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Abstract: Motivated by the EU Solvency II Directive, we study the one-year ruin probability of
an insurer who makes investments and hence faces both insurance and financial risks. Over a time
horizon of one year, the insurance risk is quantified as a nonnegative random variable X equal
to the aggregate amount of claims, and the financial risk as a d-dimensional random vector Y
consisting of stochastic discount factors of the d financial assets invested. To capture both heavy
tails and asymptotic dependence of Y in an integrated manner, we assume that Y follows a standard
multivariate regular variation (MRV) structure. As main results, we derive exact asymptotic estimates
for the one-year ruin probability for the following cases: (i) X and Y are independent with X of
Fréchet type; (ii) X and Y are independent with X of Gumbel type; (iii) X and Y jointly possess
a standard MRV structure; (iv) X and Y jointly possess a nonstandard MRV structure.

Keywords: asymptotics; Breiman’s theorem; max-domain of attraction; multivariate regular variation;
ruin probability

MSC: primary 62P05; secondary 60G70, 62E20

1. Introduction

Ruin theory, as one of the most developed areas in risk theory, mainly focuses on the ultimate
ruin probability (RP) as a measurement of solvency of an insurance business. However, property
and casualty insurance companies mainly sell short-term insurance contracts such as auto insurance,
home insurance, and so on. Then the policyholders do not really care about the ultimate RP, but they
are satisfied as long as the insurer is able to cover all qualified claims during the contract year.
Moreover, the estimation of the RP depends on valuations of assets and liabilities. As insurers usually
prepare their balance sheets and close their books annually, it is natural to check ruin on a yearly
time grid. As an important application, the one-year RP is used in evaluation of Solvency Capital
Requirement. The Solvency II Directive (2009/138/EC)1 states that “the Solvency Capital Requirement
should be determined as the economic capital to be held by insurance and reinsurance undertakings
in order to ensure that ruin occurs no more often than once in every 200 cases or, alternatively,
that those undertakings will still be in a position, with a probability of at least 99.5%, to meet their

1 Available online: http://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32009L0138.
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obligations to policy holders and beneficiaries over the following 12 months.” See Bauer et al. (2012)
and Christiansen and Niemeyer (2014) for in-depth discussions on the issue of calculating Solvency
Capital Requirement from the Solvency II Directive.

Consider a one-year insurance risk model. Let u > 0 represent the initial wealth of the insurer
at time t = 0, which includes a regulatory initial capital and premiums collected on policies with
coverage from t = 0 to t = 1. Suppose that there are d risk-free or risky assets available for the insurer
to make investments, each with an annual return rate Ri > −1, i = 1, . . . , d. The restriction Ri > −1 is
to exclude the worst scenario of losing everything invested in the ith asset. Suppose that the insurer
invests a proportion wi ∈ [0, 1] of its initial wealth in the ith asset, i = 1, . . . , d, where we have excluded
short positions. Thus,

w ∈ Σd :=
{

w ∈ [0, 1]d : w1 + · · ·+ wd = 1
}

.

The value of the investment portfolio at time t = 1 becomes u(1 + wᵀR). Further assume that all
insurance claims and associated expenses, totaled by a nonnegative random variable X, are paid at
time t = 1. Then the insurer’s wealth at time t = 1 becomes u(1 + wᵀR)− X.

The insurer becomes insolvent if its wealth runs too low. Naturally, the one-year RP is defined by

RP = P (u(1 + wᵀR)− X < 0) , u > 0, w ∈ Σd. (1)

We point out that, although this may not exactly define the probability of ruin, it indeed measures
the likelihood that the insurer is in the insolvency state. This definition is consistent with most of
recent works in this literature; see, e.g., Eling et al. (2009) and Asanga et al. (2014).

