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Abstract: Binomial trees are very popular in both theory and applications of option pricing. As they
often suffer from an irregular convergence behavior, improving this is an important task. We build
upon a new version of the Edgeworth expansion for lattice models to construct new and quickly
converging binomial schemes with a particular application to barrier options.
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1. Introduction: Convergence of Binomial Trees

Since the appearance of the pioneering work by Cox et al. (see [1]) and by Rendleman and
Bartter (see [2]), the use of binomial trees in option pricing has been very popular in both application
and theory. Their main advantages are that they inherit the important theoretical concepts of
completeness and risk-neutral pricing while keeping the technical framework on a very low level.
In particular, they can be applied without the necessity to introduce stochastic calculus.

Further, approximating option prices in the Black–Scholes model (BS model) or more advanced
models with the help of a sequence of suitable binomial trees is a popular numerical method when it
comes to exotic options, in particular those with American or Bermudan features.

Convergence of such a sequence of approximations to the desired option price in the BS
model is ensured by constructing the corresponding binomial trees in a way such that they satisfy
the (approximate) moment matching conditions of Donsker’s theorem (see, e.g., [3,4]). However,
conventional sequences of binomial trees (such as the Cox–Ross–Rubinstein tree (CRR tree) or the
Rendleman–Bartter tree (RB tree)) show a quite erratic convergence behavior, which is typically not
monotonic in the number of periods n (i.e., the fineness of the trees) and is often referred to as the
sawtooth effect.

This issue has been addressed by numerous authors, and different solutions have been offered
(see, e.g., [5–8]). In order to better understand the source of the problem, as well as to be able
to compare existing methods theoretically, one has to consider the asymptotics of the discrete
models ([9,10]). Moreover, this information can then be used to construct advanced tree models with
faster or smoother convergence (see [11–13]).

We will focus on the BS model in the one-dimensional setting. There, we offer a general method
of constructing asymptotic expansions for lattices based on an appropriate Edgeworth expansion and
discuss ways of further improving the convergence behavior for different types of options.

Edgeworth expansions have various applications in the literature, e.g., in statistics. In the
context of binomial trees, the Edgeworth expansion has been applied, e.g., by Rubinstein (see [14]) to
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construct risk-neutral approximations for various types of distributions, however, without providing
the exact convergence behavior.

In this article, we propose a new approach to analyze the asymptotic behavior of binomial
trees via the introduction of the Edgeworth expansion for lattice triangular schemes. This method
provides a general framework for improving the convergence of binomial trees that is not restricted
to risk-neutral transition probabilities and can be easily applied to multinomial and multidimensional
trees. As an application we provide an asymptotic expansion for the performance of binomial trees
for barrier options and construct an extended CRR tree with an improved convergence behavior.

2. Asymptotic Analysis of Binomial Trees: Distributional Fit

Consider the one-dimensional BS model in the risk-neutral setting given by:

dS (t) = S (t) (rdt + σdW (t)) , S(0) = s0 (1)

where W (t) is a Brownian motion under the risk-neutral measure Q. We then construct
approximating binomial trees

{
S(n)

k

}
, k = 1, . . . , n via:

S(n)
k = S(n)

k−1eαn∆t+σ
√

∆tξ(n)k , S(n)
0 = s0 (2)

where {αn}n is a bounded sequence and for each n ∈ N, ξ
(n)
k , k = 1, . . . , n are i.i.d random variables

taking on values of one and −1 with probabilities pn and 1− pn, respectively.
The convergence behavior of the binomial trees above can be controlled with an appropriate

selection of values αn and pn. However, in order to ensure weak convergence, the mean and variance
of the one-period log returns of the discrete- and continuous-time models should match at least
asymptotically (see, e.g., [15]). Therefore, αn and pn should satisfy:

µ (n) := αn +
1√
∆t

σEn

(
ξ
(n)
1

)
= r− 1

2
σ2 + o (1)

σ2 (n) := σ2Var
(

ξ
(n)
1

)
= σ2 + o (1)

(3)

Note first that a simple consequence of the requirement Equation (3) is:

pn =
1
2
+ O

(
1√
n

)
, n→ ∞ (4)

A natural aim is to optimize the choices for αn and pn for all types of options and, thus, construct
a uniformly superior tree. Unfortunately, we will see later that the exact forms of the optimal αn and
pn strongly depend on the type of option considered, although they are derived using the same idea.

We now consider the convergence behavior of S(n) to S in distribution and look at the
discretization error:

P
(

S(n)
n ≤ x

)
−Q (S(T) ≤ x) = P

(
S(n)

n ≤ x
)
−Φ (d2) (5)

with d2 := d2 (x) given by:

d2 (x) :=
ln
(

x
s0

)
−
(

r− 1
2 σ2
)

T

σ
√

T
(6)

The asymptotics for Equation (5) has already been provided in [9] and later in [11] based on an
integral representation of binomial sums (see e.g. [16]). This approach was also used in [10] to obtain
an asymptotic expansion for barrier options. Note, however, that this methodology has only been
applied to one-dimensional binomial trees. In this section, we present an alternative approach that
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makes use of an Edgeworth expansion for lattice triangular arrays. The advantage of this approach is
that it can be easily generalized to both multinomial and multidimensional trees and can be extended
to provide any required order of convergence (see, e.g., [17]).

Consider the discrete-time stock price at maturity:

S(n)
n = s0eαnT+σ

√
T 1√

n ∑n
k=1 ξ

(n)
k

To be able to make use of the Edgeworth expansion for lattice triangular schemes as introduced
in [17] and in particular Theorem A1 in Appendix A, we consider:

η
(n)
k =

ξ
(n)
k + 1

2
, k = 1, . . . , n (7)

Note that this yields:

P
(

S(n)
n ≤ x

)
= P

(
1√
n ∑n

k=1

(
ξ
(n)
k − Eξ

(n)
k

)
≤

ln
(

x
s0

)
−µ(n)T

σ
√

T

)

= P

(
1√
n ∑n

k=1

(
η
(n)
k − Eη

(n)
k

)
≤

ln
(

x
s0

)
−µ(n)T

2σ
√

T

)

Remark 1. The change of variables from ξ
(n)
k to η

(n)
k is necessary as the variables ξ

(n)
k take values±1; therefore,

their minimal lattice is 2Z. However, η
(n)
k has a minimal lattice Z and P

(
η
(n)
k ∈ Z

)
= 1. Therefore,

Theorem A1 can be applied to η
(n)
k , but not directly to ξ

(n)
k . This transformation is not the only possibility,

the resulting expansion, however, will remain the same.

