an integer between zero and 100, inclusive. It is announced that the

6 Moulin [29], Nagel [30].
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winner is the one who gives an answer closest to 2
3

the average of the choices of all of the other players.
A Level 0 player simply makes a random uniform choice. Thus, if player j is of Level 0, then the
action of player j is aj = 50. A Level 1 player assumes all other players are level-0 and, therefore,
assumes all other players will choose 50. Thus, if player i is Level 1, his social projection function will
be Pij (aj|si) = 1 for aj = 50 or Pij (aj|si) = 0 for aj 6= 50. Thus, the optimal choice for player
i, if i is Level 1, is ai = 100

3
' 33. 333. A Level 2 player assumes all other players are Level 1

and, therefore, assumes all other players will choose 100
3

. Thus, if player i is Level 2, his or her social
projection function will be Pij (aj|si) = 1 for aj = 100

3
or Pij (aj|si) = 0 for aj 6= 100

3
. Thus, the

optimal choice for player i, if i is Level 2, is ai = 200
9
' 22. 222, and so on. Note that all players use

causal reasoning, since, for each player, Pij (aj|si) is independent of si.
Intuitively, an “ingroup” is a group of players each of whom believes that the others are like-minded

and, hence, would behave in a similar, but not necessarily identical, manner. The literature has typically
assumed that players do not use their own actions as diagnostic of the actions of “outgroup” players;
see, for instance, Robbins and Krueger [48] and Krueger [40]; and our definitions reflect this (see,
in particular, Definition 7).

However, recent evidence suggests a more nuanced view that is also consistent with our definitions.
Koudenburg et al. [26] show that voters project their own preference for a political party to non-voters
even when they are informed about the poll results for non-voters. Thus, voters may regard non-voters
as ingroup members, though in a strict sense, only the set of voters may be thought to form an ingroup
(Definition 7).

Riketta and Sacramento [49] cite several references to show that members of an ingroup assign beliefs
about other members even when they could have no possible information about those members. They
find that an ingroup member may have a harmonious (or cooperative) relation with other members. On
the other hand, they also find that an ingroup member may be in competition (or conflict) with other
members. In the latter case, an ingroup member may believe that the actions of others are in contrast to
his own actions (the contrast effect). The following is an illustration.

Example 4 (the contrast effect): Consider the matching pennies game of Example 2. Instead of
Equation (2), consider the following social projection functions:{

P12 (H | p) = 1− p, for all p ∈ [0, 1]

P21 (H | q) = 1− q, for all q ∈ [0, 1]
(3)

According to Equation (3), Player 1 believes that if he or she (Player 1) playsH with (say) probability
one, then Player 2 will play H with probability zero; and similarly for Player 2. Both players use
evidential reasoning, but exhibit the contrast effect. Each player regards the other as an ingroup member.
Hence, N = {1, 2} is an ingroup. However, N fails to be a perfect ingroup because players are not
using their identity social projection functions.

2.4. Equilibria

In this section, we propose an appropriate equilibrium concept for static evidential games of complete
information. We call this an evidential equilibrium.
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Definition 11. (Optimal strategies): An optimal strategy for player i, s∗i ∈ Si, in the evidential game
Γ = {N,A, π,P} (Definition 9), is one that maximizes the payoff function, πi (si,Pi (si)) of
player i.

Definition 12. (Evidential equilibria): The strategy profile s∗ =
(
s∗1, s

∗
2, ..., s

∗
n

)
∈S is an evidential

equilibrium of the evidential game Γ = {N,A, π,P} if s∗i is an optimal strategy for each i ∈ N

(Definition 11).

Definitions 11 and 12 identify an important feature of an evidential equilibrium. In static games
of complete information, under uncertainty about what others will do, evidential reasoning converts
an essentially strategic situation into a non-strategic problem. This is made possible by treating the
social projection function as an essential part of the game. This appears to be consistent with the
evidence (see Sections 6.3 and 9.5). There are no higher order beliefs. Players do not think about
strategically exploiting the SPF of the other player. Indeed, the game Γ = {N,A, π,P} does not
involve any assumptions about the mutual or common knowledge of P. Requiring πi and Pi to be
continuous functions on compact mixed strategy spaces guarantees that an equilibrium exists in the
non-strategic problem.

Note that Definition 12 only requires that a strategy for a player be optimal given his beliefs. However,
of course, beliefs may turn out to be wrong, ex post. Ultimately, the choice among models in all science
is guided by the evidence. The evidence reviewed above (and below) shows that in static games, beliefs
about others often turn out to be incorrect. Even in experiments, where successive rounds of play lead
to an improvement in the accuracy of beliefs, one may be interested in explaining the behaviour in
early rounds of play where beliefs do not turn out to be correct. Often such behaviour mimics real-life
situations in which decision makers do not get repeated or frequent opportunities to make their decisions.
Nevertheless, it is of interest to consider the special case where beliefs turn out to be correct, at least in
equilibrium. This is the subject of the next two definitions.

Definition 13. (Mutually consistent strategies): A strategy profile s∗ =
(
s∗1, s

∗
2, ..., s

∗
n

)
∈S of the

evidential game Γ = {N,A, π,P} (Definition 9) is a mutually consistent vector of strategies if
Pi

(
s∗i
)

=s∗−i for all i ∈ N , i.e., if Pij
(
aj|s∗i

)
= s∗j (aj), for all i, j ∈ N , i 6= j, and all

aj ∈ Aj .

In other words, a strategy profile s∗ =
(
s∗1, s

∗
2, ..., s

∗
n

)
is a mutually consistent vector of strategies

if, for all players i, j ∈ N , i 6= j, and all actions, aj , open to player j, the probability Pij
(
aj|s∗i

)
that

player i believes that player j will play action aj (given s∗i ) is equal to the actual probability s∗j (aj)

with which player j plays aj .

Definition 14. (Consistent evidential equilibria): A consistent evidential equilibrium of the evidential
game Γ = {N,A, π,P} is an evidential equilibrium, s∗ ∈S, which is also a mutually consistent
vector of strategies (Definitions 12 and 13).

2.5. Nash Equilibria and Consistent Evidential Equilibria

As one might expect, there is a natural correspondence between Nash equilibria and consistent
evidential equilibria. This is formally stated and established by the following proposition.
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Proposition 1. : (a) Let s∗ ∈S be a Nash equilibrium in the static game of complete information,
{N,A, π}. Consider the (constant) social projection functions: Pi (si) =s∗−i, i ∈ N . Then, s∗ is
a consistent evidential equilibrium in the evidential game Γ = {N,A, π,P}. Furthermore, Γ is a
causal game.
(b) Let s∗ ∈S be an evidential equilibrium in the evidential game Γ = {N,A, π,P}, where P is
the profile of constant social projection functions Pi (si) =s∗−i, i ∈ N (hence, s∗ is a consistent
evidential equilibrium and Γ is a causal game). Then, s∗ is a Nash equilibrium in the static game of
complete information {N,A, π}.

Proof of Proposition 1: (a) Let s∗ ∈S be a Nash equilibrium in the static game of complete
information, {N,A, π}. Consider the social projection functions: Pi (si) =s∗−i, i ∈ N . Since
s∗ is a Nash equilibrium (Definition 2), it follows that s∗i maximizes πi

(
si, s

∗
−i
)

with respect to si,
given s∗−i, for each i ∈ N . Since, by construction, Pi (.|si) =s∗−i, i ∈ N , it follows that s∗i
maximizes πi (si,Pi (si)) with respect to si, for each i ∈ N . Hence, s∗ is an evidential equilibrium
(Definitions 11 and 12) in the evidential game Γ = {N,A, π,P}. Furthermore, since, by construction,
Pi (si) =s∗−i, i ∈ N , it follows that s∗ is a consistent evidential equilibrium (Definitions 13 and 14).
Since P is a profile of constant social projection functions, it follows that Γ = {N,A, π,P} is a causal
game (Definition 9).

(b) Let s∗ ∈S be an evidential equilibrium in the evidential game Γ = {N,A, π,P}, where
P is the profile of constant social projection functions Pi (si) =s∗−i, i ∈ N . Then, s∗i maximizes
πi (si,Pi (si)) with respect to si, for each i ∈ N (Definitions 11 and 12). However, Pi (si) =s∗−i,
i ∈ N ; hence, s∗i maximizes πi

(
si, s

∗
−i
)

with respect to si, for each i ∈ N . Hence, s∗ is a Nash
equilibrium in the static game of complete information {N,A, π} (Definition 2). �

3. Calvinism and the Development of Capitalism

Consider the following example from Quattrone and Tversky [21].7 According to the Calvinist
doctrine of predestination, those who are to be saved have been chosen by God at the beginning of
time, and nothing that one can do will lead to salvation unless one has been chosen. Although one
cannot increase the chance of salvation by good works, one can produce diagnostic evidence of having
been chosen by engaging in acts of piety, devotion to duty, hard work and self denial. According to
Max Weber, this is exactly how millions of people responded to the Calvinist doctrine and why capitalism
developed more quickly in Protestant rather than Catholic countries; see Weber [50], McClelland [51]
and Nozick [52].

3.1. A Normal Form

Consider the following simultaneous move game between two players: God and man. God decides
whether to save man (Y es) or not to save man (No). Man decides whether to do good works (GW )
or not (NGW ). When making his choice, man does not know whether he has been saved or not. Being

7 We are grateful to Andrew Colman for drawing our attention to this example.
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saved is better than not being saved. On the other hand, doing good works is onerous and/or costly.
Therefore, if man knew he has been saved, then he would prefer not to do good works. Likewise, if man
knew he had not been saved, then he would again prefer not to do good works. Thus, by Savage’s sure
thing principle (Savage, [38]), man should prefer not to do good works even if he did not know whether
he has been saved or not. Table 2 is a possible payoff matrix for this game, where God is the row player
and man is the column player. The numbers in the cells are the payoffs to man.