From the risk management point of view, it is more customary to look at discount factors than
returns. Denote by Y1, . . . , Yd the discount factors of the d individual assets and by Yw the overall
discount factor of the investment portfolio, which are, respectively,

Yi =
1

1 + Ri
, i = 1, . . . , d,

and

Yw =
1

1 + wᵀR
=

(
d

∑
i=1

wiY−1
i

)−1

. (2)

In this way, the RP in (1) is reduced to the tail probability of the product of X and Yw,

RP = P (XYw > u) . (3)

As calculated by Tang and Tsitsiashvili (2003), the random variable X quantifies the insurance
risk and the random variables Yi, i = 1, . . . , d, and Yw quantify the financial risks.

For calculating the RP in (1) and its equivalent expression in (3), a closed-form solution is available
only under some ideal but usually unrealistic model assumptions on the marginal distributions and
the dependence structure. Alternatively, one can employ the crude Monte Carlo (CMC) method to
estimate it. However, the true value of the RP must be very small, such as 0.5% as required by the
Solvency II Directive, and correspondingly u must be very large. When the RP is about 0.5%, a sample
of size as large as n = 106 is needed for the coefficient of variation of the CMC estimate to be about
1–2%. See Tang and Yuan (2012) for a related discussion on this issue.

In this paper, we aim at asymptotic estimates for the RP for the case with a large initial wealth u.
Throughout the paper we assume that Y possesses a multivariate regular variation (MRV) structure.
Exact asymptotic formulas for the RP are derived for the following cases, which essentially cover all
important scenarios with regularly varying insurance and financial risks:
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(i) X and Y are independent with X of Fréchet type;
(ii) X and Y are independent with X of Gumbel type;

(iii) X and Y jointly possess a standard MRV structure;
(iv) X and Y jointly possess a nonstandard MRV structure.

In the rest of this paper, first we highlight some preliminaries of max-domains of attraction (MDA)
and MRV in Section 2, and then we derive asymptotic formulas of the RP for cases (i) and (ii) in
Section 3, and for cases (iii) and (iv) in Section 4.

2. Preliminaries

We need to collect some preliminaries before we are able to state our main results.

2.1. Max-Domain of Attraction (MDA)

In this subsection, we highlight some preliminaries of max-domain of attraction (MDA), a basic
concept in univariate extreme value theory, to be used in deriving our main results. Standard textbook
treatments of this concept in the context of insurance, finance, and risk management are given
by Embrechts et al. (1997) and McNeil et al. (2015), among others.

A distribution function H on R is said to belong to the MDA of a non-degenerate distribution
function H0, denoted by H ∈ MDA(H0), if

lim
n→∞

sup
x∈R
|Hn (cnx + dn)− H0(x)| = 0

holds for some normalizing constants cn > 0 and dn ∈ R, n ∈ N. By the classical
Fisher–Tippett–Gnedenko theorem, only three choices for H0 are possible, namely the Fréchet, Gumbel,
and Weibull distributions, which are denoted by Φ, Λ, and Ψ, respectively.

The following results give equivalent descriptions of the membership of the three MDAs.
These results are well known; the reader is referred to Section 3.3 of Embrechts et al. (1997) for
more details. A distribution function H belongs to MDA(Φγ) for γ > 0 if and only if its upper
endpoint x̂ = sup{x ∈ R : H(x) < 1} is infinite and its survival function H = 1− H is regularly
varying at ∞ with index −γ, denoted as H ∈ RV−γ, namely, the relation

lim
x↑∞

H(xy)
H(x)

= y−γ, y > 0,

holds. A distribution function H belongs to MDA(Λ) if and only if the relation

lim
x↑x̂

H
(

x + ya(x)
)

H(x)
= e−y, y ∈ R,

holds for some positive auxiliary function a(·) on (−∞, x̂), where the upper endpoint x̂ can be finite
or infinite. The auxiliary function a(·) is unique up to asymptotic equivalence and a commonly used
choice for a(·) is the mean excess function,

a(x) = E
[

Z− x|Z > x
]
, x < x̂,

where Z is a random variable distributed by H. Moreover, a distribution function H belongs to
MDA(Ψγ) for γ > 0 if and only if its upper endpoint x̂ is finite and H is regularly varying at x̂ with
index γ, namely,

lim
x↓0

H(x̂− xy)
H(x̂− x)

= yγ, y > 0.



