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Abstract: In this survey, a short introduction of the recent discovery of log-normally-distributed
market-technical trend data will be given. The results of the statistical evaluation of typical
market-technical trend variables will be presented. It will be shown that the log-normal assumption
fits better to empirical trend data than to daily returns of stock prices. This enables one to
mathematically evaluate trading systems depending on such variables. In this manner, a basic
approach to an anti-cyclic trading system will be given as an example.

Keywords: log-normal; market-technical trend; MinMax-process; trend statistics; market analysis;
empirical distribution

1. Introduction

The concept of a trend has been fundamental in the field of technical analysis since Charles H. Dow
introduced this term in the late 19th century. Following Rhea [1], Dow said, e.g., concerning the
characterization of up-trends:

Successive rallies penetrating preceding high points, with ensuing declines terminating above preceding
low points, offer a bullish indication.

In Figure 1a, an example of the inverse situation, a down-trend, is given in a historical setup as
Dow used it. Although this idea of a trend is so far “just” geometrical and clearly not precise at all,
it is widely accepted among many market participants. Therefore, this geometric idea is fixed by the
following market-technical definition of a Dow-trend, which is also employed in this article:

Definition 1 (market-technical trend or Dow-trend). A market is in an up-/down-trend if and only if
(at least) the two last relevant lows (denoted by P1 and P3 in an up-trend) and highs (denoted by P2
in an up-trend) are monotonically increasing/decreasing (see Figure 1b). Otherwise, the market is
temporarily trendless. In the case of an up-trend, the phase between a low and the next high is called
the movement. In the same manner, the phase between a high and the following low is called the
correction. In case of a down-trend, movement and correction are defined in the exact opposite way.

It is to analyze these Dow-trends as they occur in real-world markets within a statistical framework.
In order to do so, however, a mathematical exact method on how to determine relevant lows and highs
of price data is necessary.

While the task to detect the extreme points in the theoretical Figure 1b itself is trivial, it is not as
easy when a real price chart is considered (see Figure 3). This can be explained by the continuous price
fluctuations, and hence, the extreme points P1− P3 are hard to detect. The issue of detection is rooted
in the subjectivity of the distinction between usual fluctuations and new extreme points. This is to
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say: the significance of an extreme point has to be evaluated in an algorithmic way to make automatic
detection possible. Therefore, referring to Maier-Paape, the framework that is necessary for automatic
trend-detection will be reviewed in Section 2 [2]. The trend-detection, in turn, is rooted in the automatic
recognition of relevant minima and maxima in charts. With that at hand, empirical studies of trend
data can be conducted as seen in [3,4]. On the one hand, in [3], Hafizogullari, Maier-Paape and Platen
collected several statistics on the performance of Dow-trends. On the other hand, in [4], Maier-Paape
and Platen constructed a geometrical method on how to detect lead and lag when two markets are
directly compared, also based on the automatic detection of relevant highs and lows.

(a) (b)

Figure 1. (a) Example of a down-trend in a historical setup as Dow used it (freely adapted from
Russel [5]); (b) sketch of an up-trend in the sense of Dow.

In this article, however, we want to pursue a different path. We are interested in several specific
trend data, such as the retracement and the relative movement and correction. Since these trend data
are fundamental for the whole paper, a precise definition is given here.

The first random variable describing trend data, which will be important in the following, is the
retracement denoted by X. The retracement is defined as the size-ratio of the correction and the previous
movement, i.e.,

X :=
Correction
Movement

. (1)

Hence, in the case of an up-trend, this is given by:

X =
P2− P3new

P2− P3
.

Another common random variable is the relative movement, which for an up-trend is defined by
the ratio of the movement and the last low, i.e.,

M :=
Movement
last Low

=
P2− P3

P3
(2)

and the relative correction, which for an up-trend is defined as the ratio of the correction and the last
high, i.e.,

C :=
Correction
last High

=
P2− P3new

P2
. (3)
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In case of a down-trend, all situations are mirrored, such that:

X =
P3new − P2

P3− P2
, M :=

Movement
last High

=
P3− P2

P3
, C :=

Correction
last Low

=
P3new − P2

P2
.