Table 2. Payoffs to man.

GW NGW

Y es 2 3

No 0 1

Clearly, not doing good works (NGW ) is dominant for man over doing good works (GW ), whether
man knows he has been saved (Y es) or not (No). More explicitly, let p = the probability that God has
saved man (Y es), and let q = the probability that man does good works (GW ). Then, the expected
payoff to man is:

π (q, p) = p (2q + 3 (1− q)) + (1− p) (1− q) = 1 + 2p− q (4)

which is, clearly, maximized when q = 0, i.e., when man does not do good works; whatever probability,
p, man assigns to having been saved by God.

3.2. A Social Projection Function

Consider, for example, the social projection function:

P21 (Y es|q) = q (5)

Recall that a strategy for man is fully specified by the probability, q ∈ [0, 1], with which he does
good works (GW ). Likewise, a strategy for God is fully specified by the probability, p ∈ [0, 1], with
which God saves man (Y es). Thus, Equation (5) says that man believes that if he does good works with
probability q, then that indicates to him or her that he or she has been saved by God with probability
p = q. Substituting p = q in Equation (4), we get:

π (q, q) = 1 + q (6)

which is, clearly, maximized when q = 1, i.e., when man does do good works.

3.3. Is Evidential Reasoning Rational or Is It a Useful Heuristic?

If man knew that he had been saved by God, then his optimal action would be not to do good works,
because the latter is onerous and nothing he can do can influence the decision that God has already made.
Likewise, if man knew that he had not been saved by God, then, again, his optimal action would be not
to do good works. Here, evidential reasoning has no role to play.
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However, the situation is quite different if man did not know whether he had been saved by God
or not. Here, evidential reasoning plays a role by assuring man that if he does good works, then this
indicates to him that he has been saved. Note that evidential reasoning is not a valid mode of inference.
For if it is best not to do good words, if you are saved and also if you are not saved, then, according
to classical logic, it is best not to do good works. This can be formally proven using the tautology
(P ⇒ Q) ⇒ [(not P ⇒ Q)⇒ Q]. Therefore, it is best to view evidential reasoning as a heuristic
or bias. Our reading of the evidence suggests that evidential reasoning can explain people’s irrational,
but systematic behaviour in static games. For a further discussion, see Colman and Pulford [53] and
Colman et al. [44].

4. Why Do People Voluntarily Contribute to a Public Good?

The results from public goods games are now well established; see, for instance, Dawes and
Thaler [18] and Fehr and Gächter [19]. What accounts for the high rates of cooperation in the initial
round of a public goods game? Under evidential reasoning, many players may take their own desire to
contribute in the first round as diagnostic of the probability with which other players will contribute;
hence, they contribute. For the dynamic version of the public goods game, we conjecture that evidential
reasoning in conjunction with negative reciprocity gives a better description of the evidence from public
goods games.

Gächter and Thöni [20] investigate whether cooperation in public goods games with voluntary
contribution is higher among like-minded people. In order to separate the subjects into like-minded
people, they initially run a single-round of the public goods experiment. The subjects are then grouped
by the amount of contributions they made in this round. For instance, the top 3 contributors are grouped
into a separate group (the TOP group) as having the greatest inclination to contribute. The public good
game is then played separately in each group. Over the next 10 rounds, contributions are much higher
and free riding much lower in the TOP group, which achieves nearly the first best level in several rounds.
Even the endgame effect, i.e., the sharp drop in contributions in the last round, is most pronounced
among the bottom group. Evidential reasoning would predict that when high contributors have greater
confidence that they are grouped with like-minded people, they contribute more; hence, the pattern of
these results is consistent with evidential reasoning.

5. Why Do People Vote and How Do They Form Beliefs?

Under causal reasoning, any one voter is most unlikely to be pivotal, so nobody should vote. However,
then why do so many people vote? This is the voting paradox.

The explanation of voting when a voter uses evidential reasoning is as follows. “If I do not vote for
my preferred party, then probably like-minded people will not vote, and my preferred party will lose to
the other party. On the other hand, if I decide to vote then, probably, other like-minded people will also
make a similar decision and my party has a better chance of winning. So I vote if I wish my party to win,
otherwise I do not.” In each case, the binary voting decision (vote or not vote) has diagnostic significance
in forming beliefs about whether other like-minded people will vote, although it is critical to note that
one’s action to vote does not cause others to vote. Other possible explanations for voting, for instance,
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that people vote out of a sense of civic duty, cannot explain several kinds of strategic voting and the
variation in voter turnout when an election is believed to be close; see Krueger and Acevedo [25].

As Krueger and Acevedo [25], p. 468, put it: “Compared with a Republican who abstains,
for example, a Republican who votes can be more confident that other Republicans vote in large
numbers”. Quattrone and Tversky [21], Grafstein [22] and Koudenburg et al. [26] show that experimental
evidence is strongly supportive of this view.

Delavande and Manski [28] argue that state and national poll information in the U.S. is readily
available public knowledge. On the other hand, private knowledge in elections is likely to be very limited.
Hence, all individuals should form similar estimates of the winning probabilities of the political parties.
In contrast to these expectations, they find strong support for evidential reasoning. Voters who vote assign
too high a probability to their preferred party of winning the elections. Their findings are invariant with
respect to males/females, whites/non-whites, educated/non-educated, etc. Hence, and consistent with
earlier work, there is a strong possibility that evidential reasoning is hard-wired in humans.

Consider Table 3, which reports survey evidence from successive U.S. Presidential elections that is
supportive of the evidential reasoning explanation. Voters who intend to vote Democrats typically assign
high probabilities to the Democrat candidate winning. By contrast, voters who intend to vote Republican
assign high probabilities to a Republican win. Thus, voters seem to take their own actions as diagnostic
of what other like-minded people will do. These findings show that, in some circumstances at least,
people behave as if their actions were causal, even when they are merely diagnostic or evidential.

Table 3. US presidential elections. Source: Forsythe et al., [23].

Year Presidential Candidates
% of Democrat Voters

Expecting Democrat Win
% of Republican Voters

Expecting Republican Win

1988 Dukakis vs. Bush 51.7 94.2

1984 Mondale vs. Reagan 28.8 99.9

1980 Carter vs. Reagan 87.0 80.4

1976 Carter vs. Ford 84.2 80.4

1972 McGovern vs. Nixon 24.7 99.6

1968 Humphrey vs. Nixon 62.5 95.4

1964 Johnson vs. Goldwater 98.6 30.5

1960 Kennedy vs. Nixon 78.4 84.2

1956 Stevenson vs. Eisenhower 54.6 97.6

1952 Stevenson vs. Eisenhower 81.4 85.9

Of course, not everyone votes in elections. A possible explanation is that not all voters subscribe to
evidential reasoning. The evidence appears to be consistent with a mix of voters; some follow evidential
reasoning, while others follow the classical mode of reasoning, i.e., causal reasoning. Voters who do not
vote appear to follow causal reasoning, while those who do vote appear to follow evidential reasoning.
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Estimating the respective fractions of voters who follow evidential and causal reasoning is an interesting
and open empirical question, but one that lies outside the scope of our paper. Similar comments also
apply to the other experimental games that we consider in which some people cooperate while others
do not.

6. Explaining the Prisoners’ Dilemma under Evidential Reasoning

We have two players; hence,N = {1, 2}. Each player has two actions: cooperate (C) or defect (D).
Hence,A1 = A2 = {C,D}, A = {C,D}×{C,D} = {(C,C) , (C,D) , (D,C) , (D,D)}.

Therefore, if Player 1 chooses, say, C and Player 2 chooses D, then Player 1 gets zero and Player 2

gets 10.

6.1. The Prisoners’ Dilemma under Causal Reasoning

Each player has a strictly dominant action, D (Definition 1); thus, the unique Nash equilibrium of
this game is (D,D) (Definition 2). By contrast, the empirical evidence, reviewed in Section 6.3 below,
shows that 50% or more of the outcomes involve the play (C,C).

6.2. The Prisoners’ Dilemma under Evidential Reasoning

A strategy for player i is entirely determined by the probability pi with which he or she playsC. His
or her expected payoff, πi (pi, pj), can be found from Table 4:

πi (pi, pj) = 4 + 6pj − 4pi + 2pipj, i 6= j (7)

Table 4. A prisoner’s dilemma game.

C D

C 8, 8 0, 10

D 10, 0 4, 4

We consider the following four cases.
Case 1: Both players use evidential reasoning (Definition 5).
Consider the social projection function (Definition 3) for player i:

Pij (C|pi) = pi, i 6= j (8)

Remark 4: The social projection Function (8) should not be interpreted as saying that by playing
C with probability pi, player i can induce player j 6= i to play C with probability pi; indeed, there
is no such causal link. Player i does not know what action the other player will take or has taken.
Rather, Equation (8) is a heuristic device. Player i may reason as follows “I would like to cooperate
with probability pi. Since player j is like-minded, I believe he or she will also choose cooperate with
probability pi, just like me”. None of the players attempts to strategically exploit the SPF of the other
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players. Indeed, there is no requirement in an evidential game that there even be mutual knowledge of
the social projection functions.

From Equation (8), we see that both players use evidential reasoning (Definition 5), so
Γ = {N,A, π,P} is an evidential game (Definition 9). In particular, each player uses his identity
social projection function (Definition 6). Together, both players form an ingroup (Definition 7). In fact,
N forms a perfect ingroup (Definition 8).

