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Abstract: Life annuities are attractive mainly for healthy people. In order to expand their business,
in recent years, some insurers have started offering higher annuity rates to those whose health
conditions are critical. Life annuity portfolios are then supposed to become larger and more
heterogeneous. With respect to the insurer’s risk profile, there is a trade-off between portfolio size and
heterogeneity that we intend to investigate. In performing this, there is a second and possibly more
important issue that we address. In actuarial practice, the different mortality levels of the several risk
classes are obtained by applying adjustment coefficients to population mortality rates. Such a choice
is not supported by a rigorous model. On the other hand, the heterogeneity of a population with
respect to mortality can formally be described with a frailty model. We suggest adopting a frailty
model for risk classification. We identify risk groups (or classes) within the population by assigning
specific ranges of values to the frailty within each group. The different levels of mortality of the
various groups are based on the conditional probability distributions of the frailty. Annuity rates for
each class then can be easily justified, and a comprehensive investigation of insurer’s liabilities can
be performed.

Keywords: voluntary annuities; underwritten annuities; heterogeneity; standard risk; substandard
risk; preferred risk; issue-select mortality rates

JEL: G22

1. Introduction

The largely unanticipated dynamics of mortality experienced in the latest decades suggests
developing new mortality models and to further explore those already known. A critical aspect that
we focus on in this paper is understanding how the heterogeneity of the population with respect to
mortality does impact on the liabilities of a life annuity provider.

Heterogeneity with respect to mortality can result from observable or non-observable risk factors.
While models accounting for observable risk factors generally adopt pragmatic solutions to represent
differential mortality (namely, additive or multiplicative adjustments to the average mortality rate),
the modeling of heterogeneity due to unobservable risk factors has found an elegant and rigorous
solution in the concept of frailty, described already by [1], but formally defined by [2]. To some
extent, also heterogeneity due to observable risk factors might be represented with a frailty model,
via parameter calibration. This could be useful, for instance, when some observable risk factors
cannot be adopted as rating factors, as is the case of gender in the EU. In this paper, heterogeneity is
addressed via a frailty model. For a short review of models accounting for observable risk factors, see,
for example, [3,4], as well as the references therein.
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Apart from [1,2], the impact of heterogeneity on the age-pattern of mortality has been discussed
through frailty models by [5–10] and many others.

The works in [1,2] express the non-observable heterogeneity in terms of a fixed individual frailty
level, assuming that the individual frailty is due to genetic factors. Other assumptions have been
discussed. The model proposed by [11] relies on the concept of a frailty that stochastically changes with
age, that is throughout the individual life, viz. because of physiological changes and environmental
influences. The two approaches are compared by [12]. Markov aging models, which generalize
Le Bras’s assumption, have been adopted by [13–16].

The work in [17] shows that changing frailty models cannot be distinguished from a fixed frailty
model. The fixed frailty model is more convenient, especially under the traditional Gompertz-Gamma
assumption (see Section 2). Further, such a model fits satisfactorily a feature observed empirically,
but hardly replicated by other models: it provides an analytical justification of the deceleration in the
mortality increase at very old ages, observed in many populations.

While frailty models are well known in demography, their application to insurance risk
management is not common. Significant research work in the actuarial field is anyhow available. The
works in [18,19] calibrate (alternatively) two families of frailty models (namely, a Gompertz-Gamma
and a Gompertz–Gaussian-inverse model) to insurance-based mortality data, finding evidence of
frailty in insured populations. The work in [20] calibrates the Gompertz-Gamma model to Canadian
pensioners’ mortality, finding strong support for the assumption. The work in [21] analyzes the impact
of heterogeneity and frailty on the actuarial values of both standard life annuities and underwritten
annuities (i.e., “special rate” life annuities). Conversely, the impact of heterogeneity on tail risk and
solvency capital is investigated by [3,16].

In this paper, we focus on a potential application of the frailty model, which can be helpful to
design a rating system for life annuities arranged in several risk classes.

Risk classification in the area of voluntary life annuities has recently been adopted to stimulate the
demand. Indeed, the market is still underdeveloped, as the product is mainly underwritten by healthy
people. In order to expand their portfolio, in recent years, some insurers have started offering special
annuity rates to those whose health conditions are poor or critical; a useful description of the more
common classes of special rate annuities is provided by [22]. Risk classes can then be identified within
a life annuity portfolio, showing different levels of mortality. Adopting models used to represent
differential mortality arising from observable risk factors, in common actuarial practice, the higher
or lower mortality level of a risk group is represented by applying adjustment coefficients to the
population mortality rates. Such coefficients are chosen empirically, calibrated on the average ratio
(possibly measured for age groups) between the annuitants’ and the population mortality; conversely,
a model formally justifying such a difference is not adopted.

Within a frailty model, lower or higher mortality rates can be explained by lower or higher
frailty levels. We then suggest to adopt a frailty model for risk classification. We identify risk groups
(or classes) within the population by assigning specific ranges of values to the frailty within each group.
Conditional probability distributions for the frailty are obtained for each risk class, which allow us to
describe the different levels of mortality of the various groups. Different values for the annuity rate
then derive from the different assumptions about the frailty level of the specific risk class.

We also investigate the following issue. When accepting substandard risks, the insurer may
increase its portfolio size, but also the heterogeneity of the portfolio. While a larger size implies an
improved pooling effect, a higher risk profile follows from the increased heterogeneity. We investigate
the result of this trade-off, by assessing the probability distribution of the present value of future
benefits. Portfolios with only the standard risk class and with also special rate risk classes are compared,
so to measure the trade-off between portfolio size and heterogeneity. We disregard systematic longevity
risk, as heterogeneity mainly affects process risk (at least, so long as we can accept that the possible
underlying mortality trend is common to all risk groups). We also disregard financial risk, as we
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mainly focus on the design of a risk classification structure with respect to mortality (and we can
exclude a correlation between financial and mortality risk).

The remainder of the paper is arranged as follows. The main features of the traditional frailty
model are recalled in Section 2. In Section 3, we design a risk classification arrangement for a life
annuity portfolio based on a frailty model. In Section 4, we calibrate the model to Italian projected life
tables. In Section 5, we investigate the probability distribution of the liabilities of life annuity portfolios
with different compositions and sizes. Finally, Section 6 concludes with some further remarks.

2. Lifetime and Frailty: The Gompertz-Gamma Model

The heterogeneity of a population with respect to mortality arises from differences among the
individuals. In their seminal paper, [2] define the frailty as a non-negative quantity whose level
expresses the unobservable (and, possibly, some observable) risk factors affecting individual mortality.
The underlying idea is that the expected lifetime of individuals with a higher frailty is lower than
others. Several models can be developed in this framework; in what follows, we describe the traditional
setting. All of the results that are commented on in this section are well known. We then skip the
details, which can be found in the references already provided; see, for example, [2,19] or [3].

Refer to a heterogeneous cohort (defined at age 0 and closed to new entrants); in the following,
we will use the term population, understanding that it consists of one cohort only. A non-negative,
unknown variable called frailty is assigned to each individual, expressing mortality risk factors.
The individual frailty level does not change in time, while keeping unknown. Conversely, because
of deaths, the average frailty level in the whole population changes with age, and it is expected to
decline, given that people with lower frailty are expected to live longer.

Let µx(z) denote the force of mortality for an individual current age x and frailty level z.
The work in [2] suggests a multiplicative model:

µx(z) = z · µx , (1)

where µx, namely the force of mortality for an individual with frailty level z = 1, is called the standard
force of mortality (note, however, that in the insurance application, µx does not necessarily represent
the force of mortality of standard risks; indeed, the class of standard risks can be identified with a
frailty interval (0, z1], where z1 can be lower than one, as we discuss in Sections 3.1 and 4). Since the
frailty level z takes the value in (0, ∞), for the individual force of mortality, we have µx(z) R µx. It is
worth noting that in (1), the coefficient z could be interpreted as a multiplicative adjustment coefficient
(with respect to the standard force of mortality), and then, µx(z) would represent an adjusted force
of mortality. This is to say that Model (1) resembles the pragmatic approach to differential mortality.
However, z is unknown in (1), while fixed (and known) adjustment coefficients are adopted in
the pragmatic approach. See also the end of Section 3.1 for a further comment with respect to
this comparison.