The main scope of this survey is to collect and extend results on how the earlier defined trend
variables (plus several other related ones) can be statistically modeled. By doing this, the log-normal
distribution occurs frequently. Evidently, the log-normal distribution is very well known in the field
of finance. We start off, in Section 3, by giving a mathematical model of the retracement during
Dow-trends and the delay of their recognition. Furthermore, the duration of the retracements and
their joint distribution with the retracement will be evaluated. The results on relative movements and
relative corrections during trends will be presented in Section 4. In Section 5, it will be demonstrated
how the gained distributions of trend variables may be used to model trading systems mathematically.

It will be evident that the described trend data mostly fit very well to the log-normal distribution
model, although there are significant aberrations for the duration of retracements (see Subsection 3.2).
In the past, there have been several attempts to match the log-normal distribution model to the
evolution of stock prices. It already started in 1900 with Louis Bachelier’s PhD thesis [6,7] and the
approach to use the geometric Brownian motion to describe the evolution of stock prices. This yields
log-normally-distributed daily returns of stock prices. Nowadays, the geometric Brownian motion
is widely used to model stock prices (see [8]) especially as a part of the Black–Scholes model [9].
Nevertheless, it has to be noted that empirical studies have shown that the log-normal distribution
model does not fit perfectly to daily returns (e.g., see Fama [10,11], who refers to Mandelbrot [12]).

Overall, we conclude that most of the trend data we describe fit better to the log-normal
distribution model than daily returns of stock prices, although it is beyond the scope of this paper
to do a formal comparison. In any case, the observed empirical facts of trend data contribute to a
completely new understanding of financial markets. Furthermore, with the relatively easy calculations,
which are based on the link of the log-normal distribution model to the normal distribution, complex
market processes can now be discussed mathematically (e.g., with the truncated bivariate moments;
see Lemma 1.21 in [13] 1).

2. Detection of Dow-Trends

The issue of automatic trend-detection has been addressed by Maier-Paape [2]. Clearly,
the detection of relevant extreme points is a necessary step to detect Dow-trends. Fortunately,
the algorithm introduced by Maier-Paape allows automatic detection of relevant extreme points
in any market since it constructs, the so-called MinMax-processes.

Definition 2 (MinMax-process, Definition 2.6 in [2]). An alternating series of (relevant) highs and lows
in a given chart is called a MinMax-process.

In Figure 3, two automatically-constructed MinMax-processes are visualized by the corresponding
indicator line. The construction is based on SAR-processes (stop and reverseplease check the use of
underlining throughout ).

Definition 3 (SAR-process). An indicator is called a SAR-process if it can only take two values (e.g., −1
and one, which are considered to indicate a down and an up move of the market, respectively).

Generally speaking, Maier-Paape’s algorithm looks for relevant highs when the SAR-process
indicates an up move and searches for relevant lows when the SAR-process indicates a down move.

1 Published under R. Brenner’s birth name Kempen.
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Thus, the relevant extrema are “fixed” when the SAR-process changes sign. By choosing a specific
SAR-process, one can affect the sensitivity of the detection while the actual detection algorithm works
objectively without the need for any further parameter. For more information, see [2]. Maier-Paape
also explains how to handle specific exceptional situations, for instance when a new significant low
suddenly appears although the SAR-process is still indicating an up move.

It is shown by Theorem 2.13 in [2] that for any combination of SAR-process and market, there
exists such a MinMax-process, which can be calculated “in real time” by the algorithm of Maier-Paape.
Based on any MinMax-process in turn, it is easy to detect market-technical trends as defined in
Definition 1 and then to use this information for automatic trading systems as outlined in Figure 2.

Figure 2. General concept of the automatic detection of Dow-trends.

Calculating the MinMax-process “in real time” means that as time passes and the chart gets more
and more candles, the extrema of the MinMax-process are constructed one by another. Besides the
most recent extremum that is being searched for, all extrema found earlier are fixed from the moment
of their detection, i.e., when the SAR-process changed sign.

Thus, applying the algorithm in real time also reveals some time delay in detection. Obviously,
the algorithm cannot predict the future progress of the chart to which it is applied. Consequently,
some delay is needed to evaluate the significance of a possible new extreme value. This circumstance
is crucial when considering automatic trading systems based on market-technical trends. Therefore,
it also has to affect any mathematical model of such a trading system. An approach to this issue can be
made by considering the delay as an inevitable slippage. This means, not the time aspect of the delay,
but more likely, the effect it has on the entry or exit price in any market-technical trading system will
be evaluated. In particular, the absolute value of the delay dabs is given by:

dabs = |P[0]− C[0]| (4)

with P[0] indicating the last detected extreme value and C[0] the close value of the current bar when
this extreme value got detected.

