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Abstract: We study the structure of the rest points of signaling games and their dynamic
behavior under selection-mutation dynamics by taking the case of three signals as our
canonical example. Many rest points of the replicator dynamics of signaling games are
not isolated and, therefore, not robust under perturbations. However, some of them attract
open sets of initial conditions. We prove the existence of certain rest points of the
selection-mutation dynamics close to Nash equilibria of the signaling game and show
that all but the perturbed rest points close to strict Nash equilibria are dynamically
unstable. This is an important result for the evolution of signaling behavior, since it shows
that the second-order forces that are governed by mutation can increase the chances of
successful signaling.
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1. Introduction

In recent years, there has been considerable interest in the strategic aspects of signaling (Skyrms [1]
provides an overview). The basic signaling model explored by game theorists is the sender-receiver
game, which was introduced by the philosopher David Lewis [2], and has been re-discovered, in one
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form or another, in economics and biology [3,4]. In a sender-receiver game, there is complete common
interest between a sender, who is informed about the state of the world, and a receiver, who chooses an
action that influences both the sender’s and the receiver’s payoff, which also depends on the state of the
world. The receiver does not know this state, but can be informed about it by the sender’s signal.

The crucial aspect of this game is that the signals do not have any pre-assigned meaning. Instead,
senders and receivers may evolve toward a state of perfect communication [4,5]. It is well known
that states of perfect communication are identical with the evolutionarily-stable strategies of the
sender-receiver game, provided that they exist [6]. There are, however, many other kinds of Nash
equilibria. These other equilibria are not isolated and, therefore, give rise to connected components
of rest points for many classes of evolutionary dynamics. Since connected components of rest points
are not robust, perturbations of the evolutionary dynamics lead to qualitative changes in the dynamic
behavior and actually can destroy most of those rest points. This is a very general feature for games with
a non-trivial extensive form where players move sequentially [7–10]. Along a component of rest points,
selection is not operating, because there are no differences in payoffs. Evolutionary outcomes will thus
often be determined by perturbing factors, such as mutation or drift.

In signaling games, many components of rest points are not asymptotically stable. However, subsets
of (some of those) components attract open sets of initial conditions under the replicator
dynamics [11,12]. The elements of such a component are not states of perfect communication; they only
allow for partial communication. Hence, evolution can lead to states of partial communication, even in
cases where the interests of sender and receiver completely coincide. Yet, because of the non-robustness
of the components of rest points, the significance of this result depends on whether it persists under
perturbations of the replicator dynamics.

Hofbauer and Huttegger [13] investigate the simple case of two signals and find that mutation rates can
determine whether perturbed states of partial communication will be asymptotically stable. The purpose
of this paper is to extend the analysis to the case of three signals. Such an extension is important, since
signaling games with two signals exhibit certain features that distinguish them markedly from signaling
games with more than two signals. In particular, the states of partial communication referred to above
do not exist when there are only two signals. On the other hand, signaling games with three signals seem
to exhibit the salient features of all signaling games with finitely many signals and can, thus, serve as a
canonical example for this class of sender-receiver games.

We devote most of our attention to studying the stability of perturbed rest points. However, in the
first step, it is necessary to investigate in detail the Nash equilibrium structure of the signaling game.
We do this in Section 3 after briefly reviewing some general facts about sender-receiver games in
Section 2. Our dynamical analysis consists of two parts. In Section 4, we study selection-mutation
dynamics on the space of mixed strategies. Because of the high dimensionality of this space, we
then consider selection-mutation dynamics on the space of behavior strategies in Section 5. This more
tractable approach allows us to obtain specific information about the existence and stability of perturbed
rest points.
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2. The Model

Our description of the type of signaling game introduced by Lewis [2] follows closely the equivalent
and mathematically more convenient setup of Trapa and Nowak [14]. A signaling game has two players,
a sender and a receiver. A (pure) sender strategy can be represented as an n×m matrix P . Each row of
P has one entry being equal to 1; all other entries are equal to 0. There are n states of the world and m
signals. Each row of P is associated with a state of the world and each column with a signal. If pij = 1,
then the sender sends signal j when state i has occurred. Notice that n may be unequal to m, in which
case the number of states is not the same as the number of signals.

Similarly, a (pure) receiver strategy will be represented by an m × n matrix Q. A row of Q contains
only zeros, except for one entry which is 1. Each row ofQ is associated with a signal, while each column
of Q corresponds to a state of the world (or, alternatively, one of n actions the receiver may perform).
If qji = 1, then the receiver associates state i with signal j (or chooses action i upon receiving signal j).

A mixed sender strategy (i.e., a convex combination of pure strategies) results in a stochastic n ×m
matrix P ; i.e., pij ≥ 0 for all i = 1, . . . , n, j = 1, . . . ,m and

∑m
j=1 pij = 1 for all i = 1, . . . , n.

Analogously, a mixed receiver strategy results in a stochastic m × n matrix Q. A stochastic matrix
determines a behavior strategy [9]. In the extensive form of a signaling game, each state of the world
leads to a particular information set for the sender and each signal to one for the receiver. A stochastic
matrix thus defines a behavioral strategy of a player, i.e., a probability distribution over choices at an
information set. This representation of behavior strategies will become important when we consider
evolutionary dynamics on behavior strategies (cf. Section 5).

The payoff function in a Lewis signaling game is given by

π(P,Q) =
1

n

∑
i,j

pijqji =
1

n
tr(PQ) (1)

where π(P,Q) is the payoff to each player if their joint strategy is (P,Q). Hence, a Lewis signaling game
is a partnership game, where both players get the same payoff for each outcome [15]. This symmetry
yields quite special best response properties. For convenience, we state a result from Pawlowitsch [12]
(BR denotes the best-response correspondence).

Lemma 1. Let P̄ be a mixed n × m sender strategy and Q̄ be a mixed m × n receiver strategy.
If Q ∈ BR(P̄ ), then for all j∑

i∈argmaxi(p̄ij)

qji = 1 and qji = 0 if i /∈ argmaxi(p̄ij);

moreover:
max
Q

tr(P̄Q) =
∑
j

max
i
p̄ij;

analogous relations hold for sender strategies P ∈ BR(Q̄).

Lemma 1 implies that in order to find the maximum possible payoff given a certain strategy matrix,
one just has to add its column maxima and normalize by 1

n
.
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A signaling game with n states of the world and n signals has n! strict Nash equilibria, which have
a very specific form; see e.g., [14]. (P,Q) is a strict Nash equilibrium if and only if P is a permutation
matrix and Q = P>. Strict Nash equilibria represent states of perfect communication and are often
called signaling systems [2]. There are no strict Nash equilibria when the number of states is not equal
to the number of signals [14]. There exist non-strict Nash equilibria besides signaling systems, though.
A partial characterization of Nash equilibria is given in Trapa and Nowak [14]. If B is an n×m matrix
with no zero column, let us call B uniform if there exist real numbers b1, . . . , bm, such that for each j,
the j-th column of B has 0 or bj as entries.

Lemma 2. Let P be an n × m sender matrix and Q be an m × n receiver matrix and assume that
neither P nor Q contains a zero-column. Then, (P,Q) is a Nash equilibrium iff P and Q are uniform
and pij = pj iff qji = qi.

Hence, supp(P ) = supp(Q>) (as subsets of {1, . . . , n} × {1, . . . ,m}). Note that, at such a
Nash equilibrium,

π(P,Q) =
1

n

∑
i,j

pijqji =
1

n

∑
(i,j)∈suppP

pjqi =
1

n

∑
i

qi
∑

j:(i,j)∈suppP

pj =
1

n

∑
i

qi

where the last equality follows from the fact that for each i,
∑

j:(i,j)∈suppP pj = 1. Analogously,

π(P,Q) =
1

n

∑
j

pj,

and, thus,
∑

i pi =
∑

j qj .
Suppose that (P,Q) is a Nash equilibrium of the Trapa–Nowak class that is not strict. Then, it is

clear that by continuous changes of the real numbers pi, qj , i, j = 1, . . . , n, subject to the constraint
that

∑
i pi =

∑
j qj , the resulting profile (P ′, Q′) will still be a Nash equilibrium. Hence, non-strict

Nash equilibria of the Trapa–Nowak class are part of the components of Nash equilibria (and, therefore,
never isolated).

As one of the pi or qj approaches 0, P or Q will have a zero-column. In this case, the assumptions
of Lemma 2 are not met, and its conclusions do not hold. Pawlowitsch [12] discusses these profiles at
length. If signal j is never sent by the sender, then the receiver can choose arbitrary probability weights
qji as long as the column maxima are preserved (this condition is necessary in order to preserve the best
response correspondences of the players). Similarly, if the receiver never chooses state i in response
to any signal, then the probability weights pij can take arbitrary values as long as column maxima
are preserved.

