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Abstract: We prove that the Omega measure, which considers all moments when assessing portfolio
performance, is equivalent to the widely used Sharpe ratio under jointly elliptic distributions of
returns. Portfolio optimization of the Sharpe ratio is then explored, with an active-set algorithm
presented for markets prohibiting short sales. When asymmetric returns are considered, we show
that the Omega measure and Sharpe ratio lead to different optimal portfolios.

Keywords: risk management; portfolio optimization; Omega measure; Sharpe ratio; active-set
algorithm; non-convex optimization

1. Introduction

In the modern world of finance and insurance, it is routine for investors, firms and companies to
manage different financial/insurance assets in the hope of increasing their capital gain. The collection
of such investments is known as a portfolio, and it is designed to match the investor’s preference.
Different compositions of varying assets allow for a diversity of combinations that suit distinct appetites.
For example, a bulge bracket investment bank such as J.P. Morgan is willing to undertake more risk
to compensate for a larger return, in comparison to a retiree who is overseeing his retirement fund.
However, despite an individual’s taste, investors face the challenge of balancing reward and risk, as
a high reward investment is often tightly linked with high underlying risk, and thus the main goal of
portfolio management is finding the optimal tradeoff between the two.

The mean-variance portfolio model, proposed by Harry Markowitz (1968) serves as the keystone
to portfolio theory. He formalized the problem of a rational, risk adverse investor that faces the tradeoff
between reward and risk as proposed above. In such a scenario, reward and risk are defined as the
expected return from the portfolio and its variance. There are problems with the implementation of the
Markowitz model when the universe of assets is large. In this situation, the assets’ sample covariance
matrix is not an efficient estimator of the assets’ true covariance matrix. Therefore, using the sample
mean and covariance matrix in the mean-variance optimization procedure will result in an optimal
return estimate different from reality. A fix for this problem is proposed in Bai et al. (2009), by using
the theory of the large-dimensional random matrix. Another reason for the poor performance of the
optimal mean-variance portfolio is perhaps due to the symmetry of asset returns. Low et al. (2016)
shows that it is possible to enhance mean-variance portfolio selection by allowing for distributional
asymmetries. Portfolio optimization under skewed returns is performed in several papers such as in
Low (2015); Hu et al. (2010).

Under the mean-variance framework, various major portfolio theories have sprouted, and
one of the major developments proposed by Willian Sharpe (1966) is known as the Sharpe ratio.
The Sharpe ratio is the most fundamental of performance measures, which are critical in the evaluation,
management and trading of portfolios. Under the mean-variance portfolio framework, the Sharpe
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ratio compares the return of the portfolio with the risk-free interest rate, which serves as a significant
benchmark, owing to the fact that if overall return of the portfolio ranks below the risk free rate,
investors should put their capital in the money market and earn interest without bearing any risk.
The Sharpe ratio is greatly incorporated as a modern investment strategy, and is highly appraised by
investors. However, the Sharpe ratio only comprises and examines the first two moments of the return
distribution, namely, the expected return and the variance in return, while distribution properties
such as skewness and kurtosis, which measure asymmetry and thickness of the tail distribution at
the third and fourth moments respectively, may profoundly impact the performance of the portfolio.
DeMiguel et al. (2009) compares the optimal mean-variance portfolio with the naive 1

N portfolio. They
found that the 1

N rule performs better than the optimal mean-variance portfolio in terms of the Sharpe
ratio, indicating that the gain from optimal diversification is higher when compared to the offset
produced by estimation error.

The failure of the Sharpe ratio to address higher moments motivated Keating and Shadwick (2002)
to develop the Omega measure, which captures all moments of the return distribution, including the
expected value and variance. The Omega measure serves as a universal performance measure as it can
be applied to any portfolio that follows a well-defined return distribution.