Risks 2017, 5, 28 4 of 11

2.2. Multivariate Regular Variation (MRV)

In this subsection, we highlight some preliminaries of MRV, an important concept in
multivariate extreme value theory, to be used in deriving our main results. Since its introduction
by de Haan and Resnick (1981), this concept has been extensively applied to many topics in insurance,
finance, and risk management. To deal with multivariate extreme risks, one needs to model both the
possibly enormous sizes of and the dependence between the risks. In this regard, MRV provides
an ideal modeling framework, which models both marginal tails and asymptotic dependence
in a unified manner and provides an explicit approximation to the tail of the joint distribution.
For thorough theoretical discussions on MRV, we refer the reader to Resnick (1987), Resnick (2007),
and Rüschendorf (2013).

Consider a random vector Z = (Z1, . . . , Zd) consisting of d nonnegative risk variables.
Assume that the marginal distributions Hi, i = 1, . . . , d, are tail equivalent in the sense that the relations

lim
x→∞

Hi(x)
H(x)

= ci, i = 1, . . . , d, (4)

hold for some distribution function H on [0, ∞) and some positive numbers ci. The vector Z is
said to have a multivariate regularly varying tail if there exist a positive normalizing function b(·)
monotonically increasing to ∞ and a limit Radon measure ν not identically 0 such that, as x → ∞,

xP
(

Z
b(x)

∈ ·
)

v→ ν(·) on [0, ∞]\{0}. (5)

In this relation, the notation v→ stands for vague convergence; in other words, for every Borel set
A in [0, ∞] away from 0 with boundary ∂A of ν measure zero, ν(∂A) = 0, we have

lim
x→∞

xP
(

Z
b(x)

∈ A
)
= ν(A).

The definition of MRV implies that the limit measure ν is homogeneous in the sense that there
exists some 0 < γ < ∞ such that the relation

ν(Aλ) = λ−1ν(A), (6)

with Aλ = λ1/γ A, holds for any λ > 0 and any Borel set A ⊂ [0, ∞]\{0}; see (Resnick 2007, p. 178).
The normalizing function b(·) is not unique, but different choices may result in limit measures that

differ by a constant factor. Commonly, b(x) is chosen to be H←(1− 1/x), based on which relation (5)
can be rewritten as

xP
(

Z
H←(1− 1/x)

∈ ·
)

v→ ν(·) on [0, ∞]\{0}. (7)

Here and hereafter, for a non-decreasing function f on R, its càglàd inverse is defined by

f←(x) = inf {y ∈ R : f (y) ≥ x} ,

where we follow the usual convention inf∅ = ∞. Furthermore, as discussed by Tang and Yuan (2013),
relation (7) is equivalent to

1
H(x)

P
(

Z
x
∈ ·
)

v→ ν(·) on [0, ∞]\{0}. (8)

We shall follow the style of relation (8) in defining a standard MRV structure, and we denote it by
Z ∈ MRV−γ(ν, H) depending on the context.
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Some comments on the limit measure ν follow. First, the information of asymptotic dependence
in the upper-right tail of Z is contained in the limit measure ν. Plugging the set A = (1, ∞] into
relation (8) yields

lim
x→∞

P (Z1 > x, . . . , Zd > x)
H(x)

= ν (1, ∞] .

To capture the common impact on insurance and financial risks of a certain external
macroeconomic environment, it is often assumed that ν (1, ∞] > 0, which means that the components
of Z exhibit large joint movements or, in other words, are asymptotically dependent. Second, it is easy
to see that the constants ci in (4) can be expressed as

ci = ν(Ai), i = 1, . . . , d,

where Ai = [0, ∞]\[0, 1i] and 1i denotes the vector with the ith element being 1 and the other elements
being ∞.