For this article, the MinMax-process together with the integral MACD SAR-process (moving average
convergence divergence; see p. 166 in [14]) was used. The integral MACD SAR (Definition 2.2 in [2])
basically is a normal MACD SAR, which in turn indicates an up move if the so-called MACD line is
above the so-called signal line. Otherwise, it indicates a down move. The MACD line is given by the
difference of a fast and a slow (exponential) moving average. The signal line then is an (exponential)
moving average of the MACD line.

Consequently, the MACD usually takes three parameters for the fast, slow and signal line
(standard values are: fast = 12, slow = 26, signal = 9). To reduce the number of needed parameters from
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three to one scaling parameter only, the ratios of the standard parameters are fixed and consequently
scaled by the scaling parameter. In particular, an MACD with scaling parameter two denotes a usual
MACD with the parameters (24/52/18). Therefore, the sensitivity of the MinMax-process solely
corresponds to one scaling parameter (see Figure 3).

(a) Scaling = 1

(b) Scaling = 3

Figure 3. Daily chart of the Adidas stock between September 2012 and August 2013 with the
MinMax-process by Maier-Paape (a) based on the integral moving average convergence divergence
(MACD) stop and reverse (SAR)-process (b) with two different scalings: one and three. The lines in the
charts indicate the last detected extremum.

For a given MinMax-process, it is obvious to decide the starting and ending candle of
a market-technical trend. The computation of several trend variables, such as the retracement,
is therefore obvious.

The automatic detection of Dow-trends and in particular the possibility to deduce a
MinMax-process out of any market given by candle data enables one to create a large dataset of
empirical trend variables. The model will be based on empirical data acquired by the MinMax-process
based on the integral MACD with scaling variables 1, 1.2, 1.5, 2 and 3 applied on all stocks of the
current S&P100 and Eurostoxx50 in the period from January 1989 until January 2016.
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3. Retracements

3.1. Distribution of the Retracement

For all combinations of the regarded scalings and markets, the measured retracement data show
the same characteristic distribution as seen in Figures 4 and 5. Indeed, they show the typical asymmetric
characteristic of a log-normal distribution, the density of which is given by:

f (x;µ,σ) =
1√

2πσx
exp

(
− (ln (x)− µ)2

2σ2

)
, x > 0

for the retracement X and with the (true) parameters µ and σ. It is well known how to calculate
moments of log-normally-distributed random variables. In this particular context, the median of the
distribution X equals eµ, and the mean is given by:

E(X) = eµ+
σ2
2 .

To evaluate this distribution assumption, the maximum-likelihood-estimators (MLE) denoted by
(µ̂, σ̂) for the log-normal distribution are computed:

µ̂ :=
1
n

n

∑
i=1

ln xi, σ̂2 :=
1
n

n

∑
i=1

(ln (xi)− µ)2

with xi denoting the n measured retracements. Furthermore, the p-value calculated with the
Anderson–Darling test (recommended test by Stephens in [15], Chapter “Test based on EDF statistics”)
being applied to the logarithmic transformed data is checked. The so-obtained values are summarized
in Table 1.
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Figure 4. Measured and log-normal fit density of the retracement X in an up-trend and down-trend
with scaling one for S&P100 stocks. Each dataset is visualized with a histogram from zero to five with
a bin size of 0.11.
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Figure 5. Measured and log-normal fit density of the retracement X in an up-trend with scaling 1.5
and three for S&P100 stocks. Each dataset is visualized with a histogram from zero to five with a bin
size of 0.11.
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Table 1. Parameters of the log-normal fit for the retracement X in up- and down-trends. (a) S&P100
data. (b) Eurostoxx50 data.