Even though the Omega measure was developed over 10 years ago, little research has been done
to address its compatibility with previous developments, namely, with distribution functions that
only involve lower moments. This paper aims to explore and address the backward compatibility
of the Omega measure. We consider a market (financial or insurance) encompassing several risks
within a one period paradigm. The risks are first assumed to follow a jointly elliptical distribution.
Under this framework, we prove that the Sharpe ratio and the Omega measure yield the same optimal
portfolios. Next, Sharpe ratio portfolio optimization is explored. The quasi-concavity of the Sharpe
ratio is employed to develop an active-set algorithm for markets banning short sales. The convergence
of this algorithm is established and numerical results are presented. Moreover, we show that, in
a model with asymmetric returns, the optimal Sharpe ratio portfolio fails to be optimal when Omega
measure is considered.

The remainder of this paper is organized as follows: in Section 2, we present the model. Section 3
provides the Sharpe ratio and Omega measure equivalence within the class of elliptical distributions
of returns. Portfolio optimization formulations are presented in Section 4. Numerical analysis is
performed in Section 5, with numerical results displayed in Section 6. Section 7 presents a model with
asymmetric returns. The conclusion is summarized in Section 8. The paper ends with an Appendix A
containing the proofs.

2. The Model

We have a market (financial or insurance) model that encompasses several instruments denoted
S1, ..., Sn. We consider a single period model from time t = 0 to t = 1. For each instrument, let the
arithmetic return be

Ri =
Si(1)− Si(0)

Si(0)
,

and
R = (R1, R2, · · · , Rn).

We assume the return of the portfolio follows an elliptically symmetric distribution. Then, the
vector of means E(R) = µ = (µ1, ..., µn)T and the n× n covariance matrix Cov(R) = Σ = (σij)i,j exist,
and we further assume that Σ is invertible. The density f , if it exists, is

f (x) = |Σ|−
1
2 g
[
(x− µ)TΣ−1(x− µ)

]
,
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where x ∈ Rn and g : R+ → R+ is called the density generator or shape of R, and we write

R ∼ ECn(µ, Σ; g),

where (µ, Σ) is called the parametric part and g is called the non-parametric part of the elliptical
distribution. The characteristic function ψ of R is

ψR(t) = E exp (itTR) = exp (itTµ)φ(tTΣt),

for some scalar function φ, called the characteristic generator. For background on the elliptically
symmetric distribution, which is also called elliptically countered, see Bingham and Kiesel (2002);
Fang et al. (1990).

The class of elliptical distributions, which have densities and defined mean and covariance
is rich enough to contain several common distributions of asset returns: the multivariate normal
distribution, the multivariate t distribution, normal-variance mixture distributions, symmetric stable
distributions, the symmetric generalized hyperbolic distribution, the symmetric variance-gamma
distribution, and the multivariate exponential power family (and thus the Laplace distribution).
One advantage of this class is that the non-parametric part g “escapes the curse of dimensionality”
(cf. Bingham and Kiesel (2002)). This class is chosen to model the stock returns by Bingham et al. (2003);
Chamberlain (1983); Owen and Rabinovitch (1983).

Elliptical distributions are appealing for portfolio analysis, since it is a closed class under linear
combinations. A portfolio at times t = 0 and t = 1 will, respectively, be

X(0) = ∆1S1(0) + · · ·+ ∆nSn(0),

X(1) = ∆1S1(1) + · · ·+ ∆nSn(1).

Let the arithmetic return of the portfolio be

R =
X(1)− X(0)

X(0)
.

The following Lemma gives the distribution of R.

Lemma 1. Let

wi =
∆iSi(0)

∆1S1(0) + · · ·+ ∆nSn(0)

be the proportion of the initial wealth invested in instrument i, and w be the vector with components wi. Then,
R follows an elliptical distribution

R ∼ EC1(µ̄, σ̄; g),

where

µ̄ := w · µ =
n

∑
i=1

wiµi, σ̄2 := wTΣ w =
n

∑
i=1

n

∑
j=1

wiwjσij.

Proof. See the Appendix A

Let us consider the Sharpe Ratio and Omega measure defined by the formal definitions.

Definition 1. The Sharpe ratio of a portfolio with return R is defined as

S(R) =
µ̄− r f

σ̄
,
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where µ̄ is the expected return of the portfolio, σ̄ is the standard deviation of return, and r f is the risk-free
interest rate.

