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Abstract: Traditionally, actuaries have used run-off triangles to estimate reserve (“macro” models, on
aggregated data). However, it is possible to model payments related to individual claims. If those
models provide similar estimations, we investigate uncertainty related to reserves with “macro”
and “micro” models. We study theoretical properties of econometric models (Gaussian, Poisson and
quasi-Poisson) on individual data, and clustered data. Finally, applications in claims reserving
are considered.

Keywords: loss reserving; clustering; generalized linear mixed models

1. Introduction

1.1. Macro and Micro Methods

For more than a century, actuaries have been using run-off triangles to project future payments,
in non-life insurance. In the 1930s, [1] formalized this technique that originated from the popular chain
ladder algorithm. In the 1990s, [2] proved that the chain ladder estimate can be motivated by a simple
stochastic model, and later on [3] provided a comprehensive overview on stochastic models that can
be connected with the chain ladder method, including regression models that could be seen as extension
of the so-called “factor” methods used in the 1970s.

The terminology of [4] and [5] were used in macro-level models for reserving. In the
1970s, [6] suggested using some marked point process of claims to project future payments,
and quantify the reserves. More recently, [7–10] or [11] (among many others) investigated further
some probabilistic micro-level models. These models handle claims related data on an individual
basis, rather than aggregating by underwriting year and development period. As mentioned in [12],
these methods have not (yet) found great popularity in practice, since they are more difficult to
apply. Nevertheless, several papers address that issue, with several stochastic processes to model the
dynamics of payments, such as [13]—extended in [14,15] or [16], and more recently [17] and [18].

All macro-level models are based on aggregate data found in a run-off triangle, which is their strength,
but also probably their weakness. Indeed, with regulation rules, such as Solvency II or IFRS 4—Phase
2 norms, the goal is no longer to get (only) a best-estimate, but it becomes necessary to have the full
conditional distribution of future cash-flows.

Macro-level approaches, such as the popular chain ladder model, have undeniable properties.
Those models are part of the actuarial folklore and extensions have been derived to have more
general and more realistic models. They are easy to understand, and can be mentioned in financial
communication, without disclosing too much information. From a computational perspective,
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those models can also be implemented in a single spreadsheet and more advanced libraries, such as
the ChainLadder package in R can also beused.

Nevertheless, those macro-level models have also major drawbacks, as discussed for instance
in [16] or [17], and references therein. More specifically, we wish to highlight two important points:

• Those models neglect a lot of information that is available on a micro-level (per individual claim).
Some additional covariates can be used, as well as exposure, etc. In most applications, not only is
that information available, but usually, it has a valuable predictive power. To use that additional
information, one cannot simply modify macro-level models, and it is necessary to change the
general framework of the model. It becomes possible to emphasize large losses and to distinguish
them from regular claims, to get more detailed information about future payments, etc.

• As discussed in this paper, macro-level models on aggregated data can be seen as models on
clusters and not on individual observations, as we will do with micro-level models. In the context
of macro-level models for loss reserving, [3] mention that prediction errors can be large, because of
the small number of observations used in run-off triangles and the fact that clusters are usually
not homogeneous. Quantifying uncertainty in claim reserving methods is not only important
in actuarial practice and to assess accuracy of predictive models, it is also a regulatory issue.
Finally, a small sample size can cause a lack of robustness and a risk of over-parametrization for
macro-level models.

On the other hand, micro-level models have many pros. They can incorporate micro-level covariates,
and model micro-structure of claims development. Thus, they can take into account heterogeneity,
structural changes, etc. (see [19] for a discussion). Several studies, with empirical comparisons between
macro- and micro-level models (see, e.g., [17]), illustrate that in many scenarios, reserves obtained with
micro-level models have higher precision than macro-level ones. Further, since those models are fitted
on much more data than aggregated ones, variability of predictions is usually smaller, which increases
model robustness and reduces the risk of over-fitting. More specifically, [15] and [16] obtained, on real
data analysis, lower variance on the total amount of reserves with “micro” models than with “macro” ones.
A natural question is about the generality of such result. Should “micro” model generate less variability
than standard “macro” ones? That is the question that initiated this paper.

1.2. Agenda

In Section 2, we detail intuitive results we expect when aggregating data by clusters, moving from
micro-level models to macro-level ones. More precisely, we explain why with a linear model and
a Poisson regression, macro- and micro-level models are equivalent. We also discuss the case of the
Poisson regression model with random intercept. In Section 3, we study “micro” and “macro” models
in the context of claims reserving, on real data, as well as simulated ones. More specifically, we present
a methodology that allows to generate—by random generation—some micro-datasets obtained from
macro-datasets. We investigate also the impact of adding micro-type covariates, allowing for various
types of correlations. Finally, we present concluding remarks in Section 4.