By Theorem A1, the following asymptotic expansion holds (see Appendix A for the definition of
the cumulants and for the Lemmas used in the proof).

Corollary 1. Let µn = Eη
(n)
1 , σ2

n = Var η
(n)
1 and κn,ν be the ν-th cumulant of η

(n)
1 . The process S(n) defined

in Equation (2) satisfies:

P
(

S(n)
n ≤ x

)
= Φ0,σ2

n
(yn)−

1√
n

φ0,σ2
n
(yn)

(
S1 (an) +

κn,3

6σ2
n

(
y2

n
σ2

n
− 1
))

+
1
n

φ0,σ2
n
(yn)

1
σn

(
−yn

σn
S2 (an) +

(
S1 (an)

κn,3

3!
+

κn,4

4!

) 1
σ2

n

(
3yn

σn
− y3

n

σ3
n

))
− 1

n3/2 φ0,σ2
n
(yn)

1
σ2

n

(
S3 (an)

(
y2

n
σ2

n
− 1
)
+

+
(

S2 (an)
κn,3

3!
+ S1 (an)

κn,4

4!

) 1
σ2

n

(
y4

n
σ4

n
− 6y2

n
σ2

n
+ 3
))

+ O
(

1
n2

)
(8)

where for µ(n) defined as in Equation (3) and with {z} denoting the fractional part of z:

yn =
ln
(

x
s0

)
− µ (n) T

2σ
√

T
, an = nµn + yn

√
n (9)

S1 (z) = {z} −
1
2

, S2 (z) =
1
2

(
{z}2 − {z}+ 1

6

)
S3 (z) =

1
6

(
{z}3 − 3

2
{z}2 +

1
2
{z}
) (10)
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Proof. By relation Equation (4), the assumption Equation (A1) is satisfied for any s and starting
from some n ∈ N; Lemma A2 is applicable, so the uniform condition Equation (A2) also holds.
Furthermore, by Lemma A1, in the one-dimensional case, we obtain:

P1

(
−Φ0,σ2

n
, κn,ν

)
(yn) = −

κn,3

3!
D3Φ0,σ2

n
(yn) =

κn,3

6σ2
n

(
1− y2

n
σ2

n

)
φ0,σ2

n
(yn)

P2

(
−Φ0,σ2

n
, κn,ν

)
(yn) =

κn,4

4!
D4Φ0,σ2

n
(yn) +

κ2
n,3

2!(3!)2 D6Φ0,σ2
n
(yn)

=

(
κn,4

4!σ3
n

(
3yn

σn
− y3

n

σ3
n

)
−

κ2
n,3

2!(3!)2σ5
n

(
y5

n

σ5
n
− 10y3

n

σ3
n

+
15yn

σn

))
φ0,σ2

n
(yn)

P3

(
−Φ0,σ2

n
, κn,ν

)
(yn) =

κn,5

5!
D5Φ0,σ2

n
(yn) +

κn,4κn,3

3!4!
D7Φ0,σ2

n
(yn) +

κ3
n,3

(3!)4 D9Φ0,σ2
n
(yn) = O

(
1√
n

)

since, due to Equation (4), κn,3, κn,5 = O
(

1√
n

)
, n → ∞. Therefore, by applying Theorem A1 with

s = 5, we get the statement of the corollary.

3. Improving the Convergence Behavior

We will now apply the Edgeworth expansion (Corollary 1) to improve the convergence pattern
of one-dimensional binomial trees.

3.1. Existing Methods in the Literature

As mentioned in [9], the irregularities in the convergence behavior of tree methods can be
explained by the periodic, n-dependent term S1 (an) in Equation (8). Since S1 (an) = {an} − 1

2 does
not have a limit as n goes to infinity and oscillates between − 1

2 and 1
2 , even large values of n do not

guarantee accurate results. As a solution, various methods have been offered to improve convergence
by controlling the S1 function and with that the leading error term. However, basically, they pursue
one of the following goals.

The first one (see, e.g., [8]) is to achieve smooth convergence behavior, so that extrapolation
methods can be applied to increase the order of convergence. The second one (see, e.g., [11])
is to construct the tree such that the leading error term becomes zero, thus increasing the order of
convergence directly. These methods concentrate only on the leading error term allowing one to
increase the order of convergence up to O

(
1
n

)
. However, if we also incorporate the subsequent

terms in expansion Equation (8), it is possible to further improve the convergence behavior. The
optimal drift model (OD model) in [13,15] has an improved rate O

(
1

n3/2

)
for most parameter settings

of interest (the order of convergence depends on solving quadratic equations).

3.2. The 3/2-Optimal Model

We now consider a general setting that includes both the RB and CRR tree and show how
convergence can be improved in this wider class of models.

Note that the problem of optimizing the convergence of the CRR tree to a certain order has
already been addressed by different authors. The aforementioned OD model of Korn and Müller in
[13] allows one to improve convergence up to order O

(
1

n3/2

)
, and the method introduced by Leduc in

[18] for vanilla options can also be adjusted to further improve the distributional fit, as well. However,
these approaches are restricted to risk-neutral probabilities and involve solving quadratic equations,
which rules out certain model parameters. We now present a slightly different approach that involves
only linear equations and is, therefore, applicable to any parameter setting.
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Consider the following model given by:

S(n)
k = S(n)

k−1eαn∆t+σ
√

∆tξ(n)k , k = 1, . . . , n (11)

ξ
(n)
k =

{
1, with probability pn

−1, with probability 1− pn

pn =
1
2
+ c1,n

1√
n
+ c2,n

1
n
+ c3,n

1
√

n3 + c4,n
1
n2 + O

(
1

n5/2

)
αn = k0,n + k1,n

1√
n
+ k2,n

1
n
+ k3,n

1
√

n3 + O
(

1
n2

) (12)

with bounded ci,n, ki,n and:

k0,n +
2σc1,n√

T
= r− 1

2
σ2 (13)

Proposition 1. With an appropriate choice of parameters ci,n, i = 0, . . . , 4 and k j,n j = 0, . . . , 3, the binomial
process S(n) in Equation (11) satisfies:

P
(

S(n)
n ≤ x

)
= Φ (d2) + O

(
1
n2

)
The proof of the proposition and the possible choice of the parameters ci,n, i = 0, . . . , 4 and

k j,n j = 0, . . . , 3 is provided in Appendix B.