Next we introduce the concept of nonstandard MRV. A nonnegative random vector
Z = (Z1, . . . , Zd) is said to possess a nonstandard MRV structure if there exist normalizing functions
bi(·) monotonically increasing to ∞, i = 1, . . . , d, and a limit Radon measure ν not identically 0 such
that, as x → ∞,

xP
((

Z1

b1(x)
, . . . ,

Zd
bd(x)

)
∈ ·
)

v→ ν(·) on [0, ∞]\{0}. (9)

The nonstandard MRV given by relation (9), in comparison to the standard MRV given by (5),
allows different normalizing functions for different components, and hence enables to model the case
with multiple risks having different tails. By the way, the normalizing functions bi(·), i = 1, . . . , d,
are necessarily regularly varying at ∞ but with different indices. See Section 6.5.6 of Resnick (2007) for
more discussions on the concept of nonstandard MRV.

The following lemma is excerpted from Tang and Xiao (2017), which establishes the homogeneity
of the limit measure ν of the nonstandard MRV. For two vectors x and y in Rd, the operation x ◦ y
represents their Hadamard product with elements given by (x ◦ y)i = xiyi, i = 1, . . . , d.

Lemma 1. Suppose that the nonnegative random vector Z = (Z1, . . . , Zd) possesses a nonstandard MRV
structure with a limit measure ν and normalizing functions bi(·) ∈ RV1/γi

for some γi > 0, i = 1, . . . , d.
The relation

ν(Aλ) = λ−1ν(A),

with Aλ =
{(

λ1/γ1 , . . . , λ1/γd
)
◦ x : x ∈ A

}
, holds for any λ > 0 and any Borel set A ⊂ [0, ∞]\{0}.

Clearly, if all γi, i = 1, . . . , d, are identical to some γ > 0, then the homogeneity described by
Lemma 1 reduces to that of a standard MRV structure as described by (6) above.

3. Independent Cases

In the rest of this paper, unless otherwise stated, all limit relations are according to u → ∞ or
x → ∞ depending on the context. For two positive functions f (·) and g(·), we write f (·) ∼ g(·) if
lim f (·)/g(·) = 1. Following the notation in Section 1, denote by X the aggregate amount of claims,
by Yi the discount factor of the ith individual asset, i = 1, . . . , d, and by Yw, w ∈ Σd, the overall
discount factor of the investment portfolio. Furthermore, denote by F, Gi, and Gw their distribution
functions, respectively. We simply call X the insurance risk and call Yi, i = 1, . . . , d, and Yw the
financial risks.

In this section we consider the case with independent insurance and financial risks.
This independence assumption can be justified by the fact that the occurrence of perils, such as
natural catastrophes and car accidents, is in general uncorrelated with events in the broad economy,
such as stock market and interest rate movements. Actually, such an assumption has been widely
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made in the literature; see, e.g., Tang and Tsitsiashvili (2003), Nowak and Romaniuk (2013),
and Asanga et al. (2014).

3.1. The Fréchet Case

In the following theorem we assume F ∈ MDA(Φα) for some α > 0 or Y ∈ MRV−β for some
β > 0, indicating a univariate regularly varying tail of the insurance risk or a multivariate regularly
varying tail of the financial risks, respectively. For Y ∈ MRV−β, we consider the asymptotically
dependent case, which as stated before reflects the common impact on financial risks of the external
macroeconomic environment.

Theorem 1. Assume that X and Y are independent of each other, and let w ∈ Σd be arbitrarily fixed.