Definition 2. The Omega measure of a portfolio with return R is defined as

Ω(R) =

∫ ∞
L (1− F(x))dx∫ L
−∞ F(x)dx

,

where F(x) is the cumulative distribution function of the return distribution R, and L is an exogenously satisfied
benchmark index.

The intuition behind the Omega measure is simple; by selecting a benchmark L, which serves as
a reference that our portfolio is aiming to beat, the Omega measure compares the area of the cumulative
distribution function from the right of L to the area to the left of L. Under such a definition, the Omega
measure encompasses the entire return distribution, therefore incorporating higher moment properties
as discussed.

3. Sharpe Ratio and Omega Measure Equivalence

When holding a portfolio, an investor uses a performance measure such as the Sharpe ratio or the
Omega measure to evaluate how well the portfolio is performing. Hence, it is a natural question to ask
how one should distribute his wealth in order to maximize his portfolio under the Omega measure.
The following theorem states that using the Sharpe ratio or the Omega measure to optimize portfolio
performance leads to the same optimal portfolio within the class of elliptical distributions of returns.

Theorem 1. Recall that, under our framework, the portfolio return R is elliptically distributed
R ∼ EC1(µ̄, σ̄; g). If r f = L, we claim that

max
w1,..,wn

Ω(R)

is equivalent to
max

w1,..,wn
S(R).

Proof. See the Appendix A

4. Portfolio Optimization

Given Theorem 1, we are able to transform optimization problems of the Omega measure into
optimization problems of the Sharpe ratio for elliptical distributions. Let e = µ− L, the excess expected
return above a selected benchmark index L. With no restrictions on short selling, our optimization
problem is as follows:

max
wTe√
wTΣw

, (1)

s.t.
n

∑
i=1

wi = 1.

However, certain financial markets prohibit the act of short selling, especially during periods of
financial upheaval. An example would be the U.S. securities market under the 2008 financial crisis,
when the U.S. Securities and Exchange Commission prohibited the act of short selling to protect the
integrity of the securities market. Hence, we are also interested in the following problem as well:
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max
wTe√
wTΣw

, (2)

s.t.
n

∑
i=1

wi = 1,

wi ≥ 0 i = 1, ..., n.

5. Numerical Analysis

The optimal solution to (1) can be found directly as described in the following proposition.

Proposition 1. The optimal solution to (1) is w∗ = ŵ
∑n

i ŵi
, where ŵ = Σ−1e.

Proof. See the Appendix A

We require the following properties of the Sharpe ratio in developing an algorithm for solving (2).

Proposition 2. The Sharpe ratio S(w) = wTe√
wTΣw

is a quasi-concave function and ∇S(w) = 0 iff w = cΣ−1e
for some c 6= 0.

Proof. See the Appendix A

If Σ−1e ≥ 0, then our optimal solution for (1) is also optimal for (2), so let us assume that for (2),
our optimal solution w∗ 6= cΣ−1e for any c. By our assumption, ∇S(w∗) 6= 0 and the following
theorem is applicable.

Theorem 2 (Arrow and Enthroven (1961)). Let f (x) be a differentiable quasi-concave function subject to
non-negativity constraints. If ∇ f (x∗) 6= 0 and x∗ satisfies the KKT conditions with constants µ∗, then it is
a global optimal solution.

The KKT conditions for (2), ignoring the equality constraint are as follows, where
∇S(w) = e√

wTΣw
− wTeΣw

(wTΣw)
3
2

.

e√
wTΣw

− wTeΣw

(wTΣw)
3
2
+ µ = 0 (stationarity), (3)

w ≥ 0 (primal feasibility),

µ ≥ 0 (dual feasibility),

µTw = 0 (complementary slackness).

Consider the sets P and W defined by

P := {i ∈ {1, . . . , n} : wi > 0},

W := {i ∈ {1, . . . , n} : wi = 0}.

Let us permute the data so that

e = [eP; eW ], w = [wP; wW ],
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and let ΣP be the covariance matrix of the instruments indexed by P. Let |P| be the number of elements
of P. At optimality, the first |P| rows of (3) will equal

eP −
wT

PePΣPwP

wT
PΣPwP

= 0,

with solution
wP = cΣ−1

P eP, for c 6= 0.