Denote with H(x) the cumulative standard force of mortality in the age-interval (0, x), i.e.:

H(x) =
∫ x

0
µt dt . (2)

The survival function for an individual (newborn) with frailty z is:

S(x|z) = e−
∫ x

0 µt(z)dt = e−z·H(x) . (3)

Let Zx denote the random value of the frailty, whose probability distribution is assessed on
the population at age x and gx(z) its probability density function. The average frailty level in the
population at age x is:

E[Zx] = zx =
∫ ∞

0
z · gx(z)dz , (4)
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while the expected force of mortality of the population at age x and frailty level Zx is:

µx = E[µx(Zx)] = µx ·
∫ ∞

0
z · gx(z)dz = µx · zx . (5)

Thanks to the multiplicative assumption (1), the probability density function of gx(z) can easily
be derived from g0(z). We find:

gx(z) =
g0(z) · S(x|z)

S(x)
, (6)

where S(x) is the average survival function of the population or the expected share of individuals
alive at age x out of the initial newborns, which can be assessed as follows:

S(x) =
∫ ∞

0
S(x|z) · g0(z)dz . (7)

It is interesting to note that µx = µx only if zx = 1, and that d
dx zx < 0; then, the average force of

mortality increases less rapidly than the standard one. This is why heterogeneity could explain why
the age-pattern of mortality rates shows a deceleration in the increase at the highest ages.

The work in [2] suggests a Gamma distribution for Z0, due to its nice features. Then, let Z0 ∼
Gamma(δ, θ). It can be shown that also Zx, x > 0, holds a Gamma distribution, with updated
parameters; in particular, Zx ∼ Gamma(δ, θ + H(x)). To shorten the notation, we set θ(x) = θ + H(x),
with θ(0) = θ; then Zx ∼ Gamma(δ, θ(x)) for x ≥ 0.

For the average frailty level in the population, we find:

zx =
δ

θ(x)
, (8)

while the variance of Zx is given by:

Var[Zx] =
δ

(θ(x))2 . (9)

Parameters are commonly chosen so that z0 = 1; thus, θ = δ. After noting that the coefficient of
variation of Zx is given by:

CV[Zx] =

√
Var[Zx]

E[Zx]
=

1√
δ

, (10)

we understand that the parameter δ is chosen considering the degree of heterogeneity of the population.
Higher values of δ corresponds to lower levels of heterogeneity; in particular, the population can be
considered (almost) homogeneous when δ→ ∞. Note that, in this model, whilst the expected value of
the frailty reduces with age, its relative variability keeps constant.

For the average survival function of the population, we find:

S(x) =
(

θ

θ(x)

)δ

=

(
zx

z0

)δ

. (11)

Now, still following [2], we assume a Gompertz law for the standard force of mortality, namely:

µx = α · eβ·x . (12)

Plugging (12) and (8) into (1), we find the following expression for the average force of mortality
of the population:

µx =
α′ · eβ·x

1 + δ′ · eβ·x , (13)
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where: α′ = α·δ
θ− α

β
and δ′ = α

β·θ−α . Equation (13) shows that the average force of mortality in the

population is Perks-type, namely the first Perks law with parameter γ = 0; see [23]. The law (13)
has been proposed also by [1]; in (13), the parameters α′ and δ′ depend on the parameters δ, θ of the
frailty distribution. We note that (13) is in the logistic class; such models imply a deceleration in the
increasing age-pattern of mortality, which in the current setting is a consequence of the presence of
frailty in the population. For a formal approach and more details, see, for example, [3,24].

3. Risk Classification Based on a Frailty Model

3.1. Identification of the Risk Classes

A heterogeneous population can be arranged in classes that group individuals with a similar risk
profile. While we cannot expect that risk classes are fully homogeneous, each of them will show a
reduced heterogeneity, provided that the underwriting process is appropriate. When heterogeneity is
with respect to mortality, risk classes group people with a similar health status and then with a similar
life expectancy. Risk classification in insurance is mainly aimed at the differentiation of premium
rates; more generally, it can be part of the risk management process, in particular in face of strongly
heterogeneous portfolios. When the risk classification is adopted for rating purposes, which is the case
that we are addressing, the choice of the number of classes and their features depends not only on the
nature of the causes of heterogeneity, but also on market issues. As a result of the underwriting process,
an individual is placed in a specific risk class depending on his/her health status and is charged a
specific premium rate.

When compared to the general population, higher or lower values for the life expectancy within
each risk group can be obtained by adopting appropriate adjustment coefficients for the mortality rates.
On the other hand, different values for the life expectancy can also be justified by assuming different
frailty levels. As already mentioned earlier, the latter is the approach that we develop in this paper.

We then design a risk classification arrangement based on a frailty model. We assume to hold the
probability distribution of the frailty, as described in Section 2, for the general population. Based on
such a probability distribution, the insurer identifies risk classes, each characterized by a given range of
values of the frailty. Since the reference population for the frailty model is the general population, not
all of the risk groups will be present in the portfolio, and if they are, the proportions among them are
not necessarily those observed in the general population. Indeed, as a result of a self-selection process,
also driven by the premium rates set by the insurer for the various risk groups, not all individuals will
be interested in purchasing the insurance product.

Let (zj−1, zj] be the range of values of the frailty for a given risk group, say Gj. At age x, the group
is defined as follows:

Gj = {i : zj−1 < Z(i)
x ≤ zj} , (14)

where Z(i)
x is the frailty of individual i. Let J be the number of groups that we identify; we assume

z0 = 0 and zJ → ∞; thus, the set {Gj; j = 1, . . . , J} constitutes a partition of the sample space of the
frailty. Note that we assume that the lower the index j of the risk group, the lower is the expected
frailty level in such a group; group G1, in particular, is the class of standard risks. Referring to a cohort
closed to new entries, the size and composition of each group change with age, due to deaths; anyhow,
the limiting values for the frailty in each group keep the same.

Before moving forward with further assessment, and with the model implementation, we think it
is useful to highlight a significant difference between the pragmatic approach to differential mortality,
based on the adjustment of mortality rates, and the approach we are discussing.

In the prevailing practice, a time-discrete mortality model is adopted. To simplify the comparison,
let us refer to a time-continuous mortality model. Following the pragmatic approach, the adjusted
force of mortality would be defined as follows:
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µ
[a]
x = a · µx , (15)

where a, a > 0, is a fixed parameter. A risk group consists of those with the same value for parameter a.
Since a is assumed to be known, the residual heterogeneity within each risk group is disregarded.

Under the frailty model, the individual force of mortality µx(z) has the same structure as (15);
see (1). However, the parameter z is unknown in this case. A risk group is defined by the interval
(zj−1, zj]. The residual heterogeneity within the group can be assessed, as we suggest below.

3.2. Lifetime and Frailty for the Risk Classes

As mentioned in Section 3.1, we work within the Gompertz-Gamma model described in Section 2.
In particular, we assume that the frailty Zx at age x in the general population (to which individuals
underwriting an insurance contract belong) has a Gamma(δ, θ(x)) distribution. We denote with
F(z; δ, θ(x)) the probability distribution function of a Gamma(δ, θ(x))-distributed random variable.

In what follows, we derive the probability distribution of the frailty for each group Gj and the main
summary statistics. Results are referred to the partition {Gj; j = 1, . . . , J} for the frailty in the general
population. The probability distribution of the frailty for group Gj can be assessed as a conditional
distribution of the frailty for the whole population; some simplifications are obtained thanks to the
properties of Gamma distributions. Computation details are omitted here, as they are only based on
standard results for Gamma distributions; for completeness, they are sketched in Appendices A–D.

The relative size of group Gj at age x in the general population is given by:

ρj;x = P[zj−1 < Zx ≤ zj] = F(zj; δ, θ(x))− F(zj−1; δ, θ(x)) . (16)

Clearly, at any age x, we have ∑J
j=1 ρj;x = 1.

