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Abstract: A generalization of transferable utility cooperative games from the functional
forms introduced by von Neumann and Morgenstern (1944, Theory of Games and Economic
Behavior) and Lucas and Thrall (1963, Naval Research Logistics Quarterly, 10, 281–298)
is proposed to allow for multiple membership. The definition of the core is adapted
analogously and the possibilities for the cross-cutting of contractual arrangements are
illustrated and discussed.
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1. Introduction

The coalitional game as defined by [1] associates a unique worth with each coalition. Such a
characterization is restrictive for many applications as it may be reasonable to allow the worth of one
coalition to depend on the formation of other coalitions. Consequently, in [2]’s definition of a cooperative
game, the worth of coalitions depends on the partitions of the rest of society, thus allowing different
worth to be associated with each possible coalition depending on what coalitions are formed in the rest
of society (“externalities”). This representation is still restrictive in the sense that it “presumes that
coalitions are mutually exclusive, but in reality, a player might belong to multiple coalitions that interact
with one another (e.g., a country might belong to both the United Nations and the European Union)” [3].
(See [4–6] for an international relations perspective on issue linkage through multilateral agreements.)

This note introduces a functional representation of a cooperative game where coalitions can form
in multiple spheres of interaction simultaneously such that each coalition in each sphere is associated
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with a worth that depends on the overall coalition structure. Inherent to the model, therefore, is a
new type of “cross externality”: the effect of forming coalitions across spheres. Such a formulation
is relevant for many applications because, with multiple membership in the underlying application, a
compartmentalized approach to the study of each sphere in isolation may lead to wrong conclusions
concerning the stability of coalitional agreements. In a multiple membership setting, different layers
may imbalance or balance each other depending on the structure of total spillovers (within and
across spheres). Coalitions that seemed stable (or unstable) from the compartmentalized single-sphere
viewpoint may turn out to be destabilized (stabilized) by the multi-sphere game. To assess the stability
of candidate agreements, we adapt definitions of the core [7,8] of the von Neumann–Morgenstern
game [1] as done for the Lucas–Thrall game [2] in [9], using an analogous “conjecture/ expectation
formation approach” [10] to recover the Bondareva–Shapley theorem [11,12]. To achieve this,
the set of feasible deviations is restricted to a specific class. Further inspection of the resulting
non-emptiness constraints reveals that different types of cross externalities create further opportunities
for the cross-cutting of contractual arrangements. Our analysis builds on the work of [13] who identify
conditions for when non-emptiness of the core is facilitated through combining additively separable von
Neumann–Morgenstern games (the single-sphere and no externalities case). (Not our lead example but
some of our later examples are borrowed and generalized from theirs. See also [16] on the additivity of
the core.) Our work also complements [14]’s generalization of [15] value in an environment like ours.

The rest of this note is structured as follows. Next, the model is motivated by means of a multimarket
competition game. In Sections 3 and 4, we introduce the general game, define its core, and illustrate the
core characteristics at hand of examples and observations. We conclude with some remarks.

2. A Worked Example

To motivate our model, we consider a multimarket Cournot economy with mergers and spillovers.
(See, for example, [10,17,18] for single-market Cournot competition games in this spirit.)

Example 1: A population of firms, N = {f1, ..., fn}, competes in a multimarket industry,
K = {1, ...,m}, by setting production quantities. Each firm f is described by a vector of specializations,
sf = {s1f , ..., smf }, where each skf is a real number representing firm f ’s constant marginal costs in
market k when no merger occurs.

In any market k, coalitions of firms S ⊆ N may merge and form a new firm. The resulting industry
configuration, M, describes the partitions in each market, {ρ1, ..., ρm}. Given M, any firm S ∈ ρk

produces quantity qkS in market k ∈ K at cost

Ck
S(q

k
S;M) = ckS(M)× qkS + xkS(M).

Fixed costs of merger. xkS(M), the fixed cost of merging S in market k, is a real-valued function that
depends onM in the following way:

xkS(M) =


0 if |S| = 1

κ if |S| > 1 and there exists k′ 6= k: S ∈ ρk′
λ if |S| > 1 and there does not exist k′ 6= k: S ∈ ρk′
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Marginal costs of production. Given any merger S ⊆ N in market k, the firms in S select the lowest
marginal cost firm to be the only active firm amongst them in market k. Hence, the marginal cost of
production of S, ckS , as a result of the merger is given by

ckS = min{skf}f∈S.