As we already have noted above, signaling systems are the only strict Nash equilibria when
n = m. In order to single out plausible ones among the huge number of other Nash equilibria, we
mitigate the concept of strict Nash equilibrium in two ways. It is clear that strict Nash equilibria in
partnership games are strict local maximizers of the payoff function π. Let us call a strategy pair
(P,Q) stable iff the common payoff function is locally maximal at (P,Q), i.e., for (P ′, Q′) close
to (P,Q): π(P ′, Q′) ≤ π(P,Q). Such a strategy will be Lyapunov stable under many evolutionary
dynamics, including the replicator dynamics.
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It is well known that there is a one-to-one correspondence between strict Nash equilibria of
asymmetric games and evolutionarily-stable strategies of their symmetrization (Selten’s theorem,
see [9]). Similarly, it follows that stable strategy pairs correspond to neutrally stable strategies of
the symmetrization (see [12] for definitions of neutral and evolutionary stability in signaling games).
Therefore, we will refer to neutrally stable strategy pairs (P,Q) also in the context of asymmetric games
with the understanding that we really mean stable strategy pairs.

Pawlowitsch [12] established the following important characterization of neutrally-stable strategies:

Lemma 3. Let P be an n×m sender matrix andQ be anm×n receiver matrix. Then, (P,Q) is neutrally
stable iff P orQ has no zero columns, and neither P norQ has a column with multiple maximal elements
that are elements of the open interval (0, 1).

Neutrally-stable strategies again give rise to components of Nash equilibria. Their significance derives
from their role in the replicator dynamics of signaling games. For instance, neutrally-stable strategies
are important for n 6= m when there are no strict equilibria. Then, the Pareto optimal component is
asymptotically stable [6]. However, as we will see below, they are also of crucial importance in the case
m = n.

Another weakening of strict Nash equilibria that will turn out to be crucial for analyzing signaling
games are quasi-strict Nash equilibria. In a two-player game, a Nash equilibrium (x, y) is called
quasi-strict if BR(y) is contained in the simplex spanned by supp(x) and BR(x) is contained in the
simplex spanned by supp(y). This means that there are no alternative best responses that are not
contained in the faces spanned by x and y.

3. The Structure of Nash Components

In this section, we will try to get some more specific insights into the Nash equilibrium structure of
signaling games. Knowledge of the geometry of Nash equilibria will prove to be particularly important
once we start looking at the selection-mutation dynamics of signaling games.

We start with a useful general observation:

Lemma 4. In any partnership game, there are only finitely many Nash equilibrium payoffs.

Proof. Recall that if (p̄, q̄) is a Nash equilibrium and p is a pure or mixed strategy for Player 1, whose
support is contained in that of p̄, then π(p̄, q̄) = π(p, q̄). Suppose now that (p, q) and (p′, q′) are Nash
equilibria with the same support. Then, π(p, q) = π(p′, q) = π(p′, q′). The second equality follows since
Player 2 has the same payoff function. Since there are only finitely many possible supports, there are
only finitely many equilibrium payoffs.

Therefore, even though the set of Nash equilibria may be infinite, the set of Nash equilibrium payoffs
of a (finite strategy) partnership game is always finite. The reason is that along any continuum of Nash
equilibria, the payoff function is constant.
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Let us now determine the payoff levels of a signaling game with n = m = 3 at which Nash equilibria
can be found. There are 6 strict Nash equilibria on the payoff level 1, given by a permutation matrix P
and Q = P> (these are the signaling systems). An example of this class is

P =

 1 0 0

0 0 1

0 1 0

 , Q = P>. (2)

The lowest payoff level at which Nash equilibria can be found is 1
3
. This payoff level includes Nash

equilibria where the sender always uses the same signal or the receiver always chooses the same response.
It also includes completely mixed equilibria, such as the barycenter. The 1

3
component is given by

P =

 λ µ 1− λ− µ
λ µ 1− λ− µ
λ µ 1− λ− µ

 , Q =

 ν η 1− ν − η
ν η 1− ν − η
ν η 1− ν − η

 , (3)

where 0 ≤ λ, µ, ν, η and λ+ µ ≤ 1, ν + η ≤ 1. It follows from Lemma 2 that these are Nash equilibria.
The 1

3
component is convex and invariant under permutations of strategies.

The Trapa–Nowak characterization of Nash equilibria assumes that strategy matrices contain no zero
columns. However, there are Nash equilibria that do not satisfy this assumption. In the case of three
signals, these additional equilibria can be found on the 1

3
and on the 2

3
payoff level. Strategy matrices on

the former payoff level are of the form

N =

 λ 1− λ 0

λ 1− λ 0

λ 1− λ 0

 ,

with 0 ≤ λ ≤ 1, where N can be a sender or a receiver matrix. These equilibria are all on the boundary
of the component (3); i.e., they are limits of the strategy matrices (3).

At the payoff level 1
2
, there are Nash equilibria that are mixtures of signaling systems. An example is

given by

P =


1
2

1
2

0

0 1
2

1
2

1
2

0 1
2

 , Q = P>. (4)

Notice that Equation (4) is isolated in the space of behavioral strategy profiles, but in the space of
mixed strategies, it corresponds to a continuum of Nash equilibria. Each entry of P or Q can be
realized by convex combinations of different pure strategies (in this case, eight pure strategies). Including
permutations, the number of such mixed equilibria is 6.

The last, and most interesting, level is 2
3
. On the 2

3
level, there are equilibria, such as

P =

 1 0 0

0 λ 1− λ
0 λ 1− λ

 , Q =

 1 0 0

0 µ 1− µ
0 µ 1− µ

 , (5)

with 0 ≤ λ, µ ≤ 1. None of these Nash equilibria is neutrally stable (see Lemma 3). Note that
the two-dimensional set of all these equilibria forms a Nash set [16,17]: every pair of such equilibria
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(P,Q), (P ′, Q′) is interchangeable, i.e., (P,Q′) and (P ′, Q) are equilibria in this set, as well; cf. [18].
After renumbering events and signals, we obtain nine Nash sets like (5). The interior equilibria (P,Q)

of these Nash sets (i.e., for 0 < λ, µ < 1) are quasi-strict.
A typical neutrally stable strategy is given by

P =

 1 0 0

1 0 0

0 λ 1− λ

 , Q =

 µ 1− µ 0

0 0 1

0 0 1

 , (6)

where 0 < λ < 1 or 0 < µ < 1 (cf. Lemma 3 and Example 1 [12]). All of these equilibria are also
quasi-strict. When both λ and µ approach 0 or 1, these strategy pairs are still Nash equilibria, but no
longer neutrally stable. The points on an edge (e.g., 0 < λ < 1, µ = 0) are neutrally stable, but not
quasi-strict. After permutations, we again obtain 9 two-dimensional Nash sets of this form.

Two more classes of Nash equilibria can be found on the 2
3

payoff level. One class is given by 1 0 0

λ 1− λ 0

0 1 0

 ,

 1 0 0

0 0 1

µ 0 1− µ

 . (7)

with 0 ≤ λ, µ ≤ 1. Strategies of type (7) are not neutrally stable, because both P and Q have zero
columns. Moreover, they are not quasi-strict (as shown in Proposition 8). There are 18 (two-dimensional)
Nash sets of type (7).

There is another class of neutrally-stable strategies that has, to our knowledge, not been noted in the
literature before. A typical example is 1 0 0

1 0 0

0 1 0

 ,

 λ 1− λ 0

0 0 1

µ ν 1− µ− ν

 . (8)

where 0 ≤ µ ≤ λ and 0 ≤ ν ≤ 1 − λ. Notice that interior points in Nash sets such as (8) are neutrally
stable by Lemma 3. There are 18 (plus 18 more after interchanging the two players) three-dimensional
Nash sets of type (8).

Note that equilibria of the last two types are not limit points of Trapa–Nowak equilibria.
Hence, not all Nash equilibria with zero columns are limit points of Nash equilibria whose strategy
matrices contain no zero columns.

We provide an overview of the different types of Nash equilibria and their properties given in Figure 1.
As we shall see in the next two sections, neutrally-stable strategies are of major importance from the

point of view of evolutionary dynamics. Signaling systems are of course also neutrally stable by virtue of
being strict Nash equilibria. As we have just seen, there are two other types of neutrally stable strategies
besides signaling systems, namely strategy profiles (6) and (8).
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Payoff Level Nash Sets Number Morse Index Poincaré Index

1 (2) 6 0 +6

2
3

(5) 9 1 −9

(6) 9 2 +9

(7) 18 – 0

(8) 36 – 0

1
2

(4) 6 3 −6

1
3

(3) 1 4 +1

Figure 1. Summary for the Nash equilibria of a signaling game with n = 3. The Morse
index and the Poincaré index refer to the rest points of the selection-mutation dynamics in
behavior strategies (14) for the case 2ε > δ > ε

2
. The Morse index is the number of positive

eigenvalues of the Jacobian. At a maximizer of the potential function, the Morse index is 0.
The Poincaré index is −1 if the number of positive eigenvalues is odd and +1 if it is even.
The sum of the Poincaré indices is 1, which is equal to the Euler characteristic of the state
space; cf. [15], Ch. 13.2.

There is an important difference between Nash sets, such as (5), and Nash sets as given by (6)–(8).
The two-dimensional Nash set (5) is a subset of a larger polyhedron spanned by four sender strategies
and four receiver strategies. The other Nash sets on the 2

3
payoff level are maximal in the sense that they

contain no mixtures of pure strategies that are not included in the Nash set. Note that the 2
3

component
is not convex (that it is connected will be shown in Proposition 7 below).