Proposition 2. : For the prisoners’ dilemma game, Table 4, (C,C) is a consistent evidential equilibrium
under the identity social projection Function (8).

Proof of Proposition 2: Substituting from Equation (8) into Equation (7), we get:

πi (pi, Pij (C|pi)) = 4 + 2pi + 2p2i , pi ∈ [0, 1] , i 6= j (9)

From Equation (9), we see that πi (pi, Pij (C|pi)) is maximized when pi = 1. It follows that C is
the unique optimal choice for player i ∈ N (Definitions 11). Hence, (C,C) is the unique evidential
equilibrium of this game (Definition 12). Each player expects the other to play C, which turns out to be
correct, ex post. Therefore, (C,C) is a mutually consistent vector of strategies (Definition 13). Hence,
(C,C) is a consistent evidential equilibrium (Definition 14). �

In contrast, (C,C) is not the Nash equilibrium of the game (Definition 2). Indeed, (C,C) requires
each player to play a strictly dominated strategies. However, (C,C) is Pareto optimal. Note that under
evidential reasoning, one does not need repeated game arguments to justify cooperation in the static
prisoners’ dilemma game. Moreover, this is consistent with the play of the cooperative strategy by a
majority of the players (see Section 6.3 below). This suggests that a majority of the players may be
using evidential reasoning.

Case 2: Player 1 uses evidential reasoning (Definition 5), but Player 2 uses causal reasoning
(Definition 4).

In this case, the SPF for each player is given by:

P12 (C|p1) = p1, for all p1 ∈ [0, 1] (10)

P21 (C|p2) = 1, for all p2 ∈ [0, 1] (11)

From Equation (10), we see that Player 1 uses evidential reasoning (Definition 5) and, in particular,
his or her identity social projection function (Definition 6), as in Case 1 above. On the other hand, from
Equation (11), we see that Player 2 uses causal reasoning (Definition 4) and, in particular, mistakenly
assumes that Player 1 will always cooperate. This is an evidential game. The unique evidential
equilibrium (Definition 12) is (C,D). It is an evidential equilibrium because each player’s chosen
action is optimal, given his beliefs, which are captured by his social projection function. It is not a
consistent evidential equilibrium (Definition 14) because the belief of Player 1 turns out to be mistaken
in equilibrium (P12 (C|C) = 1, but Player 2 plays D instead). By contrast, the belief of Player 2 that
Player 1 plays C turns out to be correct in equilibrium.

Case 3: Both players use causal reasoning (Definition 4), but beliefs turn out to be wrong ex post.
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In this case, the SPF for each player is given by:

P12 (C|p1) = 1, for all p1 ∈ [0, 1] (12)

P21 (C|p2) = 1, for all p2 ∈ [0, 1] (13)

Both players use causal reasoning (Definition 4), so this is a causal game (Definition 10). Given
these social projection functions, the unique payoff maximizing strategy for each player is to play D
(Definition 11). Hence, (D,D) is the unique evidential equilibrium (Definition 12). It is also, of
course, the unique Nash equilibrium of this game. However, (D,D) is not a mutually consistent vector
of strategies (Definition 13) because each player expects his opponent to play C in response to D, but
the opponent’s response isD. Hence, (D,D) is not a consistent evidential equilibrium (Definition 14).

Case 4: Both players use causal reasoning (Definition 4), and beliefs turn out to be correct ex post.
In this case, the SPF for each player is given by:

P12 (C|p1) = 0, for all p1 ∈ [0, 1] (14)

P21 (C|p2) = 0, for all p2 ∈ [0, 1] (15)

Both players use causal reasoning (Definition 4), so this is a causal game (Definition 10). Given
his social projection function, playing D is the unique optimal strategy for Player 1 (Definition 11) and
similarly for Player 2. Hence, (D,D) is the unique evidential equilibrium (Definition 12). Furthermore,
(D,D) is a mutually consistent vector of strategies (Definition 13) because each player expects his
or her rival to play D, and in fact, his or her rival does play D. Hence, (D,D) is a consistent
evidential equilibrium (Definition 14). The unique Nash equilibrium of this game is, of course, (D,D).
Hence, this case illustrates Proposition 1a, namely a Nash equilibrium of the game {N,A, π} is also
a consistent evidential equilibrium (Definition 14) of the game {N,A, π,P} with a suitable choice of
social projection functions, P.

Remark 5: When players are randomly matched to play the one-shot prisoners’ dilemma game, the
weight of the evidence, reviewed in the next Section, indicates a cooperation rate of at least 50%. To our
minds, the only satisfactory explanation is provided by evidential reasoning with players using their
identity social projection function (Definition 6). However, substantial numbers also defect, and this can
be explained (as usual) by causal reasoning. Thus, the evidence can best be explained by a mixture of
players, some of whom use causal reasoning, and the others use evidential reasoning.

6.3. Evidence of Cooperation in the Prisoners’ Dilemma Game

In the static prisoners’ dilemma game, defection (D) is a strictly dominant strategy; recall Table 4.
Hence, a player using causal reasoning should defect. However, experimental evidence indicates
high cooperation rates. Rapoport [4] finds cooperation rates of 50% in the prisoners dilemma game.
Zhong et al. [11] show that the cooperation rates in prisoners’ dilemma studies go up to 60% when
positive labels are used (such as a “cooperative game”, rather than a “prisoners’ dilemma game”). When
purely generic labels are used (such as C and D), then the cooperation rates are about 50%. Khadjavi and
Lange [13] find that, while the cooperation rates among students playing the static prisoners’ dilemma
game is 37%, the cooperation rate among prison inmates is 56%.
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Lewis [2] used evidential reasoning to explain the unexpected levels of cooperation in the one-shot
prisoners’ dilemma game. Mutual cooperation is better than mutual defection. If players use evidential
reasoning, they may take their own preference for mutual cooperation as diagnostic evidence that
their rival also has a preference for mutual cooperation, in which case both players are more likely to
cooperate. These views are borne out by the evidence. Cooperators believe that the probability of other
players cooperating is between 0.6 and 0.7. Similarly, players who defect believe that other players will
defect with probabilities between 0.6 to 0.7; see Krueger [40].

Like-mindedness is compatible with both outcomes, C and D, and we do observe both outcomes in
the PD game. Those who play C (respectively D) also believe that a disproportionately large share of
the other players will play C (respectively D). However, why then do we observe so much cooperation
in the static prisoners’ dilemma game? According to Gintis [54], page 145, humans have evolved the
desire to cooperate with other humans. However, this cannot be the only cause, for it cannot explain why
the rate of defection increases in the PD game when players know that their rivals have cooperated (see
Section 9.5, below).

Rapoport [55], pp. 139–141, argued that each player takes his own belief that rational players deserve
the cooperative outcome as evidence that similarly rational players will also cooperate. This is similar
to evidential reasoning. Howard [3] tests the assertion by Rapoport [55], pp. 139–141, by running
a contest between two computer programs. One computer program is designed to play the dominant
strategy, defect. Another computer program, called the MIRROR program, is able to recognize if
it is playing another MIRROR program, in which case it also cooperates; otherwise, it plays defect.
There are five copies each of the programs that plays a tournament, and not surprisingly, the MIRROR
program achieves higher payoffs. In effect, what the MIRROR program is doing is replicating the notion
that people would cooperate with other like-minded people. In the conclusion, Howard [3], p. 212,
gives an argument that is identical in spirit to the evidential reasoning argument: “If all players use
the self-recognition program listed in the Appendix, and play cooperatively only if they recognize their
opponents as their twins, then every game will be played cooperatively.”

In contrast to the standard explanations (Section 9, below), the explanation of cooperation based on
evidential reasoning appears to be quite plausible. The fact that a sizeable fraction of the experimental
subjects also defect suggests that the results are best accounted for by a mixture in the population of
people who use evidential reasoning and causal reasoning.

7. The Nash Demand Game

7.1. Non-Uniqueness of Outcomes in the Nash Demand Game under Causal Reasoning and under
Evidential Reasoning

Consider the Nash demand game (Nash, [56,57]). Two players share a cake of size one. Player 1
demands x ∈ [0, 1] and Player 2 simultaneously demands y ∈ [0, 1]. If the demands are feasible, i.e.,
if x + y ≤ 1, then each player receives what she or he demanded. However, if the demands are not
feasible, i.e., if x+ y > 1, then each player gets zero. Any pair, (x, y), such that x+ y = 1 is a Nash
non-cooperative equilibrium. Thus, the Nash non-cooperative equilibrium concept does not pin down a
unique solution in the Nash demand game.
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The following theorem shows that a similar problem occurs with evidential reasoning.8

Proposition 3. : If we allow arbitrary social projection functions, then any outcome, (a, b), such that
a+b = 1, a > 0 and b > 0, is an outcome of a consistent evidential equilibrium for the Nash demand
game for suitably-chosen social projection functions.