Therefore, the optimal solution of (2) is the optimal solution of (1) for some unknown subset of
instruments P. For ease in what follows, we will always take c = 1.

Our main objective then is to find the optimal set P, after which the optimal solution can be found
by solving a positive definite system of linear equations. We propose the use of the following active-set
algorithm to solve (2), which is inspired by Algorithm 16.3 in Nocedal and Wright (2006).

Algorithm 1: Sharpe Ratio active-set (SRAS) algorithm.
1: i = 0
2: wi = 0
3: j = argmax ej√

Σjj
4: wi

j =
ej√
Σjj

5: Wi = {j|wi
j = 0}

6: Pi = {j|wi
j > 0}

7: loop
8: xi

Pi = Σ−1
Pi ePi

9: xi
W i = 0

10: pi = xi − wi
11: if pi = 0 then

12: µi
W i =

wiT e(Σwi)Wi

(wiT Σwi)
3
2
− eWi√

wiT Σwi

13: if µi
j ≥ 0 ∀j ∈Wi then

14: w∗ = wi

∑n
j=1 wi

j15: quit
16: else
17: ki = argmin

j∈W i
µi

j

18: Wi+1 = Wi \ {ki}
19: Pi+1 = Pi ∪ {ki}
20: wi+1 = wi
21: end if
22: else
23: αi = min{1, min

j∈Pi ,pi
j<0

−wi
j

pi
j
}

24: if αi < 1 then
25: hi = argmin

j∈Pi ,pi
j<0

−wi
j

pi
j

26: Wi+1 = Wi ∪ {hi}
27: Pi+1 = Pi \ {hi}
28: end if
29: wi+1 = wi + αi pi
30: end if
31: i = i + 1
32: end loop

We find the portfolio consisting of a single instrument that maximizes the Sharpe ratio to initialize
the algorithm in lines 1–6. At iteration i, xi

Pi is set to maximize the Sharpe ratio, which in general is not
feasible in (2), in line 8. If the current feasible solution wi = xi, we check if µi

Wi ≥ 0. If so, then

w∗ =
wi

∑n
j=1 wi

j

is the optimal solution to (2), or else we remove the index of the minimum value of dual variables µi

from Wi to form Wi+1 in lines 11–21. If wi 6= xi, wi+1 is set by moving in the direction of xi from wi
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while remaining feasible in (2). If wi+1 6= xi, the index of the first blocking constraint j ∈ Pi is added to
Wi to create Wi+1 in lines 22–30.

Theorem 3. The SRAS algorithm is convergent.

Proof. See the Appendix A

There is in fact a quadratic convex reformulation of this problem (see Durand et al. (2012)), which
has the following formulation under the mild condition that there exists at least one stock with ei > 0,
where z > 0 is a free constant:

min wTΣw, (4)

s.t. wTe = z,

wi ≥ 0.

After solving, the wi simply have to be normalized to sum to one to obtain the optimal solution.
The choice of z can affect solution quality, in particular when the number of instruments n becomes large
and the algorithm used to solve (4) employs a stopping criteria of the form |wi − wi+1| ≤ tolerance.
In practice, we have found that choosing z = eT1, ensuring the average value of elements of wi equals 1,
gives high quality solutions with virtually no optimality gap compared to the active-set algorithm,
without having to alter default stopping criteria.

6. Numerical Results

A computational experiment was conducted where the SRAS algorithm was compared to
Gurobi 7.0 using data derived from historical stock prices from two stock market indices. All computing
was done using Matlab R2016a on a Windows 10 64-bit, AMD A8-7410 processor with 8 GB of RAM.

Six problems were used for testing. Historical stock prices of the Dow Jones Industrial Average
and the S&P/ TSX 60 were used to calculate the expectation and covariance of instrument returns.
For each index, the past year, two years and five years were used for estimation. This data was
generated using the website InvestSpy (2017). Results are presented in Table 1 below. We observe that
the mean computing time of SRAS is over an order of magnitude faster when compared to Gurobi.

Table 1. Numerical results.