2. Clustering in Generalized Linear Mixed Models

In the economic literature, several papers discuss the use of “micro” vs. “macro” data, for instance
in the context of unemployment duration in [20] or in the context of inflation in [21]. In [20], it is
mentioned that both models are interesting, since “micro” data can be used to capture heterogeneity
while “macro” data can capture cycle and more structural patterns. In [21], it is demonstrated that both
heterogeneity and aggregation might explain the persistence of inflation at the macroeconomic level.

In order to clarify notation, and make sure that objects are well defined, we use small letters for
sample values, e.g., yi, and capital letters for underlying random variables, e.g., Yi in the sense that
yi is a realisation of random variable Yi. Hence, in the case of the linear model (see Subsection 2.1),
we usually assume that Yi ∼ N (xT

i b, σ2), and then b̂ is the vector of estimated parameters, in the sense
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that b̂ = (xxT)−1xy while B̂ = (xxT)−1xY (here covariates x are given, and non stochastic). Since B̂ is
seen as a random variable, we can write E[B̂] = b.

With a Poisson regression, Yi ∼ P(λi) with λi = exp[xT
i b]. In that case, Var[Yi] = E[Yi] = λi.

The estimate parameter b̂ is a function of the observations, (xi, yi)’s, while B̂ is a function of the
observations xi and of the random variable Y i. In the context of the Poisson regression, recall that
E[B̂]→ b as n, the number of observations, goes to infinity. With a quasi-Poisson regression, Yi does
not have, per se, a proper distribution. Nevertheless, its moments are well defined, in the sense that
Var[Yi] = ϕE[Yi] = ϕλi, where ϕ denotes the dispersion parameter (see Subsection 2.2). For convenience, we
will denote Yi ∼ qP(λi), with an abuse of notation.

In this section, we will derive some theoretical results regarding aggregation in econometric models.

2.1. The Multiple Linear Regression Model

For a (k + 1)× 1 vector of parameters a, we consider a (multiple) linear regression model,

yi,g = xT
g a + εi,g (1)

a =
[

a1 . . . ak+1

]T
xg =

[
xg,1 . . . xg,k+1

]T
where observations belong to a cluster g and are indexed by i within a cluster g, i = 1, . . . , ng,
g = 1, . . . , m. Assume further assumptions of the classical linear regression model [22], i.e.,

(LRM1) no multicollinearity in the data matrix;
(LRM2) exogeneity of the independent variables E

[
εi,g|xg

]
= 0, i = 1, . . . , ng, g = 1, . . . , m; and

(LRM3) homoscedasticity and nonautocorrelation of error terms with Var
[
εi,g
]
= σ2.

Stacking observations within a cluster yield the following model

yg = xT
g b + eg (2)

where

yg =
1

ng
∑

i
yi,g and b =

[
b1 . . . bk+1

]T
with similar assumptions except for Var

[
eg
]
= σ2/ng. Those two models are equivalent, in the sense

that the following proposition holds.

Proposition 1. Model (1) on a micro level and Model (2) on a macro level are equivalent, in the sense that

(i) âOLS = b̂OLS when weights ng are used in Model (2); and
(ii) ∑

i,g
ŷi,g = ∑

g
ŷg where yg = ngyg.

Proof. (i) The ordinary least-squares estimator for a - from Model (1)—is defined as

â = argmin
a

{
∑
i,g

(
yi,g − xT

g a
)2
}

(3)

which can also be written

â = argmin
a

{
∑
i,g

(
yi,g − yg + yg − xT

g a
)2
}

. (4)
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Now, observe that

∑
i,g

(
yi,g − yg + yg − xT

g a
)2

= ∑
i,g
(yi,g − yg)

2 + (yg − xT
g a)2

+ 2(yi,g − yg)(yg − xT
g a)

where the first term is independent of a (and can be removed from the optimization program),
and the term with cross-elements sums to 0. Hence,

â = argmin
a

{
∑
i,g
(yg − xT

g a)2

}
= argmin

a

{
∑
g

ng(yg − xT
g a)2

}
= b̂ (5)

where b̂ is the least square estimator of b from Model (2), when weights ng are considered.
(ii) If we consider the sum of predicted values, observe that

∑
i,g

ŷi,g = ∑
g

ngxT
g â = ∑

g
ng xT

g b̂︸︷︷︸
ŷg

= ∑
g

ŷg (6)

Hence, the sum of predictions obtained from Model (1) is the same as the sum of predictions
obtained from Model (2), even if partial sums are considered.

In the proposition above, the equality should be understood as the equality between estimators.
Hence we have the following corollary.

Corollary 2. We define the following matrices

Y g =
[
Y1,g . . . Yng ,g

]T
Y =

[
YT

1 . . . YT
m

]T
Y =

[
Y1 . . . Ym

]T
εg =

[
ε1,g . . . εng ,g

]T
ε =

[
ε1 . . . εm

]T
e =

[
e1 . . . em

]T
x

ng
g =

[
xg . . . xg

]
︸ ︷︷ ︸

ng times

x =
[

xn1
1 . . . xnm

m

]
x =

[
x1

1 . . . x1
m

]

the (1× ng) vectors 1ng =
[
1 . . . 1

]
and 0ng =

[
0 . . . 0

]
, and the matrix

1 =


1n1 0n2 . . . 0nm

0n1 1n2 . . . 0nm
...