Remark 2. The name 3/2-optimal model refers to the optimized convergence up to and including order 3/2,
in the sense that the corresponding coefficients are set to zero.

Remark 3. Other than Equation (13), there are no restrictions on k0,n and c1,n. With k0,n = 0, we are in
the CRR case; for c1,n = 0, we have the RB tree extension. Either way, the order of convergence is O

(
1

n2

)
;

however, k0,n influences the exact convergence pattern. The optimal choice of k0,n is still an open question.

Remark 4. In case risk-neutral probabilities are considered (see, e.g., [15,18]), the coefficients ci,n above
are completely determined by the drift. We have proposed a different approach, where the coefficients of the
probabilities are chosen instead of the drift. This way, we are able to avoid quadratic equations, and hence, we
are able to increase the order of convergence for any parameter setting (see also [12] for an alternative approach).

Remark 5. Since all absolute moments of η
(n)
k are bounded, we can apply Theorem A1 to retrieve subsequent

terms in the asymptotic expansion Equation (8). We are then able to further increase the order of convergence,
by adding more terms to the probability. With the approach described above, all equations will be linear, and
unlike the method in [18], the previous coefficients will remain unaltered.

CRR vs. RB

Consider the following log-log plots with the convergence behavior of the 3/2-optimal RB-based
and CRR-based trees. By Proposition 1, we should see the slope of −2 in the graph. The convergence
is not smooth, and the graph is not a straight line; however, the general trend is present.

Figure 1 suggests that the RB-based model gives a slightly better distributional fit. However,
to compare the performance of the RB-based and the CRR-based variants for different choices of the
coefficient k0,n, we consider a whole set of approximation tasks. The performance will be measured
in term of both the root mean squared (RMS) error and the root mean squared relative (RMSR) error.
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Figure 1. Distributional fit with s0 = 95, x = 100, r = 0.1, σ = 0.25, T = 1.

First, we randomly generate a sample of m parameter vectors π = (s0, x, r, σ, T), following the
procedure described in [19], but allowing a slightly wider range for the parameters.

• The initial asset price s0 is fixed to 100,
• the value x is uniformly distributed between 50 and 150,
• the riskless interest rate r is uniformly distributed between zero and 0.2,
• the volatility σ is uniformly distributed between 0.1 and 0.8,
• the maturity T is chosen uniformly between zero and one years with probability 0.75 and

between one and five years with probability 0.25.

Note that s0 remains fixed, and we only vary x as we are only interested in the ratio x
s0

. Parameter
vectors, for which Φπ (d2(x)) ≤ 10−6, are excluded from the sample to ensure a reliable relative error
estimate. For each n ∈ N and every parameter vector π, let επ

abs (n) and επ
rel (n) denote the absolute

and relative error, respectively, i.e.,

επ
abs (n) = |F

π
n (x)−Φπ (d2(x))| , επ

rel (n) =
επ

abs (n)
Φπ (d2(x))

where Fπ
n and Φπ refer to the distribution functions of the discrete- and continuous-time models,

corresponding to the parameters π. Then, we look at:

RMS(n) =

√
1
m

m

∑
i=1

(
ε

πi
abs (n)

)2, RMSR(n) =

√
1
m

m

∑
i=1

(
ε

πi
rel (n)

)2



Risks 2016, 4, 15 7 of 22

Due to Proposition 1, both errors are of order O
(

1
n2

)
. Consider the following convergence

behavior of the errors, taken over a sample of m = 1000 parameter vectors, 995 of which are included.
For both errors, a maximum of n = 1000 time steps is considered.

Note that the absolute error has a very similar convergence pattern for both models (see Figure 2).
However, Figure 3 suggests that the CRR-optimal tree delivers better results for the relative error.
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Figure 2. RMS(n) and log(RMS(n)) error.
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Figure 3. RMSR(n) and log(RMSR(n)) error.

4. Expansions for Barrier Option Prices

We now apply the above results to improve the convergence behavior for barrier options.
To examine the performance of our new approach, we will focus on the price of an up-and-in

put option with payoff:
(K− S(T))+ 1{S(t)≥B, for some t∈[0,T]}

Prices of other barrier options can be obtained in a similar manner or using the in-out parities
for single barrier options. We assume s0 < B, as otherwise, the barrier option becomes a plain vanilla
option. Let K < B; then, the price of an up-and-in put is given by (see, e.g., [20]):

Vui
P = Ke−rT

(
B
s0

)µ

Φ (d3)− s0

(
B
s0

)µ+2
Φ (d4)

where µ = 2r
σ2 − 1 and:

d3 =
log
(

Ks0
B2

)
−
(

r− 1
2 σ2
)

T

σ
√

T
, d4 = d3 − σ

√
T

Lattice methods for barrier options have a very irregular convergence behavior due to the
position of the barrier. This phenomenon, as well as possible solutions have been studied by various
authors; see, for example, [5,6,21], etc. A first order asymptotic expansion for binomial trees has been
obtained in [22]. An expansion for barrier options with coefficients up to order O

(
1

n3/2

)
has already

been provided in [10]. Here, we show how the Edgeworth expansion (Corollary 1) can be used to
increase the order of convergence to O

(
1

n3/2

)
.