In the next proposition, we show that there are no Nash equilibria besides the ones listed above.

Proposition 5. In a signaling game with n = m = 3, (P,Q) is a Nash equilibrium iff (P,Q) belongs to
one of the Nash sets of type (2)–(8).

Proof. Let (P,Q) belong to the Trapa–Nowak class of Nash equilibria. Suppose first that 0 < pij,

qij < 1 for all i, j. Then, Lemma 2 implies that (P,Q) belongs to class (3).
Suppose now that one entry in a particular row is zero, e.g., p11 = 0 (this can be achieved by

renumbering the events and signals or interchanging the players) and that no entry of P equals 1.
Set p12 = λ and p13 = 1 − λ, 0 < λ < 1. If p21 = 0, then p31 > 0. Since p31 is the unique
column maximum, this implies that q13 = 1 (Lemma 1), and from Lemma 2, it follows that p31 = 1,
a contradiction. Hence, p21 > 0. If p22 = λ, then p21 = 1 − λ; and if p23 = 1 − λ, then p21 = λ.
Assume the latter without loss of generality, and suppose p33 > 0. Then, p33 = 1 − λ by Lemma 2.
Thus, either p31 = 0 or p32 = 0, and, again, by Lemma 1, q12 = 1 or q21 = 1, which implies that
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λ = 1. Thus, p33 = 0, and we get λ = 1− λ. Therefore, allowing one entry to be zero results in a Nash
equilibrium belonging to class (4).

A similar argument applies when we assume that one entry in one row is 1. If p11 = 1,
then p12 = p13 = 0, and by Lemma 2, p21 = p31 = 0. If p22 = 0, then p23 = 1, which contradicts
the assumption that P has a single entry 1. Therefore, p22 = λ > 0, and hence, p23 = 1 − λ for
0 < λ < 1. Lemma 2 implies that (P,Q) has the form (5).

The argument in the last paragraph shows that assuming that one entry of P equals 1 implies that the
other two rows contain at least one zero. Nash equilibria of class (6) result from the assumption that two
entries in two rows equal 1. Indeed, if there are two entries in two rows that equal 1, then they must be
elements of the same column by Lemma 2; e.g., p11 = p21 = 1 (we are again assuming that P is not a
permutation matrix). If p31 > 0, then p31 = 1, a contradiction. Thus, p31 = 0, p32 = λ and p33 = 1− λ,
0 < λ < 1.

If we allow for three 1 entries (one in each row), then P is a permutation matrix, and by Lemma 2,
Q = P>. Hence, (P,Q) is a signaling system. This yields the last class of Trapa–Nowak Nash equilibria.

Other Nash equilibria have either two zero columns or one zero column. If there are two zero columns
in, say, P , then (P,Q) is a Nash equilibrium if, and only if, Q is as in (3). The resulting Nash equilibria
are part of the boundary of the set defined by (3).

If, however, P has only one zero column, then it looks like λ 1− λ 0

µ 1− µ 0

ν 1− ν 0

 .

The case λ = µ = ν leads again to Nash equilibria belonging to the boundary of the component
defined by (3). Suppose λ > µ > ν. Then, by Lemma 1, the maximum payoff against such a matrix is
1 + λ − ν. Hence, such a matrix is part of a Nash equilibrium only if λ = 1 and ν = 0 (µ is arbitrary).
P is in Nash equilibrium with a strategy Q, if and only if (P,Q) belongs to the class of Nash equilibria
given by (7).

If λ = µ > ν, then at a Nash equilibrium, we must have λ = µ = 1 and ν = 0. The best response to
this strategy is constrained to look like the right-hand part of (8). If λ > µ = ν, then a similar argument
leads again to Nash equilibria of type (8).

This shows that if (P,Q) is a Nash equilibrium, then it must belong to one of the classes (2)–(8).
Applying Lemma 2 together with simple calculations shows that a joint strategy belonging to one of
these classes is a Nash equilibrium.

As an immediate consequence, we get information about the payoffs obtained in equilibrium. In a
signaling game with three signals, all Nash equilibria are found on a specific payoff level. At a signaling
system (2), players earn a payoff of 1; at (5)–(8), players get 2

3
; at (4), players get 1

2
; and at (3), players

get 1
3
.

The following proposition summarizes the number of each kind of Nash set, which can be calculated
by using simple combinatorial arguments.
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Proposition 6. In the signaling game with n = m = 3, there are 6 signaling systems and 6 Nash
equilibrium components of type (4), 9 Nash sets of type (5), 9 Nash sets of type (6), 18 Nash sets of
type (7), 36 Nash sets of type (8) and, finally, one component of type (3).

Proof. It is clear that there are 3! = 6 signaling systems and one Nash set of type (3). Nash sets of
type (4) are determined by the location of the three 0 entries, which cannot be in the same column or the
same row. Thus, there are again 3! = 6 such Nash sets. Nash sets of type (5) and (6) are determined
by the location of a 1 entry. In both cases, the 1 entry determines which entries must be equal to 0,
respectively 1. There clearly are nine possible Nash sets of each of these types. Nash sets of type (7) are
given by the location of the zero column, of which there are 3 possibilities, and the location of the two 1

entries, which can vary in 6 possible ways. We thus have 3 × 6 = 18 sets of this type. For type (8), we
look again at the 1 entries. There are three 1 entries, two of which must be in the same column. For each
choice of location for the third entry, there are two possible locations for the two in the same column.
Hence, there are 18 different configurations. We have to double this number, because the same holds for
the other player.

As we have already remarked, the 2
3

component is of particular importance, since it contains all
neutrally stable strategies. We can, in fact, show that it is a component. Call two Nash equilibria x and
y path connected if there is a continuous path φ of strategy profiles connecting x and y, such that every
strategy profile on φ is itself a Nash equilibrium. The following proposition establishes that each pair of
Nash equilibria which yields a payoff of 2

3
is path connected (indeed, by a piecewise linear path).

Proposition 7. The Nash equilibria on the 2
3

payoff level are path connected. Thus, the corresponding
72 Nash sets constitute a single component of Nash equilibria.

Proof. First, notice that each Nash set of type (8) is path connected to a Nash set of type (6), since the
signaler part of the former is a pure strategy. Likewise, it is clear that Nash sets of type (7) are connected
to Nash sets of type (5). Thus, it will suffice to show that: (i) Nash sets of type (5) are connected;
(ii) Nash sets of type (6) are connected; and (iii) one type of (5) and one of type (6) are connected.

Nash sets of type (5) can be identified by the column of the sender matrix j, which has pij = 1

for some i and pkj = 0 for k 6= i. This follows from the special properties of Nash equilibria
of the Trapa–Nowak class (see Lemma 2). For the same reasons, Nash sets of type (6) can be
identified by locating the column of the sender matrix j, which has pij = 0 for some i and
pkj = 1 for k 6= i. For Nash sets of type (5), we will show that if p11 = 1, p21 = 0, p31 = 0;
then, the 1 entry can be moved horizontally to p12, p13 and vertically to p21 and p31, such that no
changes lead to a strategy profile, which is not a Nash equilibrium. Horizontal moves are possible,
because we can get from (5) to certain neutral Nash sets (6), which also shows that claim (iii) holds.
Vertical moves are possible because of Nash sets of type (7). By symmetry, connectedness is established
for all other sender strategies and the corresponding receiver strategies, as well. Similar arguments will
establish claim (ii).
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We start with the strategy matrices

P =

 1 0 0

0 λ 1− λ
0 λ 1− λ

 , Q =

 1 0 0

0 µ 1− µ
0 µ 1− µ

 . (9)

Suppose λ = 1, µ = 1 and call the corresponding strategy pair (P ′, Q′). P ′ is in Nash equilibrium
with all receiver matrices of the form  1 0 0

0 1 0

ν 1− ν 0

 (10)

(cf. (7)). If Q′′ is the receiver strategy with ν = 1, then (P ′, Q′) and (P ′, Q′′) are connected by a line of
Nash equilibria. However, (P ′, Q′′) is part of the neutrally-stable Nash set λ 0 1− λ

0 1 0

0 1 0

 ,

 1 0 0

0 µ 1− µ
1 0 0

 , (11)

where 0 ≤ λ, µ ≤ 1. This establishes claim (iii). Moreover, from this neutrally-stable Nash set, we can
move to a Nash set of type (5), where p13 = 1. To this end, set λ = 0 and µ = 0, and apply arguments
analogous to the ones above (using Nash sets of type (7)) to move along a path of Nash equilibria to the
Nash set  0 0 1

λ 1− λ 0

λ 1− λ 0

 ,

 0 µ 1− µ
0 µ 1− µ
1 0 0

 .

If we return to the Nash set given by (9), we can apply the same kinds of arguments to move from the
vertex where λ = 0, µ = 0 to the neutrally stable Nash set given by λ 1− λ 0

0 0 1

0 0 1

 ,

 1 0 0

1 0 0

0 µ 1− µ


and from there to the Nash set  0 1 0

λ 0 1− λ
λ 0 1− λ

 ,

 0 µ 1− µ
1 0 0

0 µ 1− µ


which has p21 = 1. This shows that the 1 entry can be moved horizontally.