(a) If F ∈ MDA(Φα) and E
[
Yβ

i

]
< ∞ for some 0 < α < β and all i = 1, . . . , d, then

lim
u→∞

RP
F(u)

= E [Yα
w] . (10)

(b) If Y ∈ MRV−β(νY, G) with νY satisfying νY(1, ∞] > 0 and E [Xα] < ∞ for some 0 < β < α,
then Gw ∈ MDA(Φβ) and

lim
u→∞

RP
G (u)

= νY(Aw)E
[

Xβ
]

,

where Aw =

{
y ∈ [0, ∞) :

(
∑d

i=1 wiy−1
i

)−1
> 1

}
.

Proof. (a) Recall relation (2) and notice the convexity of the function f (x) = x−β for x ∈ (0, ∞).
We have

E
[
Yβ

w

]
= E

( d

∑
i=1

wiY−1
i

)−β
 ≤ E

[
d

∑
i=1

wiY
β
i

]
=

d

∑
i=1

wiE
[
Yβ

i

]
< ∞.

Then relation (10) follows straightforwardly by applying the well-known Breiman’s theorem
to relation (3). See Breiman (1965) for the original version of this theorem and see Cline and
Samorodnitsky (1994) and Proposition 7.5 of Resnick (2007) for restatements.

(b) Starting from relation (2), one sees that

Gw (u) = P (Yw > u) = P
(

Y
u
∈ Aw

)
.

For every w ∈ Σd, by Lemma A.1 of Shi et al. (2017), the boundary ∂Aw has νY measure zero.
Thus, it follows from the assumption Y ∈ MRV−β(νY, G) that

Gw (u) ∼ G (u) νY(Aw),

where νY(Aw) > 0 is guaranteed by the condition νY(1, ∞] > 0. Since G ∈ RV−β necessarily holds
by Y ∈ MRV−β(νY, G), so does Gw. Thus, Gw ∈ MDA(Φβ). Finally, applying Breiman’s theorem to
relation (3) again, we obtain

RP ∼ Gw (u) E
[

Xβ
]
∼ G (u) νY(Aw)E

[
Xβ
]

.

This completes the proof.
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We give a remark on the application of Theorem 1(a) in the mean-RP optimization problem,
where the insurer attempts to make an investment choice—seeking the lowest RP for a given expected
return or seeking the highest expected return for a given RP. Given an i.i.d. sample {(Xi, Yi) , i = 1, . . . , n}
of the random vector (X, Y), relation (10) proposes an asymptotic estimate of the RP, that is,

R̂P =
1
n

F(u)
n

∑
i=1

(wTY−1
i )−α,

which is infinitely differentiable and convex as a function of the investment strategy w.
Hence, after replacing the RP by its asymptotic estimate R̂P in the mean-RP optimization problem,
standard techniques of convex optimization can be applied straightforwardly to find the optimal
investment strategy.

3.2. The Gumbel Case

In this subsection, we assume that F ∈ MDA(Λ). As described by Embrechts et al. (1997),
MDA(Λ) is a really large class of distributions with very different tail behaviors, ranging from
moderately heavy (such as lognormal) to light (such as normal), or even with a bounded support.
Hence, it serves as an ideal distribution class for modeling purposes in insurance and finance.

Moreover, we allow the investment portfolio to be more heterogeneous. Under modern insurance
regulatory frameworks, insurers usually invest a large proportion of their wealth into short-term
low-risk assets such as money market funds and sovereign bonds. Graph 14 of EIOPA 2011 report2 on
the fifth quantitative impact study for Solvency II displays a typical decomposition of the investment
portfolio of an insurer in Europe. In view of this, we assume that the investment portfolio consists of
both risk-free assets with deterministic nonnegative returns and risky assets with stochastic returns
such that the corresponding discount factors possess an MRV structure.

Precisely, denote by I the index set of those risk-free assets and by J = {1, . . . , d}\I the index
set of those risky assets. To avoid triviality, assume that both I and J are non-empty and that at least
one of wi, i ∈ I, is nonzero. Each risk-free asset i ∈ I yields a deterministic annual return rate ri ≥ 0,
while each risky asset j ∈ J yields a stochastic annual return rate Rj > −1. It follows that

Yw =
1

1 + wᵀR
=

1
∑i∈I wi(1 + ri) + ∑j∈J wj(1 + Rj)

, w ∈ Σd.