4.1. Binomial Trees for Barrier Options

Consider the model:
S(n)

k = S(n)
k−1eσ

√
∆tξ(n)k , k = 1 . . . , n (14)

with the probability of an up-jump given by:

pn =
1
2
+ c1,n

1√
n
+ c2,n

1
n
+ c3,n

1
√

n3 (15)
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where:

c1,n =
r− 1

2 σ2

2σ

√
T

and c2,n, c3,n are bounded. We set:

Vui
n = En

(
e−rT

(
K− S(n)

n

)
1{

max1≤k≤n S(n)
k ≥B, S(n)

n ≤K
})

Let:

aK
n =

log
(

K
s0

)
σ
√

∆t
, aB

n =
log
(

B
s0

)
σ
√

∆t
, lB

n =
⌈

aB
n

⌉
Then,

{
−aB

n
}

is the overshoot of the barrier in the discrete model (Figure 4).

Figure 4. Dynamics of ∑n
i=1 ξ

(n)
i .

Therefore, we get:

Vui
n = ∑

x≤aK
n

En

(
e−rT

(
K− s0eσ

√
∆t ∑n

i=1 ξ
(n)
i

)
1{

max1≤k≤n ∑k
i=1 ξ

(n)
i ≥aB

n , ∑n
i=1 ξ

(n)
i =x

})

= e−rTK ∑
x≤aK

n

P

(
max

1≤k≤n

k

∑
i=1

ξ
(n)
i ≥ lB

n ,
n

∑
i=1

ξ
(n)
i = x

)

− s0 ∑
x≤aK

n

e−rT+σ
√

∆t·xP

(
max

1≤k≤n

k

∑
i=1

ξ
(n)
i ≥ lB

n ,
n

∑
i=1

ξ
(n)
i = x

) (16)

To calculate the probabilities in Equation (16), we need the following lemma that makes use of
the reflection principle for a simple random walk. Its proof is similar to that of the continuous-time
analogue and can be found in [17].
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Lemma 1. Let Sn := X1 + · · ·+ Xn, where Xi are i.i.d, Xi = ±1 with probabilities p and q. Then:

P
(

max
1≤k≤n

Sk ≥ b, Sn = x
)
=


(

p
q

)b
P (Sn = x− 2b) , if x < b

P (Sn = x) , if x ≥ b

(17)

Substituting Lemma 1 into Equation (16), we get:

e−rTK ∑
x≤aK

n

P

(
max

1≤k≤n

k

∑
i=1

ξ
(n)
i ≥ lB

n ,
n

∑
i=1

ξ
(n)
i = x

)

= e−rTK
(

p
q

)lB
n

∑
x≤aK

n

P

(
n

∑
i=1

ξ
(n)
i = x− 2lB

n

)
= e−rTK

(
p
q

)lB
n

P

(
n

∑
i=1

ξ
(n)
i ≤ aK

n − 2lB
n

)

To get the dynamics of the second term in Equation (16), we need to perform a suitable change
of measure. Let:

λn,k = e(−r)∆t+σ
√

∆tξ(n)k , k = 1, . . . , n

and:
Mn = E (λn,1) (18)

We can now define new transition probabilities for ξ
(n)
k , k = 1, . . . , n. Let the new probabilities of

an up-jump p̃n and a down-jump q̃n be:

p̃n =
e(−r)∆t+σ

√
∆t pn

Mn
(19)

q̃n =
e(−r)∆t−σ

√
∆t(1− pn)

Mn
(20)

Note that p̃n, q̃n are well defined, starting from some n ∈ N, and p̃n + q̃n = 1. The new probability
measure P̃n is now defined as:

P̃n (ω1, . . . , ωn) = p̃nu(ω1,...,ωn)
n · q̃nd(ω1,...,ωn)

n

=

(
e(−r)∆t+σ

√
∆t pn

Mn

)nu(ω1,...,ωn) (
e(−r)∆t−σ

√
∆t(1− pn)

Mn

)nd(ω1,...,ωn)

=
n

∏
k=1

λn,k (ωk)

Mn
Pn (ω1, . . . , ωn)

(21)

where ωk ∈ {−1, 1}, k = 1, . . . n and nu (ω1, . . . , ωn) and nd (ω1, . . . , ωn) are the numbers of ones and
−1’s in the sequence (ω1, . . . , ωn). Therefore, the Radon–Nikodým derivative of P̃n with respect to Pn

is given by:

Λn =
n

∏
k=1

λn,k

Mn
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All conditions for a change of measure are now satisfied, and we arrive at:

s0 ∑
x≤aK

n

e−rT+σ
√

∆t·xP

(
max

1≤k≤n

k

∑
i=1

ξ
(n)
i ≥ lB

n ,
n

∑
i=1

ξ
(n)
i = x

)

= s0

(
p
q

)lB
n

∑
x≤aK

n

e−rT+σ
√

∆t·xP

(
n

∑
i=1

ξ
(n)
i = x− 2lB

n

)

= s0

(
p
q

)lB
n

e2lB
n σ
√

∆t Mn
n P̃

(
n

∑
i=1

ξ
(n)
i ≤ aK

n − 2lB
n

)

As a result, we obtain:

Vui
n = e−rTK

(
p
q

)lB
n

P

(
n

∑
i=1

ξ
(n)
i ≤ aK

n − 2lB
n

)

− s0

(
p
q

)lB
n

e2lB
n σ
√

∆t Mn
n P̃

(
n

∑
i=1

ξ
(n)
i ≤ aK

n − 2lB
n

) (22)

Proposition 2. With an appropriate choice of coefficients c2,n and c3,n, the binomial model in
Equation (14) satisfies:

Vui
n = Vui + O

(
1
√

n3

)

The proof of the proposition and the possible choice of the coefficients c2,n and c3,n are provided
in Appendix C. We call the resulting modified binomial tree the 1-optimal tree.

Remark 6. Consider the leading error coefficient in Equation (C9). Note that g1,n, g2,n are constant; therefore,
the oscillatory convergence behavior is due to the overshoot of the barrier

{
−aB

n
}

. The relative position of the
strike with respect to the two neighboring nodes at maturity does not enter into the expression. The strike
is only present starting from the O

(
1
n

)
coefficient in the term S1(an) together with the barrier in quadratic

form. Therefore, the position of the barrier will have a much stronger effect on the convergence pattern than the
position of the strike (see also [10]).