The probability distribution function of the frailty in group Gj at age x can be assessed as follows:

F(z; δ, θ(x)|Gj) =


0 if z ≤ zj−1 ;
F(z;δ,θ(x))−F(zj−1;δ,θ(x))

ρj;x
if zj−1 < z ≤ zj ;

1 if z > zj .

(17)

The expected value and variance of the frailty in group Gj at age x can, respectively, be expressed
as follows (after some rearrangements; see Appendices A and B):

E[Zx|Gj] = E[Zx] ·
F(zj; δ + 1, θ(x))− F(zj−1; δ + 1, θ(x))

ρj;x
; (18)

Var[Zx|Gj] = Var[Zx] ·
(
(δ + 1) · F(zj ;δ+2,θ(x))−F(zj−1;δ+2,θ(x))

ρj;x

− δ · F(zj ;δ+1,θ(x))−F(zj−1;δ+1,θ(x))
ρj;x

)
.

(19)

We further note that the expected value and variance of the frailty for the general population,
defined respectively by (8) and (9), can be expressed in terms of the corresponding conditional values,
as follows:

E[Zx] = ∑
j
E[Zx|Gj] · ρj;x ; (20)

Var[Zx] = ∑
j
Var[Zx|Gj] · ρj;x + ∑

j
∑

k:k>j
(E[Zx|Gj]−E[Zx|Gk])

2 · ρj;x · ρk;x . (21)

While (20) is straightforward, details for (21) are given in Appendix C. Note that the second sum
in (21) expresses the correlation among the frailty groups, while the first sum measures the residual
heterogeneity within the groups.
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For the average survival function in group Gj at age x, we find (after some rearrangements;
see Appendix D):

S(x|Gj) = S(x) ·
ρj;x

ρj;0
. (22)

After having set the frailty limits zj−1, zj, it is then (relatively) simple to make an assessment of
the probability distribution of the lifetime in risk group Gj.

4. Model Calibration

The model described in Section 3 is general, as it can be applied to any type of life insurance
business. In this paper, we discuss the case of immediate life annuities. We refer to a (closed) cohort
of males initial age x0 = 65. We assume that, while group G1 collects standard risks, higher groups
collect preferred risks, i.e. risks with a lower expected lifetime.

The Gompertz-Gamma model is calibrated on Italian projected life tables. In particular, we address
the life table TG62, which refers to the general population, and the life table A62I, which is adopted
for voluntary immediate life annuities. The projection producing the life table TG62 is performed
with the standard Lee–Carter model (see [25–27]). Mortality rates for the highest ages (precisely,
ages higher than 95) are not based on observed data, but on a parametric model (see [28]). The life
table A62I is obtained by applying reduction coefficients to the mortality rates of the life table TG62.
Such coefficients are chosen according to U.K. data and express the self-selection observed in pools
of voluntary immediate life annuities (see [27]). The maximum attainable age in such life tables is
ω = 120, which we assume also for the Gompertz-Gamma model.

A comparison between the life tables TG62 and A62I is performed in Figure 1, where the force of
mortality, the probability density function of T65 (i.e., the remaining lifetime at age 65) and the survival
function are plotted (the life tables TG62 and A62I list mortality rates and the survival function for
integer ages; the force of mortality and the probability density function f65(t) have been obtained
through standard numerical approximations). The assumed impact of the self-selection of those
underwriting a voluntary annuity emerges.

60 70 80 90 100 110 120
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Figure 1. Comparison between the life tables TG62 and A62I (force of mortality, probability density
function of T65, survival function). (a) Force of mortality µx; (b) Probability density function f65(t);
(c) Survival function S(x).

Parameters for the Gompertz-Gamma model are assessed considering only the range of
ages [65, 95]. Higher ages have been disregarded in order to avoid the smoothing effects embedded in
the data used for the projection (see above). We perform the following steps.

1. We first calibrate the mortality model for the general population, based on the life table TG62.
As it is common in the literature, we set θ = δ; then, we need to set three parameters (namely,
α, β, δ), and we assume the following requirements:
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• The expected value and variance of the lifetime in the range of ages [65, 95] under the
Gompertz-Gamma model is the same as in the life table TG62;

• The mean squared error (MSE) between the force of mortality in the range of ages [65, 95]
under the Gompertz-Gamma model and the life table TG62 is minimum. While the analytical
expression for the force of mortality is available for the Gompertz-Gamma model (see (13)),
as already noted for the life table TG62, a standard numerical approximation has been used.

2. Then, we calibrate the lifetime for standard risks, i.e., individuals in group G1. We now need to
set one parameter (namely, z1), and we choose it so to minimize the MSE between the force of
mortality under the Gompertz-Gamma model for individuals in group G1 and the table A62I, in
the range of ages [65, 95]. Similarly to the life table TG62, the force of mortality for the life table
A62I has been approximated numerically. For the Gompertz-Gamma model, the force of mortality

for group G1 can be obtained through its definition, as µx(G1) = − S′(x|G1)

S(x|G1)
. For simplicity, we

omit writing its expression, which cannot be simplified nicely.
3. Finally, we calibrate the probability distribution of the lifetime for two additional groups, G2 and

G3, characterized by higher average frailty levels; we set a (reasonable) benchmark for the reduced
expected lifetime in these groups, with respect to the value for standard risks. Such benchmarks
are commented on below.

Table 1 quotes the parameters of the Gompertz-Gamma model for the general population, initial
age x0 = 65. We recall that, since θ = δ, we have E[Z0] = 1, and then, E[Zx] < 1 for x > 0. We note
that the heterogeneity measured in the general population is expressed by CV[Z65] =

1√
δ
= 23.308%.

This outcome, which clearly drives the risk classification that we perform, could partially be affected by
the modeling assumptions underlying the life table TG62. On the other hand, TG62 is the starting point
of the rating of voluntary life annuities in the Italian insurance industry, so we prefer this reference to
other choices of the dataset.

Table 1. Parameters for the Gompertz-Gamma model. General population. Initial age x0 = 65.

Parameters

α 4.88661× 10−06

β 0.111902
δ 18.408049
θ 18.408049
α′ 4.886619× 10−06

δ′ 2.372256× 10−06

Table 2 quotes the summary statistics of the probability distribution of the lifetime T65 at age 65
for the life table TG62 and for the Gompertz-Gamma model with parameters as in Table 1. With T65[ε],
we denote the ε-percentile of the probability distribution of the lifetime, defined in the usual way;
IQR then denotes the interquartile range, usually meant as a measure of dispersion. There are only
small differences between the summary statistics of the probability distribution of T65 under the life
table TG62 and the Gompertz-Gamma model. Table 3 lists the expected value of the frailty at various
ages, as well as the coefficient of variation of the frailty at age x, which is constant with respect to age
(see (10)).



Risks 2016, 4, 39 9 of 23

Table 2. Summary statistics of the probability distribution of the lifetime T65. General population.

TG62 Gompertz-Gamma (Population)

E[T65] 21.70 21.67
CV[T65] 41.93% 41.73%
Mo[T65] 25 24.71
T65[0.25] 15.57 15.43
T65[0.75] 28.12 28.38

IQR = T65[0.75] − T65[0.25] 12.55 12.95
T65[0.95] 35.92 35.45
T65[0.99] 40.25 39.64

Table 3. Gompertz-Gamma model: expected value and coefficient of variation of the frailty at age x.
General population.

E[Zx]

65 0.996594
70 0.994053
75 0.989638
80 0.982007
85 0.968933
90 0.946874
95 0.910599

100 0.853391
105 0.768868
110 0.655299
115 0.520714

CV[Zx] 23.308%

Figure 2 shows the force of mortality, the probability density function of T65 and the survival
function of life table TG62 compared to the Gompertz-Gamma model applied to the general population.
The differences between the forces of mortality at the highest ages are due to the different modeling
assumptions for this range of ages. Some differences emerge also in the probability density function
f65(t); however, when considering the scale of the y-axis of this plot with respect to the other two,
these differences look small.
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Figure 2. Comparison between the life table TG62 and the Gompertz-Gamma model for the general
population (force of mortality, probability density function of T65, survival function). (a) Force of
mortality µx; (b) Probability density function f65(t); (c) Survival function S(x).