Given merger S ⊆ N in market k, the marginal cost of production of any coalition C, ckC , in any other
market k′ 6= k is affected in the following way. For any C ∈ ρk′ , we write ck

′
C for min{sk′f }f∈C , i.e., for

the marginal cost of the lowest marginal cost firm amongstC in market k′. For allC such thatC∩S = ∅,
ck

′
C = ck

′
C . For all C such that C ∩ S 6= ∅, given some α ∈ (0, 1),

ck
′

C = min{ck′C ; α× ck
′

S + (1− α)× ck′C}.

The motivation for this marginal cost effect across markets is that firms connected by merger in one
market may learn something about each others’ production technologies and thus also improve (to some
extent) their respective production technologies even in markets where they remain unmerged.

Demands. The demand of any product is the same in all markets (normalized to be equal-sized).
Products are neither substitutes nor complements, meaning that all markets can be described by identical
and independent linear demands. (These markets could be countries for example.) For any market k,
therefore,

pk = 1−Qk where Qk ≡
∑
f∈N

qkf .

2.1. Oligopoly Externalities

A merger in a multimarket Cournot situation as introduced here has three different externality effects
on the other firms in the same market and across markets. First, due to market consolidation, if
merger occurs, the resulting quantity and price competition will change in that market, since the merged
firms will be represented by the firm with the lowest marginal cost amongst them. Second, due to
technology/knowledge spillovers across markets, the resulting quantity and price competition will also
change in the markets where the merger did not occur because of the potential reduction in marginal
costs (by how much is described by parameter α). Third, due to sharing of fixed costs merger, if the
same merger were to occur in more than one market, the fixed costs of merger per market would decline.

Due to the independence of the demand markets, the firms’ optimization problems, given any industry
configuration, can be solved for each market separately. The adjustments of equilibrium quantities
and prices following mergers in any given market, however, have an effect in not only that same
market because both the technology spillovers and the fixed cost effects may additionally influence the
optimization problems in the other markets. A traditional representation of a cooperative game could not
make these effects explicit. We shall illustrate these effects in more detail with a numerical illustration.

2.2. Two-firm, Two-market Numerical Illustration

Take a symmetric two-firm, two-market case with s1f1 = 4/9, s2f1 = 5/9, s1f2 = 5/9,
s2f2 = 4/9 (firm f1 is specialized in market 1 and firm f2 is specialized in market 2). Merger costs are
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λ = 2/108 > κ = 1/81. Choosing equilibrium outputs given the decision to merge in none, one, or
both of the markets yields four cases: the no merger case, two one merger cases, and the full merger case.
The equilibrium profits of these four cases are obtained by solving for the firms’ profit-maximization
problems. Table 1 summarizes the competition. (Writing (1), (2) means “no merger" in the underlying
market and writing (1, 2) means “merger”.)

Table 1. Numerical illustration.

Industry configuration Profits (scaled ×81)
market 1 market 2 market 1 market 2

mergers:
none (1),(2) (1),(2) 4, 1 1, 4

market 1 (1,2) (1),(2) 4.75 (1 + α× 1.7), (4− α× 1.2)

market 2 (1),(2) (1,2) (4− α× 1.2), (1 + α× 1.7) 4.75
full merger (1,2) (1,2) 5.25 5.25

The direct effect of merger in market 1 is negative: profits fall from 1 + 4 = 5 to 4.75 if market 2 is
not merged and from 2.7 + 2.7 = 5.5 to 5.25 if market 2 is merged. If market 2 is merged, the overall
cross effect on market 2 is positive: total profits in market 2 rise from 4.75 to 5.25. If market 2 is not
merged, the profits in market 2 change from 1 + 4 = 5 to 5 + α × 0.5. If market 2 is not merged, the
individual cross effect is negative on the strong firm in market 2 (profits fall from 4 to 4− α× 1.2), and
positive on the weak firm (profits increase from 1 to 1 + α × 1.7). The net total of the merger effects is
therefore always positive if α× 0.5 > 0.25, i.e., when α > 0.45.

Since, ceteris paribus, mergers always decrease the worth of the merging market due to the high direct
costs of merger, a partial view of one market suggests that merger is not in the firms’ interests. When
both markets are analyzed simultaneously, however, the cross-market effects of mergers are internalized.
Since the cross effects are net positive if α > 0.45, these effects would already render a single merger
worthwhile overall.