4.2. Numerical Results

We now consider the convergence pattern of a specific barrier option.

Remark 7. Note that as in the CRR tree, we have c2,n = 0; the leading error coefficient in Equation (C9)
becomes

{
−aB

n
}

g2,n, where 0 <
{
−aB

n
}
≤ 1. Therefore, the binomial tree will either overestimate or

underestimate the BS price for all n, depending on the sign of g2,n, as can be seen in Figures 5 and 6.

CRR vs. RB

For barrier options, we have a different behavior for the RB and the CRR trees. Expansions for
the RB tree cannot be obtained with the method described above, since the reflection principle is
directly applicable only to the CRR tree; however, numerical results show that the RB tree has a much
smoother convergence compared to the CRR tree. This can be explained by the fact that, as the CRR
tree is symmetric around zero in the log-scale, the overshoot of the barrier

{
−aB

n
}

is the same for each
time step. Therefore, with an increase of n, a whole row of nodes becomes out-of-the-money. The RB
tree, on the other hand, is tilted; therefore, this effect is not that pronounced.

See Figure 5 for the numerical illustration of this behaviour.
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Figure 5. CRR vs. RB: up-and-in barrier put, T = 1, r = 0.1, σ = 0.25, s0 = 100, K = 110, B = 120.
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Figure 6 illustrates the superior behaviour of the 1-optimal tree compared to the CRR-tree.
Due to the smooth convergence pattern, we can apply extrapolation to the RB tree to increase the

order of convergence(see Figure 7).

0 500 1000 1500 2000 2500 3000 3500 4000

1.25

1.3

1.35

1.4

1.45

n

p
ri
c
e

 

 

BS 

RB

RB with Extrapolation

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

log(n)

lo
g

(r
e

la
ti
v
e

 e
rr

o
r)

 

 

RB

RB with Extrapolation

Order 1/2

Order 1

Figure 7. RB with extrapolation: up-and-in barrier put with T = 1, r = 0.1, σ = 0.25, s0 = 100,
K = 110, B = 120.

Although the RB tree with extrapolation outperforms the CRR tree, the 1-optimal tree
outperforms the two others by far. This observation is summarized in Table 1 below.

Table 1. Convergence behaviour of CRR, RB with extrapolation and the 1-optimal tree.

Parameters n CRR Tree RB Extrapolation 1-Optimal BS Value

T = 1 100 1.0370950 1.2728844 1.3071811 1.3714613
s0 = 100 200 1.1428755 1.3064705 1.3528020

K = 110, B = 120 500 1.2210427 1.3667218 1.3668495
σ = 0.25 1000 1.2248525 1.3608690 1.3671287
r = 0.1 2000 1.3285299 1.3731534 1.3713814

4000 1.3018025 1.3696310 1.3710375

5. Conclusions

We have considered applications of the Edgeworth expansions to one-dimensional tree models in
the Black–Scholes setting. We have seen how expansions can be obtained for barrier options and how
these results can be used to improve convergence behavior. For applications to digital and European
options, as well as multidimensional trees, see [17].
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Once again, we consider the binomial method as a purely numerical approach and do not restrict
ourselves to the equivalent martingale measure in the binomial setting. This gives us more freedom
in the construction of the advanced trees, as it allows one to choose the probabilities, as well as the
drift of the tree. Nevertheless, the expansions obtained in the proofs of the propositions above hold
for a very general setting and can also be applied to trees under the risk-neutral measure.

Author Contributions: Both authors contributed to all aspects of this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Edgeworth Expansion

We consider a triangular array of lattice random vectors Xn,1, Xn,2, . . . , Xn,n defined on the
probability spaces (Ωn,Fn, Pn), with common minimal lattice Zd s.t.:

E (Xn,1) = µn, Cov (Xn,1) = Vn, P
(

Xn,1 ∈ Zd
)
= 1 and

ρn,s+1 = E ‖Xn,1 − µn‖s+1 = O (1) , for some integer s ≥ 2
(A1)

where the sequence of positive-definite covariance matrices {Vn} converges to a positive-definite
limit matrix V.

For each n ∈ N, let Sn be the normalized sum

Sn =
Xn,1 + · · ·+ Xn,n − nµn√

n

Since ρn,s+1 < ∞, starting from some n ∈ N, then the cumulants of Pn, κn,ν, of order ν, |ν| ≤ s+ 1,
exist and can be obtained from the Taylor expansion of the logarithm of the characteristic function ψPn

as:
i|ν|κn,ν = (Dν log ψPn) (0)

There exists a one-to-one correspondence between the cumulants and the moments of a
distribution. In the theory of Fourier transforms, cumulants are the preferred choice due to their
additivity. For a further discussion, please refer to [17,23].

A detailed description of Edgeworth expansions for various types of distributions, including
lattice distributions, is provided in [23]. The following theorem is an extension for lattice triangular
arrays, applicable to binomial trees with n-dependent transition probabilities.

Theorem A1. Let E(C) =
{

t ∈ Rd : ‖t‖ ≤ C
}

and F ∗ be a fundamental domain of
(
Zd
)∗

. Under
condition Equation (A1), if for all constants C > 0, s.t. F ∗ \ E(C) is non-empty, the characteristic functions
of Xn,1, ψXn,1 , satisfy the condition:

NC := sup
{∣∣∣ψXn,1 (t)

∣∣∣ : t ∈ F ∗ \ E(C), n ∈ N
}
< 1 (A2)

then the distribution function of Sn satisfies:

sup
x∈Rd

∣∣∣∣∣∣P (Sn ≤ x)− ∑
|α|≤s−2

n−|α|/2 (−1)|α| Sα

(
nµn +

√
nx
)
(DαΦ0,Vn) (x)

− n−1/2 ∑
|α|≤s−3

n−|α|/2 (−1)|α| Sα

(
nµn +

√
nx
)
(DαP1 (−Φ0,Vn , {κn,ν})) (x)

− · · · − n−(s−2)/2Ps−2 (−Φ0,Vn , {κn,ν})
∣∣∣ = O

(
n−(s−1)/2

)
(A3)
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where Pj (−Φ0,Vn , {κn,ν}) is the finite signed measure on Rd whose density is Pj (−φ0,Vn , {κn,ν}) defined in
Lemma A1 and Sα (x) = Sα1 (x1) · · · Sαk (xd), with the periodic functions Sj obtained from the Fourier series:

Sj (x) =


(−1)j/2−1 ∑∞

n=1
2 cos(2nπx)

(2nπ)j , j even , j > 0

(−1)(j−1)/2 ∑∞
n=1

2 sin(2nπx)
(2nπ)j , j odd

for x ∈ R \Z.