Proof of Proposition 3: Let a + b = 1, a > 0, b > 0. We shall construct social projection
functions under which (a, b) is a consistent evidential equilibrium. Consider the following social
projection functions. Let λ12 > 0 and λ21 > 0, where λ12λ21 = 1. The restriction λ12λ21 = 1

ensures that the shares demanded by both players sum up to one; see below. For Player 1, set
P12 (y|x) = 1 ⇔ y = λ12x, i.e., if Player 1 makes the demand x, then she expects Player 2 to
make the demand y = λ12x. For Player 2, set P21 (x|y) = 1 ⇔ x = λ21y, i.e., if Player 2 makes
the demand y, then she expects Player 1 to make the demand x = λ21y. Thus, Player 1 maximizes x
subject to x+ λ12x ≤ 1. The unique solution to this maximization problem is x = 1

1+λ12
. Similarly,

the unique solution to Player 2’s maximization problem, maximize y subject to λ21y + y ≤ 1, is
y = 1

1+λ21
. It is straightforward to check that

(
1

1+λ12
, 1
1+λ21

)
is a consistent evidential equilibrium for

the chosen social projection functions. Finally, choosing λ12 = 1−a
a

and λ21 = 1−b
b

gives the outcome
(a, b). �

Corollary 4. :
(
1
2
, 1
2

)
is the unique consistent evidential equilibrium for the Nash demand game under

the identity social projection functions: P12 (y|x) = 1⇔ y = x and P21 (x|y) = 1⇔ x = y.

Proof of Corollary 4: Take λ12 = λ21 = 1 in the proof of Proposition 3. �
Corollary 4 shows that a particularly salient social projection function, the identity function, leads to

an equal division of the pie. This might be of empirical interest, particularly when studying norms of
equal division.

To overcome the non-uniqueness problem highlighted by Proposition 3, we need criteria to select
social projection functions. One such criterion is to select the identity social projection function for
symmetric evidential games. The identity social projection function appears plausible, maybe even
compelling, for symmetric evidential games. However, what further criteria would help? One possibility
is to appeal to the Nash bargaining axioms (Nash [56,57]; Osborne and Rubinstein [58]).9 These axioms
are introduced in Section 7.2, below, followed by application to the Nash demand game under evidential
reasoning, in the subsequent Section 7.3.

7.2. Nash’s Axioms and Nash’s Theorem

First, some definitions.

Definition 15. : A bargaining problem is a pair 〈B, d〉, where B ⊂ R2 is compact and convex and
d ∈ B. We require that, for some b ∈ B, d1 < b1 and d2 < b2.

8 We are grateful to Ludovic Renou for drawing our attention to this problem.
9 “One states as axioms several properties that it would seem natural for the solution to have and then one discovers that the

axioms actually determine the solution uniquely.” Nash [57].
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The bargaining problem 〈B, d〉 may be given the following interpretation. B is the set of possible
payoffs resulting from agreement. d is the pair of payoffs to the players if they fail to agree.

Definition 16. : Let ß be the set of all bargaining problems. A bargaining solution is a mapping,
F :ß→ R2, where F 〈B, d〉 ∈ B.

Definition 17. : b′∈ B is Pareto optimal if, for all b ∈ B, b1 ≤ b′1 and b2 ≤ b′2.

Definition 18. : A bargaining problem, 〈B, d〉, is symmetric if d1 = d2 and if (b1, b2) ∈
B⇔ (b2, b1) ∈ B.

Definition 19. : We say that the bargaining solution, F, satisfies the independence of irrelevant
alternatives if for all bargaining problems, 〈B, d〉 and 〈B′, d〉, such that B ⊂ B′ and F 〈B′, d〉 ∈ B,
we have F 〈B, d〉 = F 〈B′, d〉.

Definition 20. : Let 〈B, d〉 , 〈B′, d′〉 ∈ß, α1, α2, β1, β2 ∈ R, β1 > 0, β2 > 0. Let f : B
onto→ B′,

f1 (b1) = α1 + β1b1, f2 (b2) = α2 + β2b2. Then, we say that f is a positive affine transformation
of 〈B, d〉 onto 〈B′, d′〉.

7.2.1. The Nash Axioms

Let ß be the set of all bargaining problems, F a bargaining solution and 〈B, d〉 a bargaining problem.
We introduce the following axioms.

Pareto: F 〈B, d〉 is Pareto optimal.

Symmetry: If 〈B, d〉 is symmetric, then F1 〈B, d〉 = F2 〈B, d〉.

Independence: F satisfies the independence of irrelevant alternatives.

Invariance: If f (b) = (α1 + β1b1, α2 + β2b2) is a positive affine transformation of 〈B, d〉 onto
〈B′, d′〉, then F1 〈B′, d′〉 = α1 + β1F1 〈B, d〉 , F2 〈B′, d′〉 = α2 + β2F2 〈B, d〉.

7.2.2. The Nash Theorem

Proposition 5. : There is a unique bargaining solution, F∗ :ß→ R2, satisfying the axioms: Pareto,
symmetry, independence and invariance. It is given by:

F∗ 〈B, d〉 = arg max
(d1,d2)≤(b1,b2)∈B

(b1 − d1) (b2 − d2)

7.3. Application to the Nash Demand Game under Evidential Reasoning

We now illustrate, by an example, how the Nash axioms, Pareto, symmetry, independence and
invariance, can reduce the choice among social projection functions sufficiently so as to generate a
unique outcome for the Nash demand game.

Example 5 (The Nash demand game under evidential reasoning) Assume that the utility of Player
1 is π1 (x) = xα and that of Player 2 is π2 (y) = yβ, where α > 0, β > 0. Consider the
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following social projection functions. Let λ12 > 0 and λ21 > 0, where λ12λ21 = 1. For Player
1, set P12 (y|x) = 1 ⇔ y = λ12x, i.e., if Player 1 makes the demand x, then he or she expects
Player 2 to make the demand y = λ12x. For Player 2, set P21 (x|y) = 1 ⇔ x = λ21y, i.e., if
Player 2 makes the demand y, then he or she expects Player 1 to make the demand x = λ21y. Thus,
Player 1 maximizes xα subject to x + λ12x ≤ 1. The unique solution to this maximization problem
is x = 1

1+λ12
. Similarly, the unique solution to Player 2’s maximization problem, maximize yβ subject

to λ21y + y ≤ 1, is y = 1
1+λ21

. It is straightforward to check that
(

1
1+λ12

, 1
1+λ21

)
is a consistent

evidential equilibrium for the chosen social projection functions.
To make progress, we need to select λ12, λ21. Ifα = β, then the game is symmetric, and λ12 = λ21

(and hence, λ12 = λ21 = 1) appear compelling. This give the plausible outcome x = y = 1
2

.
However, ifα 6= β,then the game is not symmetric, and it is not clear, a priori, how to choose λ12, λ21.
If we invoke, in addition to symmetry, the other Nash axioms, Pareto, independence and invariance, then,
by Proposition 5, we must get the unique outcome that is determined by maximizing the Nash product
π1 (x)π2 (y) = xαyβ (here, d1 = π1 (0) = 0 and d2 = π2 (0) = 0). We then show that this
unique outcome can be supported by the appropriate choice of λ12, λ21.

It is straightforward to show that the problem: choose x and y, so as to maximize xαyβ subject to
x + y ≤ 1, having the unique solution x = α

α+β
, y = β

α+β
. This, in turn, determines the unique

values λ12 = β
α
, λ21 = α

β
. Thus, social projection functions compatible with the Nash axioms are

P12 (y|x) = 1 ⇔ y = β
α
x, and P21 (x|y) = 1 ⇔ x = α

β
y. Note that these social projection

functions are not unique (because they were chosen to be linear). However, the outcome x = α
α+β

, y =
β

α+β
is unique, whatever social projection functions are chosen, provided they satisfy the Nash axioms.

8. Oligopoly Games

Consider a market for a single homogeneous good. The total industrial output, Q, is produced by a
fixed number of firms, n. Let qi be the output of firm i, then Q =

∑n
i=1 qi. All consumers are price

takers. The unit price, P (Q), is given by:

P (Q) = A− aQ, a > 0,A > 0 (16)

There are zero fixed costs, and the marginal cost of firm i is a constant, ci, i = 1, 2, ..., n, where:

0 ≤ c1 ≤ c2 ≤ ... ≤ cn < A (17)

Hence, the profit of firm i is πi = (P − ci) qi , i = 1, 2, ..., n, which, using Equation (16), can
be written as:

πi (qi, q−i) =
(
A− ci − a

∑
j 6=i

qj

)
qi − aq2i , i = 1, 2, ..., n (18)

where q−i is the vector of outputs of firms other than firm i. Maximizing πi (qi, q−i) with respect to
qi, given q−i, leads to firm i’s reaction function:

q∗i (q−i) =
A− ci

2a
−

1

2

∑
j 6=i

qj , i = 1, 2, ..., n (19)
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8.1. Causal Reasoning

The next proposition summarizes the results under causal reasoning on the part of all firms.

Proposition 6. : (a) Under perfect competition, P = c1,Q = A−c1
a

.
(b) The monopoly outcome is given by P = A+c1

2
,Q = A−c1

2a
.

(c) The Cournot output level of any firm is:

qCi =
A+

∑
j 6=i cj − nci

(n+ 1) a
, i = 1, 2, ..., n (20)

(d) In a Stackelberg leader-follower model where Firm 1 is the leader while Firm 2 is the follower, the
equilibrium output levels of the leader and the follower, respectively, are:

qL1 =
A+ c2 − 2c1

2a
(leader) (21)

qF2 =
A+ 2c1 − 3c2

4a
(follower) (22)

Proof of Proposition 6:
(a) Under perfect competition, each firm produces at the minimum cost, c1, and the price is set equal

to c1; Equation (16) then givesQ = A−c1
a

.
(b) Suppose we have a single firm (the monopolist) that produces at minimum cost, c1. Setting∑
j 6=i qj = 0 and q∗i (q−i) = Q (there are no other firms) in Equation (19) gives Q = A−c1

2a
;

Equation (16) then gives P = A+c1
2

.
(c) In a Cournot equilibrium, each firm chooses its out, qCi , so as to maximize its profit Equation (18),

given the outputs, qCj , of the other firms. Set q∗i (q−i) = qCi and qj = qCj in Equation (19) and solve
the resulting system of simultaneous linear equations to get Equation (20).