SRAS Gurobi

Time (s) Solution Time (s) Solution

Dow 1 Yr 0.0386 2.6769 0.6881 2.6769
Dow 2 Yr 0.0057 3.3883 0.5551 3.3883
Dow 5 Yr 0.0030 15.7604 0.5829 15.7604
S&P 1 Yr 0.0479 7.2073 0.6569 7.2073
S&P 2 Yr 0.0095 4.4550 0.6233 4.4550
S&P 5 Yr 0.0053 5.0557 0.5562 5.0557
Mean 0.0184 0.6104

7. Model with Skewness

We show numerically that the Omega measure is not equivalent to the Sharpe ratio for skewed
distributions. Our estimation of Omega measure uses the following proposition.
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Proposition 3. The Omega measure is equal to µ̄−L
E(max(L−R,0)) − 1, i.e.,

Ω(R) =
µ̄− L

E (max(L− R, 0))
− 1.

Proof. See the Appendix A

We consider the skew-normal distribution Azzalini (2005), which is closed under affine
transformation and has probability distribution function

f (r) =
2
ω

φ(
r− ε

ω
)Φ
(

α(
r− ε

ω
)
)

,

where φ(·) and Φ(·) are the standard normal probability distribution function and cumulative
distribution function, respectively, with location paramter ε, scale ω and shape α.

For a given skewness γ1, let

|δ| =

√
(π/2)|γ1|2/3

((4− π)/2)2/3 + |γ1|2/3 ,

where the sign of δ is chosen as negative for left skewness and positive for right skewness. Given δ,

α =
δ√

1− δ2
,

and for a desired standard deviation,

ω =
σ√

1− 2δ2/2
,

and mean,
ε = µ−ωδ

√
2/π.

We plot the Omega measure for L = 0.01, µ = 0.1 and σ = 0.3, with γ1 varying over the domain
[−0.99, 0.99] in increments of 0.01. Monte Carlo integration was used to estimate E (max(L− R, 0)) by
taking 10 million samples of R and taking the mean of max(L− R, 0).

−1 −0.5 0 0.5 1

5 · 10−2

0.1

0.15

0.2

Skewness

O
m

eg
a

m
ea

su
re

Figure 1. Omega measure versus skewness for a skew-normal random variable with µ = 0.1, σ = 0.3
and L = 0.01.
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Under the Sharpe ratio, we are indifferent to all of the plotted portfolios, each having a Sharpe
ratio S(R) = 0.3, but under the Omega measure, taking into consideration higher moments, it is clear
that we would prefer a portfolio with right skewness in this example.

8. Conclusions

In this paper, we have proved the equivalence of the Omega measure and the Sharpe ratio under
jointly elliptical distributions of returns. The portfolio optimization of the Sharpe ratio with and
without short sales was numerically analyzed. An active-set algorithm was presented for markets
prohibiting short sales, with an improvement in average solution time of over an order of magnitude
when compared to standard optimization techniques. Numerical experiments show that, when the
return distributions are not symmetric, the Omega measure and the Sharpe ratio are not equivalent.
Future research could be done to develop optimization methods for the Omega measure under more
general distribution assumptions such as the skew-elliptical distribution.
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Appendix A

Proof of Lemma 1.

R =
∆1S1(1) + · · ·+ ∆nSn(1)− (∆1S1(0) + · · ·+ ∆nSn(0))

∆1S1(0) + · · ·+ ∆nSn(0)

=
∆1S1(1)− ∆1S1(0)

∆1S1(0) + · · ·+ ∆nSn(0)
+ · · ·+ ∆nSn(1)− ∆nSn(0)

∆1S1(0) + · · ·+ ∆nSn(0)

= S1(1)− S1(0)
(

∆1

∆1S1(0) + · · ·+ ∆nSn(0)

)
+ · · ·+ Sn(1)

− Sn(0)
(

∆n

∆1S1(0) + · · ·+ ∆nSn(0)

)
=

S1(1)− S1(0)
S1(0)

(
∆1S1(0)

∆1S1(0) + · · ·+ ∆nSn(0)

)
+ · · ·

+
Sn(1)− Sn(0)

Sn(0)

(
∆nSn(0)

∆1S1(0) + · · ·+ ∆nSn(0)

)
= w1R1 + · · ·+ wnRn.