For details, please refer to [23,24]:

Lemma A1. Pr (−φ0,V , {κν}) is a polynomial multiple of φ0,V and can be written as:

Pr (−φ0,V , {κν}) =
r

∑
m=1

1
m! ∑

j1,...,jm

(
∑

ν1,...,νm

κν1 · · · κνm

ν1! · · · νm!
(−1)r+2m Dν1+···+νm φ0,V

)

where ∑j1,...,jm is the summation over all m-tuples of positive integers (j1, . . . , jm) satisfying ∑m
i=1 ji = r

and ∑ν1,...,νm is the summation over all m-tuples of nonnegative integral vectors (ν1, . . . , νm) s.t. |νi| = ji + 2,
i = 1, . . . , m.

For details, see [23]. The following lemma gives a sufficient condition for Equation (A2),
which holds for multidimensional and multinomial trees. Compare also [25].

Lemma A2. Let ξn,1, . . . , ξn,n ∈ Rd, n ∈ N be a triangular array of lattice random vectors with a common
minimal lattice L and support S =

{
x ∈ Rd

∣∣∣ px,n := P (ξn,1 = x) > 0
}

, |S| = m. If for each x ∈ S, there
exists a constant Kx > 0, such that:

px,n ≥ Kx, n ∈ N

then for all constants C > 0, s.t. F ∗ \ E(C) is non-empty:

NC := sup
{∣∣∣ψξn,1 (t)

∣∣∣ : t ∈ F ∗ \ E(C), n ∈ N
}
< 1 (A4)

Here, F ∗ is the fundamental domain of L∗, and E(C) is defined as in Theorem A1.

Proof. Since S has a finite number of elements, define K := min {Kx, x ∈ S}. Then:

ψξn,1 (t) = ∑
x∈S

ei〈t,x〉px,n = ∑
x∈S

ei〈t,x〉 (px,n − K) + ∑
x∈S

ei〈t,x〉K

= ∑
x∈S

ei〈t,x〉 (px,n − K) + Km ∑
x∈S

ei〈t,x〉 1
m

Set:
ψ (t) := ∑

x∈S
ei〈t,x〉 1

m

which is the characteristic function of an m-nomial random vector that has the same support S,
but assigns an equal probability 1

m to each attainable value. Note that ψ (t) is independent of n,
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and for any constant C > 0, δ (C) := |ψ (t)| < 1, for t ∈ F ∗ \ E (C). Then, since px,n ≥ Kx ≥ K,
for all x ∈ S, ∣∣∣ψξn,1 (t)

∣∣∣ ≤ ∑
x∈S

(px,n − K) + Km |ψ (t)|

= ∑
x∈S

px,n + Km (δ (C)− 1) = 1− Km (1− δ (C)) := ε (C)

Since δ (C) < 1, we have
∣∣∣ψξn,1 (t)

∣∣∣ ≤ ε (C) < 1 for all n ∈ N and t ∈ F ∗ \ E (C). Therefore,
we have shown Equation (A4).

Appendix B. Proof of Proposition 1

In order to get an expansion of all of the required terms in Corollary 1, we need to consider
the asymptotics of the standard normal distribution and density functions. For a fixed z ∈ R and
sequences εn:

εn = e1,n
1√
n
+ e2,n

1
n
+ e3,n

1
n3/2 + O

(
1
n2

)
with bounded ei,n, by applying Taylor’s theorem, we get the following expansions up to order 3/2:

Φ (z + εn) = Φ (z) +
1√
n

φ (z) e1,n +
1
n

φ (z)
(

e2,n −
1
2

ze2
1,n

)
+

1
n3/2 φ (z)

(
e3,n − ze1,ne2,n +

1
6
(z2 − 1)e3

1,n

)
+ O

(
1
n2

) (B1)

φ (z + εn) = φ (z)− 1√
n

φ (z) ze1,n +
1
n

φ (z)
(
−ze2,n +

1
2
(z2 − 1)e2

1,n

)
+

1
n3/2 φ (z)

(
−ze3,n + (z2 − 1)e1,ne2,n +

1
6
(3z− z3)e3

1,n

)
+ O

(
1
n2

) (B2)

Proposition B1. We use the notation of Corollary 1. Given Equation (12), we get the
following dynamics:

µ (n) = r− 1
2

σ2 + m1
σ√
T

1√
n
+ m2

σ√
T

1
n
+ m3

σ√
T

1
√

n3 + O
(

1
n2

)
with:

mi =

(
ki,n +

2σci+1,n√
T

) √
T

σ
, i = 1, 2, 3 (B3)

and:

σ2
n = pn − (pn)

2 =
1
4
− c2

1,n
1
n
− 2c1,nc2,n

1
√

n3 + O
(

1
n2

)
Therefore, by the binomial series theorem (Taylor series at zero for (1 + x)α, α ∈ R):

1
2σn

= 1 + 2c2
1,n

1
n
+ 4c1,nc2,n

1
√

n3 + O
(

1
n2

)
and as a result, for yn as in Equation (9), we get:

yn

σn
= d2 −m1

1√
n

+
(

2d2c2
1,n −m2

) 1
n
+
(

4d2c1,nc2,n −m3 − 2c2
1,nm1

) 1
√

n3 + O
(

1
n2

) (B4)
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Then, by Equations (B1) and (B2), we obtain:

Φ0,σ2
n
(yn) = Φ (d2)−

1√
n

φ(d2)m1 +
1
n

φ(d2)

(
2d2c2

1,n −m2 −
1
2

d2m2
1

)
+

1
√

n3 φ(d2)

(
4d2c1,nc2,n −m3 − d2m1m2 +

(
d2

2 − 1
)

m1

(
2c2

1 −
1
6

m2
1

))
+ O

(
1
n2

)

φ0,σ2
n
(yn) = φ (d2) +

1√
n

φ(d2)d2m1

+
1
n

φ(d2)

(
m2d2 − 2d2

2c2
1,n +

1
2

(
d2

2 − 1
)

m2
1

)
+ O

(
1
√

n3

)

Let µn,ν, ν ∈ Z denote the ν-th moment of η
(n)
1 . Then, the cumulants can be represented in terms

of moments (see, e.g., [17], Section 3.2) as:

κn,3 = µn,3 − 3µn,1µn,2 + 2µ3
n,1 = −1

2
c1,n

1√
n
− 1

2
c2,n

1
n
+ O

(
1
√

n3

)

κn,4 = µn,4 − 4µn,3µn,1 − 3µ2
n,2 + 12µn,2µ2

n,1 − 6µ4
n,1 = −1

8
+ O

(
1
n

)
Substituting the above expansions into Equation (8), we get:

P
(

S(n)
n ≤ x

)
= Φ (d2)−

1√
n

φ(d2) f1 (αn, pn) +
1
n

φ(d2) f2 (αn, pn)

+
1
√

n3 φ(d2) f3 (αn, pn) + O
(

1
n2

) (B5)

where:

f1 (αn, pn) := m1 + 2S1 (an)

f2 (αn, pn) := −m2 + 2d2c2
1,n +

2
3

c1,n

(
d2

2 − 1
)
+

d3
2 − d2

12
− d2

2
(m1 + 2S1 (an))

2

f3 (αn, pn) := −m3 + 4d2c1,nc2,n +
2
3

c2,n

(
d2

2 − 1
)
− 8S3 (an)

(
d2

2 − 1
)

− 1
6

m1

((
d2

2 − 1
)

m2
1 +

(
d2

2 − 1
)

m1S1 (an) + 4S2 (an)
(

d2
2 − 1

))
− (m1 + 2S1 (an))

(
2c2

1,n

(
1− d2

2

)
+ d2m2 + 2c1,nd2 −

2
3

c1,nd3
2

− 1
12

(
d4

2 − 6d2
2 + 3

))

(B6)

The goal now is to choose the coefficients ci,n, ki,n, so that fi = 0, i = 1, 2, 3. As there are more
variables than equations, there are various ways of doing that. Set k2,n = k3,n = 0, and choose c2,n
such that f1 (αn, pn) = 0 is satisfied, i.e.,

2S1 (an) +

(
k1,n +

2σc2,n√
T

) √
T

σ
= 0

⇔
ln
(

x
s0

)
− k0,nT

2σ
√

∆t
+

n
2
− 1

2
+ c2,n =

 ln
(

x
s0

)
− k0,nT − k1,n

T√
n

2σ
√

∆t
+

n
2
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The above equation is solved by:

c2,n =
1
2
−

 ln
(

x
s0

)
− k0,nT

2σ
√

∆t
+

n
2

 (B7)

and k1,n taking any of the following values:

− 2σc2,n√
T
− σ√

T
< k1,n ≤ −

2σc2,n√
T

+
σ√
T

(B8)

The other terms in Equation (B5) become:

f2 (αn, pn) = −2c3,n + 2d2c2
1,n +

2
3

c1,n

(
d2

2 − 1
)
+

d3
2 − d2

12

f3 (αn, pn) = −2c4,n + 4d2c1,nc2,n +
2
3

c2,n

(
d2

2 − 1
)

− 8S3 (an)
(

d2
2 − 1

)
− 1

6

(
d2

2 − 1
) (

m3
1 −m1

)
where we have used S2 (an) =

1
2

(
S2

1 (an)− 1
12

)
(see Equation (10)). Therefore, if we set:

c3,n = d2c2
1,n +

1
3

c1,n

(
d2

2 − 1
)
+

d3
2 − d2

24
(B9)

and:

c4,n = 2d2c1,nc2,n +
1
3

c2,n

(
d2

2 − 1
)
− 4S3 (an)

(
d2

2 − 1
)

− 1
12

(
d2

2 − 1
) (

m3
1 −m1

) (B10)

all chosen coefficients are bounded, f2 and f3 vanish and we get the statement of the proposition.

Remark B1. k1,n can be chosen freely, as long as Equation (B8) is satisfied. We will usually choose
k1,n = − 2σc2,n√

T
, since in this case, m1 = 0, S3 (an) = 0, and therefore, the values assigned to c3,n and

c4,n have a simpler form and require less computations.

Appendix C. Proof of Proposition 2

Proposition C1. Note:

P

(
n

∑
i=1

ξ
(n)
i ≤ aK

n − 2lB
n

)
= P

(
1√
n

n

∑
i=1

(
η
(n)
i − µn

)
≤ yn

)

where η
(n)
i is defined as in Equation (7), µn = En

(
η
(n)
i

)
and:

yn =
log
(

Kso
B2

)
− µ (n) T

2σ
√

T
−
{
−aB

n
}

√
n

From Equation (15), we get:

µ (n) = r− 1
2

σ2 +
2c2,nσ√

T
1√
n
+

2c3,nσ√
T

1
n
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and following the proof of Proposition 1, we get:

yn

σn
= d3 −

2√
n

({
−aB

n

}
+ c2,n

)
+

2
n

(
2d3c2

1,n − 2c3,n

)
+ O

(
1
√

n3

)

and:

P

(
n

∑
i=1

ξ
(n)
i ≤ aK

n − 2lB
n

)
= Φ (d3)−

2√
n

φ(d3)
({
−aB

n

}
+ c2,n + S1 (an)

)
+

2
n

φ(d3)

(
−c3,n + d3c2

1,n +
1
3

c1,n(d2
3 − 1) +

d3
3 − d3

24

−d3

({
−aB

n

}
+ c2,n + S1 (an)