When no merger takes place, each firm’s profits from both markets are 4 + 1 = 5 and the total profits
are 10. When one merger takes place, the firms can agree on sharing the total payoffs of (5+α× 0.5)+

4.75 = 9.75 + α × 0.5. Under full merger, contracts can share the total profits of 5.25 + 5.25 = 10.5.
Therefore, no contracts can be written that Pareto-improve on contracts that result in full merger and
share the total profits efficiently, paying each player at least 5 (which are the profits that each firm can
guarantee itself from no merger). Whether a single merger already has a net-positive effect depends on
whether α > 0.45 or not.

3. The Model

This section generalizes the example to a representation of a cooperative game. Let
N = {f1, f2, ..., fn} be the fixed population of agents. Write ρ for a partition of N and ρ(S) for
the partition of some S ⊂ N . Let P(N) be the set of partitions of N and P(S) the set of partitions
of S ⊂ N . Let K = {1, ...,m} be the set of cooperative layers, that is, different spheres over which
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cooperation amongst S ⊆ N may ensue. WriteM for a society consisting of a partition of each layer,
M = {ρ1, ..., ρm}, andMS = {ρ1(S), ..., ρm(S)} for a subsociety consisting of a partition of each layer
of some S ⊂ N (in which caseMS andMN\S are “separable” subsocieties; i.e., there is no coalition
that includes members from both subsocieties).

Now, G(v,K,N) is a multiple membership game (MMG), defined by N , K and v. v is the
characteristic multiple membership function that assigns, for every layer k ∈ K, a worth in terms of
transferable utility of vk to each C ∈ ρk given M: for any k ∈ K, vk( · ;M) : ρk → R for all
ρk ∈ P(N). Naturally, an MMG is a partition function game (PFG) as in [2] if K consists of only one
layer (when no multiple membership exists). With only one layer, the MMG/PFG further reduces to a
characteristic function game (CFG) as in [1] if, for any C ⊆ N , v(C; ρ) is constant for all ρ ∈ P(N)

with C ∈ ρ.

3.1. Externalities

When multiple membership exists, externalities come in various kinds. In these notes, an externality
is said to be present if one instance of its effect is present so that a game may exhibit different kinds of
externalities over different parts of the game. This allows to model interesting situations like the above
Cournot model: merger in one market has both positive and negative effects on the other firms and on
the other markets.

The externalities will be defined using the notion of embedded coalitions. Given partition ρ of N , C
is an embedded coalition if C ∈ ρ. Partition ρ embeds ρ′ if, for all C ′ ∈ ρ′, there is some C ∈ ρ such that
C ′ ⊆ C. One externality is the “partition” externality, which is the externality known from PFGs: the
intra-layer externality of an n(≥ 3)-player Cournot game, for example, where one firm’s payoff varies
with the remaining firms’ decisions on whether to merge or not, is such an externality.

Partition externality. G(v, k,N) exhibits a positive (or negative) partition externality if there exist
M, M′ such thatM\ ρk =M′ \ ρ′k, ρk embeds ρ′k with C ∈ ρk, C ∈ ρ′k, and

vk(C;M) > (or <) vk(C;M′).

The other “cross” externality stems from the effects of the formation of coalitions in one layer on the
payoffs of some coalition in another. This inter-layer effect is new and peculiar to multiple membership
and cannot be expressed through existing cooperative game representations. In the multimarket Cournot
example, the cross externality was the effect of merger in one product market on the firms’ profits in
the other.

Cross externality. G(v, k,N) exhibits a positive (or negative) cross externality if there exist M, M′

such thatM\ ρk =M′ \ ρ′k with C ∈ ρk′ , C ∈ ρ′k′ for some k′ 6= k, ρk embeds ρ′k, and

vk′(C;M) > (or <) vk′(C;M′).