...
. . .

...
0n1 0n2 . . . 1nm


The OLS estimators are given by

ÂOLS = argmin
a
{
(

Y − xTa
)T (

Y − xTa
)
}

=
(

xxT
)−1

xY
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B̂OLS = argmin
b
{
(
(
√

11T)Y −
√

11TxTb
)T (

(
√

11T)Y − (
√

11T)xTb
)
}

=
(

x11TxT
)−1

x11TY

Model (1) on a micro level and Model (2) on a macro level are equivalent, in the sense that

(i) E[ÂOLS] = E[B̂OLS] and Var[ÂOLS] = Var[B̂OLS], when weights ng are used in Model (2); and

(ii) E
[
∑
i,g

Ŷi,g

]
= E

[
∑
g

Ŷg

]
and Var

[
∑
i,g

Ŷi,g

]
= Var

[
∑
g

Ŷg

]
.

Proof. Straightforward calculations lead to (11T)−11Y = Y and x1 = x.

(i) Let

E
[

B̂OLS

]
=
(

x11TxT
)−1

x11TE
[
Y
]

=
(

x11TxT
)−1

x11T(11T)−11E [Y ]

=
(

xxT
)−1

xE [Y ] = E
[

ÂOLS

]
For the equality of variances, we have

Var
[

B̂OLS

]
=
(

x11TxT
)−1

x11TVar
[
Y
] ((

x11TxT
)−1

x11T
)T

=
(

x11TxT
)−1

x11T(11T)−11Var [Y ] 1T
(
(11T)−1

)T
((

x11TxT
)−1

x11T
)T

= (xxT)−1xVar [Y ] xT
(
(xxT)−1

)T

= Var
[

ÂOLS

]
(ii) Let

E
[
∑
g

Ŷg

]
= E

[
1m11TŶ

]
= E

[
1m11TxTB̂

]
= E

[
1m11TxT Â

]
= E

[
1nxT Â

]
= E

[
1nŶ

]
= E

[
∑
i,g

Yi,g

]

The proof of the equality of variances is similar.

2.2. The Quasi-Poisson Regression

A similar result can be obtained in the context of Poisson regressions. A generalized linear
model [23] is made up of a linear predictor xTb, a link function that describes how the expected value
depends on this linear predictor and a variance function that describes how the variance depends on
the expected value Var [Y] = ϕV (E [Y]), where ϕ denotes the dispersion parameter. For the Poisson
model, the variance is equal to the mean, i.e., ϕ = 1 and V(E [Y]) = E [Y]. This may be too restrictive
for many actuarial illustrations, which often show more variation than given by expected values.
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We use the term over-dispersed for a model where the variance exceeds the expected value. A common
way to deal with over-dispersion is a quasi-likelihood approach (see [23] for further discussion) where
a model is characterized by its first two moments.

Consider either a Poisson regression model, or a quasi-Poisson one,

Yi,g ∼ P(λi,g) or Yi,g ∼ qP(λi,g) (7)

In the case of a Poisson regression,

E
[
Yi,g
]
= λi,g = exp[xT

g a + ln(1/ng)] and Var
[
Yi,g
]
= λi,g (8)

and in the context of a quasi-Poisson regression,

E
[
Yi,g
]
= λi,g = exp[xT

g a + ln(1/ng)] and Var
[
Yi,g
]
= ϕmicroλi,g (9)

with ϕmicro > 0 for a quasi-Poisson regression (ϕmicro > 1 for over-dispersion). Here again, stacking observations
within a cluster yield the following model (on the sum and not the average value, to have a valid
interpretation with a Poisson distribution)

Yg = ∑
i

Yi,g ∼ P(λg) or Yg ∼ qP(λg) (10)

In the context of a Poisson regression,

E
[
Yg
]
= λg = exp[xT

g b] and Var
[
Yg
]
= λg

and in the context of a quasi-Poisson regression,

E
[
Yg
]
= λg = exp[xT

g b] and Var
[
Yg
]
= ϕmacroλg (11)

with ϕmacro > 0 for a quasi-Poisson regression. Here again, those two models (“micro” and “macro”)
are equivalent, in the sense that the following proposition holds.

Proposition 3. Model (7) on a micro level and Model (10) on a macro level are equivalent in the sense that

(i) âMLE = b̂MLE; and
(ii) ∑

i,g
ŷi,g = ∑

g
ŷg.