From the corner (P ′, Q′′), we can move on a path of Nash profiles to another Nash set of type (5),
which is given by  λ 0 1− λ

0 1 0

λ 0 1− λ

 ,

 µ 0 1− µ
0 1 0

µ 0 1− µ

 .
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To do this, we just have to use the sender matrix (10). This shows that we can get from a 1 entry in
the first row to a 1 entry in the second row. Hence, it is clear that we can also get to p21 = 1 by using
horizontal movements. Starting at the corner 1 0 0

0 0 1

0 0 1

 ,

 1 0 0

1 0 0

0 0 1


one can show by using a similar kind of reasoning that moving to a Nash set of type (5) with p31 = 1 is
possible without ever passing through a strategy profile that is not a Nash equilibrium.

Concerning (ii), we have already shown in the first part of the proof that one can move the column
with two 1 entries from the second to the third column by passing through Nash equilibria of types (5)
and (7). Similarly from the corner of the profile (11) with λ = 0, µ = 0, one can move to the profile 0 λ 1− λ

1 0 0

1 0 0

 ,

 0 µ 1− µ
1 0 0

1 0 0.

 .

This shows that horizontal moves of the columns defining neutrally-stable sets are feasible.
Vertical moves are feasible because of the profiles of type (7). For instance, one can get from (11) to 1 0 0

1 0 0

0 λ 1− λ

 ,

 µ 1− µ 0

0 0 1

0 0 1


by moving through

P =

 1 0 0

λ 1− λ 0

0 1 0

 ,

 1 0 0

0 0 1

µ 0 1− µ

 .

All other claims are established in a similar manner.

In the next two sections, we will make use of the concept of quasi-strictness. The following two
results relate quasi-strictness to the Trapa–Nowak class of Nash equilibria. Concerning our use of
the term ‘mixed strategy representative’, note that a mixed strategy is a convex combination of pure
strategies. In signaling games, pure strategies are zero-one matrices. A stochastic matrix P generally
corresponds to more than one mixed strategy (P determines a behavior strategy). Thus, if (P,Q) is a
pair of sender and receiver strategies, then a mixed strategy representative of (P,Q) is a pair of mixed
strategies corresponding to P and Q, respectively.

Proposition 8. If (P,Q) is a Nash equilibrium where both P and Q contain at least one zero-column,
then no mixed strategy representative of (P,Q) is quasi-strict.

Proof. Suppose without loss of generality that pi1 = 0 and qj1 = 0 for 0 ≤ i, j,≤ 1. Suppose Q′ is
like Q, except that q11 = 1. Then, by Lemma 1, Q′ is an alternative best response to P . However, since
q11 = 1, there exists a pure strategy in supp(Q′) that is not in supp(Q). This implies that no mixed
strategy representative of (P,Q) is quasi-strict.
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For n = m = 3, this implies that Nash equilibria of class (7) are not quasi-strict. Boundary equilibria
of (3) with a zero column for the sender and the receiver matrix are also not quasi-strict. However,
consider (P,Q) as in (3), and set λ = 0. Then, (P,Q) is not quasi-strict, since the sender strategy that
sets λ = µ = 0 is an alternative best reply to Q, which is not in the support of any mixed-strategy
representative of P . This shows that the converse of Proposition 8 does not hold in general.

Proposition 9. If (P,Q) is a Nash equilibrium of the Trapa–Nowak class, then any mixed strategy
representative of (P,Q) is quasi-strict.

Proof. Since (P,Q) is a Trapa–Nowak Nash equilibrium, Lemma 2 implies that supp(P ) = supp(Q>)

and supp(P>) = supp(Q). Thus, a pure strategy not in supp(P ) or supp(Q) cannot be an alternative
best reply to Q or to P .

For the case n = m = 3, the only class of Nash equilibria where the two propositions above do not
apply are given by (8) wheneverQ has no zero column. To see when such Nash equilibria are quasi-strict,
notice that P is the unique best reply to Q if Q has no zero column and 0 < µ < λ, 0 < ν < 1− λ.
Moreover, by Lemma 1, a pure strategy best reply to P has a 1 entry only at the possibly positive entries
of Q, given these constraints on Q. Note also that the equilibria in the Nash set (8) (except the pure
ones) are neutrally stable according to Lemma 3. However, as noted above, if µ = ν = 0, then (P,Q) is
neutrally stable, but not quasi-strict.

4. Dynamics for Mixed Strategies

Several of the results obtained in the previous section are useful when studying the evolutionary
dynamics of signaling games. For infinite population models, signaling games were studied most
thoroughly in the context of the replicator dynamics [11,12]. The main problem for understanding the
robust features of the replicator dynamics arises from the fact that in signaling games there are linear
manifolds of rest points. The replicator dynamics of signaling games is thus not structurally stable, and
perturbations of the dynamics will typically result in qualitatively different dynamical behavior.

For this reason, Hofbauer and Huttegger [13] investigated a natural perturbation of the replicator
dynamics—the selection-mutation dynamics of Hofbauer [19]—for signaling games with two signals.
The selection-mutation dynamics for two populations is given by

ẋi = xi((Ay)i − x · Ay) + ε(1− nxi) (12a)

ẏj = yj((Bx)j − y ·Bx) + δ(1−myj), (12b)

where x ∈ Sn and y ∈ Sm describe the state of each population, (A,B) are the payoff matrices and ε, δ
are small, uniform mutation parameters. If ε = δ = 0, the selection-mutation dynamics coincides with
the two-population replicator dynamics. We assume that ε and δ are of the same order as they go to zero;
i.e., there exists a fixed ρ > 0, such that δ = ρε as ε→ 0.
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In the case of signaling games, it is shown in Hofbauer and Huttegger [13] that the selection-mutation
dynamics is a gradient system with respect to the Shahshahani metric. The corresponding potential
function is given by

V (x,y) = x · Ay + ε
∑
i

log xi + δ
∑
j

log yj. (13)

The first term on the right-hand side is the average payoff in the sender population, which equals the
average payoff in the receiver population since A = B>. The logarithmic terms imply that rest points
must be in the interior of the state space if ε, δ > 0. Because of the potential function, there can be no
limit cycle in the selection-mutation dynamics of signaling games.

There are some important relations between the selection-mutation dynamics and the replicator
dynamics. The first one implies that the Nash equilibria of the underlying game (which are also
rest points of the replicator dynamics) give some information about the location of rest points of the
selection-mutation dynamics (for a proof, see 13).

Proposition 10. If (x,y) is a rest point of the two-population replicator dynamics, which is not a Nash
equilibrium, then there exists no rest point for the selection-mutation dynamics (12) close to (x,y) for
sufficiently small ε, δ.

Another result asserts the existence of rest points close to the strict equilibria of signaling games.
A Nash equilibrium (x,y) is regular if the Jacobian matrix J of (12) with ε, δ = 0 has no zero
eigenvalues, and it is hyperbolic if J has no eigenvalues with zero real part. Note that for partnership
games, where B = A>, the replicator dynamics is a gradient, and hence, every regular equilibrium is
hyperbolic. For such equilibria, a converse result to Proposition 10 holds.

Proposition 11. Let (x,y) be a regular Nash equilibrium. Then, there exist unique rest point of
the selection-mutation dynamics (12) close to (x,y) for sufficiently small ε, δ. Moreover, if (x,y) is
hyperbolic, then the perturbed rest point has the same stability properties under the selection-mutation
dynamics as (x,y) has for the replicator dynamics.

For proofs of Proposition 11, see Bürger and Hofbauer [20], Ritzberger [21], and, in the more specific
context of signaling games, Hofbauer and Huttegger [13]. For signaling games, Proposition 11 implies
that there exists a unique family of asymptotically-stable rest points of the selection-mutation dynamics
close to each signaling system whenever ε, δ are sufficiently small.

Regular Nash equilibria are isolated. As we have seen in the n = m = 3 case, there are no
isolated Nash equilibria other than signaling systems. This means that Proposition 11 only applies to
signaling systems. In particular, Propositions 10 and 11 do not determine the dynamical properties of the
selection-mutation dynamics (12) close to neutrally-stable Nash sets, such as (6). Neutrally-stable Nash
sets are important in the replicator dynamics. As was shown in Pawlowitsch [12], neutrally-stable Nash
sets attract an open set of initial conditions under the replicator dynamics without being asymptotically
stable sets (neutrally-stable Nash sets cannot be asymptotically stable since the vertices of the set are
unstable). No general results apply in this case. It is therefore unclear what will happen close to these
sets under the selection-mutation dynamics.
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The rest of the present paper is devoted to the analysis of the selection-mutation dynamics for
signaling games. Our analysis will rely heavily on the results obtained in the previous section. Some of
the questions we are interested in will be investigated in the context of the selection-mutation dynamics as
given by (12), i.e., in the context of mixed strategy spaces. This framework does not seem to be suitable
for other problems, since the dimension of the state space is too large. For n = 3 signals, the state space
of the selection-mutation dynamics (12) is a 52-dimensional polyhedron (there are 27 strategies for each
player). It is thus very difficult to investigate the behavior of the selection-mutation dynamics close to
Nash equilibria other than signaling systems. Therefore, in the next section, we will consider behavioral
strategies. In particular, we will study the dynamic features in the neighborhood of neutrally-stable Nash
sets in the context of selection-mutation dynamics for behavioral strategies.