(d) Consider a duopoly with Firm 1 acting as leader and Firm 2 acting as follower. The follower
chooses its output, qF2 , to maximize its profit given the output level, qL1 , of the leader; Equation (19) then
gives qF2

(
qL1
)

= A−c2
2a
− 1

2
qL1 . Substitute this into the profit function of the leader (from (Equation 18))

to get πL1
(
qL1 , q

F
2

(
qL1
))

=
[
A− c1 − a

(
A−c2
2a
− 1

2
qL1
)]
qL1 − a

(
qL1
)2. Maximize this with respect

to qL1 to get qL1 = A+c2−2c1
2a

, and hence, qF2 = A+2c1−3c2
4a

. �
Remark 6: Note that the perfectly competitive, monopoly and Cournot games are all single-stage

games, i.e., one-shot games. The firms choose their actions simultaneously (Parts a, b and c of
Proposition 6). However, the Stackelberg leader-follower model is a two-stage game: The leader moves
first choosing its output level correctly anticipating the reaction of the follower. The follower then moves
having observed the output level of the leader.

8.2. Evidential Reasoning

Consider the consequences of evidential reasoning for the producers. All consumers are causal
reasoners, i.e., each consumer regards every other consumer and every firm as an outgroup member
(recall Definition 7). We also assume that each firm regards each consumer as an outgroup member.
Thus, if Cis the set of consumers and F is the set of firms, then each is an outgroup relative to the
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other (Definition 7c). This also allows us to continue to assume that the market demand curve is given
by Equation (16). If we allowed consumers to use evidential reasoning, then a single consumer could
reason as follows “If I cut my demand, then probably each like-minded consumer would also cut his or
her demand. The aggregate result would be a reduction in price for all of us”. Consumers would then
be able to collude. The consequence would be that we would no longer have an oligopoly model (as
classically defined), but a bargaining model. While this is very interesting, it lies beyond the scope of
this paper and, in fact, deserves a paper on its own.

We now describe an evidential equilibrium, q∗, with the following properties. Suppose that firm i

is considering a deviation, qi, from q∗i . Firm i reasons as follows. “If I am tempted to deviate by an
amount qi−q∗i and if I believe that my rival, firm j, j 6= i, is like-minded, then the rival is probably also
tempted to deviate by an amount qj − q∗j = λij

(
qi − q∗i

)
”; the interpretation of λij is given below in

more detail. We formalize such reasoning by the following social projection function (Definition 3):

Pij (qj|qi) = 1⇔ qj − q∗j = λij
(
qi − q∗i

)
, j 6= i (23)

The social projection specified in Equation (23) is quite general. It nests several subcases, as we show
below. The generality of Equation (23) should not be taken to mean that the predictive content of the
evidential reasoning model of oligopoly is empty. Rather, as in prisoners’ dilemma games, individuals
display a wide variation in choices when they are asked to play the oligopoly game (see Section 8.4
below). Variations in the parameter λij in Equation (23) offer a parsimonious way of capturing this
heterogeneity by varying the degree of like-mindedness.

In particular, perfect like-mindedness, λij = 1, gives rise to the identity social projection function
(Definition 6); each firm believes that the other will deviate from q∗ by an identical distance. The other
extreme arises when no like-mindedness is perceived by firms, as in models of causal reasoning. This
corresponds to λij = 0. Intermediate cases of like-mindedness correspond to values 0 < λij < 1 and
to λij < 0. The distribution of values of λij in any population is ultimately an empirical question that
cannot be answered in a theoretical model.

The next proposition gives the solution under evidential reasoning.

Proposition 7. : (a) Given the social projection Functions (23), the unique evidential equilibrium
(Definition 12), q∗, is characterized by the following set of simultaneous linear algebraic equations:

2 +
∑
j 6=1 λ1j 1 ... 1

1 2 +
∑
j 6=2 λ2j ... 1

... ... ... ...

1 1 ... 2 +
∑
j 6=n λnj



q∗1
q∗2
...

q∗n

 =


A−c1
a

A−c2
a

...
A−cn
a

 (24)

(b) Furthermore, q∗ is a mutually consistent vector of strategies (Definition 13) and, hence, a consistent
evidential equilibrium.
(c) Conversely, given any vector of outputs, q∗, satisfying q∗i > 0 and

∑n
i=1 q

∗
i ≤

A−c1
a

, there exits a
profile of social projection of the form Equation (23), such that q∗ is a consistent evidential equilibrium.
In particular,

λij = λi, i, j = 1, 2, ..., n, j 6= i, where

λi =
A− ci

(n− 1) aq∗i
−

2

n− 1
−

1

(n− 1) q∗i

∑
j 6=i

q∗j , i = 1, 2, ..., n (25)
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Proof of Proposition 7: (a) Substituting qj from Equation (23) into Equation (18) gives:

πi (qi,Pi (.|qi)) =

{
A− ci − a

∑
j 6=i

[
q∗j + λij

(
qi − q∗i

)]}
qi − aq2i , i = 1, 2, ..., n (26)

which, after simplification, gives:

πi (qi,Pi (.|qi)) =

(
A− ci + aq∗i

∑
j 6=i

λij − a
∑
j 6=i

q∗j

)
qi−a

(
1 +

∑
j 6=i

λij

)
q2i , i = 1, 2, ..., n

(27)
Equation (27) shows how a player who uses the heuristic of evidential reasoning translates an

essentially strategic problem into a decision theoretic problem. Maximizing Equation (27) with respect
to qi gives the optimal (pure) strategy for firm i (Definition 11), given his social projection Function
(23):

qi =
A− ci + aq∗i

∑
j 6=i λij − a

∑
j 6=i q

∗
j

2a
(
1 +

∑
j 6=i λij

) , i = 1, 2, ..., n (28)

Setting qi = q∗i , i = 1, 2, ..., n and simplifying gives the following set of simultaneous linear
algebraic equations, (

2 +
∑
j 6=i

λij

)
q∗i +

∑
j 6=i

q∗j =
A− ci
a

, i = 1, 2, ..., n (29)

which can be written in the matrix form Equation (24).
(b) From Equation (23), we see that Pij

(
qj|q∗i

)
= 1⇔ qj = q∗j . In effect, when firm i produces the

output q∗i , it believes that firm j will produce q∗j . Ex post, firm i finds that firm j indeed did produce an
output level q∗j , thus vindicating its ex ante belief. Hence, q∗ is a mutually consistent vector of strategies
and, hence, a consistent evidential equilibrium.
(c) Rewrite Equation (29) in the form:∑

j 6=i

λij =
A− ci
aq∗i

− 2−
1

q∗i

∑
j 6=i

q∗j , i = 1, 2, ..., n (30)

Equation (30) has many solutions, for example Equation (25). �
We now show how one may obtain the market outcomes under causal reasoning (Proposition 6)

also under evidential reasoning by choosing suitable values for λij , j 6= i, in Equation (25) of
Proposition 7.

Corollary 8. : (a) Setting c1 = c2 = ... = cn and λij = − 1
n−1

, for all i, j and i 6= j, gives the
perfectly competitive output levels,

∑n
i=1 q

∗
i = Q∗ = A−c1

a
(Proposition 6a). Here, each firm regards

every other firm as an ingroup member and the set of firms forms an ingroup (Definition 7). We may
call this a competitive ingroup and the resulting social projection functions competitive social projection
functions. This is in line with the ideas considered in Section 2.3 and, in particular, is an illustration of
the contrast effect.
(b) Setting c1 = c2 = ... = cn and λij = 1, for all i, j and i 6= j, gives q∗i = A−c

2na
, i = 1, 2, ..., n.
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Hence, the total output equals the monopoly level
∑n
i=1 q

∗
i = Q∗ = A−c1

2a
(Proposition 6b). In this

case, the social projection functions for the producers are identity social projection functions on the set
of all producers (Definition 6). Thus, each firm believes that the other firms are like-minded.
(c) Setting λij = 0, for all i, j and i 6= j, gives the Cournot output levels q∗i =

A+
∑

j 6=i cj−nci
(n+1)a

,
i = 1, 2, ..., n (Proposition 6c). Here, each firm regards the other as an outgroup member (Definition
7); hence, every firm uses causal reasoning (Definition 4).
(d) Setting λ12 = −1

2
and λ21 = 0 gives, respectively, the leader output and the follower output in the

leader-follower Stackelberg duopoly (Proposition 6d). The social projection functions for the follower
(Firm 2) is constant; hence, the follower uses causal reasoning (Definition 4), λ21 = 0. The follower
regards the leader as an outgroup member. The leader regards the follower as an ingroup member
(Definition 7), λ12 = −1

2
. We may say that the leader behaves competitively towards the follower (the

contrast effect, recall Section 2.3).

Remark 7: Recall that the Stackelberg game in Proposition 6d under causal reasoning is a two-stage
game, where the leader moves first, correctly anticipating the reaction of the follower. The follower then
chooses its output having observed the output of the leader. By contrast, the version under evidential
reasoning (Corollary 8d) is a single-stage game. The empirical evidence that we present below does
show that in single-stage duopoly games, players often choose outputs similar to the Stackelberg output
levels. This appears to be confirmation of evidential reasoning in oligopoly games.