Proof. (i) Maximum likelihood estimator of a is the solution of

∑
i,g

(
yi,g − exp[xT

g a]
ϕmicro

)
xg = 0

or equivalently

∑
i,g

(
yi,g − exp[xT

g a]
)

xg = 0

With offsets λ∗g = exp[xT
g b + log(ng)], g = 1, . . . , m, maximum likelihood estimator of b is the

solution (as previously, we can remove ϕmacro) of

∑
g

(
yg − ng exp[xT

g b]
)

xg = 0
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∑
i,g

(
yi,g − exp[xT

g b]
)

xg = 0

Hence, â = b̂, as (unique) solutions of the same system of equations.
(ii) The sum of predicted values is

∑
i,g

ŷi,g = ∑
g

ngλ̂i,g = ∑
g

ng exp[xT
g â] = ∑

g
ng exp[xT

g b̂]

= ∑
g

exp[xT
g b̂ + log(ng)] = ∑

g
λ̂∗g = ∑

g
ŷg

Nevertheless, as we will see later on, the Corollary obtained in the context of a Gaussian linear
model does not hold in the context of a quasi-Poisson regression.

Corollary 4. Model (7) on a micro level and Model (10) on a macro level are asymptotically equivalent for
Poisson regressions, in the sense that

(i) E[ÂMLE] = E[B̂MLE] and Var[ÂMLE] = Var[B̂MLE], when n goes to infinity; and

(ii) E
[
∑
i,g

Ŷi,g

]
= E

[
∑
g

Ŷg

]
and Var

[
∑
i,g

Ŷi,g

]
= Var

[
∑
g

Ŷg

]
, when n goes to infinity.

Proof. (i) A classical result of asymptotic theory for maximum likelihood estimators indicates that,
under mild regularity conditions, E

[
ÂMLE

]
→ a and E

[
B̂MLE

]
→ b as n → ∞.

Since a = b, we have E
[

B̂MLE

]
= E

[
ÂMLE

]
when n → ∞. For Model (7), the Fisher

information matrix is I(A) = xWxT and, when n → ∞, Var
[

Â
]
→

(
xWxT

)−1
,

where W = diag((λ1/n1)1n1, . . . , (λm/nm)1nm). For Model (10), we have I(B) = x1W1TxT = xWxT

and, when n→ ∞, Var
[

B̂
]
→
(

xWxT
)−1

.
(ii) By using a similar argument, we have when n goes to infinity

E
[
∑
g

Ŷg

]
= E

[
1m11TŶ

]
= 1m11TMB̂

(
xT
)

= 1m11TMÂ

(
xT
)
= E

[
1n1TexT Â

]
= E

[
1nexT Â

]
= E

[
1nŶ

]
= E

[
∑
i,g

Ŷg,i

]

In small or moderate-sized samples, it should be noted that Â and B̂ may be biased for A
and B, respectively. Generally, this bias is negligible compared with the standard errors (see [24,25]).

In the quasi-Poisson micro-level model (from Model (7)), as discussed above, the estimator of a is
the solution of the quasi-score function

∑
i,g

(yi,g − λi,g

ϕmicro

)
xg = 0
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which implies âQLE = âMLE. The classical Pearson estimator for the dispersion parameter ϕmicro is

ϕ̂micro = ∑
i,g

(
yi,g − ŷi,g

)2 /ŷi,g

∑g ng − (k + 1)
= ∑

i,g

(
ngyi,g − ŷg

)2 /ngŷg

∑g ng − (k + 1)

Empirical evidence (see [26]) support the use of the Pearson estimator for estimating ϕ because it is
the most robust against the distributional assumption. In a similar way, the quasi-Poisson macro-level
model (from Model (10)), the estimator of b is the solution of

∑
g

(
yg − λg

ϕmacro

)
xg = 0

which implies here also b̂QLE = b̂MLE. The dispersion parameter ϕ is estimated by

ϕ̂macro = ∑
g

(
yg − ŷg

)2 /ŷg

m− (k + 1)

Clearly, ϕ̂micro 6= ϕ̂macro involving the following results.

Corollary 5. Model (7) on a micro level and Model (10) on a macro level are not asymptotically equivalent for
quasi-Poisson regressions, in the sense that

(i) E[ÂQLE] = E[B̂QLE] but Var[ÂQLE] 6= Var[B̂QLE], when n goes to infinity; and

(ii) E
[
∑
i,g

Ŷi,g

]
= E

[
∑
g

Ŷg

]
but Var

[
∑
i,g

Ŷi,g

]
6= Var

[
∑
g

Ŷg

]
, when n goes to infinity.

Proof. (i) The property that variances are not equal is a direct consequence of classical results from
the theory of generalized linear models (see [23]), since the covariance matrices of estimators are
given by

Var
[

B̂
]
→ ϕ̂macro

(
xWxT

)−1

and

Var
[

Â
]
→ ϕ̂micro

(
xWxT

)−1
(12)

when n goes to infinity. Thus, covariance matrices of estimators are asymptotically equal for the
Poisson regression model but differ for the quasi-Poisson model because ϕ̂micro 6= ϕ̂macro.