A subclass of cross externalities are “partition-cross” (“partition externalities across layers”). They have
elements of cross and of partition externalities: coalition formation of one set of players S1 ⊆ N in
one layer affects the worth of coalitions of another S2 ⊆ N in another layer with S1 ∩ S2 = ∅. This
occurs when, for example, a merger of firms one and two in one market affects the profits of firm three
in another.
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Partition-cross externality. G(v, k,N) exhibits a positive (or negative) partition-cross externality if
there exist M, M′ such that M \ ρk = M′ \ ρ′k with C ∈ ρk′ , C ∈ ρ′k′ for some k′ 6= k, ρk
embeds ρ′k while being identical w.r.t. the coalitions that all members of C join (i.e., for all f such
that f ∈ C ∈ ρk′ , (f ∈ S ∈ ρk)⇔ (f ∈ S ∈ ρ′k) with the same S in both), and

vk′(C;M) > (or <) vk′(C;M′).

A partition-cross externality is a partition externality where partitions ρki and ρ′ki are identical w.r.t.
the coalitions that all members of C join: for all f such that f ∈ C ∈ ρkj , (f ∈ S ∈ ρki)⇔ (f ∈
S ∈ ρ′ki) with the same S in both.

3.2. Feasible Deviations

In the absence of externalities and multiple membership (i.e., in characteristic function games, CFGs),
a deviation by some S ⊂ N when forming a coalition has a one-to-one association with a unique worth
of S [1]. In the presence of externalities, however, further expectation conjectures (assumptions about
how the rest of society, N \ S, reacts to a coalitional deviation by S) are needed [1,19]. For partition
function games (PFGs), that is, in the presence of externalities within a single sphere (no multiple
membership), [20–23] propose definitions of the core dependent on different conjectures to evaluate
the profitability of coalitional deviations. [10] provides an excellent discussion of these, also analyzing
their axiomatic foundations.([9] provides additional results on the externality structure relevant for the
corresponding non-emptiness results for several of these cores.) Suppose the partition was ρ before
S ⊂ N deviated and reorganized itself to form ρ(S), then these are the existing conjecture rules that have
been proposed in PFG environments (see [10] for a detailed classification and an axiomatic analysis):

1. Max rule [10]: (N \ S), taking ρ(S) as given, organizes itself to ρ(N \ S) in order to maximize
(N \ S)’s total worth

2. Pessimistic [19,20]: (N \ S) organizes and forms ρ(N \ S) in order to minimize S’s total worth
3. Optimistic [23]: (N \ S) organizes and forms ρ(N \ S) in order to maximize S’s total worth
4. Singleton [21,22]: (N \ S) breaks down into singletons
5. Collective [10]: (N \ S) forms one joint coalition ([10] call this rule N -exogenous)
6. Disintegrative [1,20]: all C ∈ ρ such that C ∩ S = ∅ remain organized in the same way, all other

coalitions C ′ from which members in S deviated break up into singletons
7. Projective [20]: all C ∈ ρ such that C ∩ S = ∅ remain organized in the same way, all other

coalitions C ′ from which members in S deviated form coalitions amongst the remaining (C ′ \ S)

Note that conjecture rules 1–3 depend on ρ(S) and on the underlying PFG, but not on the original
partition ρ. Rules 4–5 depend only on S. Rules 6–7 depend on S and on the original partition ρ.

With multiple membership, in addition to the need of specifying a conjecture, we must specify what
kinds of deviations are deemed feasible. The feasibility of deviations needs to be interpreted here
because, for example, starting with the grand coalition in some layer, each S ⊂ N may deviate in
many ways: in some or all of the layers, forming different coalitions in each layer or the same coalition
in all layers. If cooperation is compartmentalized without cross externalities in between the layers,
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players may deviate in one layer but continue to form the grand coalition in another layer. When
cross externalities are present, however, the worth of coalitions vary with the coalition constellations
across layers and deviators need to endogenize the cross external effects of their deviations. If S ⊂ N

deviates and forms S in layer 1, for example, it cannot expect to form N in another layer because S’s
members need to cooperate with (N \ S) to form this constellation. Therefore, this note only considers
the following deviations:

Feasible deviations. Any S ⊆ N can form any subsociety MS ∈ P(S)m (a partition of S in every
layer).MS andMN\S must be separable.

From the feasible set of subsocieties available to S, it aims to form subsociety M̂S ∈ P(S)m that
maximizes its total payoffs. For that, each S ⊂ N needs to conjecture how the rest of the population
responds to its deviation. The reason for restricting deviations in this way is to guarantee that societyM
after deviation by some S ⊂ N occurs is separable into subsocietiesMS andMN\S . If this is the case,
then the above list of conjectures can be adapted directly.