8.3. The Nash Bargaining Solution for Oligopoly Games

Here, we investigate the consequences of treating the oligopoly problem as a Nash bargaining problem
(see Section 7, above, for the two-player case and Osborne and Rubinstein [58], p.23, for the n-player
case). We show that the oligopoly Models (16)–(18) have a unique Nash bargaining solution. We show
that this solution specifies equal output levels for the firms. However, due to different costs, the firms’
profits are different. We give social projection functions that implement this Nash bargaining solution.

Proposition 9. : For the oligopoly Models (16)–(18), the unique Nash bargaining solution is given by:

q∗i =
1∑n

k=1
a

A−ck−aQ∗
, i = 1, 2, ..., n

whereQ∗ is the unique solution to:

n

Q∗
=

n∑
k=1

1
A−ck
a
−Q∗

Social projection functions that implement this solution are:

Pij (qj|qi) = 1⇔ qj − q∗j = λi
(
qi − q∗i

)
, j 6= i

where:

λi =
A− ci

(n− 1) aq∗i
−

2

n− 1
−

1

(n− 1) q∗i

∑
j 6=i

q∗j , i = 1, 2, ..., n
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Proof of Proposition 9: A firm can guarantee itself a zero profit by exiting the market. Therefore, we
take the disagreement point to be 0. Maximizing the Nash product:

Π = ×ni=1πi (qi, q−i) = ×ni=1

[(
A− ci − a

∑
j 6=i

qj

)
qi − aq2i

]
gives the first order conditions:

A− ci − a
∑
j 6=i qj − 2aqi(

A− ci − a
∑
j 6=i qj

)
qi − aq2i

= a
n∑
k 6=i

qk(
A− ck − a

∑
j 6=k qj

)
qk − aq2k

, i = 1, 2, ..., n

which can be re-written as:

1 = qi

n∑
k=1

a

A− ck − aQ
, i = 1, 2, ..., n (31)

where:

Q =
n∑
j=1

qj (32)

Summing Equation (31) from one to n, using Equation (32), then rearranging, we get:

n

Q
=

n∑
k=1

1
A−ck
a
−Q

(33)

We shall argue that Equation (33) has a unique solution,

Q∗ ∈
(

0,
A− cn
a

)
(34)

Consider the functions f (Q) = n
Q

, g (Q) =
∑n
k=1

1
A−ck

a
−Q

, 0 < Q < A−cn
a

. Note that f and g

are continuous with lim
Q→0

f (Q) = ∞ >
∑n
k=1

a
A−ck

= lim
Q→0

g (Q) and lim
Q→A−cn

a

f (Q) = na
A−cn

<

∞ = lim
Q→A−cn

a

g (Q). Hence, f (Q∗) = g (Q∗), for some Q∗ ∈
(
0, A−cn

a

)
. Since f is strictly

decreasing and g is strictly increasing, it follows that Q∗ is unique. From Equation (31), it follows that
the unique Nash bargaining solution for the oligopoly Models (16)–(18) is given by:

q∗i =
1∑n

k=1
a

A−ck−aQ∗
, i = 1, 2, ..., n (35)

From Equation (23) and Proposition 7c, it follows that social projection functions that implement
Equation (35) are:

Pij (qj|qi) = 1⇔ qj − q∗j = λi
(
qi − q∗i

)
, j 6= i

where:

λi =
A− ci

(n− 1) aq∗i
−

2

n− 1
−

1

(n− 1) q∗i

∑
j 6=i

q∗j , i = 1, 2, ..., n. �
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8.4. Empirical Evidence from Oligopoly Games

In our theoretical model, we showed how alternative values of λ in Equation (23) were able to
produce, in a static game, the output levels under alternative market forms, such as perfect competition,
monopoly, Cournot and the Stackelberg leader-follower game. We now argue that these results are
consistent with the empirical findings.

The early experiments on Cournot markets were conducted by Fouraker and Siegel [14]. They, and
many later experiments, gave a profit table (PT) to the subjects. The PT listed the outputs of each firm
on the two margins while individual cells of the table contained the corresponding profits of both firms.
The PT was often supplemented by a profit calculator (PC), which allowed each experimental subject in
their role as a firm to calculate the profit for a given pair of quantities chosen by both firms. In recent
years, several experiments also gave subjects a best response option (BRO), which tells them their profit
maximizing quantity for any quantity chosen by the other player.

The extra information provided (PT, PC, BRO) arguably primes subjects to follow an
optimization-based solution. Requate and Waichman [27] find that there is substantially more collusion
(corresponding to λ = 1 in Equation (23)) in PT and PC treatments as compared to BRO. They find, in
a static duopoly experiment, that the collusive outcome is reached at least once in the 20 rounds, in 62%,
78% and 29% of the markets, respectively, in the PT, PC and BRO treatments. The theoretical outcome
of the Cournot–Nash equilibrium is, therefore, not confirmed in many cases.

Several papers report the Cournot–Nash equilibrium under random matching of opponents while
finding that there is greater collusion under fixed matching of players.10 For instance, Huck et al. [15]
consider symmetric firms and linear demand curves. Output choices vary between 3 and 15, and the
Cournot–Nash outcome is for each firm to produce an output of eight. Both firms are known to the
experimental subjects to be symmetric, so they must know that the solution lies on the diagonal of a
relatively small matrix. Profits of each firm in the PT drop off sharply for output levels equal to or higher
than 10 or less than an output of three. This leaves only seven levels of output to choose from: 4, 5, 6,
7, 8, 9. The authors report data for Round 9 of play under random matching, as the most supportive of
their hypothesis (see Table 5 in their paper); these results are given in Table 5.

Table 5. Distribution of output levels in Huck et al. [15].

Output Level 6 7 8 9 Greater Than 10

% of subjects choosing 12 21.5 35.5 14.5 14

The mean quantity is close to the Cournot–Nash output level of eight. However, there is substantial
variation in the output levels, and about 65% of individuals do not choose the Cournot output level.

Rassenti et al. [24] use an asymmetric Cournot game in which firms have different marginal costs that
are private information. Firms do not even know the underlying probability distribution of types. Hence,
there is true uncertainty, an area where evidential reasoning would seem to have the most bite. The game

10 The interested reader can consult the bibliography in Requate and Waichman [27].
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is played over 75 rounds to allow for substantial learning possibilities. The main finding is that while
total output is above, but close to, the Cournot–Nash solution, the individual levels of output chosen by
the firms are quite different from the Cournot–Nash solution. The results, in this sense, are similar to
those in Huck et al. [15]; however, the authors take this as a refutation rather than a confirmation of the
Cournot–Nash equilibrium.

Bosch-Domènech and Vriend [16] report results from the last two rounds of a 22-round duopoly
experiment in which, in each round, two firms simultaneously choose outputs. They find that the output
levels are widely distributed over a range that includes the monopoly output level and the perfectly
competitive level. Table 6 summarizes information that is extracted from their paper.

Table 6. Percentage of outputs corresponding to various market levels.

Monopoly Cournot Walrasian Others

Easy 38.89 33.33 0 27.78

Hard 11.11 16.67 11.11 61.11

Hardest 8.33 14.28 16.67 60.72

The three treatments, easy, hard and hardest, differ in terms of the time within which firms had to
choose their outputs and the level of information provided. For instance, in the easy treatment, a PT
is provided, but not in the other treatments. In the hardest treatment, firms are not even told of the
exact functional form of the linear demand curve (only that it is downward sloping), whereas in the easy
treatment, firms know the exact demand curve. The cells in Table 6 report the approximate percentage
of the standard market outcomes in each treatment. The Cournot output level is not particularly salient
relative to the others. Further, the wide distribution of output levels, even in Rounds 21 and 22 of the
experiment, suggest that a flexible social projection function, as in Equation (23), is consistent with
the evidence.

Waichman et al. [59] find that pre-play communication increases the degree of collusion in the
Cournot game. Between 91% and 100% of the markets achieve collusion in at least one round of
the experiment when pre-play communication is allowed. This also seems consistent with evidential
reasoning. Pre-play communication may increase the players’ beliefs that they are dealing with
like-minded players, hence facilitating the use of evidential reasoning.

Duersch et al. [17] document systematic departures from a Cournot–Nash equilibrium. They consider
a linear-demand, linear-cost Cournot game with the Cournot–Nash quantity, q∗i = 36. Computers play
one of several well-known strategies, including best response against human subjects who are not aware
of the computers’ strategy over 40 rounds. Again, by creating uncertainty about what others will do, this
situation is quite relevant to the domain of evidential reasoning.

Mean quantities chosen by computers (34.39) are always lower than mean quantities chosen by
humans (47.95). Human subjects choose quantities that are much greater than the Cournot–Nash levels
and, in some cases, approach the Stackelberg leader output of 54. In particular, when computers are
programmed to play a best response with some small noise, in three different treatments, subjects
choose the output levels 51.99, 48.67 and 49.18, while computers choose 32.05, 35.02 and 31.67. Thus,
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human subjects show systematic (upward) departures from the Cournot–Nash level, even approaching
the Stackelberg levels.

Thus, one observes a wide and rich range of behaviours that are often collusive and range all the way
up to the choice of quantities in the Stackelberg case. The results are consistent with a range of social
projection functions used (corresponding to alternative values of λ in Equation (23)) by experimental
subjects who use evidential reasoning. The collusive outcome is played by a significant percentage of
experimental subjects, which is consistent with the identity social projection function.

9. Can Causal Reasoning Explain Cooperation in the Prisoners’ Dilemma Game?

Here, we examine several theories to see if they can explain cooperation in the one-shot prisoners’
dilemma game under causal reasoning.11

First, in Section 9.1, we show that cooperation in the prisoners’ dilemma game cannot be explained by
reputation, correlated equilibria, level-kmodels, Stackelberg reasoning or evolutionary stable equilibria.