(ii) Since the MLE and the QLE share the same asymptotic distribution (see [23]), the proof is similar
to Corollary 4(ii).

2.3. Poisson Regression with Random Effect

In the micro-level model described by Equation (7), observations made for the same event (subject)
at different periods are supposed to be independent. Within-subject correlation can be included in the
model by adding random, or subject-specific, effects in the linear predictor. In the Poisson regression
model with random intercept, the between-subject variation is modeled by a random intercept γ which
represents the combined effects of all omitted covariates.
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Let Y(t)
g represent the sum of all observations from subject t, in the cluster g and

E
[
Y(t)

g |γt

]
= exp[xT

g a + γt]

Var
[
Y(t)

g |γt

]
= E

[
Y(t)

g |γt

]
γ =

γ1

. . .
γT

 ∼ NT

(
0, σ2 I

)

where I is the (T × T) identity matrix, and NT(µ, Σ) the T-dimensional Gaussian distribution with
mean µ and covariance matrix Σ. Straightforward calculations lead to

E
[
Y(t)

g

]
= exp[xT

g a + σ2/2]

Var
[
Y(t)

g

]
= E

[
Y(t)

g

] (
1 +E

[
Y(t)

g

] (
exp[σ2]− 1

))
Hence,

Var
[
Y(t)

g

]
> E

[
Y(t)

g

]
, σ2 > 0 (13)

This last equation shows that the Poisson regression model with random intercept leads to
an over-dispersed marginal distribution for the variable Y(t)

g . The maximum likelihood estimation for
parameters requires Laplace approximation and numerical integration (see the Chapter 4 of [27] for
more details). This model is a special case of multilevel Poisson regression model and estimation can
be performed with various statistical softwares such as HLM, SAS, Stata and R (with package lme4).

One may be interested to verify the need of a source of between-subject variation. Statistically,
it is equivalent to testing the variance of γ to be zero. In this particular case, the null hypothesis places
σ2 on the boundary of the model parameter space which complicates the evaluation of the asymptotic
distribution of the classical likelihood ratio test (LRT) statistic. From the very general result of [28],
it can be demonstrated (see [29]) that the asymptotic null distribution of the LRT statistic is a 50/50
mixture of χ2

0 and χ2
1 as ∑g ng → ∞. In this case, obtaining an equivalent macro-level model is of little

practical interest since the construction of the variance-covariance matrix would require knowledge of
the individual (“micro”) data.

3. Clustering and Loss Reserving Models

A loss reserving macro-level model is constructed from data summarized in a table called
run-off triangle. Aggregation is performed by occurrence and development periods (typically years).
For occurrence period i, i = 1, 2, . . . , I, and for development period j, j = 1, 2, . . . I, let Ci,j and Yi,j
represent the total cumulative paid amount and the incremental paid amount, respectively with
Yi,j = Ci,j − Ci,j−1, i = 1, . . . , I, j = 2, . . . , I.

C1,1 C1,2 . . . C1,I−1 C1,I
C2,1 C2,2 . . . C2,I−1

...
...

. . .
CI,1




Y1,1 = C1,1 Y1,2 . . . Y1,I−1 Y1,I
Y2,1 = C2,1 Y2,2 . . . Y2,I−1

...
...

. . .
YI,1 = CI,1
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where columns, rows and diagonals represent development, occurrence and calendar periods, respectively.
Each incremental cell Yi,j can be seen as a cluster stacking ni,j amounts paid in the same development

period j for the occurrence period i. These payments come from M claims and let Y(k)
i,j represent the

sum of all observations from claims k in the cluster (i, j). It should be noted that all claims are not
necessarily represented in each of the clusters.

To calculate a best estimate for the reserve, the lower part of the triangle must be predicted and the
total reserve amount is

R̂ =
I

∑
t=2

Ĉt,I −
I

∑
t=2

Ct,I−t+1 =
I

∑
t=2

I

∑
s=I+2−t

Ŷt,s

To quantify uncertainty in estimated claims reserve, we consider the mean square error of
prediction (MSEP). Let R̂ be a Y-mesurable estimator for E [R|Y ] and a Y-mesurable predictor for R
where Y represents the set of observed clusters. The MSEP is

MSEPR|Y (R̂) = E
[(

R̂− R
)2
|Y
]

= Var [R|Y ] +
(

R̂−E [R|Y ]
)2

Independence between R and Y is assumed, so the equation is simplified as follows

MSEPR|Y (R̂) = Var [R] +
(

R̂−E [R]
)2

and the unconditional MSEP is

MSEPR(R̂) = Var [R] +E
[(

R̂−E [R]
)2
]

3.1. The Quasi-Poisson Model for Reserves

3.1.1. Construction

From the theory presented in Subsection 2.2, we construct quasi-Poisson macro- and micro-level
models for reserves. For both models, constitutive elements are defined in Table 1.