)2
)
+ O

(
1
√

n3

) (C1)

where an =
log
(

Ks0
B2

)
2σ
√

∆t
+ n

2 −
{
−aB

n
}

. Similarly, we deduce:

µ̃ (n) = r +
1
2

σ2 +
2c̃2,nσ√

T
1√
n
+

2c̃3,nσ√
T

1
n

and:

P̃

(
n

∑
i=1

ξ
(n)
i ≤ aK

n − 2lB
n

)
= Φ (d4)−

2√
n

φ(d4)
({
−aB

n

}
+ c2,n + S1 (an)

)
+

2
n

φ(d4)

(
−c̃3,n + d4 c̃2

1,n +
1
3

c̃1,n(d2
4 − 1) +

d3
4 − d4

24

−d4

({
−aB

n

}
+ c2,n + S1 (an)

)2
)
+ O

(
1
√

n3

) (C2)

e2lB
n σ
√

∆t =

(
B
s0

)2
e2{−aB

n}σ
√

∆t

=

(
B
s0

)2 (
1 +

1√
n

2σ
√

T
{
−aB

n

}
+

1
n

2σ2T
{
−aB

n

}2
)
+ O

(
1
√

n3

) (C3)

Further, a Taylor expansion yields:

(
p
q

)lB
n

=

(
B
s0

)µ
(

1 +
4√
n

(
c1,n

{
−aB

n

}
+ c2,n

log B
s0

σ
√

T

))

+
4
n

c2,n

{
−aB

n

}
−

log B
s0

σ
√

T

(
2
3

c3
1,n − c3,n

)
+ 2

(
c1,n

{
−aB

n

}
+ c2,n

log B
s0

σ
√

T

)2


+ O

(
1
√

n3

)
(C4)

Mn in Equation (18) satisfies:

Mn = 1+
1
√

n3 σ
√

Tm1 +
1
n2

(
σ
√

Tm2 − 2σ2T
(

c1,n +
1
6

σ
√

T
)2
− 1

36
σ4T2

)

+
1
√

n5

(
σ
√

Tm3 − 4σ2c1,nc2,nT − 2
3

c2,nσ3
√

T
3
)
+ O

(
1
n3

) (C5)
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with mi, i = 1, . . . , 3 as in Equation (B3). To get the asymptotics of Mn
n , consider the binomial formula:

(1 + x)n =
n

∑
k

xk

(
n
k

)

= 1 + nx +
n(n− 1)

2
x2 +

n(n− 1)(n− 2)
6

x3 +
n

∑
k=4

xk

(
n
k

) (C6)

If x = O
(

n−
3
2

)
, then ∑n

k=4 xk

(
n
k

)
= O

(
1

n2

)
. Indeed,

n2 ·
n

∑
k=4

(
O
(

n−
3
2

))k
(

n
k

)
= n2 ·

n−4

∑
k=0

(
O
(

n−
3
2

))k+4
(

n
k + 4

)

≤ n2 · n4

4!

(
O
(

n−
3
2

))4 n−4

∑
k=0

(
O
(

n−
3
2

))k
(

n− 4
k

)

≤ C
(

1 + O
(

n−
3
2

))n−4

The last expression is convergent and, therefore, bounded, and we have the necessary result.
If we now substitute Equation (C5) into Equation (C6), we get:

Mn
n = 1 + a1,n

1√
n
+ a2,n

1
n
+ a3,n

1
√

n3 + O
(

1
n2

)
(C7)

where:

a1,n = σ
√

Tm1

a2,n = σ
√

Tm2 − 2σ2T
(

c1,n +
1
6

σ
√

T
)2
− 1

36
σ4T2 +

1
2

σ2Tm2
1

a3,n = σ
√

Tm3 − 4σ2c1,nc2,nT − 2
3

c2,nσ3
√

T
3

+ σ
√

Tm1

(
σ
√

Tm2 − 2σ2T
(

c1,n +
1
6

σ
√

T
)2
− 1

36
σ4T2

)
+

1
6

m3
1σ3
√

T
3

(C8)

Substituting Equations (C1)–(C4) and (C7) into Equation (22) and using s0φ (d4) = Ke−rTφ(d3),
we get:

Vui
n = Vui − 1√

n

(
c2,ng1,n +

{
−aB

n

}
g2,n

)
+

1
n
(g3,n − c3,ng1,n) + O

(
1
√

n3

)
(C9)

where:

g1,n = 2σ
√

Ts0

(
B
s0

)µ+2
Φ (d4)− 4Vui log

(
B
s0

)
/(σ
√

T)

g2,n = 2σ
√

Ts0

(
B
s0

)µ+2
Φ (d4)− 4Vuic1,n

g3,n = σ
√

Ts0

(
B
s0

)µ+2

(φ (d4) h1,n −Φ (d4) h2,n) + 4Vuih3,n
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and:

h1,n = −2c2
1,n − c1,n

(
σ
√

T +
d3 + d4

3

)
− 1

8
σ2T +

1
4
−

d2
3

8
+

d2
4

24
− 2

({
−aB

n

}
+ c2,n + S1 (an)

)2

+ 4
({
−aB

n

}
+ c2,n

) ({
−aB

n

}
+ c2,n + S1 (an)

)
h2,n = 2σ

√
T
({
−aB

n

}
+ c2,n

)2
− 2σ

√
T(c1,n +

1
6

σ
√

T)2 − 1
36

σ3
√

T
3

+ 8
({
−aB

n

}
+ c2,n

)(
c1,n

{
−aB

n

}
+ c2,n

log B
s0

σ
√

T

)

h3,n = c2,n

{
−aB

n

}
−

2 log
(

B
s0

)
3σ
√

T
c3

1,n + 2

(
c1,n

{
−aB

n

}
+ c2,n

log B
s0

σ
√

T

)2

Therefore, if g1,n 6= 0, then by setting:

c2,n = −
{
−aB

n
}

g2,n

g1,n
, c3,n =

g3,n

g1,n

we get the assertion of the proposition.
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