Suppose Z represents any of the above conjectures so that Z, for every MS deviating from M,
specifies a resulting subsociety Z((N \ S);MS) ∈ P(N \ S)m of (N \ S) (a partition of (N \ S) in
every layer, but not necessarily the same one in all layers). Write M̂S(N ) for the resulting overall society
{M̂S,Z((N \ S);M̂S)}. Hence, S forms the optimal subsociety M̂S such that, given conjecture Z,∑

k∈K

∑
C∈ρk(S)

vk(C;M̂S(N )) = max
MS∈P(S)m

∑
k∈K

∑
C∈ρk(S)

vk(C; {MS, Z((N \ S);MS)}).

The finiteness of possible coalition structures guarantees the existence of such a (not necessarily unique)
subsociety for any S ⊆ N . We will now define a function summarizing their worth.

Conjectured worth function. The conjectured worth function (CWF), z, summarizes the conjectured
worth for all coalitions: given Z, for all C ⊆ N , z( ·) : C → R. For any S ⊆ N , z(S) is the
largest feasible sum of payoffs for S under conjecture Z:

z(S) =
∑
k∈K

∑
C∈ ̂ρk(S)

vk(C;M̂S(N ))

Note that z filters the information in the MMG to obtain a CFG view of deviating demands.

3.3. Superadditivity

When externalities exist, a detailed analysis of the effects of coalition formation may be needed to
evaluate the global benefits of cooperation and a superadditivity assumption may be difficult to uphold.
When one agent is able to take free ride on the coalition formed by others, for example, the grand
coalition may no longer be the efficient coalition structure and it may indeed be insightful to work with
a given coalition structure to analyze the effects of free ride.

In the presence of multiple membership and externalities, coalition formation may be mutually
beneficial in some layer but not necessarily globally as negative cross externalities may exist. Suitably
defined, MMGs may conversely be globally superadditive if the overall effect of coalition formation,
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which takes into account all external and direct effects, is positive for those that come together to
cooperate even if coalition formation itself is not mutually beneficial in the separate layers.

The numerical illustration of the multimarket Cournot game for the cases when α > 0.45, for instance,
is superadditive because the total profits of the firms rise with every further merger: the no merger
case has total payoffs of 10, compared with the 10 + (α − 0.45) × 0.5 of both one merger cases, and
compared with the 10.5 of full merger. The below definition of MMG superadditivity embeds definitions
of superadditivity for CFGs and PFGs and implies efficiency of forming the grand coalition in all layers.

Superadditivity: An MMG is superadditive if, for all M, M′ such that M \ ρk = M′ \ ρ′k, and ρk
embeds ρ′k in layer k, ∑

k∈K

∑
C∈ρk

vk(C;M) ≥
∑
k∈K

∑
C∈ρ′k

vk(C;M′).

Superadditivity implies the efficiency of the “grand coalition” by which we mean society {N} (the grand
coalition) forms in all layers.

When the game consists of a single layer without externalities (described by a CFG), the above
definition implies the simple pairwise superadditivity that v(C ∪ C ′) ≥ v(C) + v(C ′) is to be satisfied
for all (C,C ′) ⊂ N : C ∩C ′ = ∅. (Note that the implied sense of superadditivity when there is only one
layer has also been defined as full cohesiveness ([9], section 2.2 “Convexity”) in the contexts of PFGs, as
opposed to a pairwise view of superadditivity ([9], section 2.1 “Superadditivity”). [9]’s pairwise view of
superadditivity does not imply the efficiency of the grand coalition.) Note that the optimization problem
underlying z, which is a CFG, entails that z is superadditive by definition, even if the MMG is not
superadditive: for any S, S ′ ⊆ N with S ∩ S ′ = ∅, z(S) + z(S ′) ≤ z(S ∪ S ′).

4. Coalitional Stability and the Core

We now turn to the stability of an outcome. By outcome we mean (M, x); a coalition structure
together with an allocation of the common gains. To assess its stability, we will use the conjectured
worth function. For allocation x, we write x = {xf1 , ..., xfn} such that each allocated player payoff
xf =

∑
k∈K x

k
f summarizes the payoffs to each f ∈ N obtained in all layers. Consequently, for some

S ⊆ N , x(S) is a vector of all-layer payoffs for the players in S. Naturally, an allocation must be
feasible: given anyM,

∑
f∈N xf ≤

∑
k∈K

∑
C∈ρk v(C;M).