Table 1. Quasi-Poisson macro- and micro-level models for reserve (i, j = 1, . . . , I). All clusters and all
payments are independent.

Components Macro Micro

Exp. value E
[
Yi,j
]
= λi,j E

[
Y(k)

i,j

]
= λi,j

Inv. link func. λi,j = exp[xT
i,jb] λi,j = exp[xT

i,ja + log(1/ni,j)]

= exp[bi + bI+j] = exp[ai + aI+j + log(1/ni,j)]
with bI+1 = 0 with aI+1 = 0

Variance Var
[
Yi,j
]
= ϕmacroλi,j Var

[
Y(k)

i,j

]
= ϕmicroλi,j

Pred. value Ŷi,j = exp[b̂i + b̂I+j] Ŷ(k)
i,j = exp[âi + âI+j + log(1/ni,j)]

Known values Ymacro Ymicro
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As a direct consequence of Proposition 3, the best estimate for the total reserve amount is

R̂ = ∑
(i,j)∈K

ni,j

∑
k=1

Ŷ(k)
i,j = ∑

(i,j)∈K
Ŷi,j

where K represents unobserved clusters. For both models, the Proposition 6 gives results for the
unconditional MSEP.

Proposition 6. In the quasi-Poisson macro-level model, the unconditional MSEP is given by

M̂SEPR(R̂) ≈ ∑
(i,j)∈K

ϕ̂macro ŷi,j

+ ∑
(i,j),(n,m)∈K

ϕ̂macro ŷi,jŷm,nxT
i,j

(
xWxT

)−1
xn,m

where x and W are defined by Equation (12). The unconditional MSEP for the quasi-Poisson micro-level model
is similar with ϕ̂macro replaced by ϕ̂micro.

Proof. The proof for the macro-level model is done in [25]. For the micro-level model, we have

MSEPR(R̂) = Var [R] +E
[(

R̂−E [R]
)2
]

= ∑
(i,j)∈K

ni,j

∑
k=1

ϕ̂micro exp[xT
i,j â + log(1/ni,j)]

+ ∑
(i,j)∈K

∑
(m,n)∈K

ni,j

∑
k=1

nm,n

∑
t=1

Cov
[
Ŷ(k)

i,j , Ŷ(t)
m,n

]
= ∑

(i,j)∈K
ϕ̂micro exp[xT

i,j â]

+ ∑
(i,j)∈K

∑
(m,n)∈K

ni,j

∑
k=1

nm,n

∑
t=1

exp[xT
i,ja + log(1/ni,j)] exp[xT

m,na + log(1/nm,n)]

×Cov
[
exp[xT

i,j â− xT
i,ja], exp[xT

m,n â− xT
m,na]

]

Although Ŷ(k)
i,j is not an unbiased estimator of E

[
Y(k)

i,j

]
, the bias is generally of small order and by

using the approximation exp[x] ≈ 1 + x for x ≈ 0, we obtain

= ∑
(i,j)∈K

ϕ̂micro exp[xT
i,j â]

+ ∑
(i,j),(m,n)∈K

exp[xT
i,ja + xT

m,na]Cov
[

xT
i,j â, xT

m,n â
]

.

By using the fact that b̂ = â and the remark at the end of Subsection 2.2, we obtain

= ∑
(i,j)∈K

ϕ̂micro ŷi,j + ∑
(i,j),(m,n)∈K

ϕ̂micro ŷi,jŷm,nxT
i,j

(
xWxT

)−1
xm,n
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Thus, the difference between the variability in macro- and micro-level models results from the
difference between dispersion parameters. Define standardized residuals for both models

ri,g =

(
yi,g − ŷi,g

)√
ŷi,g

and rg =

(
yg − ŷg

)√
ŷg

Direct calculations lead to

Ψ =
∑i,g r2

i,g

∑g r2
g
≤

∑g ng − (k + 1)
m− (k + 1)

→ ϕ̂micro ≤ ϕ̂macro (14)

Thus, if the total number of payments (∑g ng) is greater than the value Ψ(m− (k + 1)) + k + 1,
then the micro-level Model (7) will lead to a greater precision for the best estimate of the total reserve
amount and conversely. Adding one or more covariate(s) at the micro level will decrease the numerator
of Ψ and will increase the interest of the micro-level model.

3.1.2. Illustration and Discussion

To illustrate these results, we consider the incremental run-off triangle from UK Motor
Non-Comprehensive account (published by [30]) presented in Table 2 where each cell (i, j), i + j ≤ 7,
is assumed to be a cluster g, i.e., the value Yg is the sum of ng independent payments. Simulations and
computations were performed in R, using packages ChainLadder and gtools. The final reserve amount
obtained from the Mack’s model [2] is $28,655,773.