Although the prisoners’ dilemma game is presented to experimental subjects as a non-cooperative
game played once against an anonymous opponent, subjects may in fact interpret it as some form of
cooperative game. We outline three such theories in Sections 9.2–9.4. In Section 9.5, we argue that the
empirical evidence rejects these theories.

Before starting, however, the reader might find the following example useful.
Example 6 (High-low game)12: Consider the following game between two players. If both choose

high (H), then each gets two. If both choose low (L), then each gets one. If one chooses H (high) and
the other chooses L (low), then each gets zero. These payoffs are summarized by Table 7.

Table 7. A high-low game.

H L

H 2, 2 0, 0

L 0, 0 1, 1

This game has two pure-strategy Nash equilibria: (H,H) and (L,L). The problem is: which Nash
equilibrium will be played? We use this example to illustrate several heuristics that solve this problem
Schelling [60] argued that, because of its high payoff, (H,H) is salient. Therefore, it becomes a focal
point and is chosen by both players. Harsanyi and Selten [41] argued that (H,H) payoff dominates
(L,L) and, hence, will be selected by both players. These are examples of what we called conservative
heuristics in the Introduction. They involve no violation or relaxation of any of the standard assumptions
of game theory, but they do add extra conditions that cannot be derived from standard game theory, but
are consistent with them.

11 For a review, see Colman and Pulford [53].
12 We are grateful to Andrew Colman for drawing our attention to this example.
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As an example of what we called a radical heuristic, consider team reasoning (Sugden, [61];
Bacharach, [62,63]). Here, the players replace individual rationality (each seeking to maximise his
or her own payoff, as in standard game theory) with collective rationality (each aims to maximise the
payoff to the team). Since (H,H) gives the highest payoff to the team, it chosen.

Another example of a radical heuristic is Stackelberg reasoning (Colman and Bacharach [43];
Colman et al. [44]). Note that high-low is a static game of complete, but imperfect information. In
particular, when a player makes his or her move, he or she does not know the move that his or her rival
has taken or will take. Both players are aware of this. A player solves this problem by carrying out the
following thought experiment. She or he says to herself or himself “suppose this were a game of perfect
information where I move first and my rival moves second, after having observed my move. What move
would she or he take? From the payoff matrix, it is obvious to me that her or his best reply to me
choosing H is for her or him to also choose H; and the best reply for her or him to me choosing L is
for her or him to also choose L. Since (H,H) is better for me than (L,L), I will choose H”. The
other player also reasons in the same way. The outcome is (H,H). It is important to note that there is
no breakdown of causality, nor do the players believe so. In particular, Player 1 does not believe that by
choosingH (or L) she or he causes Player 2 to chooseH (or L).

We now illustrate evidential reasoning. Player 1 (say) reasons as follows. “(H,H) is clearly better
for both of us. If only I could meet with Player 2, I would put to her or him the proposal that we both
play H . I am sure she or he would agree. However, player 2 is probably thinking the same. However,
actually, we do not have to meet, because we both know that if we were to meet, then we would agree on
(H,H)”. Let p, q be the probabilities with which Players 1 and 2 play H , respectively. The players’
reasoning can be formalized using the identity social projection functions:

P12 (H|p) = p, P21 (H|q) = q

The resulting expected payoff to Player 1 is

u1 (p) = π1 (p, P12 (H|p)) = 2p2 + (1− p)2 = 3

(
p−

1

3

)2

+
2

3

Since
(
p− 1

3

)2 attains a unique global maximum on [0, 1] at p = 1, it follows that the same holds
for u1 (p). Hence, Player 1 chooses H with probability one, and similarly, Player 2 chooses H with
probability one. (H,H) is a consistent evidential equilibrium (Definition 14). We stress, again, that
there is no breakdown of causality, nor do the players believe so. In particular, Player 1 does not believe
that by choosingH , she or he causes Player 2 to chooseH . She or he merely takes her or his preference
forH as evidence that Player 2 will also chooseH .

9.1. Reputation, Correlated Equilibria, Level-K Models, Stackelberg Reasoning and Evolutionary
Stable Equilibria

In the finitely-repeated prisoners’ dilemma game under incomplete information, a player may believe,
possibly mistakenly, that his or her rival will respond to cooperation with cooperation and defection with
defection (Kreps et al. [64]). Under these conditions, a player may wish to play cooperate until late in
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the game, so as to establish a reputation for cooperation. However, because defect is a dominant strategy,
such a player will defect in the final period. This contradicts the observation of significant amounts of
cooperation in the final period (Cooper et al. [6]). In particular, reputation (on its own) is unable to
explain cooperation in the static (one-shot) prisoners’ dilemma game.

Since “cooperate” is a dominated strategy, it is not rationalizable and cannot be supported in a
correlated equilibrium either. In Level-k models, any player with level k, k ≥ 1, will never play
a dominated strategy. Cooperation in a prisoners’ dilemma game cannot be explained in evolutionary
games either. The reason is that the set of evolutionary stable equilibria is a subset of the set of Nash
equilibria of the game.

Stackelberg reasoning cannot explain cooperation in the prisoners’ dilemma either. To see this,
consider the payoff matrix in Table 4. According to Stackelberg reasoning, if Player 1, say, chooses
C, then D is the best response for Player 2, giving Player 1 the payoff zero; and if Player 1 chooses D,
then, again, D is the best response for Player 2, giving Player 1 the payoff 4 > 0. Hence, according to
Stackelberg reasoning, Player 1 will always chooseD; and similarly for Player 2. Therefore, cooperation
will never be the outcome of the prisoners’ dilemma game under Stackelberg reasoning.

9.2. Team Reasoning

Several elements are key to team reasoning (Bacharach, [63]):

1. The team agrees on a common objective.
2. The task for each member of the team is agreed upon by all members.
3. The way the surplus is divided among the members of the team is agreed upon by all members.

The team is consolidated if all members carry out their tasks. However, serious failure of a significant
number of members is liable to cause the team to breakup.

As an illustration, consider the two-player game whose payoff matrix is given by Table 8, below.
This, clearly, has the structure of a prisoners’ dilemma game.

Table 8. A prisoner’s dilemma game.

C D

C 5, 5 2, 6

D 6, 2 4, 4

The interpretation of the payoffs in Table 8 is as follows. If a player works on her or his own, she or
he gets the payoff of four. If both work as a team, then the joint payoff is 10, which is shared equally
to give each a payoff of five. However, if one player defects (shirks), she or he gets six. This is because
she or he gets four for herself or himself from working on her or his own. The other player (who has not
defected) generates a payoff of four for the team by working on her or his own. By the sharing rule, this
payoff is shared equally, giving the defector a total payoff of six and the non-defector a payoff of two.
D is the strictly dominant strategy for each player. Hence, this game has the unique Nash equilibrium,
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(D,D), which gives each player the payoff four. However, if both players internalize the objective of
the team, to maximise joint payoff, then each gets five.

9.3. Other-Regarding Preferences

Consider, for example, other-regarding preferences in the model of Fehr and Schmidt [65,66].
Suppose that we have n players with incomes: y1 ≤ y2 ≤ ... ≤ yn. We concentrate on the
linear version, which has had considerable empirical support. The Fehr–Schmidt utility function of
an individual with income yj ∈ Y is given by:

U (yj) = yj −
β

n− 1

j−1∑
i=1

(yj − yi)−
α

n− 1

n∑
k=j+1

(yk − yj) , α ≥ 0, 0 ≤ β < 1 (36)

Individual j cares for his own payoff, yj , as under selfish preferences. However, he or she also suffers
disutility from being ahead of others (altruism) and from being behind others (envy). β ≥ 0 and α ≥ 0

are sometimes known as the parameters of, respectively, advantageous and disadvantageous inequity.
When α = β = 0, we have purely selfish preferences. Evidence indicates that disadvantageous
inequity is more important than advantageous inequity (α > β), and one never benefits by throwing
away one’s own income (β < 1). Let us apply FSpreferences, with β = 0.3, to the prisoners’ dilemma
game (n = 2), whose payoff matrix is given by Table 4, above. It can then be easily seen that C is
a strict best reply to C, and D is a strict best reply to D. Hence, other-regarding preferences can,
potentially, explain cooperation in the prisoners’ dilemma game. We return to this in Section 9.5, below.

9.4. Altruism

Cooper et al. [6] give an explanation of cooperation in the prisoners’ dilemma game based on altruism.
They consider three types of players. Egoists who always defect; dominant strategy altruists who always
cooperate; and best response altruists who respond to cooperate with cooperate and to defect with defect.

Because there are three types of players and because when a player takes his or her action, he or she
does not know the type of his or her opponent, this is a (static) game of incomplete information. The
relevant solution concept (under causal reasoning) is the Bayesian Nash equilibrium. Each type of each
player chooses his or her strategy so as to maximize his or her expected payoff, given the strategies of
all of the types of all of the other players. The joint probability of all types is common knowledge. Each
type of each player uses this, and his or her knowledge of his or her own type, to update his or her belief
about the types of his or her rivals using Bayes’ Law. See, for example, Fudenberg and Tirole [45],
Part III.

To rationalize the behaviour of these types, Cooper et al. [6] assume that player i enjoys an extra
amount of utility (warm glow), δi ≥ 0, from playing cooperate (irrespective of the action played by
his or her rival). If δi is sufficiently small, then player i behaves as an egoist, i.e., defect is a dominant
action for him or her. If δi is sufficiently large, then player i behaves as a dominant strategy altruist,
i.e., cooperate is a dominant strategy for him or her. Finally, for δi in the intermediate range, player i
behaves as a best response altruist, i.e., for him or her, cooperate is the best response to cooperate and
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defect is the best response to defect. As an illustration, assume that, in addition to the payoffs in Table 4,
player i enjoys warm glow, δi, from cooperation. The modified payoff matrix is now given by Table 9:

Table 9. A prisoner’s dilemma game in the presence of warm glow.