Recall our numerical illustration of the multimarket Cournot game. Independent of α = (0, 1), one
unique conjectured worth function is derived, i.e., z is such that z(f1) = z(f2) = 1 + 4 = 5 and
z(f1, f2) = max{(5.25 + 5.25); (9.75 + α × 0.5)} = 10.5. Note that no conjecture is needed for this
assessment. It is easy to verify in this particular example that G(v,K,N) has a nonempty core: for an
example of a core outcome, consider full merger with contract x = (5.25, 5.25), paying both firms 5.25.
This outcome is in the core because no firm can do better by deviating. In fact, any split of full merger
paying each firm at least his individually rational payoff of 5 (what he gets from no merger) and the other
the residual to 10.5 is a stable core allocation.
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4.1. Core Stability

Assume G(v,K,N) is superadditive such that the grand coalition is efficient. Whether there exists
a core-stable allocation supported by the grand coalition depends on v and on the conjecture. We now
provide definitions for any given conjecture. The Z-core (based on conjecture Z) can be defined using
the conjectured worth function.

Z-core: Given Z, the Z-core of forming the efficient society of G(v,K,N) with total payoff allocation
x is

ζ(G(v,K,N);Z) = {x ∈ Rn;
∑
f∈N

xf ≤ z(N) and
∑
f∈S

xf ≥ z(S) ∀ (S ⊆ N)}.

Theorem. The Z-core of G(v,K,N) is nonempty if, and only if, its conjectured worth function z

is balanced.

The theorem is a (straightforward) recovery of the Bondareva–Shapley theorem via the conjectured
worth function in our setup (see [11] and [12] for independent proofs). What is interesting is that several
characteristics can be identified to describe the core structure, which turns out to be very complex.

Characteristic 1: If the cores of a superadditive MMG layer-by-layer separately are nonempty, the
Z-core of the whole MMGs is also nonempty.

While z is always additive over coalitions and layers, v does not need to be additive when
externalities are present. In every layer, superadditivity implies that it is beneficial for members
of any S ⊆ N to form the largest possible coalition {S}. Hence, whenever x is in a Z-core,∑

f∈N xf = z(N). Now, zk describes the game described by the conjectured worth function
of layer k, i.e., the conjectured CFG view of layer k. Given any zk, a core stable allocation of
forming the grand coalition in that layer exists if, and only if, every zk is balanced. Since the sum
of balanced games is balanced, the Z-core of G(v, k,N) is, therefore forcedly, nonempty when all
zks are balanced.

Characteristic 2: In the presence of cross externalities but without partition and partition-cross
externalities, the core is unambiguously defined (independent of conjecture).

In the absence of partition and partition-cross externalities, in a society M that is separable
into MS and MN\S , the worth of any C ⊆ S is independent of MN\S in all layers:
vk(C;M) = vk(C;M′) for all coalitions, layers and societies provided MS = M′

S ,
(C ∈ ρk ∈ M) and (C ∈ ρ′k ∈ M′). Therefore, one unique game described by a characteristic
worth function is derived, which implies one unambiguous definition of the core. This unambiguity
is independent of the existence of cross externalities that are not partition-cross because deviators
endogenize all other cross external variations that may still exist and affect them. The need
to conjecture is therefore inherent to the presence of PFG-type (partition and partition-cross)
externalities. The core of example 1, for instance, is unambiguously defined.

Characteristic 3: In the presence of positive cross externalities, the core of the MMG may be nonempty
even if coalition formation in any of the layers is, ceteris paribus, never beneficial.

Example 1 as described by Table 1 illustrates this.
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Characteristic 4: In the presence of negative cross externalities, the core of forming the grand coalition
in any layer of the MMG may be empty even if coalition formation in all layers is, ceteris paribus,
always beneficial.

Example 2: Let n = k = 2 and v be described by Table 2.

Holding the coalition structure of one layer fixed, any coalition formation in the other layer is
beneficial. However, due to the negative cross externality of coalition formation in one layer on
the other, the total worth of all coalitions is reduced as coalitions form. The core of forming
the grand coalition in one or both of the layers of example 2 is empty: z(1) + z(2) = z(N) =

(v1(1) + v2(1)) + (v1(2) + v2(2)) = 4 × 1 = 4 > 3 = 0 + 0 + 3 = (v1(1) + v1(2)) + v2(N) >

2 = 1 + 1 = v1(N) + v2(N).