Figure 3 shows the force of mortality, the probability density function of T65 and the survival
function of the life table A62I compared to the Gompertz-Gamma model referring to group G1. In this



Risks 2016, 4, 39 10 of 23

case, some differences are visible also in the survival function; this is due to the very different modeling
assumptions about the self-selection backing the life table A62I and the Gompertz-Gamma model.
This is confirmed by the comparison between the summary statistics of the probability distribution
of T65 for the life table A62I and the Gompertz-Gamma model for group G1, which are quoted in
Table 4. While the method adopted in practice is very pragmatic, the Gompertz-Gamma model leads
to a rigorous analytical solution. It is in particular interesting to note that the coefficient of variation of
T65 suggests a wider dispersion of the lifetime for life table A62I than TG62. This is against the idea
that the mortality described by A62I refers to a group less heterogeneous than for TG62.

We note here that for setting the parameter z1, rather than minimizing the MSE between the forces
of mortality, we could adopt a requirement involving the expected lifetime (for instance: the same
value under A62I and the Gompertz-Gamma model). However, this would lead to unconvincing
results about the composition of the population. On the other hand, the life table A62I has been derived
from TG62 adjusting the mortality rates; this is also why we set a requirement with respect to the force
of mortality.
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Figure 3. Comparison between the life table A62I and the Gompertz-Gamma model for group G1

(force of mortality, probability density function of T65, survival function). (a) Force of mortality µx;
(b) Prob. density function f65(t); (c) survival function S(x).

Table 4. Summary statistics of the probability distribution of the lifetime T65. Risk group G1.

A62I Gompertz-Gamma (Group G1)

E[T65] 24.08 22.81
CV[T65] 59.92% 40.13%
Mo[T65] 25 26
T65[0.25] 18.85 16.61
T65[0.75] 30.05 29.62

IQR = T65[0.75] − T65[0.25] 11.19 13.01
T65[0.95] 37.34 36.55
T65[0.99] 41.32 40.60

Table 5 quotes the summary statistics of the frailty at age 65 for the three groups that we identify.
The relative size of each group at age 65 refers to the general population; the real composition of the
insurer’s portfolio depends on the number of people actually underwriting the contract. Note that
each risk class shows a reduced coefficient of variation of the frailty (and then, less heterogeneity) with
respect to the general population, as well as a lower (namely, group G1) or higher (namely, groups
G2 and G3) average frailty level. Note also that we have assumed that the expected lifetime of those
in group G1 is 12% higher than those in group G2 and roughly 22% higher than those in group G3.
We think that these assumptions are reasonable with respect to the available data. Of course, different
choices are possible. One could decide to set just one additional risk class for special rate annuities
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or more than two classes; further, different values for the lower expected lifetime for those in higher
classes could be set. The final choice depends on what is classified as a critical health condition,
how the health status can be ascertained, as well as on market issues.

Table 5. Risk classes.

Group Frailty Interval
(zj−1, zj]

Relative Size at Age 65 of
Group Gj in the General

Population ρj;65

Expected Value
of the Frailty
E[Z65|Gj]

Coefficient of
Variation
CV[Z65|Gj]

Expected
Lifetime
E[T65|Gj]

G1 ( 0, 1.038741] 60.121% 0.845593 15.243% 22.81
G2 (1.038741, 1.307144] 30.111% 1.152338 6.479% 20.36
G3 (1.307144, ∞ ) 9.769% 1.445866 8.736% 18.71

Population ( 0, ∞ ) 100% 0.996594 23.308% 21.67

5. The Value of the Liabilities of a Life Annuity Portfolio

5.1. The Present Value of Future Benefits

We address a portfolio consisting of one cohort of immediate life annuities in arrears, issued at
time t = 0, age x0, and we investigate the present value at time t ≥ 0 of future benefits.

In principle, the portfolio is arranged into risk classes (G1, G2, G3, in our implementation).
However, some risk classes could be empty, because the insurer could decide not to offer differentiated
annuity rates, or to offer just some annuity rates, or individuals in critical health conditions could
decide not to underwrite the contract. The number of individuals in class j at time t = 0 is n0;j, known,
whereas at time t > 0 it is Nt;j, random. The total portfolio size at time t = 0 is n0 = ∑j n0;j, while at
time t > 0, it is Nt = ∑j Nt;j.

For each risk class, the annuity rate is assessed adopting the traditional equivalence principle.
Setting to S the initial amount paid (as the single premium) by each individual at time t = 0, the benefit
amount bj for group Gj is assessed as follows:

bj = S · 1
ax0;j

, (23)

where:

ax0;j =
∞

∑
s=1

(1 + r)−s ·
S(x0 + s|Gj)

S(x0|Gj)
, (24)

and r is the discount rate, which is assumed to be deterministic (and constant).
The present value at time t, t ≥ 0, of future benefits for group Gj is defined as follows:

PVt;j =
∞

∑
s=t+1

bj · Ns;j · v(t, s) , (25)

where v(t, s) is the discount factor, which is assumed to be deterministic. In particular, we set the
discount rate to r, the same that is used for pricing. Then: v(t, s) = (1 + r)−(s−t).

The present value at time t, t ≥ 0, of future benefits for the whole portfolio is given by:

PVt = ∑
j

PVt;j . (26)

Our aim is to analyze the magnitude and risk profile of the value of the liabilities of a portfolio,
depending on its composition and size. In order to perform the comparisons, we will refer to a portfolio
only consisting of standard risks, i.e., only consisting of group G1, as the base case. We assess:
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• The expected value E[PVt],
• The coefficient of variation, CV[PVt],
• The right tail, measured through the ε-percentiles PVt[ε]

of the present value at time t of future benefits for the whole portfolio. The quantities E[PVt], CV[PVt],
PVt[ε] are based on standard definitions and are assessed through stochastic simulation.

5.2. Numerical Investigation

The portfolio is arranged into three groups, identified as described in Section 4. We set to
n0;1 = 1 000 the maximum number of standard risks that can be interested into the insurer’s product.
The total portfolio size anyhow can be larger, if risk classes G2 and G3 are non-empty. According to the
frailty model, the maximum size of the portfolio at time 0 is 1 000

ρ1;65
= 1 663, while the maximum size at

time 0 of classes G2 and G3 is, respectively, 1 663 · ρ2;65 = 501 and 1 663 · ρ3;65 = 162.
Table 6 lists the six alternative portfolios that we test. In Portfolios A–E, n0;1 = 1 000, i.e.,

we assume that the initial size of group G1 takes the maximum possible value. The five portfolios A–E,
then, differ for the size of the other two groups. Conversely, Portfolio F has the same size as Portfolio
A, but a different composition.

Table 6. Alternative portfolios.

Groups
Portfolio

A B C D E F

G1 1 000 1 000 1 000 1 000 1 000 500
G2 0 200 250 200 501 500
G3 0 0 0 50 162 0

All 1 000 1 200 1 250 1 250 1 663 1 000

In detail:

• Portfolio A is the base case; it only consists of standard risks;
• Portfolio E has the largest possible size, including policies in groups G2 and G3;
• Portfolio B and C include some policies in group G2, where C has a larger size;
• Portfolio D has the same size as portfolio C, but with some policies also in group G3;
• Portfolio F shows adverse-selection: the number of standard risks is lower than in the other cases,

but the size is the same as Portfolio A, due to risks in class G2.

This way, we address various portfolio sizes and degrees of heterogeneity.
Setting the discount rate r = 0%, Table 7 lists the benefits obtained for an initial amount S = 100.

Table 7. Individual benefit amount for the three risk classes.

Group G1 Group G2 Group G3

Benefit amount bj 4.483 5.034 5.492
bj
b1
− 1 0% 12.302% 22.515%

In Table 8, we quote the average benefit amount for the portfolio, assessed as:

bt =
∑j bj · Nt;j

∑j Nt;j
. (27)
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Table 8. Average benefit amount for the portfolio: additional amount with respect to the base case, b̄t
b1
− 1.