Then Yw is bounded from above by ŷw = (∑i∈I wi(1 + ri))
−1. Further assume that the vector of

corresponding financial risks YJ = (Yj, j ∈ J) = ((1 + Rj)
−1, j ∈ J) possesses MRV−β(ν

∗
Y, G) with ν∗Y

satisfying ν∗Y(1, ∞] > 0.

Theorem 2. Assume that X and Y are independent of each other, that X is distributed by F ∈ MDA(Λ) with
an auxiliary function a(·), and that the above-mentioned conditions on the investment portfolio are in force.
Then it holds for every w ∈ Σd that

lim
u→∞

RP

F
(

u
ŷw

)
G
(

u/ŷ2
w

a(u/ŷw)

) =
Γ(β + 1)ν∗Y(A∗w)

ŷ2β
w

,

where A∗w =

{
yJ ∈ [0, ∞)|J| :

(
∑j∈J wjy−1

j

)−1
> 1

}
.

2 Available online: https://eiopa.europa.eu/Publications/Reports/QIS5_Report_Final.pdf.

https://eiopa.europa.eu/Publications/Reports/QIS5_Report_Final.pdf
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Proof. First, we show Gw ∈ MDA(Ψβ) with an upper endpoint ŷw. For this purpose we derive

P
(

Yw > ŷw − u−1
)

= P

(
1

ŷ−1
w + ∑j∈J wjY−1

j

> ŷw − u−1

)

= P

(∑
j∈J

wjY−1
j

)−1

>

((
ŷw − u−1

)−1
− ŷ−1

w

)−1
 .

The proof of Theorem 1(b) shows that YJ ∈ MRV−β(ν
∗
Y, G) implies

(
∑j∈J wjY−1

j

)−1
∈ MDA(Φβ).

In addition, ((
ŷw − u−1

)−1
− ŷ−1

w

)−1
∼ ŷ2

wu.

It follows that

P
(

Yw > ŷw − u−1
)
∼ ŷ−2β

w P

(∑
j∈J

wjY−1
j

)−1

> u


= ŷ−2β

w P
(
YJ ∈ uA∗w

)
∼ ŷ−2β

w ν∗Y(A∗w)G (u) . (11)

In the last step of (11), the verification of ν∗Y(∂A∗w) = 0 can be done by using Lemma A.1
of Shi et al. (2017), and ν∗Y(A∗w) > 0 is guaranteed by the condition ν∗Y(1, ∞] > 0. This shows that
Gw ∈ MDA(Ψβ), as desired.

Next, we apply Theorem 3.1(a) of Hashorva et al. (2010) to obtain

RP = P
(

X
Yw

ŷw
>

u
ŷw

)
∼ Γ(β + 1)P

(
Yw

ŷw
> 1− a(u/ŷw)

u/ŷw

)
F
(

u
ŷw

)
.

Note that, by relation (11),

P
(

Yw

ŷw
> 1− a(u/ŷw)

u/ŷw

)
= P

(
Yw > ŷw −

a(u/ŷw)

u/ŷ2
w

)
∼ ŷ−2β

w ν∗Y(A∗w)G
(

u/ŷ2
w

a(u/ŷw)

)
.

Plugging this into the above ends the proof.

4. Dependent Cases

Recently, discussions about the convergence of the insurance and financial markets have emerged
in the insurance literature; see Cummins and Weiss (2009) and references therein. For example, to hedge
against catastrophe risk, insurers and reinsurers now securitize their insurance risk and transferring
it to the capital market using insurance-linked securities such as catastrophe bonds and industry
loss warranties. This yields interconnection between the insurance and financial markets, and hence
expedites the convergence of the two markets. Motivated by this, in this section we assume that the
insurance risk variable X and the financial risk vector Y jointly possess a standard or nonstandard
MRV structure so as to allow for asymptotic dependence between them.