Thus, the return of the portfolio R is a linear combination of R1, · · · , Rn. The closedness of
elliptical distributions under linear combinations yields the claim.

Proof of Theorem 1. Under our framework, we are now able to simplify the Omega measure. Recall
the Omega measure is defined as

Ω(R) =

∫ ∞
L (1− F(x))dx∫ L
−∞ F(x)dx

.

Here, F(x) =
∫ x
−∞ f (r)dr is the cumulative distribution function of the portfolio with arithmetic

return R, with probability distribution function f (r). Thus,
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Ω(R) =

∫ ∞
L

(
1−

∫ x
−∞ f (r)dr

)
dx∫ L

−∞

∫ x
−∞ f (r)drdx

=

∫ ∞
L

∫ ∞
x f (r)drdx∫ L

−∞

∫ x
−∞ f (r)drdx

.

We use Fubini’s theorem to change the order of integration. Let D1 be the integration region of the
integral in the numerator and let D2 be the integration region of the integral in the denominator, then

D1 =
{
(x, r)|x ∈ (L, ∞), r ∈ (x, ∞)

}
=
{
(x, r)|x ∈ (L, r), r ∈ (L, ∞)

}
and

D2 =
{
(x, r)|x ∈ (−∞, L), r ∈ (−∞, x)

}
=
{
(x, r)|x ∈ (r, L), r ∈ (−∞, L)

}
.

Thus, by Fubini’s Theorem

Ω(R) =

∫ ∞
L

∫ r
L f (r)dxdr∫ L

−∞

∫ L
r f (r)dxdr

. (A1)

Under elliptical distributions

f (r) =
1
σ̄

g

((
r− µ̄

σ̄

)2
)

.

Evaluating the upper integral gives us

∫ ∞

L

∫ r

L

1
σ̄

g

((
r− µ̄

σ̄

)2
)

dxdr =
1
σ̄

∫ ∞

L
(r− L)g

((
r− µ̄

σ̄

)2
)

dr

=
1
σ̄

∫ ∞

L
rg

((
r− µ̄

σ̄

)2
)

dr− L
σ̄

∫ ∞

L
g

((
r− µ̄

σ̄

)2
)

dr.

Let us perform the change of variable. Therefore, we let u = r−µ̄
σ̄ , then σ̄du = dr and r = σ̄u + µ̄

∫ ∞

L

∫ r

L

1
σ̄

g

((
r− µ̄

σ̄

)2
)

dxdr =
∫ ∞

L−µ̄
σ̄

(σ̄u + µ̄)g(u2)du− L
∫ ∞

L−µ̄
σ̄

g(u2)du

= σ̄
∫ ∞

L−µ̄
σ̄

ug(u2)du + (µ̄− L)
∫ ∞

L−µ̄
σ̄

g(u2)du.

Thus, ∫ ∞

L

∫ r

L

1
σ̄

g

((
r− µ̄

σ̄

)2
)

dxdr

= σ̄

[
−1

2
H1

((
L− µ̄

σ̄

)2
)
+

(
L− µ̄

σ̄

)
H2

(
L− µ̄

σ̄

)
− K

(
L− µ̄

σ̄

)]
,

where
H′1(x) = g(x), H′2(x) = g(x2), K =

∫ ∞

−∞
g(x2) dx.

We use the same methodology for the lower integral to obtain
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∫ L

−∞

∫ L

r

1
σ̄

g

((
r− µ̄

σ̄

)2
)

dxdr = σ̄

[
−1

2
H1

((
L− µ̄

σ̄

)2
)
+

(
L− µ̄

σ̄

)
H2

(
L− µ̄

σ̄

)]
.

Let z =
L−µ̄

σ̄ , then
Ω(R) = G(z),

where
G(z) = 1− Kz

zH2(z)− 1
2 H1(z2).