Table 2. Incremental run-off triangle for macro-level model (in 000’s).

1 2 3 4 5 6 7

1 3511 3215 2266 1712 1059 587 340
2 4001 3702 2278 1180 956 629 –
3 4355 3932 1946 1522 1238 – –
4 4295 3455 2023 1320 – – –
5 4150 3747 2320 – – – –
6 5102 4548 – – – – –
7 6283 – – – – – –

Based on the construction detailed in Table 1, we consider 2 macro-level models

Model A: Yg ∼ P(λg) λg = exp[xT
g a]

Model B: Yg ∼ qP(λg)

and 2 micro-level models

Model C: Yi,g ∼ P(λi,g) λi,g = exp[xT
g a− log(ng)]

Model D: Yi,g ∼ qP(λi,g).

To create micro-level datasets from the "macro" one, we perform the following procedure:

1. simulate the number of payments for each cluster assuming Ng ∼ P(θ), g = 1, . . . , m;

2. for each cluster, simulate a (ng × 1) vector of proportions assuming ωg =
[
ω1 . . . ωng

]T
∼

Dirichlet (1), g = 1, . . . , m;
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3. for each cluster, define  Y1,g
...

Yng ,g

 = bωgYgc, g = 1, . . . , m

4. adjust Model C and Model D; and
5. calculate the best estimate and the MSEP of the reserve by using Proposition 6.

For each value of θ, we repeat this procedure 1000 times and we calculate the average best estimate
and the average MSEP. Results are presented in Table 3 and Figure 1. For Poisson regression (Model A
and C), results are similar, which is consistent with Corollary 4. For micro-level models, convergence
of
√

MSEP towards (11 622) is fast. For quasi-Poisson regression (Model B and D), expected values
are equal and Figure 1 shows

√
MSEP as a function of the expected total number of payments for

the portfolio. Above a certain level, (close to 3400 here), accuracy of the “micro” approach exceeds
the “macro”. Again, those results are consistent with Corollary 5. Here, we consider that the expected
number of payments by cluster (θ) is constant but it would also be possible to consider a mixture
model where

(
Ng|Θg

)
∼ P(θg), g = 1, . . . , m, and Θg ∼ Gamma(α, β). This modification does not

change the conclusions. Finally, a comparison of estimated MSEP for both Poisson and quasi-Poisson
models confirms the presence of over-dispersion in the data.
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Figure 1. Square root of the mean square error of prediction obtained for Model D (solid line)
and Model B (broken line) from simulated values for increasing expected number of payments for
the portfolio.

In order to illustrate the impact of adding a covariate at the micro-level, we define a quasi-Poisson
micro-level model with a weakly correlated covariate (Model E) and with a strongly correlated
covariate (Model F). Following a similar procedure, we obtain results presented in the bottom part of
Table 3 and in Figure 2.

As opposed to standard classical results on hierarchical models, the average of explanatory
variable within a cluster ((1/ng)∑i xig) has not been added to the macro-level model (Model B),
for several reasons,

(i) impossible to compute that average without individual data;
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(ii) discrete explanatory variables used in the micro-level model; and
(iii) since claims reserve model have a predictive motivation, it is risky to project the value of

an aggregated variable on future clusters.

Table 3. Results.

Method E [Reserve]
√

MSEP

Mack’s model 28 655 773 1 417 267
Poisson reg.

Model A 28 655 773 11 622
Model C 28 655 773 11 622

quasi-Poisson reg.
Model B 28 655 773 1 708 196
Model D 28 655 773 see Figure 1

quasi-Poisson reg.
Model E (ρ ≈ 0) 28 657 364 see Figure 2

Model F (ρ ≈ 0.8) 20 514 566 see Figure 2
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Figure 2. Mean square error of prediction (±2σ) obtained from simulated values as a function of the
expected number of payments for Model E (red lines) and Model F (blue lines). For comparison purposes,
the MSEP obtained for the Model D (solid black line) and the Model B (broken black line) are added.

With an explanatory variable highly correlated with the response variable, results obtained with
Model D and E are very close. As claimed by Proposition 6 and Equation (14), an explanatory variable
highly correlated with the response variable will decrease the value of

√
MSEP, and lowers the

threshold above which the micro-level model is more accurate than the macro-level one.
The quasi-Poisson macro-level model (Model B) with maximum likelihood estimators leads

to the same reserves as the chain-ladder algorithm and the Mack’s model (see [31]), assuming the
clusters exposure, for (i, j) ∈ K, is one. To obtain similar results with a quasi-Poisson micro-level model
(Model D), a similar assumption is necessary: exposure of each claim within cluster (i, j) is 1/ni,j.

That assumption implies, on a micro level, that predicted individual payments Ŷ(k)
ij are proportional to

1/nij. That assumption has unfortunately no foundation.
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In the Poisson and quasi-Poisson micro-level models (Model C and D), payments related to
the same claim, in two different clusters are supposed to be non-correlated. As discussed in the
previous Section, it is possible to include dependencies among payments for a given claim using
a Poisson regression with random effects.