Consider, for example, the Nash set given in (5). For 0 < λ, µ < 1, these equilibria belong to the
Trapa–Nowak class of Nash equilibria. Therefore, by Proposition 9, Nash equilibria given by (5) are
quasi-strict as long as 0 < λ, µ < 1. If we view these equilibria in terms of mixed strategies, they are
located on the boundary region M spanned by the product of the four sender strategies 1 0 0

0 1 0

0 0 1

 ,

 1 0 0

0 0 1

0 1 0

 ,

 1 0 0

0 1 0

0 1 0

 ,

 1 0 0

0 0 1

0 0 1


with the four receiver strategies represented by the same matrices. Consider an equilibrium (p,q) in the
relative interior of M . Since (p,q) is quasi-strict, all transversal eigenvalues in (12) with ε = δ = 0

are negative [9]. This implies that there exist orbits in the interior of S27 × S27 that approach (p,q)

under the replicator dynamics. Hence, we may restrict our analysis of the stability properties of (p,q)

to the replicator dynamics on M . The set of Nash equilibria in M consists of two signaling systems
and a linear manifold of Nash equilibria N corresponding to the mixed-strategy representatives of (5).
It is straightforward to show that the linearization of the replicator dynamics at (p,q) always has one
eigenvalue with a positive real part. Hence, each (p,q) is linearly unstable.

Let us now consider the selection-mutation dynamics (12) close to N . Suppose there exist rest points
of (12) close to points in the relative interior of N . Since the entries of the Jacobian matrix of (12) are
continuous in ε, δ, each rest point close to a point in the relative interior of N will have an eigenvalue
with positive real part for sufficiently small ε, δ. Such a perturbed rest point will thus be linearly unstable.

The same kind of reasoning applies to Nash sets of type (4). In this case, there are eight pure
sender strategies and eight pure receiver strategies in the support of (P,Q). If (p,q) is an interior
equilibrium of (P,Q) in the boundary region spanned by these strategies, then (p,q) is linearly unstable.
Thus, any rest point of (12) close to (p,q) will also be linearly unstable for sufficiently small values of
the mutation parameters.

This kind of reasoning can be generalized to signaling games with n ≥ 3 signals. The key fact is that
there are always at least two signaling systems in the support of the mixed strategy representatives of the
corresponding Nash sets.

Proposition 12. Let (P,Q) be a Nash equilibrium of the Trapa–Nowak class and (p,q) a mixed strategy
representative of (P,Q), which has a signaling system in its support. Then, (p,q) is linearly unstable
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if it is not a signaling system. Consequently, a rest point of (12) close to (p,q) is linearly unstable for
sufficiently small ε, δ.

Proof. Let J be the Jacobian matrix of the replicator dynamics evaluated at the point (p,q).
Since signaling games are partnership games, J is a self-adjoint linear operator relative to the
Shahshahani inner product, i.e., 〈(ξ, η), J(ζ, τ)〉(p,q) = 〈J(ξ, η), (ζ, τ)〉(p,q) for all (ξ, η), (ζ, τ) in the
tangent space of the population state space; cf. [15], p. 259. Hence, J has at least one positive eigenvalue
if J is not negative semi-definite. If we set ξ = p′ − p and η = q′ − q where

p′ = αp∗ + (1− α)p and q′ = βq∗ + (1− β)q

where (p∗,q∗) is a signaling system in supp(p,q), then

〈(ξ, η), J(ξ, η)〉(p,q) = p′ · Aq′ − p · Aq > 0

(where A is the payoff matrix corresponding to the signaling game); the inequality follows from the fact
that p∗ · Aq∗ > p · Aq. This shows that J is not negative semi-definite.

Proposition 12 also applies to the Nash set of type (3). For this component, we can actually show
more. As was already observed in Section 3, Equation (3) is compact and convex. This also holds for its
counterparts in signaling games with n > 3 [11]. The average payoff is constant along this component.
The potential function V of (13) will thus take on a unique maximum on this component.

An analysis of the Nash sets (6)–(8) is more involved, however. One reason for this is the fact that
(unlike Nash sets of type (3)–(5)) these Nash sets do not contain mixtures of pure strategies that are not
included in the Nash set; in particular, no signaling system is in their support.

Most equilibria in Nash sets of type (6) are quasi-strict by Proposition 9. Thus, for the replicator
dynamics, all transversal eigenvalues have a negative real part. The two remaining eigenvalues are zero.
It is therefore a priori unclear what will happen under the selection-mutation dynamics (12). Numerical
calculations for specific mutation parameters ε = δ suggest that, in this case, there always exists a unique
perturbed rest point close to each Nash set of type (6), which is linearly unstable, having two positive
eigenvalues. Hence, its Morse index is two (see Figure 1 for a definition of the Morse index and the
Poincaré index below). The same numerical procedures lead to the result that there are no perturbed rest
points close to Nash sets of type (7) and (8); there are, however, unique perturbed rest points near each
Nash set of type (3)–(5). The perturbed rest point close to the Nash set (3) has four positive eigenvalues
(Morse index four); perturbed rest points close to (4) have three positive eigenvalues (Morse index three);
and perturbed rest points close to (5) have one positive eigenvalue (Morse index one). These calculations
were conducted with several specific values for ε close to zero.

These findings agree with index theory (Brouwer degree theory): the sum of the Poincaré indices of
all (perturbed) rest points equals one, which is the Euler characteristic of S27×S27. (The Poincaré index
is equal to (−1)Morse index.) For the perturbed dynamics (12), the sum of the Poincaré indices of the
six signaling systems and the six rest points close to the Nash set (4) is zero; likewise, the sum of the
Poincaré indices of the nine rest points close to Nash sets of type (5) and the nine rest points close to the
Nash set (6) is zero, as well. The Poincaré index of the only remaining rest point is one. This information
is summarized in Figure 1.



Games 2015, 1 18

In addition to these numerical results, a more thorough analytical treatment of the selection-mutation
dynamics would be desirable in order to find out more about the stability properties of neutrally-stable
Nash sets. Because of the many dimensions of the mixed strategy space for the n = 3 signaling game,
such an analysis does not appear to be feasible for Nash sets of type (6)–(8). An analysis in terms of
behavioral strategies is more promising.

5. Dynamics for Behavioral Strategies

The relationship between mixed strategies and behavioral strategies in extensive games of perfect
recall is well understood [22]. In particular, if one is interested in the equilibrium structure of extensive
form games, then no essential information is lost by focusing on behavioral strategies. We propose a
similar move for the evolutionary dynamics of signaling games.

The selection-mutation dynamics on the space (Sn)m × (Sm)n of behavioral strategies for signaling
games is given by

ṗij = pij(qji − ai) + ε(1− npij) (14a)

q̇ji = qji(pij − bj) + δ(1−mqji) (14b)

where
ai =

∑
l

pilqli and bj =
∑
k

pkjqjk.

The selection-mutation dynamics in behavioral strategies can be thought of as a dynamics in the
entries of the sender and receiver matrices, since these matrices are nothing but a representation of
the game’s behavioral strategies. Using (14) instead of (12) significantly reduces the dimensions of
the state space. For n = m = 3, the mixed strategy space has effectively 52 dimensions, while the
behavioral strategy space has only 12. For general m = n the mixed strategy space has 2(nn − 1)

dimensions, whereas the space of behavioral strategies has 2n(n − 1). Moreover, it is easy to see that
the Propositions 10 and 11 also hold for (14).

5.1. Replicator Dynamics

We begin by quickly reviewing some results for the replicator dynamics of signaling games,
where the replicator dynamics is taken to be on behavior strategies; i.e., we are looking at (14)
with ε, δ = 0. The results we state follow immediately from the corresponding results for mixed
strategies [11,12].

First of all, it is clear that signaling systems are asymptotically stable. Next, the Nash
sets (6) and (8) are not asymptotically stable, but they attract an open set of initial conditions
(they are attractive). This follows from the fact that all Nash equilibria in such a Nash set, except
the vertices are neutrally stable and, hence, Lyapunov stable under the replicator dynamics [12].
Straightforward calculations show that the transversal eigenvalues are negative, while the remaining
eigenvalues are equal to zero. The center-manifold theorem then implies that the two types of Nash sets
are attractive.
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The other Nash sets are not attractive. They will be discussed in more detail in the following
subsections. We start with the simple or less interesting cases, which include signaling systems and
the Nash sets that are not even quasi-strict. We investigate the most interesting cases of neutrally stable
Nash sets at the end of this section.

5.2. Signaling Systems

For n = m, the location of perturbed signaling systems can be easily computed. The state with
pii = qii = 1 and pij = qij = 0 for i 6= j is the limit of a family of perturbed rest points of (14) as ε, δ
go to zero. We have ai = bj = 1, and hence, we obtain from (14) for i 6= j, pij = ε and qji = δ to first
order; so, pii = 1 − (n − 1)ε and qjj = 1 − (n − 1)δ. The formulas for the other perturbed signaling
systems are similar.