(a) S&P100 data (b) Eurostoxx50 data

The inconsistency of the p-values reveals that the log-normal model does not fit perfectly to
the measured retracement data. In fact, all histograms show a slightly sharper density for the
measured data with different intensities. Hence, for higher retracement values, the log-normal model
predicts slightly fewer values than actually observed. Besides these small systematical aberrations,
the log-normal model maps the measurement very well; especially for the Eurostoxx50. In addition,
the log-normal model obviously fits much better to the retracement distribution than to for instance
daily returns of stock prices (see Fama [10]).

To conclude the evaluation of the retracement alone, a fundamental observation about the
retracement can be made (based on the log-normal assumption and the fit values derived from
the data).

Observation 4 (Log-normal model for the retracement). The parameters µ and σ of the log-normal
distribution are more or less scale invariant for the retracement. In the case of an up-trend,
the parameters are also market invariant.

Furthermore, the parameter µ is affected by the trend direction. It is larger for down-trends, i.e.,
the retracements in down-trends are overall more likely to be larger than in up-trends. In spite of that,
the parameter σ is more or less invariant for the trend direction.

3.2. Delay after a Retracement

As already mentioned, the delay of the MinMax-process is inevitable. Therefore, it will be
evaluated in the same way as the retracement. In order to be able to compare the delay dabs after a
retracement is recognized (as defined in (4)) with the retracement X itself, both must have the same
unit. Therefore, the delay will also be considered in units of the last movement. It will be denoted as
random variable DX :

D = DX =
dabs

Movement
.

It should be noted that (at this point), there is no statement made on whether or not DX may somehow
depend on the preceding retracement X. The notation with subscript X is only used to denote the
delay after a retracement and to distinguish it from other delays to come.

Again, the measured delay data show the characteristic of a log-normal distribution for each
combination of scaling and market as exemplarily shown in Figure 6.

However, as expressed by the significant p-values in Table 2, the log-normal assumption
lags verification.

The histograms show a systematical deviation in regard to skewness. The measured delays have
a less positive skewness than predicted by the model.
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Besides this systematical aberration, the log-normal model maps the characteristics precisely
enough. Hence, it will be used for the following analysis.

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

Delay DX after a retracement (in movement units) in up-trend

D
en

si
ty

Histogram (6824 values)

Log-Normal density:
µ = −0.63±0.01, σ = 0.62±0.01,
p− value = 0.00%

Scaling=1

Figure 6. Measured and log-normal fit density of the delay in an up-trend with scaling one for S&P100
stocks. The data are visualized with a histogram from zero to five with a bin size of 0.11.

Table 2. Parameters of the log-normal fit for the delay DX in up- and down-trends. (a) S&P100 data.
(b) Eurostoxx50 data.

(a) S&P100 data (b) Eurostoxx50 data

The retracement and the delay can be considered as one sequence. We therefore look for a
combined log-normal distribution of retracement and delay. In this context, it is important to evaluate
the estimator of the correlation ρ between the logarithm of the two variables, i.e.,

ρ̂ln X,ln D =
1
n ∑n

i=1(ln(xi)− µ̂X)(ln (di)− µ̂D)

σ̂X · σ̂D

for measured values (xi, di). The estimated values of ρ̂ are given in Table 3.
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Table 3. Correlation between the logarithms of the retracement X (retr.) and delay DX (after retr.)
in up- and down-trends. (a) S&P100 data. (b) Eurostoxx50 data.

(a) S&P100 data (b) Eurostoxx50 data

This shows that the retracement and the following delay are indeed positively correlated (regarded
in the same units). This way, it is possible to give a joint bivariate log-normal distribution for
the retracement X and the delay D (both in units of the preceding movement) by virtue of its
density function.

fX,D (x, d;µX ,µD,σX ,σD, ρ) =
1

2πxdσXσD
√

1− ρ2
· (5)

· exp

[
− 1

2(1− ρ2)

(
(ln(x)− µX)

2

σ2
X

+
(ln(d)− µD)

2

σ2
D

− 2ρ
(ln(x)− µX)(ln(d)− µD)

σXσD

)]
.

For calculations based on this distribution, the (true) parameters µX,µD,σX,σD and ρ must be
replaced by their estimators.

Finally, the concluding observation regarding the retracement can be expanded by the delay part.

Observation 5 (Log-normal model for the retracement and delay). The parameters µ and σ of the
log-normal distribution are more or less scale invariant for the retracement and the delay. In the case
of an up-trend, the parameters are also market invariant.