Time t Portfolio A Portfolio B Portfolio C Portfolio D Portfolio E Portfolio F

0 0% 2.050% 2.460% 2.869% 5.899% 6.151%
5 0% 2.022% 2.434% 2.826% 5.820% 6.112%
10 0% 1.981% 2.381% 2.740% 5.694% 6.032%
15 0% 1.913% 2.296% 2.633% 5.481% 5.893%
20 0% 1.786% 2.150% 2.402% 5.116% 5.654%
25 0% 1.592% 1.918% 2.073% 4.503% 5.227%
30 0% 1.268% 1.555% 1.587% 3.574% 4.522%
35 0% 0.868% 1.001% 1.120% 2.287% 3.189%
40 0% 0.000% 0.000% 0.000% 0.879% 1.757%
45 0% 0.000% 0.000% 0.000% 0.000%

Such an average depends on the portfolio composition, which changes in time, as is illustrated
in Table 9. In such a table, and in the following as well, we assume that at any valuation time t, the
observed number nt of survivors is as expected (while, clearly, at any valuation time t, the future
numbers of survivors keep random). When classes G2 and G3 are non-empty, since those with a
higher frailty are expected to die earlier, the relative size of group G1 increases in time, and then, the
average benefit amount decreases. Trivially, the initial average benefit amount is higher the larger is
the (relative) size of groups G2 and G3. The column nt

n0
in Table 9 shows the average survival rate in the

portfolio, i.e., the average number of survivors out of the initial n0. Note that the average survival rate
is lower in the presence of preferred risks (for the same reason that we have commented on above);
this has an impact on the expected value of liabilities, as we show in Table 10. We also note that no
survivor is expected at time t = 45 (i.e., age 110) for Portfolio F (while the other portfolios are still
expected to be in-force, although with a negligible size); this explains why in Tables 8–13, no quantity
is listed for Portfolio F at time t = 45.

Table 9. Portfolio size and composition.

Time t

Portfolio A Portfolio B

Total Size Relative Group Size Total Size Relative Group Size

nt
nt
n0

Group G1 Group G2 Group G3 nt
nt
n0

Group G1 Group G2 Group G3

0 1 000 100.00% 100% 0% 0% 1 200 100.00% 83.333% 16.667% 0.000%
5 961 96.10% 100% 0% 0% 1 150 95.83% 83.565% 16.435% 0.000%

10 896 89.60% 100% 0% 0% 1 068 89.00% 83.895% 16.105% 0.000%
15 793 79.30% 100% 0% 0% 939 78.25% 84.452% 15.548% 0.000%
20 642 64.20% 100% 0% 0% 751 62.58% 85.486% 14.514% 0.000%
25 444 44.40% 100% 0% 0% 510 42.50% 87.059% 12.941% 0.000%
30 235 23.50% 100% 0% 0% 262 21.83% 89.695% 10.305% 0.000%
35 79 7.90% 100% 0% 0% 85 7.08% 92.941% 7.059% 0.000%
40 13 1.30% 100% 0% 0% 13 1.08% 100.000% 0.000% 0.000%
45 1 0.10% 100% 0% 0% 1 0.08% 100.000% 0.000% 0.000%
50 0 0.00% 0 0.00%

Time t

Portfolio C Portfolio D

Total Size Relative Group Size Total Size Relative Group Size

nt
nt
n0

Group G1 Group G2 Group G3 nt
nt
n0

Group G1 Group G2 Group G3

0 1 250 100.00% 80.000% 20.000% 0.000% 1 250 100.00% 80.000% 16.000% 4.000%
5 1 198 95.84% 80.217% 19.783% 0.000% 1 197 95.76% 80.284% 15.789% 3.926%

10 1 111 88.88% 80.648% 19.352% 0.000% 1 109 88.72% 80.794% 15.509% 3.697%
15 975 78.00% 81.333% 18.667% 0.000% 973 77.84% 81.501% 15.005% 3.494%
20 778 62.24% 82.519% 17.481% 0.000% 774 61.92% 82.946% 14.083% 2.972%
25 526 42.08% 84.411% 15.589% 0.000% 522 41.76% 85.057% 12.644% 2.299%
30 269 21.52% 87.361% 12.639% 0.000% 266 21.28% 88.346% 10.150% 1.504%
35 86 6.88% 91.860% 8.140% 0.000% 86 6.88% 91.860% 6.977% 1.163%
40 13 1.04% 100.000% 0.000% 0.000% 13 1.04% 100.000% 0.000% 0.000%
45 1 0.08% 100.000% 0.000% 0.000% 1 0.08% 100.000% 0.000% 0.000%
50 0 0.00% 0 0.00%
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Table 9. Cont.

Time t

Portfolio E Portfolio F

Total Size Relative Group Size Total Size Relative Group Size

nt
nt
n0

Group G1 Group G2 Group G3 nt
nt
n0

Group G1 Group G2 Group G3

0 1 663 100.00% 60.132% 30.126% 9.741% 1 000 100.00% 50.00% 50.00% 0.00%
5 1 586 95.37% 60.593% 29.887% 9.521% 954 95.40% 50.31% 49.69% 0.00%

10 1 461 87.85% 61.328% 29.500% 9.172% 879 87.90% 50.97% 49.03% 0.00%
15 1 267 76.19% 62.589% 28.808% 8.603% 762 76.20% 52.10% 47.90% 0.00%
20 991 59.59% 64.783% 27.548% 7.669% 594 59.40% 54.04% 45.96% 0.00%
25 648 38.97% 68.519% 25.309% 6.173% 386 38.60% 57.51% 42.49% 0.00%
30 316 19.00% 74.367% 21.519% 4.114% 185 18.50% 63.24% 36.76% 0.00%
35 95 5.71% 83.158% 14.737% 2.105% 54 5.40% 74.07% 25.93% 0.00%
40 14 0.84% 92.857% 7.143% 0.000% 7 0.70% 85.71% 14.29% 0.00%
45 1 0.06% 100.000% 0.000% 0.000% 0 0.06%
50 0 0.00% 0.00%

Tables 10–13 report the findings of the numerical investigation about the present value of future
benefits. To ease comparisons, all results are expressed per policy in-force at the valuation time t,
i.e., nt.

Table 10 quotes the expected value of the present value of future benefits at time t (per policy
in-force at time t). To ease comparisons, values for Portfolios B–F are expressed per unit of the expected
value obtained for Portfolio A. The value per capita of E[PV0] is the same in all of the portfolios, as
at time 0, it is simply the total amount cashed as the single premium (which we have assumed to
be the same for all of the annuitants). Then, it obviously decreases in time for all of the portfolios;
however, the value at times t > 0 is smaller in Portfolios B–F, which consist of several risk groups, than
Portfolio A, which consists of one risk group only. This is due to the lower average survival rate, as
well as to the changing composition of the portfolios: as those with higher frailty are supposed to die
earlier, the relative size of group G1 increases in time, and these are the annuitants cashing the lowest
benefit amount.

Table 10. Expected present value of future benefits, per policy in-force: E[PVt ]
nt

.

Time t Portfolio A Portfolio B Portfolio C Portfolio D Portfolio E Portfolio F

Abs.Value % of the Value Obtained for Portfolio A

0 100.00 100.00% 100.00% 100.00% 100.01% 100.01%
5 81.26 99.71% 99.65% 99.60% 99.18% 99.13%
10 64.00 99.37% 99.24% 99.15% 98.24% 98.10%
15 48.62 99.00% 98.80% 98.66% 97.24% 96.94%
20 35.44 98.63% 98.35% 98.22% 96.25% 95.67%
25 24.66 98.32% 97.98% 97.89% 95.45% 94.47%
30 16.35 98.18% 97.77% 97.82% 95.13% 93.55%
35 10.34 98.31% 98.04% 97.94% 95.72% 93.71%
40 6.32 100.00% 100.00% 100.00% 97.63% 95.54%
45 3.93 100.00% 100.00% 100.00% 100.00%

Table 11 lists the coefficient of variation of PVt (per capita). When comparing the results for
the alternative portfolios, we should keep in mind that the volatility is affected by the portfolio size,
but also by its heterogeneity with respect to the frailty. From the results in Table 11, it seems that in the
trade-off between size and heterogeneity, the former prevails. Indeed, larger portfolios show a lower
coefficient of variation at any time t; thus, Portfolio A, only consisting of standard risks, shows the
highest volatility when compared to Portfolios B–E, and the difference between such volatility and
that of the other portfolios increases in time. On the other hand, if adverse-selection emerges after the
introduction of special rate annuities, then the insurer’s risk profile could get worse. This is shown
by Portfolio F with respect to Portfolio A. Portfolios C and D have the same initial size (and roughly
the same size at times t > 0), Portfolio D showing a greater heterogeneity; this is why CV[PVt] takes
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higher values in the case of Portfolio D (but the difference is very small). Note that the difference
between the percentiles of Portfolio A and Portfolios B–E increases in time both in absolute and relative
terms, showing that a stronger heterogeneity can be accepted if matched by a larger portfolio size.
Portfolio F, on the other hand, shows the possible consequence of adverse selection.