Since signaling systems are strict Nash equilibria, it is clear that perturbed signaling systems must be
asymptotically stable for sufficiently small ε, δ; this follows from the continuity of the eigenvalues in ε
and δ.

5.3. The 1/3 Component

As was noted above, the 1
3

component is convex. As in the case of mixed strategy evolutionary
dynamics, it follows that there is a unique maximum of the potential function (13) on this set. This
determines a unique rest point of (14) in this set, which is given by

P = Q =


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 .

By continuity, this rest point must be linearly unstable. Calculating the eigenvalues of the Jacobian
matrix of (14) at (P,Q) for ε = δ = 0 shows that there are four zero eigenvalues, four positive
eigenvalues and four negative eigenvalues. It follows that for small positive ε, δ, the four zero eigenvalues
become negative. Hence, the Morse index of the perturbed rest point is four.

5.4. Type (4) Rest Points

In terms of behavior strategies, this type of rest point is regular. It follows from the implicit function
theorem that there exists a unique family of perturbed rest points of (14) close to (4) for sufficiently
small ε and δ. By continuity, the perturbed rest point must be linearly unstable. In the dynamics (14)
with ε = δ = 0, the rest points of type (4) have three positive rest points. Hence, the Morse index of the
perturbed rest point is three.

5.5. Type (7) Nash Sets

Analyzing the dynamic behavior of (14) close to the other Nash sets requires more work. We
start by considering Nash sets of type (7). We are going to show that Nash sets of type (7)
do not persist under the selection-mutation dynamics (14). The intuitive reason for this is that
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these Nash sets are not quasi-strict; there always is a signaling system that is not used in the
sender population. Introducing senders who utilize the unused signals and receivers who respond
to it appropriately will destabilize any equilibrium in this set. Since such mutations will be
introduced in the dynamics (14), no rest point of type (7) can persist under selection-mutation dynamics.

Proposition 13. The behavior strategy given by 1 0 0

λ 1− λ 0

0 1 0

 ,

 1 0 0

0 0 1

µ 0 1− µ

 , (15)

with 0 < λ, µ < 1, is not the limit of a sequence of perturbed rest points. Analogous statements are true
for the other Nash sets of type (7).

Proof. Assuming the existence of perturbed rest point close to (15), we can calculate the first-order
expressions of the following variables,

p12 = ε, p13 =
ε

1− µ
, p31 = ε, p33 =

ε

µ

and
q12 =

δ

1− λ
, q13 = δ, q21 = δ, q22 =

δ

λ
.

Set x = p23 and y = q32. Note that x, y → 0, as ε, δ → 0. Assuming the existence of a perturbed rest
point, we must have

ẋ = x(y − a2) + ε(1− 3x) = 0

ẏ = y(x− b3) + δ(1− 3y) = 0,

where a2 = xy + Lδ and b3 = xy +Mε and

L =
λ

1− λ
+

1− λ
λ

, M =
µ

1− µ
+

1− µ
µ

.

Hence

x(y − xy − Lδ) + ε(1− 3x) = 0 (16a)

y(x− xy −Mε) + δ(1− 3y) = 0. (16b)

This system of equations has no solutions for sufficiently small ε, δ. To see this, notice that
(16b) implies

x(1− y) < Mε

and, hence, from (16a)

ε =
x

1− 3x
(Lδ − y(1− x)) <

x

1− 3x
Lδ <

MεLδ

(1− 3x)(1− y)
.

Therefore
(1− 3x)(1− y) < MLδ,

which fails to hold as δ → 0.
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5.6. Type (5) Nash Sets

We now investigate the dynamics of (14) close to (5). By a symmetric perturbed rest point, we shall
mean a rest point that exhibits certain symmetry properties (the meaning of which will become clear
below). It should be emphasized that there might be other rest points of (14) close to the corresponding
Nash sets that are not symmetric.

Theorem 14. There exists a unique family of (symmetric) perturbed rest points that converges to the
equilibrium

P =

 1 0 0

0 1
2

1
2

0 1
2

1
2

 , Q =

 1 0 0

0 1
2

1
2

0 1
2

1
2


from the Nash set (5), as ε, δ → 0. To a first approximation, these perturbed rest points are given by

P̃ =

 1− 2ε ε ε

2ε 1
2
− ε 1

2
− ε

2ε 1
2
− ε 1

2
− ε

 , Q̃ =

 1− 2δ δ δ

2δ 1
2
− δ 1

2
− δ

2δ 1
2
− δ 1

2
− δ

 .

Analogous statements are true for the other Nash sets of type (5).

Proof. If it exists, a symmetric perturbed rest point has the form 1− 2p p p

2x 1−2x
2

1−2x
2

2x 1−2x
2

1−2x
2

 ,

 1− 2q q q

2y 1−2y
2

1−2y
2

2y 1−2y
2

1−2y
2

 (17)

For this to exist, the following system must have a solution for ε, δ > 0:

p [2y − 4yp− (1− 2p)(1− 2q)] + ε(1− 3p) = 0

q [2x− 4xq − (1− 2p)(1− 2q)] + δ(1− 3q) = 0 (18)(
1

2
− x
)[

1

2
− y − 2xq − 2

(
1

2
− x
)(

1

2
− y
)]

+ ε

(
3x− 1

2

)
= 0(

1

2
− y
)[

1

2
− x− 2yp− 2

(
1

2
− x
)(

1

2
− y
)]

+ δ

(
3y − 1

2

)
= 0

The left-hand sides of these equations can be understood as a function F : R2 × R4 → R4, where
the components of F (ε, δ, p, q, x, y) are given by the left-hand side expressions of (18). We see that
F (0, 0, 0, 0, 0, 0) = 0. Let M be the four-by-four matrix of partial derivatives of F with respect to
x, y, p, q evaluated at the point (0, 0, 0, 0, 0, 0). Then, M is given by

−1 0 0 0

0 −1 0 0

0 0 1
2

0

0 0 0 1
2

 .



Games 2015, 1 22

Thus, M is regular, and it follows from the implicit function theorem that there exist unique solutions
for (18) in terms of ε and δ provided that ε, δ are sufficiently close to zero. Indeed, linearizing the
system (18) at the point p, q, x, y = 0 gives

−p+ ε = 0

−q + δ = 0 (19)
1

2
(x− ε) = 0

1

2
(y − δ) = 0

Hence, p, x = ε + O(2) and q, y = δ + O(2), where O(2) stands for terms of order ε2, εδ, δ2

or higher.

Points in the relative interior of Nash sets like (5) have one positive eigenvalue under the replicator
dynamics. Hence, the Morse index is one. It follows that each rest point in the family of rest points
given in Theorem 14 is linearly unstable for small ε, δ. By considering the characteristic polynomial of
the Jacobian of (14) evaluated at one of these perturbed rest points, we can obtain sharper results.

Theorem 15. Let (P̃ , Q̃) be the perturbed rest point given by Theorem 14. Then, the following two
statements are true for sufficiently small mutation rates:

1. If 2ε > δ > ε
2
, then the Jacobian matrix of the selection-mutation dynamics (14) is hyperbolic and

has one positive eigenvalue.

2. If ε > 2δ or ε < δ
2
, the Jacobian matrix of the selection-mutation dynamics (14) is hyperbolic and

has two positive eigenvalues.

Proof. Calculating and factorizing the characteristic polynomial χ(x) of the Jacobian matrix evaluated
at the rest point (P̃ , Q̃) of Theorem 14 yields four factors; up to higher order terms in ε, δ, a Taylor
expansion around (ε, δ) = (0, 0) yields the following approximations of the factors (up to multiplication
by a positive constant):

2ε+ 2δ − 1 + 8(δ + ε)x+ 4x2 (20)

2δ − ε+ (1 + 3δ − 3ε)x+ (3 + 2δ − 6ε)x2 + 2x3 (21)

2ε− δ + (1− 3δ + 3ε)x+ (3− 6δ + 2ε)x2 + 2x3 (22)

1− 7δ − 7ε+ (6− 33δ − 33ε)x+ (13− 50δ − 50ε)x2 + (12− 24δ − 24ε)x3 + 4x4 (23)

Setting the first factor to zero yields two solutions for x, which are given by (again up to higher
order terms)

−δ − ε± 1

2

√
1− 2δ − 2ε ≈ 1

2
− 3

2
(δ + ε),−1

2
− 3

2
(δ + ε)

For all sufficiently small ε, δ, one will be positive and the other one negative.
The eigenvalues given by the second and the third factor depend on ε and δ. By examining the

discriminant of (21), it can be shown that the corresponding cubic equation has three solutions, which
we will denote by x1, x2, x3. Then

2δ − ε+ (1 + 3δ − 3ε)x+ (3 + 2δ − 6ε)x2 + 2x3 = 2(x− x1)(x− x2)(x− x3).
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It follows that
2δ − ε = −2x1x2x3. (24)

Now, setting ε, δ to zero in the second factor of (21), and solving the cubic equation leads to three
solutions for x, two of which are negative and one of which is zero (this last one is one of the zero
eigenvalues of the replicator dynamics at this rest point). If ε, δ are small, it follows that two solutions
of x1, x2, x3 must also be negative. Returning to (24), this implies that if 2δ− ε > 0, then x1, x2, x3 < 0.
Conversely, if 2δ − ε < 0, then exactly one solution must be positive.