Furthermore, the parameter µ is affected by the trend direction. In the case of the retracement,
it is larger for down-trends, whereas it is smaller for down-trends in the case of the delay. In spite of
that, the parameter σ is more or less invariant of the trend direction.

Finally, the correlation between the logarithms of the retracement and the delay is close to scale
and market invariant, while the correlation in up-trends is significantly larger than in down-trends.

3.3. Fibonacci Retracements

A propagated idea in the field of technical analysis for dealing with retracements is the concept of
so-called Fibonacci retracements. Based on specific retracement levels derived from several powers of
the inverse of the golden ratio, a priori predictions for future retracements shall be made. Obviously,
this assumes that there are such significant retracement values. However, the evaluation of the
retracement above reveals that there are no levels with a great statistical significance, but the
retracements follow a continuous distribution overall. Even a finer histogram as shown in Figure 7
does not reveal any significant retracements.
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On the assumption that there are specific values with statistical significance in some regard, then
the 100%-level would be most significant. For a closer look on significant retracement levels, see [16] 2.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.5

1

Correction relative to previous movement (retracement) in up-trend

D
en

si
ty

Scaling=1

Figure 7. More detailed (finer) histogram of Figure 4 with scaling one from zero to two with a bin size
of 0.01.

3.4. Duration of the Retracement

Beside the retracement, the duration of a trend correction denoted by Y is also of interest. It is given
by the difference in trading days between the last P2 and the new P3 (see Figure 1b). The distributions
of the retracement duration overall show the asymmetric log-normal-like behavior, as exemplarily
shown in Figure 8. However, the goodness of the log-normal assumption is obviously worse as in the
case of the retracement itself. In particular, the measured densities of the retracement duration in a
down-trend all show significant aberrations from the log-normal model.
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Log-Normal Density:
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p− V alue = 0.00%
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(a) Retracement duration Y in up-trend (Mean = 13.0)
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µ = 2.55± 0.02, σ = 0.89± 0.01,
p− V alue = 0.00%

Scaling=1

(b) Retracement duration Y in down-trend (Mean = 17.6)

Figure 8. Measured and log-normal fit density of the retracement duration in up- and down-trends
(a and b respectively) with scaling one for S&P100 stocks. The data are visualized with a histogram
with a bin size of one.

Since every retracement value is associated with a duration, the joint distribution of the
retracement and its duration can be examined (see Tables 4 and 5).

2 Published under R. Brenner’s birth name Kempen.
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Table 4. Parameters of the log-normal fit for the retracement duration in up- and down-trends.
(a) S&P100 data. (b) Eurostoxx50 data.

(a) S&P100 data (b) Eurostoxx50 data

Table 5. Correlation between the logarithms of the retracement X (retr.) and its duration Y in up- and
down-trends. (a) S&P100 data. (b) Eurostoxx50 data.

(a) S&P100 data (b) Eurostoxx50 data

Figure 9 exemplarily shows that the retracement in down-trends has higher values than in
up-trends. This was already seen in Table 1 and Observation 4. However, Figure 9 exemplarily
also depicts that the retracement in down-trends has larger durations compared to the retracement
in up-trends.

Figure 9. Contour plot of the joint density of the retracement value and its duration in up- and
down-trends (left and right resp.) with scaling one for S&P100 stocks.
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4. Movement and Correction

4.1. Distribution of Relative Movements and Corrections

As before, all of the measurements show the same characteristic distribution, whether relative
movement (2) or relative correction (3). Furthermore, the histograms conclude the log-normal
assumption (see Figure 10).
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(a) Relative movement
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(b) Relative correction

Figure 10. Measured and log-normal fit density of the relative movement (a) and relative correction
(b) in an up-trend with scaling one for S&P100 stocks. The data are visualized via histogram from zero
to one with a bin size of 0.01.

Again, the log-normal model does not match the measured data perfectly. It moreover fails to map
the sharp peaks and fat tails. This observation is confirmed by the fluctuating p-values (see Tables 6
and 7).

As a consequence, based on the results of Tables 6 and 7, a fundamental observation can be made,
which differs from the retracement’s.

Table 6. Parameters of the log-normal fit for the relative movement in up- and down-trends. (a) S&P100
data. (b) Eurostoxx50 data.