Table 11. Coefficient of variation of the present value of future benefits: CV[PVt].

Time t Portfolio A Portfolio B Portfolio C Portfolio D Portfolio E Portfolio F

0 1.30% 1.20% 1.17% 1.18% 1.04% 1.87%
5 1.48% 1.37% 1.34% 1.35% 1.19% 1.55%
10 1.75% 1.62% 1.60% 1.60% 1.39% 1.80%
15 2.10% 1.96% 1.91% 1.93% 1.70% 2.19%
20 2.64% 2.45% 2.41% 2.43% 2.17% 2.80%
25 3.55% 3.34% 3.31% 3.31% 3.04% 3.97%
30 5.62% 5.38% 5.32% 5.35% 4.96% 6.54%
35 11.10% 10.78% 10.78% 10.73% 10.28% 13.82%
40 32.19% 32.19% 32.19% 32.19% 31.40% 44.42%
45 136.25% 136.25% 136.25% 136.25% 136.25%

Tables 12 and 13 quote, respectively, the 95th and 99th percentile of the probability distribution of
PVt, listed as a % of E[PVt]. Comments are similar to those discussed for the coefficient of variation
of PVt.

Table 12. Ninety-fifth percentile of PVt, as a % of E[PVt].

Time t Portfolio A Portfolio B Portfolio C Portfolio D Portfolio E Portfolio F

0 102.11% 101.96% 101.90% 101.94% 101.72% 103.06%
5 102.43% 102.25% 102.21% 102.22% 101.94% 102.52%
10 102.86% 102.69% 102.63% 102.64% 102.30% 102.99%
15 103.43% 103.24% 103.13% 103.23% 102.80% 103.61%
20 104.43% 104.04% 103.98% 104.00% 103.57% 104.67%
25 105.86% 105.53% 105.54% 105.43% 105.08% 106.55%
30 109.34% 109.04% 108.82% 108.93% 108.27% 110.73%
35 118.51% 118.05% 117.97% 117.83% 116.92% 123.53%
40 158.21% 158.21% 158.21% 158.21% 155.67% 180.28%
45 342.00% 342.00% 342.00% 342.00% 342.00%

Table 13. Ninety-ninth percentile of PVt, as a % of E[PVt].

Time t Portfolio A Portfolio B Portfolio C Portfolio D Portfolio E Portfolio F

0 103.07% 102.81% 102.70% 102.76% 102.44% 104.35%
5 103.46% 103.18% 103.06% 103.13% 102.73% 103.63%
10 104.12% 103.70% 103.77% 103.73% 103.22% 104.17%
15 104.98% 104.58% 104.48% 104.58% 104.00% 105.08%
20 106.36% 105.90% 105.73% 105.79% 105.15% 106.59%
25 108.28% 107.88% 107.78% 107.83% 106.98% 109.49%
30 113.66% 112.77% 112.77% 112.75% 111.91% 115.31%
35 126.74% 125.91% 125.69% 125.67% 124.79% 133.88%
40 185.49% 185.49% 185.49% 185.49% 181.62% 222.70%
45 570.00% 570.00% 570.00% 570.00% 570.00%

5.3. Sensitivity Analysis

As we have mentioned, the choice of the rating structure depends on the level of heterogeneity of
the population, on how critical health conditions are classified and on market issues, as well. In this
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section, we investigate the insurer’s liabilities in situations or choices for the risk classes alternative
with respect to what we have previously considered. In particular:

• Assuming the same parameters for the Gompertz-Gamma model referring to the general
population as in Table 1, we consider a rating structure arranged on a higher number of risk
classes (precisely, four or five);

• We assume a higher degree of heterogeneity in the general population, and we identify three risk
classes, assuming the same composition of the general population as in Table 5.

We want to investigate what differences emerge with respect to the value of liabilities. To allow
some comparisons with the discussion in Section 5.2, we set the portfolio size to 1 663, i.e., the same as
Portfolio E. Differences in the distribution of insurer’s liabilities then can be assumed to arise from
either the different risk classification or the degree of heterogeneity.

We consider three additional portfolios, namely Portfolios G, H and I.

• For Portfolio G, the rating structure is arranged into four classes; details are quoted in Table 14.
Note that we keep the same definition for the standard risk class, i.e., class G1, as for Portfolios
A–F, while we arrange preferred risk classes into four groups.

• For Portfolio H, the rating structure is arranged into five classes, with a reduced frailty interval for
standard risks. This means that in this case, the definition of what is considered to be a standard
risk is more restrictive than in the previous cases. Details are listed in Table 15.

• While Portfolios G and H are based on the same assessment of the heterogeneity of the population
as for Portfolios A–F, Portfolio I is designed assuming a stronger degree of heterogeneity of the
general population. We identify three risk classes, whose initial relative size in the population is
the same as for Portfolios A–F. See Table 16 for details.

Table 14. Portfolio G: tariff structure and benefit amounts.

Group G1 Group G2 Group G3 Group G4 Population

Frailty interval (zj−1, zj] (0, 1.038741] (1.038741, 1.186127] (1.186127, 1.410339] (1.410339, ∞) (0, ∞)
Relative size in the
population ρj;65

60.121% 20.000% 15.000% 4.879% 100%

Expected value of the
frailty E[Z65|Gj]

0.845593 1.107415 1.277892 1.538161 0.996594

Coefficient of variation
CV[Z65|Gj]

15.243% 3.806% 4.871% 7.706% 23.308%

Expected lifetime E[T65|Gj] 22.81 20.65 19.59 18.26 21.67
Benefit amount bj 4.483 4.963 5.238 5.632
as a % of the standard
benefit, bj

b1
− 1

0% 10.708% 16.855% 25.6347%

Table 15. Portfolio H: tariff structure and benefit amounts.

Group G1 Group G2 Group G3 Group G4 Group G5 Population

Frailty interval (zj−1, zj] (0, 0.921533] (0.921533, 1.038742] (1.038742, 1.186128] (1.186128, 1.307152] (1.307152, ∞) (0, ∞)
Relative size in the
population ρj;65

40.000% 20.121% 20.000% 10.111% 9.768% 100%

Expected value of the
frailty E[Z65|Gj]

0.778312 0.979346 1.107417 1.241204 1.445874 0.996594

Coefficient of variation
CV[Z65|Gj]

13.398% 3.440% 3.806% 2.787% 8.736% 23.308%

Expected lifetime E[T65|Gj] 23.43 21.58 20.65 19.80 18.71 21.67
Benefit amount bj 4.362 4.744 4.963 5.182 5.492
as a % of the standard
benefit, bj

b1
− 1

0% 8.776% 13.781% 18.802% 25.915%

as a % of the standard
benefit in Portfolio A,

bj

b1[Ptf.A]
− 1

−2.700% 5.839% 10.708% 15.594% 22.515%
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Table 16. Portfolio I: tariff structure and benefit amounts.