C D

C 8 + δ1, 8 + δ2 δ1, 10

D 10, δ2 4, 4

The following is easy to check.

1. If δi < 2, then defect is a strictly dominant action for player i. In this case, player i behaves as
an egoist.

2. If δi > 4, then cooperate is a strictly dominant action for player i. In this case, player i behaves
as a dominant strategy altruist.

3. If 2 < δi < 4 (e.g., δi = 3), then cooperate is a strict best response for player i to player j,
j 6= i, playing cooperate. Defect is a strict best response for player i to player j, j 6= i, playing
defect. Player i behaves as a best response altruist.

Reviewing the evidence, including the evidence from their own experiments, Cooper et al. [6]
conclude that behaviour in the prisoners’ dilemma game can best be explained if players are either
egoists (always defect) or best response altruists (respond to cooperate with cooperate and to defect with
defect). To illustrate this, take δi = 0 if player i is an egoist and δi = 3 if player i is a best response
altruist. Consider the game between two best response altruists. Putting δ1 = δ2 = 3, the payoff
Table 9 becomes:

Table 10. A prisoner’s dilemma game with warm glow.

C (q) D (1− q)

C (p) 11, 11 3, 10

D (1− p) 10, 3 4, 4

In Table 10, Player 1 plays C with probability p and Player 2 plays C with probability q.
Let a ∈ (0, 1) be the probability of a player being the best response altruist. We have four cases

to consider:
1. Suppose Player 1 (a best response altruist) plays C.

1.1 Player 1 meets an egoist with probability 1 − a. An egoist always defects, giving Player 1

the payoff three.
1.2 Player 1 meets a best response altruist with probability a. If Player 2 (a best response altruist)

plays C (probability q), then the payoff to Player 1 is 11. If Player 2 playsD (probability 1− q), then
the payoff to Player 1 is 3.

2. Suppose Player 1 playsD.
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2.1 If Player 1 meets an egoist (probability 1 − a), who always defects, then the payoff to
player 1 will be four.

2.2 Suppose Player 1 meets a best response altruist (probability a). If Player 2 (a best response
altruist) plays C (probability q), then the payoff to Player 1 is 10. If Player 2 plays D (probability
1− q), then the payoff of Player 1 is four.

Hence, the expected utility of Player 1 is,

U1 (p, q) = p {3 (1− a) + a [11q + 3 (1− q)]}+(1− p) {4 (1− a) + a [10q + 4 (1− q)]}
(37)

which simplifies to:
U1 (p, q) = 4 + 6aq − p+ 2apq (38)

from which we get:
∂U1 (p, q)

∂p
= 2aq − 1 (39)

and hence:

q >
1

2a
⇒

∂U1 (p, q)

∂p
> 0

q <
1

2a
⇒

∂U1 (p, q)

∂p
< 0

To simplify the discussion, let us concentrate on the pure strategy Bayesian Nash equilibria in a
population with a fraction, a ∈ (0, 1), of best response altruists and a fraction, 1− a, of egoists.

If a < 1
2

, then we have one pure strategy Bayesian Nash equilibrium, where all players defect.
If a ≥ 1

2
, then we have two pure strategy Bayesian Nash equilibria. In one equilibrium (as before),

all payers defect. In the second equilibrium, all best response altruists cooperate and all egoists defect.
Hence, for the particular payoffs in Table 10, cooperation can be sustained as a Bayesian Nash

equilibrium in the one-shot prisoners’ dilemma game if the percentage of best response altruists
is≥50%.

See Cooper et al. [6] for a more extensive analysis, including mixed strategies and repeated prisoners’
dilemma games.

9.5. Can Team Reasoning, Altruism or Other-Regarding Preferences Explain Cooperation in the
Prisoners’ Dilemma Game?

Shafir and Tversky [5] presented experimental subjects with the usual one-shot prisoners’ dilemma
game. They then considered the following two variants.

1. A player whose competitor had defected was informed of this and offered the chance to revise her
or his decision.

2. A player whose competitor had cooperated was informed of this and offered the chance to revise
her or his decision.

Shafir and Tversky [5] found that when a player did not know what the opponent had chosen, then
the player defected in 63% of games. If the player was informed that the opponent had defected (Case 1,
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above) then in 97% of the games, the player defected. Thus, defection increased. on the other hand, if the
player was informed that the opponent cooperated (Case 2, above), then in 84% of the games, the player
defected. Thus, defection, again, increased. These results were replicated and extended by Croson [7],
Li and Taplin [8], Busemeyer et al. [10] and Histrova and Grinberg [12].

We shall argue that these results are consistent with evidential reasoning, but not with team reasoning,
altruism or other regarding preferences.

First, consider Case 1, above. Here, all four theories predict an increase in defection following a
player being told that her or his rival has defected, in line with the evidence. However, the reasons are
different. Once a player has been told the move of her or his rival uncertainty is resolved, she or he no
longer needs recourse to evidential reasoning. Since she or he continues to play selfishly and since defect
is a strictly dominant strategy, she or he defects. An observation of defection is liable to destroy team
spirit (Section 9.2). Hence, team reasoning is consistent with the observation of an increase in defection.
According to other-regarding preferences, as in Section 9.3 above, a player who originally choseD will
continue to choose D after she or he has been told that her or his rival had defected. However, a player
who had originally chosenC will change toD after being told that her or his rival had defected. Hence,
the other-regarding preferences model will predict an increase in defection, in line with the evidence.
Finally, consider altruism, as in Section 9.4 above. The egoists will not change their behaviour; they will
continue to defect. Likewise, the dominant strategy altruists will not change their behaviour; they will
continue to cooperate. The best response altruists who chose to defect will continue to choose defect
after being informed that their rival has defected. However, each best response altruist who had chosen
cooperation will now switch to defection. Hence, the amount of defection will increase in line with the
evidence.

Second, consider Case 2 above. Here, evidential reasoning predicts an increase in defection, in line
with the evidence. The reason is that uncertainty is resolved once a player has been told the move of
her or his rival. She or he no longer needs recourse to evidential reasoning. If she or he had defected,
she or he will choose defect again. If she or he had cooperated, she or he will now defect. However,
the other three theories predict a decline in defection, contrary to the evidence. For team-reasoning, the
team spirit is strengthened once a player is told that her or his rival has cooperated. Hence, a player who
had cooperated continues to cooperate. A team member who had initially chosen to defect may now
change to cooperate. According other-regarding preferences, as in Section 9.3, a player who originally
chose C will continue to choose C after she or he has been told that her or his rival had cooperated.
However, a player who had originally chosen D will change to C after being told that her or his rival
had cooperated. Hence, the other-regarding preferences model will predict a reduction in defection,
contrary to the evidence. Finally, consider altruism, as in Section 9.4. The egoists will not change their
behaviour; they will continue to defect. Likewise, the dominant strategy altruists will not change their
behaviour; they will continue to cooperate. The best response altruists who chose to cooperate will
continue to cooperate. However, each best response altruist who had chosen defect will now find it in
their best interest to cooperate. Hence, the extent of defection will decrease, contrary to the evidence.
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10. Conclusions

A large number of experimental subjects do not play a Nash equilibrium in well-known games, such
as prisoners’ dilemma, the hawk-dove game, voting games, public goods games and oligopoly games.
It would seem that this constitutes strong grounds for game theory to be open to alternative equilibrium
concepts in static games. Aumann and Brandenburger [67] gave epistemic conditions under which the
play of a game would result in a Nash equilibrium. A violation of Nash equilibrium is also a violation
of the epistemic conditions that imply it.

In static game players are uncertain about which actions the other players will take (or have taken).
A great deal of evidence suggests that in resolving uncertainty about what other players will do (or
have done), players assign diagnostic significance to their own actions. Such reasoning is described as
evidential reasoning. Players using evidential reasoning do not believe that their actions cause the action
of others; it merely informs their belief about the actions taken by others. However, players who use
evidential reasoning can violate standard rationality assumptions, such as Savage’s sure thing principle.
Thus, evidential reasoning is best viewed as a heuristic rather than a sound rational principle.

The aim of our paper is to explore the significance of evidential reasoning for the class of static games
of complete information. We define evidential games in which some players use evidential reasoning.
We also propose the relevant solution concepts for such games: evidential equilibrium and consistent
evidential equilibrium.

The evidence shows that the cooperative outcome in the prisoners’ dilemma game occurs more
than 50% of the time, despite cooperation being strictly dominated by defection. Other-regarding
preferences and altruism under causal reasoning can both explain this. However, neither team-reasoning,
other-regarding preferences nor altruism can explain why the amount of defection increases when
players are told that their rivals have, in fact, cooperated. We find that the evidence can best be explained
by a mixture of players, some who use evidential reasoning and others who use causal reasoning.

Our proposal of an identity social projection function appears adequate for symmetric games.
However, our general notion of a social projection functions appears too general (Proposition 3). We
illustrated how the Nash bargaining axioms restrict social projections functions sufficiently to get unique
outcomes in the Nash demand game (Example 5) and oligopoly games (Proposition 9).

Our framework can naturally be extended to incomplete information games and dynamic games, but
we lack a body of evidence that could underpin such extensions. Hence, we leave such developments for
future research as more evidence accumulates.
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