3.2. The Mixed Poisson Model for Reserves

3.2.1. Construction

From the results obtained in Subsection 2.3, it is possible to construct a micro-model for the
reserves that includes a random intercept. The later will allow to model dependence between payments
from a given claim. Note that it is not relevant to construct an aggregated model with random effects
that could be compared with individual ones. In the context of claims reserves, Y(t)

g represents the sum
of payments made for claim t within cluster g. The assumptions of that model (called model G) are(

Y(t)
g |γt

)
∼ P(λgeγt), λg = exp[xT

g c + ln(1/ng)]

γt ∼ N(0, σ2)

Because of the hierarchical structure of the model, predictions can be derived from several
philosophical perspectives (see [32], and references therein). In our example, we focus on the following
unconditional predictions (

Ŷ(t)
g |γt

)
∼ P(λ̂geγt)

λ̂g = exp[xT
g ĉ + ln(1/ng)]

so that E
[
Ŷ(t)

g

]
= λgeσ2/2

and on the conditional ones, where the unknown component of claim t is predicted by the so-called
best linear estimate (that minimizes the MSEP) γ̃t (see [25])(

Ỹ(t)
g |γ̃t

)
∼ P(λ̂geγ̃t)

so that E
[
Ỹ(t)

g

]
= λgeγ̃t

It is then possible to compute the overall best estimate for the total amount of reserves.

3.2.2. Illustration and Discussion

We illustrate these results with the same macro-level dataset. In order to construct a micro-level
model from Table 2, we follow a procedure similar to the one described in the previous section,

1-3. see previous section;
4. for each accident year, allocate randomly the source (t) of each payment;
5. fit model G; and
6. compute the best estimate and the MSEP of the reserve.

For a fixed value of θ, the procedure is repeated 1000 times. Various values were considered for θ

(10, 25, 50, 100 and 250), and results were similar. In order to avoid heavy tables, only the case where θ = 10
is mentioned here. Simulations and computations were performed with R, relying on package lme4.
Final results are reported in Table 4. On Figure 3 we can see predictions of the model on observed data,
while on Figure 4 we can see predictions of the model for non-observed cells (with ±2σ in both cases).
For each simulation, a LRT is performed to check the non-nullity of the variance term and to confirm
the necessity of including a random intercept in the model, which means that correlation among
payments (related to the same claim) is positive. Observe that with the mixed model, the log-likelihood
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is approximated using numerical integration, which might bias p-values of the test. To avoid that,
p have been confirmed using a bootstrap procedure (using package glmmML).
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Figure 3. Observed data (circles) with conditional predictions (red lines) and unconditional ones (blue
lines) from Model G with θ = 10.
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Figure 4. Predictions with the quasi-Poisson macro-level model (strong black line), with conditional
predictions (red lines) and unconditional ones (blue lines) from Model G with θ = 10.
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Table 4. Numerical results for θ = 10. Results for different values of θ are similar.

Modèle E [Reserve]
√

Var(Reserve)

coll. quasi-Pois. 28 656 423 1 708 216
mixed Poisson non-cond. 27 930 624 3 297 401

mixed Poisson cond. 25 972 947 2 280 902

4. Conclusions

In this article, we study equivalence (as well as non-equivalence) between Poisson and
quasi-Poisson regression models, obtained on aggregated (so called macro-level) and non-aggregated
(micro-level) datasets, in order to understand when using micro-level models might over-perform
macro-level ones. Those models are used here in the context of estimating claims reserves. The uncertainty
is quantified using—as in standard macro-level approaches—the MSEP. We also investigate the impact
of adding micro-level covariates in the model. Finally, we discuss the use of mixed Poisson regression, in
the case of micro-level data, that might take into account possible dependence between observations
in different clusters.

We illustrate theoretical results on simulated data, generated from cumulated payments, in R.
A methodology that allows us to generate such micro-level datasets is described. In a first part, we compare
results obtained with Poisson and quasi-Poisson regression, on micro- and macro-level datasets.
That comparison reveals that in the context of a quasi-Poisson regression model, the expected number
of claims plays a crucial role, since above a given threshold, the micro-level model is more robust than
the macro-one. Moreover, the presence (or absence) of covariates can affect this threshold.

In a second part, we analyse predictions obtained using a mixed Poisson regression model, i.e.,
a Poisson regression model with a random component that characterizes dependence among payments
on the same claim, at different dates. The necessity of this random component is verified by using
a likelihood-ratio test. That study reveals that such a dependence might have a non-negligible impact
on predictions.

Of course, that study is only the first step and several directions for future research can be intuited.
For instance, as micro-level models are based on much more observations than macro-level ones,
more robust estimation techniques, such as generalized method of moments, can be considered.
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