(a) S&P100 data (b) Eurostoxx50 data
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Table 7. Parameters of the log-normal fit for the relative correction in up- and down-trends. (a) S&P100
data. (b) Eurostoxx50 data.

(a) S&P100 data (b) Eurostoxx50 data

Observation 6 (Log-normal model for the relative movement/correction). The parameters of the
log-normal distribution µ and σ are market invariant for the relative movement and correction.
Furthermore, the σ parameter is more or less scale invariant while µ increases for increasing scaling
for the relative movement and correction, i.e., the relative movement and correction are more likely to
be larger for a higher scaling parameter.

The parameters µ and σ are also more or less trend direction invariant for the relative movement.
In the case of a relative correction, however, the direction of a trend affects these parameters: both are
larger in the case of a down-trend.

The dependency between the µ parameter and the scaling has already been expected as outlined
above. Obviously, higher scalings yield more significant movements and corrections. Therefore,
to reflect this, the x-position of the density peak has to increase when the scaling increases.
The dependency of the µ parameter on the trend direction has already been observed for the
retracement (see Observation 4).

4.2. Delay after Relative Movements and Corrections

As before, the delay d also has to be taken into account. Its absolute value is given by:

dabs = |(new extremum)− (Close when new extremum is subsequently detected)|

as defined in (4). Here, the unit for the delay is the last extreme value. This means for up-trends,
the delay after the relative movement is given by:

DM :=
dabs

lastLow

while the delay after the relative correction is given by:

DC :=
dabs

lastHigh
.

In both cases, it is sometimes abbreviated as the relative delay and has the same unit as the relative
movement (2) and relative correction (3), respectively.

Eventually, as shown in Figure 11, the relative delay inherits the same characteristics as known
from the delay for the retracement.
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(a) Delay DM after relative movement
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(b) Delay DC after relative correction

Figure 11. (a) Measured and log-normal fit density of the relative delay after a relative movement M
(see 2) and (b) after a relative correction C (see 3) in an up-trend with scaling one for S&P100 stocks.
The data are visualized with a histogram from zero to one with a bin size of 0.01.

As before, the model’s skewness is slightly too positive. As a consequence, the same conclusion
can be drawn. The model matches the measurements well enough to be the base for further analysis.

The evaluation results for the relative delay are shown in Tables 8–11. These reveal the
same behavior of the model parameters as already seen for the relative movement and correction.
Furthermore, the knowledge of the correlations (Tables 10 and 11) enables joint considerations of the
relative movement/correction and the relative delay with the joint distribution (5). In sum, this leads
to the following expansion of Observation 6.

Table 8. Parameters of the log-normal fit for the relative delay DM after a movement in up- and down-trends.
(a) S&P100 data. (b) Eurostoxx50 data.

(a) S&P100 data (b) Eurostoxx50 data

Table 9. Parameters of the log-normal fit for the relative delay DC after a correction in up- and down-trends.
(a) S&P100 data. (b) Eurostoxx50 data.

(a) S&P100 data (b) Eurostoxx50 data
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Table 10. Correlation between the logarithms of the relative (rel.) movement M and relative delay DM

in up- and down-trends. (a) S&P100 data. (b) Eurostoxx50 data.

(a) S&P100 data (b) Eurostoxx50 data

Table 11. Correlation between the logarithms of the relative (rel.) correction C and relative delay DC in
up- and down-trends. (a) S&P100 data. (b) Eurostoxx50 data.

(a) S&P100 data (b) Eurostoxx50 data

Observation 7 (Log-normal model for the rel. movement/correction with delay). The parameters of
the log-normal distribution µ and σ are market invariant for the relative movement and correction,
as well as their corresponding relative delays. Additionally, for these trend variables, the σ parameter
is more or less scale invariant while µ increases for increasing scaling.

The parameters µ and σ are also more or less trend direction invariant for the relative movement
(Table 6). In the case of the relative correction, however, the direction of a trend affects these parameters:
both are larger in the case of a down-trend (Table 7). This is also true for the relative delay after a
correction (Table 9). For the relative delay after a movement, µ is also larger, whereas σ is smaller for
down-trends (Table 8).

Finally, the correlation between the logarithms of the relative movement/correction and the
corresponding relative delay is close to scale invariant.