4.1. A Standard MRV Case

Theorem 3. Assume that the 1 + d dimensional risk vector (X, Y) possesses MRV−α(ν, F), and let w ∈ Σd

be arbitrarily fixed. Then

lim
u→∞

RP
F
(√

u
) = ν (Aw) , (12)
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where Aw =

{
(x, y) ∈ (0, ∞)× (0, ∞)d : x

(
∑d

i=1 wiy−1
i

)−1
> 1

}
.

Proof. Starting from relation (3), we derive

RP = P

X

(
d

∑
i=1

wiY−1
i

)−1

> u

 = P
(
(X, Y)√

u
∈ Aw

)
.

As before, the verification of ν (∂Aw) = 0 can be done by using Lemma A.1 of Shi et al. (2017).
Thus, by relation (8), we have

lim
u→∞

RP
F
(√

u
) = lim

u→∞

1
F
(√

u
)P
(
(X, Y)√

u
∈ Aw

)
= ν (Aw) .

This completes the proof.

It is possible that ν(A) = 0, for which case relation (12), while still valid, can no longer capture
the asymptotic behavior of the RP. Nevertheless, this happens only if the the components of (X, Y) are
asymptotically independent, that is,

lim
x→∞

P (X > x, Y1 > x, . . . , Yd > x)
F(x)

= ν (1, ∞] = 0.

In other words, for the asymptotically dependent case (that is, ν (1, ∞] > 0), which is of particular
interest for our purpose, relation (12) gives an asymptotic formula for the RP.

4.2. A Nonstandard MRV Case

The standard MRV assumption in the preceding subsection implies equivalent tails of the
insurance risk X and the financial risks Yi, i = 1, . . . , d, which is not necessarily true in practice.
In this subsection, we extend the study to a nonstandard MRV structure, which allows X and Y to
have different tails.

Theorem 4. Assume that the 1 + d dimensional risk vector (X, Y) possesses the following nonstandard MRV
structure: for some limit measure ν on [0, ∞]1+d\{0} and some distribution functions F and G on [0, ∞) with
unbounded supports, as x → ∞,

xP
((

X
F←(1− 1/x)

,
Y

G←(1− 1/x)

)
∈ ·
)

v→ ν(·).

Then it holds for every w ∈ Σd that

lim
u→∞

u∗RP = ν (Aw) ,

where Aw is identical to the one in Theorem 3 and u∗ solves

F←
(

1− 1
u∗

)
G←

(
1− 1

u∗

)
∼ u. (13)
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Proof. Still starting from (3) we derive, for arbitrarily fixed 0 < ε < 1 and all large u,

RP = P
(

X
F←(1− 1/u∗)

Yw

G←(1− 1/u∗)
>

u
F←(1− 1/u∗)G←(1− 1/u∗)

)
≤ P

(
X

F←(1− 1/u∗)
Yw

G←(1− 1/u∗)
> 1− ε

)
= P

((
X

F←(1− 1/u∗)
,

Y
G←(1− 1/u∗)

)
∈
√

1− εAw

)
.

The same as in the proof of Theorem 3, the set
√

1− εAw has a boundary of ν measure 0. Thus,

lim sup
u→∞

u∗RP = lim sup
u∗→∞

u∗RP ≤ ν
(√

1− εAw

)
.

By Lemma 1 and the arbitrariness of ε, we have

lim sup
u→∞

u∗RP ≤ ν (Aw) .

The other inequality can be established similarly and this completes the proof.

Two remarks on Theorem 4 follow. First, the assumed nonstandard MRV structure implies that the
components of Y have marginal tails equivalent to G. Second, both normalizing functions F←(1− 1/x)
and G←(1− 1/x) are necessarily regularly varying, though we do not need to specify their indices
here. Thus, the solution u∗ to the asymptotic Equation (13) exists and is unique in the asymptotic sense.
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