We claim that Ω(R) is a decreasing function of z. To see that, we first take the derivative of G(z)

G′(z) = −1
2

KH1(z2)(
zH2(z)− 1

2 H1(z2)
)2 ≤ 0,

since
H1(x) =

∫ x

−∞
g(u) du ≥ 0,

due to the positivity of g. Therefore, Ω(R) is a decreasing function of z. Hence,

max
w1,...,wn

Ω(R)⇔ min
w1,..,wn

L− µ̄

σ̄
,

⇔ max
w1,..,wn

µ̄− L
σ̄

,

⇔ max
w1,..,wn

S(R).

Therefore, maximizing the Omega measure over {w1, ..., wn} is equivalent to maximizing the Sharpe ratio
over {w1, ..., wn} with risk-free interest rate R f equal to L.

Proof of Proposition 1. The extended Cauchy–Schwarz inequality, see Johnson and Wichern (2002),
states that for vectors b and d, and positive definite matrix B, (bTd)2 ≤ (bT Bb)(dT B−1d) with equality
if and only if b = cB−1d for any constant c. It follows that, for the objective of (1), wTe√

wTΣw
≤
√

eTΣ−1e

for w 6= 0, with the maximum attained by ŵ = Σ−1e. In order to satisfy the constraint ∑n
i=1 wi = 1, ŵ

is multiplied by the normalizing constant, c = 1
∑n

i ŵi
to obtain the optimal solution to (1).

Proof of Proposition 2. A function f (x) is quasi-concave if its upper level sets {x| f (x) ≥ t} are
convex. The upper level sets of S(w) form second order conic constraints, wTe ≥ t

√
wTΣw, which

define convex regions.
If ∇S(w) = e√

wTΣw
− wTeΣw

(wTΣw)
3
2
= 0, then w = cΣ−1e for c = wTΣw

wTe . Taking w = cΣ−1e for any

c 6= 0, it follows directly that ∇S(w) = 0.

Proof of Theorem 3.

Lemma A1. If wi = xi but wi is suboptimal for (2), then αi+1 > 0 in the next iteration, unless there exists
a j ∈ Pi such that wi

j = 0 and pi+1
j < 0.

Proof of Lemma A1. Let Pi+1 = Pi ∪ {k} for some k ∈ Wi. In the ith iteration, consider the rows

of Pi+1 in (3), ePi+1 −
wiTeΣPi+1 wi

Pi+1

wiTΣwi + µ̂i
Pi+1 = 0, where µ̂i =

√
wiTΣwiµi. Given wi = xi, it follows

that wiTe = wiTΣwi, and since µ̂i
Pi = 0, we get ΣPi+1 wi

Pi+1 =

[
ePi

ek + µ̂i
k

]
. Taking the Cholesky

decomposition, ΣPi+1 = LLT , we can write L

[
yi

Pi

yi
k

]
=

[
ePi

ek + µ̂i
k

]
with LTwi

Pi+1 = yi. Since LT is

upper triangular, Lkkwi
k = yi

k, and so yi
k = 0. Considering now the i + 1th iteration, ΣPi+1 xi+1

Pi+1 =
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[
ePi

ek

]
, and similarly if LTxi+1

Pi+1 = yi+1, then L

[
yi+1

Pi

yi+1
k

]
=

[
ePi

ek

]
. Since L is lower triangular,

yi+1
Pi = yi

Pi , yi+1
k = yi

k −
µ̂i

k
Lkk

, and so xi+1
k =

−µ̂i
k

L2
kk

= −µ̂i
kΣ−1

kk . As wi is not optimal, µ̂i
k < 0, so pi+1

k > 0.

Assuming now that pi+1
j ≥ 0 for all j ∈ Pi with wi

j = 0, αi+1 > 0.

Lemma A2. If wi = xi but wi is suboptimal for (2), then S(wi+2) > S(wi) ∀α ∈ (0, 1].

Proof of Lemma A2.

S(wi+2) = S
(

wi+1 + α(xi+1 − wi+1)
)
= S

(
wi + α(xi+1 − wi)

)

=

(
wi + α(xi+1 − wi)

)T
e√(

wi + α(xi+1 − wi)
)T

Σ(wi + α
(

xi+1 − wi)
)

=

(
wi + α(xi+1 − wi)

)T
e∥∥∥Σ

1
2 (wi + α(xi+1 − wi))

∥∥∥
2

.