4.3. Period of Movements and Corrections

The dependency between µ and the scaling parameter has already been explained with their
connection to the level of trend significance (Observation 6). One attribute of trend significance is the
duration of a single trend period. Hence, the time difference between two lows and two highs within
the up- and down-trend, respectively, is called the period T of a trend. Figure 12a shows the evolution
of T regarding different scaling parameters. For any scaling, the T value is the arithmetical mean of all
time differences between two consecutive lows and highs within up- and down-trends, respectively.
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(a) Period T for up-trends (b) Fit parameters of T

Figure 12. Evolution of the period T for scalings between 0.5 and five with a step size of 0.1 for
S&P100 stocks. (a) period T for up-trends. (b) Fit parameters of T.

The period T shows a linear behavior, which has already been observed in [3] for EUR-USD charts.
The fit parameters are similar for both evaluated markets, but differ in regard to the type of trend
(see Figure 12b). Due to the linear model, it is evident how to set the scaling parameter in order to
emphasize a specific period. Consequently, it is also obvious to map any of the three different trend
classes introduced by Dow; namely the primary, secondary and tertiary trend (see Murphy, chapter
“Dow Theory” in [17]).

5. Mathematical Model of Trading Systems

Based on the log-normal distribution model of the retracement, an anti-cyclic trading system can
be modeled, for instance. With the joint density of the retracement and delay, the return of a basic
anti-cyclic trading system as shown in Figure 13 can be calculated:

Lemma 8 (Expected return). Let an anti-cyclic trading system as shown in Figure 13a with entry in the
correction at retracement level a, target t, be given. As soon as the end of the correction is recognized, the position
is closed with delay d. Furthermore, the return (in units of the last movement) for a trade with retracement x
and delay d denoted by R(x, d) is given by:

R(x, d) =

{
x− a− d, if a ≤ x < t (retracement does not reach target)

t− a, if x ≥ t (retracement reaches target)
.

Moreover, the distribution of the random variable for the retracement X and for the delay after the the retracement
D = DX are known from Section 3. That is the reason why the expected value of this return, considering only
retracements where the trade is opened (condition X ≥ a), is given by:

E(R(X, D)|X ≥ a) = E(X|X ≥ a)− (a +E(D|X ≥ a)) (6)

+
1− FX(t)
1− FX(a)

[t +E(D|X ≥ t)−E(X|X ≥ t)]

with FX(x) = P(X ≤ x) denoting the distribution function of the retracement X (see Section 3).

It should be noted that a and t are parameters that have to be given in the same units as the
retracement, i.e., units of the last movement.
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Proof. For a proof, see [13] 3.

In the same manner, several other key figures, such as the variance of the return, can be calculated
analytically when assuming the empirically-observed distributions as real. In this way, an unfavorable
chance to the risk ratio for the anti-cyclic trading model has been revealed (see [13] 3). This is, however,
in accordance with the empirical observations of the strategy’s backtests.

(a) Parameters a and t with exemplary realizations of the
retracement X and delay d.

(b) Entry at trend beginning and the following stop at the last
low.

Figure 13. Setup of a basic anti- and pro-cyclic trading system for up-trends (a and b, respectively).

6. Conclusions and Outlook

In this survey, the applications of the log-normal distribution model on market-technical trend
data is introduced. On the one hand, it is remarkable that the log-normal model fits better to the trend
data presented than to daily returns of stock prices. In contrast to the approach on the latter, however,
there has not been found any explanation for this observation yet. In particular, it has not yet been
clarified whether the log-normal distribution is a result of a limit process or can be explained with
the log-normal model for the daily returns of stock prices. As far as applications in the direction of
modeling of trading systems are concerned, we introduced a simple model for an anti-cyclic trading
setup based on log-normally distributed data.

On the other hand, trend following, i.e., pro-cyclic trading systems, are more widely used than
anti-cyclic ones. In fact, empirical backtests have already shown the profitability of such trading
systems. Consequently, there is a need for a mathematical model. Unfortunately, pro-cyclic trading
usually implies holding a position over several iterations of movement and correction as outlined in
Figure 13b.

This makes the problem far more complicated in mathematical terms since the joint distribution
of a random number of relative movements and corrections, with possible correlations, has to be
considered. Nevertheless, the log-normal model for the trend data represents a promising approach to
this issue, as well.
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