A similar argument leads to the same conclusions for the third factor of (22). In this case, if 2ε−δ > 0,
then all eigenvalues coming from this factor are negative. If, on the other hand, 2ε − δ < 0, then one
of the eigenvalues given by the third factor will be positive. Thus, from the second and the third factor,
we get only negative eigenvalues if 2ε > δ > ε

2
; and we get exactly one positive eigenvalue if ε > 2δ or

ε < δ
2
.

The fourth factor can only yield negative eigenvalues. This can be seen by first setting ε, δ = 0 and
then solving the corresponding quartic equation for x. This yields four negative solutions, which will
remain negative for (23) as long as ε, δ are small.

Example 16. The case ε = δ is especially important and was considered in the previous section within
the context of the selection-mutation dynamics in mixed strategies. There, we observed that numerical
calculations of eigenvalues of perturbed rest points close to (5) yielded one positive eigenvalue.
Theorem 15 is an analytical confirmation of this result, since if ε = δ, the clause of its first statement
is fulfilled.

5.7. Neutrally-Stable Nash Sets of Type (6)

By far the most important alternatives to signaling systems are neutrally-stable strategies.
In this section, as in the previous one, we first prove the existence of certain perturbed rest
points close to Nash sets of type (6) and then show that they will be linearly unstable under the
selection-mutation dynamics.

Let us first note a simple observation concerning (6). The next lemma asserts that if a point in the
relative interior of a neutrally-stable Nash set is a limit of perturbed rest points, it must be the barycenter
of the Nash set. Notice, however, that this result does not imply that there is at most one perturbed rest
point close to a neutrally-stable Nash set. Several branches of curves of rest points might meet at the
barycenter of the Nash set.

Lemma 17. Suppose that  1 0 0

1 0 0

0 λ 1− λ

 ,

 µ 1− µ 0

0 0 1

0 0 1

 (25)

is a limit of perturbed rest points of the selection-mutation dynamics. Then, λ = 1/2 and µ = 1/2.



Games 2015, 1 24

Proof. If (25) is a limit of perturbed rest points, then approximate solutions up to higher order terms in
ε, δ are given by  1− 2ε

µ
ε
µ

ε
µ

1− 2ε
1−µ

ε
1−µ

ε
1−µ

ε p32 p33

 ,

 q11 q12 δ
δ
λ

δ
λ

1− 2δ
λ

δ
1−λ

δ
1−λ 1− 2δ

1−λ


where

ṗ32 = p32(q23 − a3) + ε(1− 3p32) = 0

ṗ33 = p33(q33 − a3) + ε(1− 3p33) = 0

q̇11 = q11(p11 − b1) + δ(1− 3q11) = 0

q̇12 = q12(p21 − b1) + δ(1− 3q12) = 0

and

a3 = p31q13 + p32q23 + p33q33

b1 = p11q11 + p21q12 + p31q13.

Since ṗ32 = 0,

p32((1− p32)(q23 − q33)− p31(q13 − q33)) + ε(1− 3p32) = 0

and thus

p32

(
2δ(1− p32)

2λ− 1

λ(1− λ)
+ ε+O(ε2)

)
+ ε(1− 3p32) = 0.

The first term of the Taylor expansion in p32 = λ of the left-hand side yields

(2δ − ε)(2λ− 1) = 0.

Thus, if ε 6= 2δ, then λ = 1/2. A similar argument for q11 shows that if δ 6= 2ε, then µ = 1/2.
Suppose δ = 2ε. Since q̇12 = 0, we get:

q12

(
2ε(1− q12)

1− 2µ

µ(1− µ)
+ δ +O(ε2)

)
+ δ(1− 3q12) = 0

The first term of the corresponding Taylor expansion is given by:

2ε(1− 2µ)− 4εµ+ 2ε = 0

Thus, µ = 1/2. By a similar argument, ṗ32 = 0 implies λ = 1/2. Along the same lines, it can be
shown that λ = µ = 1/2 if δ = 2ε. One just has to find the first terms of the corresponding Taylor
expansions for ṗ33 = 0 and q̇11 = 0.

We continue by proving the existence of certain symmetric perturbed rest points close to the
two-dimensional Nash set (6). Recall that we had some results concerning Nash sets of type (5) for the
selection-mutation dynamics in mixed strategies (12), whereas similar results for Nash sets of type (6)
were out of reach for the system (12).
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Theorem 18. There exists a unique family of (symmetric) perturbed rest points that converges to
the equilibrium

P =

 1 0 0

1 0 0

0 1
2

1
2

 , Q =


1
2

1
2

0

0 0 1

0 0 1


from the Nash set (6), as ε, δ → 0. To a first approximation, these perturbed rest points are given by

P̄ =

 1− 4ε 2ε 2ε

1− 4ε 2ε 2ε

ε 1−ε
2

1−ε
2

 , Q̄ =


1−δ

2
1−δ

2
δ

2δ 2δ 1− 4δ

2δ 2δ 1− 4δ

 .

Analogous statements are true for the other Nash sets of type (6).

Proof. A symmetric perturbed rest point has the form 1− 2p p p

1− 2p p p

2x 1−2x
2

1−2x
2

 ,


1−2y

2
1−2y

2
2y

q q 1− 2q

q q 1− 2q

 , (26)

provided that it exists. It exists if the following system has a solution for ε, δ > 0:

p

[
q − 2pq −

(
1

2
− y
)

(1− 2p)

]
+ ε(1− 3p) = 0

q

[
p− 2pq −

(
1

2
− x
)

(1− 2q)

]
+ δ(1− 3q) = 0 (27)(

1

2
− x
)

[1− 2q − 4xy − (1− 2x)(1− 2q)] + ε

(
3x− 1

2

)
= 0(

1

2
− y
)

[1− 2p− 4xy − (1− 2y)(1− 2p)] + δ

(
3y − 1

2

)
= 0

As in the case of the proof of Theorem 14, the left-hand sides of these equations can be understood
as a function G : R2 × R4 → R4, where the components of G(ε, δ, p, q, x, y) are given by the left-hand
side expressions of (27). We see that G(0, 0, 0, 0, 0, 0) = 0. Let N be the four-by-four matrix of partial
derivatives of G with respect to x, y, p, q evaluated at the point (0, 0, 0, 0, 0, 0). N is given by

−1
2

0 0 0

0 −1
2

0 0

0 0 1 0

0 0 0 1

 .
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Thus, N is regular and the implicit function theorem implies that there exist unique solutions for (27)
in terms of ε and δ provided that ε, δ are sufficiently close to zero. Indeed, linearizing the system (27) at
the point p, q, x, y = 0 yields

−p
2

+ ε = 0

−q
2

+ δ = 0 (28)

x− ε

2
= 0

y − δ

2
= 0

Hence, p = 2ε+O(2), q = 2δ +O(2), x = ε
2

+O(2) and y = δ
2

+O(2), where O(2) denotes terms
of order ε2, εδ, δ2 or higher.

Next, we determine the stability properties and the Morse index of the rest point whose existence was
proven immediately above.

Theorem 19. Let (P̄ , Q̄) be the perturbed rest point given by Theorem 18. Then, the following two
statements are true for sufficiently small mutation rates:

1. If 2ε > δ > ε
2
, then the Jacobian matrix of the selection-mutation dynamics (14) is hyperbolic and

has two positive eigenvalues.

2. If ε > 2δ or ε < δ
2
, the Jacobian matrix of the selection-mutation dynamics (14) is hyperbolic and

has one positive eigenvalue.

Proof. By calculating and factorizing the characteristic polynomial χ(x) of the Jacobian matrix
evaluated at the rest point of Theorem 18, we get four factors (we omit higher terms in ε, δ):

1− 3ε− 3δ + (4− 6ε− 6δ)x+ 4x2 (29)

2δ − 4ε+ (1 + 5δ − 15ε)x+ (4 + 2δ − 14ε)x2 + 4x3 (30)

2ε− 4δ + (1 + 5ε− 15δ)x+ (4 + 2ε− 14δ)x2 + 4x3 (31)

1− 11ε− 11δ + (6− 48ε− 48eδ)x+ (13− 67ε− 67δ)x2 + (12− 30ε− 30δ)x3 + 4x4 (32)

The first and the last factors only yield negative eigenvalues. This can be seen by first setting ε, δ = 0

and then solving the resulting quadratic and the cubic equations. The solutions are negative and, thus,
continue to be negative for small positive ε, δ.