Focusing on the numerator,(
wi + α(xi+1 − wi)

)T
e = (1− α)wiTe + αxi+1Te

= (1− α)

(
Σ−1

Pi+1

[
ePi

ek + µ̂i
k

])T [
ePi

ek

]
+ αxi+1Te

= (1− α)

[
ePi

ek + µ̂i
k

]T

xi+1
Pi+1 + αxi+1Te

= xi+1Te + (1− α)µ̂i
kxi+1

k .

Focusing on the denominator,

∥∥∥Σ
1
2 (wi + α(xi+1 − wi))

∥∥∥
2
=
∥∥∥Σ

1
2

(
(1− α)wi + αxi+1

)∥∥∥
2

=

∥∥∥∥∥Σ
1
2
Pi+1

(
(1− α)Σ−1

Pi+1

[
ePi

ek + µ̂i
k

]
+ αxi+1

Pi+1

)∥∥∥∥∥
2

=

∥∥∥∥∥Σ
1
2
Pi+1

(
xi+1

Pi+1 + (1− α)Σ−1
Pi+1

[
0
µ̂i

k

])∥∥∥∥∥
2

=
√

xi+1TΣxi+1 + 2(1− α)xi+1
k µ̂i

k + (1− α)2(µ̂i
k)

2Σ−1
kk

=
√

xi+1TΣxi+1 + 2(1− α)xi+1
k µ̂i

k − (1− α)2xi+1
k µ̂i

k

=
√

xi+1TΣxi+1 + (1− α2)µ̂i
kxi+1

k .
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Therefore,

S(wi+2) =
xi+1Te + (1− α)µ̂i

kxi+1
k√

xi+1TΣxi+1 + (1− α2)µ̂i
kxi+1

k

≥
xi+1Te + (1− α2)µ̂i

kxi+1
k√

xi+1Te + (1− α2)µ̂i
kxi+1

k

=
√

xi+1Te + (1− α2)µ̂i
kxi+1

k

>
√

xi+1Te + µ̂i
kxi+1

k

=
√

wiTe =
wiTe√
wiTe

=
wiTe√

wiT
Pi ΣPi Σ−1

Pi ePi

=
wiTe√

wiT
Pi ΣPi wi

Pi

=
wiTe√
wiTΣwi

= S(wi).

The algorithm is monotone increasing as for all i, S(xi) ≥ S(wi), and by the quasi-concavity of
S(w), this implies that S(wi + α(xi −wi)) ≥ S(wi). If w0 is not optimal S(w2) > S(w0) by Lemmas A1
and A2, and since S(w0) ≥ S(w) for all portfolios w of size 1, |Pi| ≥ 2 for all i ≥ 1.

Assume now that xi 6= wi, and this holds until xi+m = wi+m, where m ≤ n− 2 and |Pi+m| ≤ n−m.
If the solution is not optimal, there exists q ≤ n−m− 2 indices of Pi+m such that wi+m+1

j = 0 and

pi+m+1
j < 0. After q iterations, there exists no j ∈ Pi+m+1+q such that wi+m+1+q

j = 0 and pi+m+1+q
j < 0,

so by Lemma A1, αi+m+1+q > 0 and by Lemma A2, S(wi+m+2+q) > S(wi+m+q) ≥ S(wi). Assuming
that m = 0 considers the case where xi = wi, we have shown that the algorithm is strictly increasing
after m + 2 + q ≤ n iterations.

Since the optimal value is bounded and the algorithm is strictly monotone increasing over
intervals of n iterations, the algorithm converges.

Proof of Proposition 3. Beginning from Equation (A1) of the proof of Theorem 1,

Ω(R) =

∫ ∞
L

∫ r
L f (r)dxdr∫ L

−∞

∫ L
r f (r)dxdr

=

∫ ∞
L (r− L) f (r)dr∫ L
−∞(L− r) f (r)dr

=
E (R)− L

E ((L− R)+)
− 1.
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