Group G1 Group G2 Group G3 Population

Frailty interval (zj−1, zj] (0, 1.04219] (1.04219, 1.41721] (1.41721, ∞) (0, ∞)
Relative size in the population ρj;65 60.121% 30.111% 9.768% 100%
Expected value of the frailty E[Z65|Gj] 0.789420 1.199340 1.619084 0.993896
Coefficient of variation CV[Z65|Gj] 20.728% 8.686% 11.507% 31.623%
Expected lifetime E[T65|Gj] 23.25 19.93 17.79 21.71
Benefit amount bj 4.397 5.147 5.783

as a % of the standard benefit, bj
b1
− 1 0% 17.071% 31.531%

as a % of the standard benefit in Portfolio A,
bj

b1[Ptf.A]
− 1 −1.920% 14.824% 29.006%

Tables 14–22 quote the numerical assessment of the benefit amounts, portfolio composition and
summary statistics of the present value of future benefits for the three portfolios. The values obtained
for the several quantities are expressed in a way similar to what was performed in Section 5.2, and
they can be compared to the corresponding values obtained for Portfolio E. We note:

• The average survival rate for Portfolios G and H is (almost) the same as for Portfolio E (apart from
some rounding in the number of survivors, which must be integer).

• Portfolio G, which has the same class of standard risks, shows a profile of the value of the liabilities
that is similar to Portfolio E. Conversely, Portfolio H, which has a reduced class of standard risks,
shows a similar dispersion, but a lower expected value of future benefits.

• Portfolio I shows a slightly higher average survival rate, especially at the highest ages (which is
due to the lower frailty level for standard risks). From this, it follows a higher expected value of
the liabilities, in particular at high ages; conversely, differences in the dispersion are not significant.

Overall, the sensitivity analysis suggests that different rating structures can have an impact in
particular on the magnitude of insurer’s liabilities, rather than on its dispersion.

Table 17. Portfolio G: portfolio size and composition.

Time t

Portfolio G

Total Size Relative Group Size

nt
nt
n0

Group G1 Group G2 Group G3 Group G4

0 1 663 100.000% 60.132% 20.024% 14.973% 4.871%
5 1 586 95.370% 60.593% 19.924% 14.754% 4.729%

10 1 461 87.853% 61.328% 19.713% 14.442% 4.517%
15 1 267 76.188% 62.589% 19.416% 13.812% 4.183%
20 991 59.591% 64.783% 18.769% 12.815% 3.633%
25 648 38.966% 68.519% 17.593% 11.111% 2.778%
30 316 19.002% 74.367% 15.190% 8.544% 1.899%
35 96 5.773% 82.292% 11.458% 5.208% 1.042%
40 14 0.842% 92.857% 7.143% 0.000% 0.000%
45 1 0.060% 100.000% 0.000% 0.000% 0.000%
50 0 0.000%
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Table 18. Portfolio G: portfolio average benefit amount (additional amount with respect to the

standard benefit for Portfolio A, bt
b1[Ptf.A]

− 1) and summary statistics of the probability distribution of
insurer’s liabilities.

Time t bt
b1[Ptf.A]

− 1

E[PVt ]
nt

CV[PVt]
95th perc.of PVt 99th perc. of PVt

as a % of the Value as a % of E[PVt] as a % of E[PVt]for Ptf.A

0 5.917% 100.01% 1.04% 101.68% 102.48%
5 5.833% 99.17% 1.18% 101.94% 102.71%

10 5.703% 98.23% 1.41% 102.32% 103.31%
15 5.480% 97.22% 1.69% 102.77% 103.81%
20 5.101% 96.22% 2.19% 103.63% 105.19%
25 4.469% 95.42% 3.05% 105.01% 107.18%
30 3.553% 95.05% 4.96% 108.27% 111.75%
35 2.372% 95.42% 10.28% 117.02% 124.71%
40 0.765% 97.69% 31.38% 155.57% 182.05%
45 0.000% 100.00% 136.25% 342.00% 570.00%

Table 19. Portfolio H: portfolio size and composition.

Time t

Portfolio H

Total Size Relative Group Size

nt
nt
n0

Group G1 Group G2 Group G3 Group G4 Group G5

0 1 663 100.000% 39.99% 20.14% 20.02% 10.10% 9.74%
5 1 586 95.370% 40.42% 20.18% 19.92% 9.96% 9.52%

10 1 461 87.853% 41.14% 20.19% 19.71% 9.79% 9.17%
15 1 268 76.248% 42.35% 20.19% 19.40% 9.46% 8.60%
20 991 59.591% 44.60% 20.18% 18.77% 8.78% 7.67%
25 648 38.966% 48.46% 20.06% 17.59% 7.72% 6.17%
30 315 18.942% 55.24% 19.37% 15.24% 6.03% 4.13%
35 96 5.773% 65.63% 16.67% 11.46% 4.17% 2.08%
40 14 0.842% 78.57% 14.29% 7.14% 0.00% 0.00%
45 1 0.060% 100.00% 0.00% 0.00% 0.00% 0.00%
50 0 0.000%

Table 20. Portfolio H: portfolio average benefit amount (additional amount with respect to the

standard benefit for Portfolio A, bt
b1[Ptf.A]

− 1) and summary statistics of the probability distribution of
insurer’s liabilities.

Time t bt
b1[Ptf.A]

− 1

E[PVt ]
nt

CV[PVt]
95th perc. of PVt 99th perc. of PVt

as a % of the Value as a % of E[PVt] as a % of E[PVt]for Ptf. A

0 6.009% 100.01% 1.03% 101.70% 102.38%
5 5.918% 99.16% 1.20% 101.98% 102.82%
10 5.771% 98.19% 1.39% 102.29% 103.20%
15 5.524% 97.10% 1.70% 102.81% 103.94%
20 5.080% 95.99% 2.18% 103.58% 105.22%
25 4.340% 95.04% 3.05% 105.02% 107.21%
30 3.141% 94.48% 4.94% 108.26% 111.58%
35 1.547% 94.36% 10.06% 116.76% 124.25%
40 −0.523% 95.00% 31.01% 152.56% 179.67%
45 −2.700% 99.35% 134.82% 334.93% 558.22%
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Table 21. Portfolio I: portfolio size and composition.

Time t

Portfolio I

Total Size Relative Group Size

nt
nt
n0

Group G1 Group G2 Group G3

0 1 663 100.000% 60.132% 30.126% 9.741%
5 1 587 95.430% 60.744% 29.805% 9.452%

10 1 462 87.913% 61.696% 29.343% 8.960%
15 1 267 76.188% 63.457% 28.335% 8.208%
20 989 59.471% 66.431% 26.694% 6.876%
25 648 38.966% 71.296% 23.611% 5.093%
30 320 19.242% 78.750% 18.438% 2.813%
35 103 6.194% 88.350% 10.680% 0.971%
40 18 1.082% 94.444% 5.556% 0.000%
45 1 0.060% 100.000% 0.000% 0.000%
50 0 0.000%

Table 22. Portfolio I: portfolio average benefit amount (additional amount with respect to the

standard benefit for Portfolio A, bt
b1[Ptf.A]

− 1) and summary statistics of the probability distribution of
insurer’s liabilities.

Time t bt
b1[Ptf.A]

− 1

E[PVt ]
nt

CV[PVt]
95th perc. of PVt 99th perc. of PVt

as a % of the Value as a % of E[PVt] as a % of E[PVt]for Ptf. A

0 6.472% 100.01% 1.03% 101.71% 102.44%
5 6.304% 99.09% 1.19% 101.97% 102.73%
10 6.013% 98.07% 1.40% 102.29% 103.16%
15 5.500% 97.07% 1.69% 102.78% 103.86%
20 4.673% 96.32% 2.18% 103.57% 105.13%
25 3.422% 96.31% 3.04% 104.99% 107.14%
30 1.641% 98.01% 4.89% 108.16% 111.53%
35 −0.129% 102.99% 9.85% 116.45% 124.06%
40 −1.920% 112.69% 26.89% 147.46% 168.03%
45 −1.920% 131.86% 127.36% 339.18% 508.78%

6. Some Remarks to Conclude

This paper is mainly motivated by the need to model differential mortality for life annuities,
following the introduction of special rate annuities. The solution adopted in current actuarial practice
is pragmatic and straightforward to implement, but is not completely satisfactory, as it is not backed
by a rigorous model. The Gompertz-Gamma model that we adopt in this paper is simple, but is
convenient, in particular in view of practical applications. We show how it could be implemented to
realize a rigorous rating system arranged in risk classes. In any case, it can be adopted for estimating
the potential composition of a heterogeneous portfolio.