The eigenvalues given by the second and the third factor depend on ε and δ. Since the discriminant
of (30) is positive, the corresponding cubic equation has three solutions, which we will denote by
x1, x2, x3. Then, in this case, we have

2δ − 4ε+ (1 + 5δ − 15ε)x+ (4 + 2δ − 14ε)x2 + 4x3 = 4(x− x1)(x− x2)(x− x3)

and thus
2δ − 4ε = −4x1x2x3. (33)
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Now, setting ε, δ to zero in the second factor of (30), and solving the resulting cubic equation leads
to two negative solutions for x and another one where x = 0. If ε, δ are small, it follows that two values
among x1, x2, x3 must also be negative. By (33), this implies that if 2δ − 4ε > 0, then x1, x2, x3 < 0;
and if 2δ − 4ε < 0, then exactly one solution must be positive. For the third factor of (31), it can be
shown that if 2ε − 4δ > 0, then x1, x2, x3 < 0; and if 2ε − 4δ < 0, then exactly one solution must be
positive. In sum, the rest point (P̄ , Q̄) has two positive eigenvalues, as long as 2ε > δ > ε

2
, and one if

one positive eigenvalue if ε > 2δ or ε < δ
2
.

Example 20. Consider again the example ε = δ. For the selection-mutation dynamics in mixed
strategies, we noted in the last section that numerical calculations suggest that there exist unique rest
points close to the barycenter of the Nash set (6) that have two positive eigenvalues. Theorem 19 is an
analytical confirmation of the latter point in the framework of behavioral strategies. If ε = δ, then the
proviso of the first statement of the theorem clearly holds, and thus, the symmetric perturbed rest point
has two positive eigenvalues.

Theorems 14 and 18 show that a family of (symmetric) perturbed rest points always exists close to
Nash sets, such as (5) and (6). The existence of perturbed rest points does not depend on the ratio δ/ε.
Their stability properties on the other hand do: while the symmetric perturbed rest points are linearly
unstable for sufficiently small ε, δ regardless of the ratio δ/ε, the number of positive eigenvalues depends
on it.

5.8. Neutrally-Stable Nash Sets of Type (8)

The ratio δ/ε is also relevant for the existence of perturbed rest points close to Nash sets of type (8),
to which we now turn our attention.

Theorem 21. Let

P =

 1 0 0

1 0 0

0 1 0

 , Q =

 λ 1− λ 0

0 0 1

µ ν 1− µ− ν

 (34)

with 0 < µ < λ and 0 < ν < 1 − λ. Denote by (P̄ , Q̄) those Nash equilibria in (34) with λ = 1
2

and
µ = ν.

1. If 2 > δ
ε
> 1

2
, then there are no perturbed rest points converging to (P̄ , Q̄) as ε, δ → 0.

2. If δ
ε
< 1

2
, then there exists a family of perturbed rest points converging to some (P̄ , Q̄) as ε, δ → 0.

3. If δ
ε
> 2, then there exists a family of perturbed rest points converging to some (P̄ , Q̄) as ε, δ → 0.

Proof. The Nash equilibrium (34) is quasi-strict, with a1 = λ, a2 = 1− λ, a3 = 0, b1 = b2 = 1, b3 = 0.
Hence, to first order, a perturbed equilibrium nearby satisfies

p12 =
ε

λ
, p13 =

ε

λ− µ
, p22 =

ε

1− λ
, p23 =

ε

1− λ
, p31 = ε, p33 =

ε

µ+ ν
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and
q13 = δ, q21 = δ, q22 = δ.

For the remaining variables, we make an ansatz

q11 = λ+ x, q31 = µ+ y, q32 = ν + z

with x, y, z small if ε, δ are small. Hence, q12 = 1− λ− x− δ, q23 = 1− 2δ, q33 = 1− µ− ν − y − z.
Inserting all this into the three equations

q̇11 = q11(p11 − b1) + δ(1− 3q11) = 0

q̇31 = q31(p13 − b3) + δ(1− 3q31) = 0 (35)

q̇32 = q32(p23 − b3) + δ(1− 3q32) = 0

and letting δ, ε→ 0 with δ
ε

= const > 0 and x, y, z → 0 gives three equations for the ratio δ/ε

(1− 2λ)
δ

ε
= 1− 2λ+ λ(1− λ)

(
1

λ− µ
− 1

1− λ− ν

)
(1− 3µ)

δ

ε
= µ

(
−1− µ
λ− µ

+
ν

1− λ− ν
+

1− µ− ν
µ+ ν

)
(36)

(1− 3ν)
δ

ε
= ν

(
− 1− ν

1− λ− ν
+

µ

λ− µ
+

1− µ− ν
µ+ ν

)
and, hence, two equations between λ, µ, ν.

Under the symmetry assumptions λ = 1
2
, µ = ν, these two equations hold, and (36) reduces to

δ

ε
=

1− 6µ

2− 6µ
(37)

and thus
µ =

1

6

ε− 2δ

ε− δ
.

Hence, we obtain two disjoints intervals of solutions: for δ
ε
< 1

2
, we have 0 < µ < 1

6
, and for δ

ε
> 2,

we have 1
3
< µ < 1

2
.

There are 18 Nash sets of the same structure as (P,Q) (P being a zero-one matrix). If we interchange
P and Q, we obtain eighteen further Nash sets. In these cases, ε and δ switch roles in the proof of
Proposition 21. Therefore, we have 36 perturbed rest points near Nash sets of type (8) in cases 2 and 3
of the theorem. One can show that the perturbed rest points from case 2 have Morse index two, whereas
those in case 3 have Morse index one. Hence, the total Poincare index of all 36 perturbed rest points
is zero.
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6. Conclusions

As we noted above, the main reason for studying the selection-mutation dynamics of signaling games
is that the replicator dynamics of those games are not structurally unstable. We have seen in Section 3 that
all Nash equilibria other than signaling systems are elements of components of equilibria. This implies
that perturbations of the replicator equations will in general destroy the rest points corresponding to
these equilibria. Thus, the results of the replicator dynamics need to be supplemented by results obtained
for perturbations of the replicator dynamics. The selection-mutation dynamics arguably is an arguably
plausible perturbation. It explicitly introduces an element of evolutionary processes (mutation) that is
absent from the replicator equations; and, it does so in a way that leads back to the replicator dynamics
in the no-mutation limit.

In the following discussion, we focus on the important case where ε is approximately the same as
δ (i.e., 2ε > δ > ε

2
). For the selection-mutation dynamics, we have obtained a partial analysis of

the stability properties of various rest points, most notably those which are close to Nash equilibria
that are not signaling systems of the signaling game. In particular, we proved the existence of
certain perturbed rest points and showed that these rest points are linearly unstable for the selection
mutation dynamics. Only perturbed rest points close to signaling systems are asymptotically stable.
Hence, a central result of the replicator dynamics, that there are open sets of points with trajectories
converging to a neutrally-stable Nash set, does not appear to carry over to the selection-mutation
dynamics. The zero eigenvalues of neutrally-stable rest point turn into positive eigenvalues under the
selection-mutation dynamics.

These results are partial in two respects. In the first place, we did not analyze signaling games with
more than three states, acts and signals. However, as mentioned above, the basic features of the replicator
dynamics of signaling games with three signals are the same as those of signaling games with more than
three signals. Thus, the same may be true for the selection-mutation dynamics.

In the second place, we do not show that there are no other families of perturbed rest points. Although
we cannot prove it, we conjecture that this is not the case. There are two arguments supporting this
conjecture. First, we conducted extensive numerical calculations for specific parameter values of ε, δ by
using Newton’s method and were not able to find any other perturbed rest points. Second, as summarized
in Figure 1, our conjecture is consistent with index theory.

The selection-mutation dynamics of signaling games with two signals, states and acts was explored
in [13]. There, we distinguished between the cases of equal and unequal state probabilities. In the case of
equal state probabilities, we found that almost all trajectories converge to one of the signaling systems,
while in the case of unequal state probabilities, this is not the case for all values of the two mutation
parameters. By adopting the Trapa–Nowak framework, we assume equal state probabilities here, as
well. We believe that one can show for the case of three or more signals with unequal state probabilities
that there is an open set of points with trajectories that do not converge to a signaling system. The reason
is that, as in the case of two signals, if state probabilities are unequal, there is an act that is a strictly
better guess than other acts in the absence of informative signals. This can make it advantageous for a
receiver to ignore signals and, thus, stabilize non-communicative behavior under the replicator dynamics
and under the selection mutation dynamics.
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The kinds of problems analyzed in this article are closely connected to the problem of equilibrium
selection in extensive form games. For many extensive form games, non-isolated Nash equilibria are
typical and persist under perturbations of terminal-node payoffs [9,10]. The effect of mutation on the
dynamics close to such Nash equilibria was also studied by Binmore and Samuelson [7,8] in the context
of games other than signaling games. Their results are close to ours in that they also emphasize the
dependence of dynamical outcomes on mutation rates. However, the signaling game studied here has a
considerably larger strategy space than the games considered by Binmore and Samuelson.

There are other signaling games for which it would be important to know the stability of rest points
under the selection-mutation dynamics. One example is signaling games with more signals than states.
The equilibrium structure of these games was analyzed in Donaldson et al. [23]. It is shown there that
the Nash equilibria where senders communicate as much as possible and receivers react optimally are
elements of one component of Nash equilibria. Without a more detailed analysis, it does not seem to
be clear how the selection-mutation dynamics behave close to this component. For this game, as in the
signaling game studied in this paper, the selection-mutation dynamics is not the only process that should
be considered when one is interested in the robustness of the results obtained for the replicator dynamics,
but it is a rather simple and at least partially tractable dynamics for which sharp results can be obtained.
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