Table 2. Example 2.

Society Coalition worth
layer 1 layer 2 layer 1 layer 2

(1),(2) (1),(2) 1, 1 1, 1
(1,2) (1),(2) 3 0, 0

(1),(2) (1,2) 0, 0 3
(1,2) (1,2) 1 1

Characteristic 5: Multiple membership may facilitate cooperation not because of cross external effects
but because the layers “balance each other": Even in the complete absence of externalities when
all layers have empty cores, the core of an MMG may be nonempty.(See [13] “Examples 1 and 2”
for a 4- and related 5-player examples.)

Example 3: Let n = 5, k = 2 and let there be no externalities so that the MMG is described by two
5-player CFGs, v1 and v2. Let v1(N) = 1, v1(C) = 4/5 + ε (where ε is small) if |C| = 4 and
v1(C) = 0 otherwise. Let v2(N) = 1, v2(C) = 3/5 + ε if |C| = 3, 4 and v2(C) = 0 otherwise.

v1 is unbalanced: for the balanced collection of the 5 coalitions of size 4, ζ|4| =

{(1, 2, 3, 4), ..., (2, 3, 4, 5)}, with balancing weights λ|4| = (1/4, ..., 1/4), 5× 1/4× v1(i, j, k, l) =
5×1/4×(4/5+ε) = 1+5/4×ε > 1 = v1(N). v2 is unbalanced: for the balanced collection of the
10 coalitions of size 3, ζ ′|3| = {(1, 2, 3), ..., (3, 4, 5)}, with balancing weights λ′|3| = (1/6, ..., 1/6),
10 × 1/6 × v2(i, j, k) = 10 × 1/6 × (3/5 + ε) = 1 + 5/3 × ε > 1 = v2(N). However, it is
easy to verify that x = (2/5, 2/5, 2/5, 2/5, 2/5) is a core allocation of v: z associates z(N) = 2,
z(C) = 7/5 + 2× ε if |C| = 4, z(C) = 3/5 + ε if |C| = 3 and z(C) = 0 otherwise.

Characteristic 6: The presence of positive (or negative) cross and/or partition externalities may lead
to inefficient herding.

Example 4: Let n = 3, k = 2 and vk(N ; {{N}, {N}}) = 1 for all k, vk(1; {ρ1, ρ2}) = 2 ∀i if
ρ1 = ρ2 = {(1), (2, 3)} and vk(C;M) = 0 otherwise.
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The Pessimistic-core of forming the inefficient grand coalition in both layers is nonempty because
player 1 expects to receive 0 from being the singleton in both layers, e.g., x = (2/3, 2/3, 2/3)

is such a Pessimistic-core allocation. Inefficient herding results from the positive externality: the
formation of the coalition of (2,3) in both layers creates worth for player 1, but player 1 is too
pessimistic to agree to stay separate. The same effect may be due to negative externalities as a
simple variation of v illustrates: consider, for example, v′ with v′k(N ; {{N}, {N}}) = 1 for all k,
v′k(1; {ρ1, ρ2}) = 2 ∀k if ρ1 = ρ2 = {(1), (2), (3)} and v′k(C;M) = 0 otherwise.

5. Concluding Remarks

This paper sets out to define the core of coalitional games with multiple membership externalities.
The point of departure is the representation in partition function form as introduced by [2]. Inherent
to our multiple membership game are two types of externalities; those from within a given layer of
cooperation where a coalitional decision of one set of agents has payoff consequences for another set of
agents, and those from across different layers of cooperation where coalitional decisions in one sphere
of cooperation influence payoffs in another sphere. Recent contributions explore the consequences for
core existence of the first externality type [9] and of the second [13]. Work that is complementary to
ours concerns extensions of the Shapley value to multiple membership externality environments [14].
Our work illustrates how the two externality types may interact with coalitional incentives to deviate.
Moreover, our model highlights one crucial issue with defining the core in the presence of multiple
membership externalities, namely that of feasibility of deviations. In this note, we take a somewhat
extreme stance and allow deviations by some subsociety only if they do not expect to form coalitions
in any of the layers with any of the players outside of their subsociety. This assumption drives the
analysis in this note, and we aim to relax this assumption in future work, likely in conjunction with an
axiomatic approach.
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