Further, we investigate the impact on the insurer’s liabilities of the increased portfolio
heterogeneity following the introduction of special rate annuities. As is known, higher degrees
of heterogeneity imply a higher risk profile for the provider. However, if matched by a larger portfolio
size, the risk profile of the insurer can benefit from a portfolio diversification (clearly, if appropriate
annuity rates are adopted). Indeed, the higher volatility incurred because of the portfolio heterogeneity
is more than compensated by the stronger pooling effect resulting from the larger size. The specific
choice of the rating structure seems to have a significant impact on the expected value of insurer’s
liabilities, rather than on its risk profile.
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Various directions for future research can be conceived. First, we note that adverse-selection
could emerge as a result of the rating structure, and its possible impact should be addressed, possibly
through a modeling of the demand, which represents a possible topic for future research.

A further aspect that is interesting to investigate is the impact on insurer’s liabilities of an incorrect
allocation of risks to the various risk classes. Since the frailty is unobservable and the risk classification
is based on observable proxies, a misspecification of the risk class is always possible. This would result
in an unfair annuity rate applied to some individuals and then in an increased (or reduced) probability
of loss for the insurer. In this regard, the research task concerns in particular the modeling of the
incorrect specification of the risk class.

In the paper, we have assumed that insurer’s liabilities are only affected by the volatility caused
by random fluctuations in mortality and frailty. However, a major risk for a life annuity provider is the
aggregate longevity risk, namely the risk of unanticipated mortality improvements. It is reasonable, in
particular, to assume that the several risk groups follow different mortality trends, anyhow correlated
(in particular because of the underlying frailty distribution). While the joint modeling of the frailty
and the stochastic mortality dynamics is controversial, this is a research topic that should be further
developed.
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Appendix A. Expected Value of the Frailty in Group Gj, Age x

By definition:

E[Zx|Gj] =
1

ρj;x
·
∫ zj

zj−1

z · gx(z)dz , (A1)

where:
gx(z) =

1
Γ(δ)

· zδ−1 · θ(x)δ · e−θ(x)·z , (A2)

given that Zx ∼ Gamma(δ, θ(x)) (with Γ(·), we denote the Gamma function).
We can rearrange as follows:

E[Zx|Gj] =
1

ρj;x
·
[∫ zj

0
z · gx(z)dz−

∫ zj−1

0
z · gx(z)dz

]
=

1
ρj;x
· 1

Γ(δ)
·
[∫ zj

0
(z · θ(x))δ · e−θ(x)·z dz−

∫ zj−1

0
(z · θ(x))δ · e−θ(x)·z dz

]
(A3)

=
1

ρj;x
· 1

Γ(δ)
· 1

θ(x)
·
[∫ θ(x)·zj

0
yδ · e−ydy−

∫ θ(x)·zj−1

0
yδ · e−ydy

]
=

1
ρj;x
· 1

Γ(δ)
· 1

θ(x)
· [γ(δ + 1, θ(x) · zj)− γ(δ + 1, θ(x) · zj−1)] ,

where γ(·, ·) is the lower incomplete Gamma function. Then:

E[Zx|Gj] =
1

ρj;x
· Γ(δ + 1)

Γ(δ)
· [F(zj; δ + 1, θ(x))− F(zj−1; δ + 1, θ(x))]

=
δ

θ(x)
·

F(zj; δ + 1, θ(x))− F(zj−1; δ + 1, θ(x))
ρj;x

(A4)

= E[Zx] ·
F(zj; δ + 1, θ(x))− F(zj−1; δ + 1, θ(x))

ρj;x
.
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Appendix B. Variance of the Frailty in Group Gj, Age x

By definition:
Var[Zx|Gj] = E[(Zx)

2|Gj]− (E[Zx|Gj])
2 . (B1)

Following steps similar to Appendix A, for E[(Zx)2|Gj], we find:

E[(Zx)
2|Gj] =

δ · (δ + 1)
(θ(x))2 ·

F(zj; δ + 2, θ(x))− F(zj−1; δ + 2, θ(x))
ρj;x

. (B2)

Then:

Var[Zx|Gj] =
δ · (δ + 1)
(θ(x))2 ·

F(zj; δ + 2, θ(x))− F(zj−1; δ + 2, θ(x))
ρj;x

− (δ)2

(θ(x))2 ·
(F(zj; δ + 1, θ(x))− F(zj−1; δ + 1, θ(x)))2

(ρj;x)2 (B3)

= Var[Zj] ·
[
(δ + 1) ·

F(zj; δ + 2, θ(x))− F(zj−1; δ + 2, θ(x))
ρj;x

− δ ·
F(zj; δ + 1, θ(x))− F(zj−1; δ + 1, θ(x))

ρj;x

]
.

Appendix C. Variance of the Frailty in the General Population, with Respect to the Variance in
the Frailty Groups

Starting from:
Var[Zx] = E[(Zx)

2]− (E[Zx])
2 , (C1)

we note that:
E[(Zx)

2] = ∑
j
E[(Zx)

2|Gj] · ρj;x . (C2)

Thus:

Var[Zx] = ∑
j
E[(Zx)

2|Gj] · ρj;x −
(

∑
j
E[Zx|Gj] · ρj;x

)2

= Var[Zx|Gj] · ρj;x

+ ∑
j
(E[Zx|Gj])

2 · ρj;x · (1− ρj;x)−∑
j

∑
k:k 6=j

E[Zx|Gj] ·E[Zx|Gk] · ρj;x · ρk;x

= Var[Zx|Gj] · ρj;x

+ ∑
j
(E[Zx|Gj])

2 · ρj;x · ∑
k:k 6=j

ρk;x −∑
j

∑
k:k 6=j

E[Zx|Gj] ·E[Zx|Gk] · ρj;x · ρk;x

= Var[Zx|Gj] · ρj;x

+ ∑
j

∑
k:k 6=j

E[Zx|Gj] · (E[Zx|Gj]−E[Zx|Gk]) · ρj;x · ρk;x

= Var[Zx|Gj] · ρj;x

+ ∑
j

∑
k:k>j

E[Zx|Gj] · (E[Zx|Gj]−E[Zx|Gk]) · ρj;x · ρk;x

+ ∑
k

∑
j:j>k

E[Zx|Gk] · (E[Zx|Gk]−E[Zx|Gj]) · ρj;x · ρk;x
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= Var[Zx|Gj] · ρj;x

+ ∑
j

∑
k:k>j

E[Zx|Gj] · (E[Zx|Gj]−E[Zx|Gk]) · ρj;x · ρk;x

− ∑
k

∑
j:j>k

E[Zx|Gk] · (E[Zx|Gj]−E[Zx|Gk]) · ρj;x · ρk;x

= Var[Zx|Gj] · ρj;x

+ ∑
j

∑
k:k>j

E[Zx|Gj] · (E[Zx|Gj]−E[Zx|Gk]) · ρj;x · ρk;x

− ∑
j

∑
k:k>j

E[Zx|Gk] · (E[Zx|Gj]−E[Zx|Gk]) · ρj;x · ρk;x

= Var[Zx|Gj] · ρj;x

+ ∑
j

∑
k:k>j

(E[Zx|Gj]−E[Zx|Gk])
2 · ρj;x · ρk;x . (C3)

Appendix D. Average Survival Function in Group Gj

We have:

S(x|Gj) =
∫ zj

zj−1

S(x|z) · g0(z) ·
1

ρj;0
dz

=
1

ρj;0
· 1

Γ(δ)
· θδ ·

∫ zj

zj−1

e−θ(x)·z · zδ−1 dz (D1)

=
1

ρj;0
·
(

θ

θ(x)

)δ

· (F(zj; δ, θ(x))− F(zj−1; δ, θ(x))

= S(x) ·
ρj;x

ρj;0
.
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